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Abstract

The lunar Cherenkov technique is a promising method to resolve the mystery of the origin of

the highest energy particles in nature, the ultra-high energy (UHE) cosmic rays. By pointing

Earth-based radio-telescopes at the Moon to look for the characteristic nanosecