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We determine the u and d quark contributions to the proton magnetic form factor at finite momentum transfer
by applying chiral corrections to quenched lattice data. Heavy baryon chiral perturbation theory is applied at
next-to-leading order in the quenched and full QCD cases for the valence sector using finite range regularization.
Under the assumption of charge symmetry these values can be combined with the experimental values of the
proton and neutron magnetic form factors to deduce a relatively accurate value for the strange magnetic form
factor at Q2 = 0.23 GeV2, namely, Gs

M = −0.034 ± 0.021 µN .
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Strange quark contributions to the properties of the nucleon
have attracted a lot of interest since the originally puzzling
European Muon Collaboration results concerning the proton
spin [1]. Although that motivation has faded [2,3], it remains
a central issue in QCD, especially with respect to lattice QCD,
where such terms necessarily involve so-called “disconnected
graphs,” i.e., quark loops that are connected only by gluon
lines to the valence quarks. Despite enormous effort [4], the
direct lattice calculations of these contributions have so far
been unable to produce a result that differs statistically from
zero. However, by using the constraints of charge symmetry,
which is expected to be accurate at the 1% level or better
[5,6], one can write relations [cf. Eqs. (17) and (18), below]
for the disconnected contributions to physical form factors
[7] in terms of valence quantities, which can be accurately
calculated in lattice QCD, and the experimentally determined
form factors. In the case of the strange magnetic moment
and charge radius of the proton, this approach has succeeded
admirably [8,9]. Here we apply the technique to the strange
magnetic form factor at Q2 = 0.23 GeV2.

Parity-violating electron scattering (PVES) has proven to
be a valuable tool for experimentally determining the strange
quark contribution to the electromagnetic form factors of
the proton. Under the assumption of charge symmetry, one
can deduce the strange electric or magnetic form factor
(Gs

E,M (Q2)) from measurements of the corresponding proton
and neutron electromagnetic form factors and the neutral-weak
vector form factor of the proton, through its contribution to
PVES. While PVES measurements are very challenging, a
number of groups have succeeded, starting with SAMPLE
at Bates [10] and then A4 at Mainz [11] and G0 [12] and
HAPPEX [13–15] at Jefferson Lab. A global analysis of
all this data has given very precise values for the strange
quark contribution to the proton magnetic moment, as well
as its charge radius [16], which are consistent with the
theoretical calculations mentioned above. The motivation for
our current work is the knowledge that in the near future
we expect new measurements from A4 and G0 at Q2 =
0.23 GeV2.

In addition to the extensive experimental activity, a variety
of theoretical models have been applied to the calculation of
the strange nucleon form factors. These approaches include
the QCD equalities supplemented with constituent quark
model assumptions [17], heavy baryon chiral perturbation
theory [18,19], dispersive approaches [20–22], the vector
dominance model (VDM) [23], the VDM with a kaon cloud
contribution [24], the Skyrme model [25], the NJL model [26],
the chiral soliton [27,28], chiral bag [29] and chiral quark
models [30–32], a two-component model with a meson cloud
[33], etc. These theoretical predictions vary quite widely. For
example, the predicted strange magnetic moment varies from
relatively large and negative, −0.75 ± 0.30 [17] to sizably
positive, +0.37 [29].

As well as the above model calculations, there have been
some lattice simulations of the strange magnetic moment, with
early lattice simulations giving a relatively large negative value
[7,34,35]. In 2003, Lewis et al. [4] used low order, quenched
chiral perturbation theory together with the lattice QCD sim-
ulation to calculate the strange form factors from lattice data.
The magnetic form factor that they obtained at Q2 = 0.1 GeV2

was +0.05 ± 0.06. Recently, by combining the constraints of
charge symmetry with new chiral extrapolation techniques and
low mass, quenched lattice QCD simulations of the individual
quark contributions to the magnetic moments of the nucleon
octet, a precise, nonzero value, Gs

M (0) = −0.046 ± 0.019,
was obtained [8].

In this article, we present the lattice prediction for the
strange magnetic form factor at Q2 = 0.23 GeV2. We first
extrapolate the u and d quark contributions to the proton
magnetic form factor in quenched, heavy baryon chiral
perturbation theory [36,37]. The quenched lattice data from
the CSSM Lattice Collaboration are used and finite-range
regularization (FRR) is applied in the extrapolation, because
of its improved convergence behavior at intermediate and large
quark mass [38–42]. In the following we briefly introduce the
chiral Lagrangian that is used in the extrapolation. The formal
calculation of the magnetic form factor is then explained,
followed by the numerical results.
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There are many articles that deal with heavy baryon
chiral perturbation theory. For details see, for example,
Refs. [43–45]. For completeness, we briefly introduce the
formalism here. In the heavy baryon chiral perturbation theory,
the lowest order chiral Lagrangian for the baryon-meson
interaction, which will be used in the calculation of the
electromagnetic magnetic form factors, including the octet
and decuplet baryons, is expressed as

Lv = iTrB̄v(v · D)Bv + 2DTrB̄vS
µ
v {Aµ,Bv}

+ 2FTrB̄vS
µ
v [Aµ,Bv] − iT̄ µ

v (v · D)Tvµ

+ C
(
T̄ µ

v AµBv + B̄vAµT µ
v

)
, (1)

where Sµ is the covariant spin-operator, defined as

Sµ
v = i

2
γ 5σµνvν. (2)

Here, vν is the nucleon four velocity [in the rest frame, we
have vν = (1, 0)]. D,F , and C are the coupling constants.
The chiral covariant derivative, Dµ, is written as DµBv =
∂µBv + [Vµ,Bv]. The pseudoscalar meson octet couples
to the baryon field through the vector and axial vector
combinations

Vµ = 1
2 (ζ∂µζ † + ζ †∂µζ ), Aµ = 1

2 (ζ∂µζ † − ζ †∂µζ ), (3)

where

ζ = eiφ/f , f = 93 MeV. (4)

The matrix of pseudoscalar fields, φ, is expressed as

φ = 1√
2

⎛
⎜⎝

1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

⎞
⎟⎠ . (5)

Bv and T µ
v are the velocity-dependent new fields, which are

related to the original baryon octet and decuplet fields, B and
T µ, by

Bv(x) = eimN �vvµxµ

B(x), (6)

T µ
v (x) = eimN �vvµxµ

T µ(x). (7)

In the chiral SU(3) limit, the octet baryons are degenerate.
In our calculation we use the physical mass splittings for
transition meson-baryon loop diagrams.

In the heavy baryon formalism, the propagators of the octet
or decuplet baryon, j , are expressed as

i

v · k − 	 + iε
and

iP µν

v · k − 	 + iε
, (8)

where P µν is vµvν − gµν − (4/3)Sµ
v Sν

v and 	 = mj − mN is
the mass difference between the baryon j and the nucleon.
The propagator of meson j (j = π,K, η) is the usual free
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FIG. 1. Leading and next-to-leading order diagrams for the
proton magnetic form factors. The last diagram, c, need only be
included in the quenched case.

propagator:

i

k2 − M2
j + iε

. (9)

In the heavy baryon formalism, the electromagnetic form
factors are defined as

〈B(p′)|Jµ|B(p)〉 = ū(p′)
{
vµGE(Q2)

+ iεµναβvαSβ
v qν

mN

GM (Q2)

}
u(p), (10)

where Jµ is the charge current, q = p′ − p, and Q2 = −q2.
In this article, we focus on the magnetic form factors in each
quark sector, aiming to extract the strange quark contribution.

With the Lagrangian given earlier, the leading and next-to-
leading order diagrams for the magnetic form factor are shown
in Fig. 1. In full QCD, the first diagram, a, is the leading
diagram, while diagram b gives the next-to-leading order
nonanalytic term, because of the mass difference between octet
and decuplet baryons. The last, or so-called double hairpin,
diagram need be considered only for the quenched case, where
the η′ is degenerate with the pion.

The contribution to the magnetic form factor of Fig. 1(a) is
expressed as

Ga
M (Q2) = −MNβa

8π3f 2
π

∫
d3k

k2
yu(�k + �q/2)u(�k − �q/2)

ω(�k + �q/2)2ω(�k − �q/2)2
.

(11)

ωj (�k) =
√

m2
j + �k2 is the energy of the meson j . We regulate

the loop integral using finite range regularization, with u(�k)
being the ultraviolet regulator. Both the pion and koan are
included in the calculation. In full QCD, the coefficients
are obtained from the Lagrangian. In the quenched case the
coefficients are obtained as in Refs. [36,44,46].

The contribution to the magnetic form factor of Fig. 1(b)
can be written as

Gb
M (Q2) = −MNβb

8π3f 2
π

∫
d3k

k2
yu(�k + �q/2)u(�k − �q/2)(ω(�k + �q/2) + ω(�k − �q/2))

A
, (12)
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TABLE I. Coefficients, βa , for quarks in quenched, valence, and full QCD for Fig. 1(a). The left three columns are for an intermediate
π meson and the right three columns are for an intermediate K meson.

Quark u d s u d s

Quench − 4
3 D2 4

3 D2 0 0 0 0
− 1

6 (3F + D)2�K

Valence −4F 2 − 8
3 D2 − 2

3 D2 + 4DF − 2F 2 0 −(D − F )2 0
− 1

2 (D − F )2�K

− 1
6 (3F + D)2�K 1

6 (3F + D)2�K

Full QCD −(D + F )2 (D + F )2 0 −(D − F )2

− 1
2 (D − F )2�K 3

2 (D − F )2�K

where

A = ω(�k + �q/2)ω(�k − �q/2)(ω(�k + �q/2) + 	)

× (ω(�k−�q/2)+	)(ω(�k + �q/2)+ω(�k−�q/2)).

(13)

In the preceding equations, βi(i = a, b) depends on the quark
type, the meson loop type, and whether the calculation involves
quenched or full QCD in the calculation.

In the quenched case, the additional double hairpin term
from the η′ is expressed as

Gc
M (Q2) = (3F − D)2M2

0 GM (Q2)

288π3f 2
π

∫
d3k

�k2 u(�k)2

ω(�k)5
, (14)

where M0 is the double hairpin interaction strength. We
note that the integral of Eq. (14) gives rise to a logarithmic
divergence in the chiral limit. As a result we estimate the
contribution of this graph using the renormalized value of
GM (Q2) obtained from the lattice simulation results at finite
quark-mass values. Of course, in full QCD no such term needs
to be included.

In the above formulas, the coefficients in quenched, valence,
and full QCD can be obtained with the same method as used
in Ref. [46]. For example, Fig. 1(a) is shown in detail in terms
of the underlying quark lines in Fig. 2. In quenched QCD, the
diagram with a quark loop has no contribution. In the case of
the valence quark sector, as well as the quenched diagram, the
diagram with a quark loop can also have a contribution if the
external photon field couples to the valence quark. In full QCD,
both the valence quark and the sea quark (loop) couple to the
photon field. For the pion loop, in full QCD, Figs. 2(a) and
2(c) give contributions, while in the quenched case, Figs. 2(a)
and 2(b) give contributions. The coefficients for Figs. 2(c) and
2(i) are the same as those for Fig. 2(e), which are known from

TABLE II. Coefficients, βb, for quarks in quenched, valence, and
full QCD for Fig. 1(b). The left three columns are for an intermediate
π meson and the right three columns are for an intermediate K meson.

Quark u d s u d s

Quench − C2

6
C2

6 0 0 0 0

Valence − C2

18
7C2

18 0 C2

18
C2

9 0

Full QCD − 2C2

9
2C2

9 0 C2

18
C2

9 − C2

6

the Lagrangian, because QCD is flavor blind. For the same
reason, the coefficients for Figs. 2(d) and 2(h) are the same as
those for Fig. 2(f). By subtracting the known coefficients from
the total coefficients of full QCD, we can get the coefficients
for each diagram in Fig. 2. The resulting coefficients for
each quark for the different cases are summarized in Tables I
and II.

As we know, most detailed lattice simulations for the
nucleon electromagnetic form factors have been computed in
the quenched approximation, in which the strange magnetic
form factor is identically zero. Because the value in full
QCD is not large, any direct calculation of Gs

M will require
considerable effort to extract an accurate value. In this article,
we first concentrate on computing the contribution of each
valence quark to the proton form factor, in the physical theory
at the physical mass. Then by using charge symmetry and the
experimental proton and neutron form factors, we are able to
extract a precise value of the strange magnetic form factor
using the techniques of Refs. [7] and [8].
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FIG. 2. Feynman diagrams at the quark level, which are included
in Fig. 1(a) for the proton magnetic form factor.
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The magnetic form factor can be expressed as

GM (Q2) = a0 + a2m
2
π + a4m

4
π +

c∑
i=a

Gi
M (Q2), (15)

where the parameters a0, a2, and a4 can be obtained by
fitting the quenched lattice data. In the numerical calculations,
the SU(3) parameters are chosen to be D = 0.76 and F =
0.50 (gA = D + F = 1.26) and the coupling constant C is
−2D. The FRR regulator, or form factor, u(k), is taken to be
a dipole (u(k) = 1

(1+k2/�2)2 , with � = 0.8 GeV), although as
shown by Young et al. [41] the model dependence associated
with other choices is small.

We use SU(2) chiral symmetry, with only the light quark
masses varying and the strange quark mass fixed. Thus the
K-meson mass is related to the pion mass by

m2
K = 1

2m2
π + m2

K

∣∣
phy − 1

2m2
π

∣∣
phy, (16)

which enables a direct relationship between the meson dress-
ings of the magnetic form factor and the pion mass.

The contribution of a single u quark with unit charge to the
proton magnetic form factor is shown in Fig. 3. The dotted,
dashed, and solid lines are for the quenched, valence sector,
and full QCD results, respectively. The square points with
error bars are the quenched lattice data obtained by the CSSM
Lattice Collaboration [47]. The lattice results were fit with fi-
nite volume chiral perturbation theory followed by corrections
to yield the infinite volume results. The FRR quenched chiral
perturbation theory describes the lattice data results well over
the range m2

π ∈ 0.1–0.7 GeV2. At the physical pion mass, the
quenched (qGu

M ), valence (vGu
M ), and full QCD (f Gu

M ) values
of the magnetic form factor are 1.099 ± 0.165, 1.221 ± 0.183,
and 1.179 ± 0.177, respectively.

In Fig. 4, we show the contribution of the d quark, with
unit charge, to the proton magnetic form factor. The three
styles of line have the same meaning as described in Fig. 3.
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FIG. 3. The contribution of a single u quark, with unit charge,
to the proton magnetic form factor at Q2 = 0.23 GeV2 versus pion
mass. The dotted, dashed, and solid lines denote the quenched (finite
volume), valence sector, and full QCD (infinite volume) results,
respectively.
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FIG. 4. The contribution of a d quark, with unit charge, to the
proton magnetic form factor at Q2 = 0.23 GeV2 versus pion mass.
The dotted, dashed, and solid lines denote the quenched (finite
volume), valence sector, and full QCD (infinite volume) results,
respectively.

Again, the quenched lattice results are described very well.
In contrast with the u quark case, the absolute value of the d

quark contribution in full QCD is larger than that in the valence
case. This is consistent with the disconnected contribution and
hence the strange quark form factor being small and negative.
At the physical pion mass, the quenched (qGd

M ), valence
(vGd

M ), and full QCD (f Gd
M ) values of the d quark contribution

are −0.356 ± 0.053,−0.383 ± 0.057, and −0.468 ± 0.070,
respectively.

With the full QCD values of the u and d quark contributions,
one can get the strange form factor by subtracting them from
the proton or neutron magnetic form factor. However, because
of the small value of Gs

M , the error bar obtained in this direct
calculation is much larger than the central value of Gs

M . We
therefore use the valence contributions vGu

M and vGd
M , which

yield a relatively precise value of Gs
M .

The proton and neutron magnetic form factors can be
written in terms of quark components as [7]

G
p

M = 4
3

vGu
M − 1

3
vGd

M + lO
p

M, (17)

Gn
M = 2

3
vGd

M − 2
3

vGu
M + lOn

M, (18)

where lO
p

M = lOn
M = 2

3
lGu

M − 1
3

lGd
M − 1

3Gs
M . The label l

denotes a “loop” or sea quark contribution, while the label
v means a connected valence quark contribution in full QCD.
In the equations above, charge symmetry has been used; i.e.,
the u and d quark contributions in the proton are the same as
the corresponding d and u quark contributions in the neutron.
Charge symmetry is known to be accurate at better than 1%
where it has been tested, primarily in nuclear systems. It
must be assumed to extract the strange form factors from
parity-violating electron scattering. Under the assumption of
charge symmetry, the strange quark contribution in the proton
is the same as that in the neutron.

The contribution from the quark in the loop in Fig. 2
depends only on its mass; i.e., it is independent of whether the
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quark in the loop is labeled u, d, or s. The loop contribution of
each quark can be obtained using Eqs. (11) and (12) with the
same coefficients 5

3D2 − 2DF + 3F 2 and − C2

6 . By calculation
of the relevant loops using FRR, we evaluate the ratio
lRs

d = Gs
M/lGd

M at Q2 = 0.23 GeV2. This yields the value
lRs

d = 0.185 ± 0.038 allowing the dipole mass parameter to
vary between 0.6 and 1.0 GeV. Then, using Eqs. (17) and (18),
we find

Gs
M =

lRs
d

1 − lRs
d

(
2G

p

M + Gn
M − 2vGu

M

)
, (19)

Gs
M =

lRs
d

1 − lRs
d

(
G

p

M + 2Gn
M − vGd

M

)
. (20)

In Ref. [8], because we were working at Q2 = 0, it
was possible to use the measured magnetic moments of the
nucleon and the hyperons. Because the hyperon magnetic
form factors are not known at finite Q2, here we must
use the extrapolated valence quark contributions (rather
than ratios) to extract the strange form factor. The experi-

mental values of G
p

M (0.23) and Gn
M (0.23) are G

p

M (0.23)
µpGD(0.23) =

0.98 ± 0.01 [48] and Gn
M (0.23)

µnGD(0.23) = 0.96 ± 0.01 [49], where

GD is the dipole function expressed as GD(Q2) = 1/(1 +
Q2/0.71 GeV2)2. Substituting the experimental magnetic
moment of the proton (2.793) and neutron (−1.913), we obtain
the values G

p

M (0.23) + 2Gn
M (0.23) = −0.534 ± 0.036 and

2G
p

M (0.23) + Gn
M (0.23) = 2.075 ± 0.041. Comparing the lat-

ter with twice the value of vGu
M = 1.221 ± 0.183, obtained

from our chiral analysis of the lattice results, it is clear that
there is a significant cancelation in Eq. (19). Furthermore,
the large value of 2vGu

M means that the corresponding error
on Gs

M (0.23) extracted from Eq. (19) will be large. Indeed,
we find that Eq. (19) yields Gs

M (0.23) = −0.083 ± 0.092.
(Note that the quoted error bar arises from the errors in the
lattice data, the experimental magnetic form factors, and finally
the theoretical uncertainty associated with FRR, especially the
variation of the mass parameter �.) On the other hand, the
relatively small value of vGd

M = −0.383 ± 0.057 means that
we obtain a much more accurate value of Gs

M (0.23) using
Eq. (20), namely, Gs

M (0.23) = −0.034 ± 0.021. We note that
the two extracted values of Gs

M are consistent within their
respective error bars and that the sign of both, negative, is
consistent with the difference between the extrapolations of
the single quark magnetic moments in the valence and full
QCD cases in Figs. 3 and 4.

Some theoretical predictions for the strange magnetic form
factor are shown in Fig. 5. These models give different values
of Gs

M that are all within the current experimental error bars. As
for the experimental values of Gs

M , using the same techniques
as described in Ref. [16], we find

Gs
M (Q2) = 0.044 + 0.93Q2 ±

√
0.34 − 7.02Q2 + 47.8Q4,

(21)

where Q2 is in GeV2. This form, which is the result of a global
analysis of all published data [50], is valid over the range
0 < Q2 < 0.3 GeV2.
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FIG. 5. Theoretical predictions of the strange magnetic form
factors. The two lines are for the upper and lower limits of the
experimental data with Eq. (21).

The issue of the errors in the strange magnetic moment
was, of course, a serious issue in an earlier article [8], and
there and in the companion articles [51,52] we explained all
of the sources of error, including possible charge symmetry
violation. The latter led to a much smaller contribution to the
final error on Gs

M than the statistical errors on the lattice QCD
data. This is also the case here at small but finite Q2. The
dominance piece of the error, which we quote to Gs

M (0.23),
arises from the errors on the lattice determination of vGd

M

and the experimental errors on proton and neutron magnetic
form factors, in comparison with which the errors expected
from all that is known about charge symmetry breaking in
nuclear physics, namely, that it is typically below 1%, really
are negligible.1

To conclude, we have extrapolated the lattice results
for the separate valence quark contributions to the proton
magnetic form factor at Q2 = 0.23 GeV2 in quenched and
full heavy baryon chiral perturbation theory. The leading and
next-to-leading order diagrams are considered and all octet and
decuplet baryons are included in the intermediate states. Finite-
range regularization is used in the one loop calculation, both
because it improves the convergence of the chiral expansion

1We note that the size of the potential charge symmetry violation
estimated in the calculation of Kubis and Lewis [53] is an exception,
being an order of magnitude larger than that found in the earlier
calculation by Miller et al. [5,54]. These authors used a very large
anomalous ω-N coupling, in contrast with what we know from NN

scattering. In addition, the ω coupling that they use (gω) is much
larger than the usual one-boson exchange ω-N coupling. We also
note that the implications of this work for other examples of charge
symmetry violation have not yet been worked out. Nevertheless, if
we were to use their extreme estimate, our result for Gs

M (0.23) would
change from −0.034 ± 0.021 to −0.025 ± 0.024. The difference is
very small and, in view of the concerns already noted, we prefer not
to include this estimate of the charge symmetry correction in our final
result.
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and because it has been shown to permit a connection between
quenched and dynamical lattice results [37]. By using the
constraints of charge symmetry, we combine the extrapolated
d valence quark contribution with the experimental proton
and neutron magnetic form factors to obtain a surprisingly
accurate determination of the strange magnetic form factor
Gs

M (0.23) = −0.034 ± 0.021. This is the first time it has
proven possible to extract an accurate value of the strange
magnetic form factor at Q2 = 0.23 GeV2 using lattice QCD
results. It will clearly be of considerable interest to compare
this with the values that will be extracted from the recent A4
and G0 measurements at Mainz and JLab.2

ACKNOWLEDGMENTS

We thank the Australian Partnership for Advanced Comput-
ing (APAC) and eResearch South Australia for supercomputer
support enabling this project. This work was authored by
Jefferson Science Associates, LLC, under US DOE Con-
tract DE-AC05-06OR23177. This work is supported by the
Australian Research Council and by US DOE Contract DE-
AC05-06OR23177, under which Jefferson Science Associates,
LLC, operates Jefferson Laboratory, and Contract DE-AC02-
06CH11357, under which UChicago Argonne, LLC, operates
Argonne National Laboratory.

[1] J. Ashman et al. (European Muon Collaboration), Phys. Lett.
B206, 364 (1988).

[2] F. Myhrer and A. W. Thomas, Phys. Lett. B663, 302
(2008).

[3] A. W. Thomas, Prog. Part. Nucl. Phys. 61, 219 (2008).
[4] R. Lewis, W. Wilcox, and R. M. Woloshyn, Phys. Rev. D 67,

013003 (2003).
[5] G. A. Miller, Phys. Rev. C 57, 1492 (1998).
[6] G. A. Miller, B. M. K. Nefkens, and I. Slaus, Phys. Rep. 194, 1

(1990).
[7] D. B. Leinweber and A. W. Thomas, Phys. Rev. D 62, 074505

(2000).
[8] D. B. Leinweber et al., Phys. Rev. Lett. 94, 212001 (2005).
[9] D. B. Leinweber et al., Phys. Rev. Lett. 97, 022001 (2006).

[10] D. T. Spayde et al. (SAMPLE Collaboration), Phys. Lett. B583,
79 (2004).

[11] F. E. Maas et al., Phys. Rev. Lett. 94, 152001 (2005).
[12] D. S. Armstrong et al. (G0 Collaboration), Phys. Rev. Lett. 95,

092001 (2005).
[13] A. Acha et al. (HAPPEX Collaboration), Phys. Rev. Lett. 98,

032301 (2007).
[14] K. A. Aniol et al. (HAPPEX Collaboration), Phys. Lett. B635,

275 (2006).
[15] K. A. Aniol et al. (HAPPEX Collaboration), Phys. Rev. C 69,

065501 (2004).
[16] R. D. Young, J. Roche, R. D. Carlini, and A. W. Thomas, Phys.

Rev. Lett. 97, 102002 (2006).
[17] D. B. Leinweber, Phys. Rev. D 53, 5115 (1996).
[18] T. R. Hemmert, U. G. Meissner, and S. Steininger, Phys. Lett.

B437, 184 (1998).
[19] T. R. Hemmert, B. Kubis, and Ulf-G. Meissner, Phys. Rev. C

60, 045501 (1999).
[20] R. L. Jaffe, Phys. Lett. B229, 275 (1989).
[21] H. Forkel, Phys. Rev. C 56, 510 (1997).
[22] H. W. Hammer, U. G. Meissner, and D. Drechsel, Phys. Lett.

B367, 323 (1996).
[23] S. Dubnicka, A. Z. Dubnickova, and P. Weisenpacher, arXiv:hep-

ph/0102171.

2The latest measurement of strange quark contribution to the
vector form factors was reported after this article was submitted for
publication [55]. The new result favors a negative strange magnetic
form factor: Gs

M (0.22 GeV2) = −0.14 ± 0.11 ± 0.11.

[24] T. D. Cohen, H. Forkel, and M. Nielsen, Phys. Lett. B316, 1
(1993).

[25] N. W. Park, J. Schechter, and H. Weigel, Phys. Rev. D 43, 869
(1991).

[26] H. Weigel, A. Abada, R. Alkofer, and H. Reinhardt, Phys. Lett.
B353, 20 (1995).

[27] A. Silva, H. C. Kim, and K. Goeke, Phys. Rev. D 65, 014016
(2001); 66, 039902(E) (2002).

[28] K. Goeke, H. C. Kim, A. Silva, and D. Urbano, Eur. Phys. J. A
32, 393 (2007).

[29] S. T. Hong, B. Y. Park, and D. P. Min, Phys. Lett. B414, 229
(1997).

[30] L. Hannelius, D. O. Riska, and L. Y. Glozman, Nucl. Phys.
A665, 353 (2000).

[31] L. Hannelius and D. O. Riska, Phys. Rev. C 62, 045204 (2000).
[32] V. E. Lyubovitskij, P. Wang, T. Gutsche, and A. Faessler, Phys.

Rev. C 66, 055204 (2002).
[33] R. Bijker, Rev. Mex. Fis. S52N4, 1 (2006).
[34] S. J. Dong, K. F. Liu, and A. G. Williams, Phys. Rev. D 58,

074504 (1998).
[35] N. Mathur and S. J. Dong, Nucl. Phys. Proc. Suppl. 94, 311

(2001).
[36] S. R. Sharpe, Phys. Rev. D 46, 3146 (1992).
[37] R. D. Young, D. B. Leinweber, A. W. Thomas, and S. V. Wright,

Phys. Rev. D 66, 094507 (2002).
[38] D. B. Leinweber, A. W. Thomas, and R. D. Young, Phys. Rev.

Lett. 92, 242002 (2004).
[39] W. Armour, C. R. Allton, D. B. Leinweber, A. W. Thomas, and

R. D. Young, J. Phys. G: Nucl. Part. Phys. 32, 971 (2006).
[40] C. R. Allton, W. Armour, D. B. Leinweber, A. W. Thomas, and

R. D. Young, Phys. Lett. B628, 125 (2005).
[41] R. D. Young, D. B. Leinweber, and A. W. Thomas, Prog. Part.

Nucl. Phys. 50, 399 (2003).
[42] P. Wang, D. B. Leinweber, A. W. Thomas, and R. D. Young,

Phys. Rev. D 75, 073012 (2007).
[43] E. E. Jenkins, M. E. Luke, A. V. Manohar, and M. J. Savage,

Phys. Lett. B302, 482 (1993); B388, 866(E) (1996).
[44] J. N. Labrenz and S. R. Sharpe, Phys. Rev. D 54, 4595 (1996).
[45] L. Durand, P. Ha, and G. Jaczko, Phys. Rev. D 64, 014008

(2001).
[46] D. B. Leinweber, Phys. Rev. D 69, 014005 (2004).
[47] S. Boinepalli, D. B. Leinweber, A. G. Williams, J. M. Zanotti,

and J. B. Zhang, Phys. Rev. D 74, 093005 (2006).

065202-6



STRANGE MAGNETIC FORM FACTOR OF THE PROTON . . . PHYSICAL REVIEW C 79, 065202 (2009)

[48] A. Bodek, S. Avvakumov, R. Bradford, and H. Budd, Eur. Phys.
J. C 53, 349 (2008).

[49] B. Anderson et al. (Jefferson Lab E95-001 Collaboration), Phys.
Rev. C 75, 034003 (2007).

[50] R. D. Young, R. D. Carlini, A. W. Thomas, and J. Roche, Phys.
Rev. Lett. 99, 122003 (2007).

[51] D. B. Leinweber, S. Boinepalli, A. W. Thomas, A. G. Williams,
R. D. Young, J. B. Zhang, and J. M. Zanotti, Eur. Phys. J. A 24,
79 (2005).

[52] A. W. Thomas, R. D. Young, and D. B. Leinweber, in
Proceedings of the First Workshop on Quark-Hadron Duality
and the Transition to pQCD, Frascati, 6–8 June 2005, edited by
A. Fantoni et al., pp. 41–49.

[53] B. Kubis and R. Lewis, Phys. Rev. C 74, 015204
(2006).

[54] G. A. Miller, A. K. Opper, and E. J. Stephenson, Annu. Rev.
Nucl. Part. Sci. 56, 253 (2006).

[55] S. Baunack et al., Phys. Rev. Lett. 102, 151803 (2009).

065202-7


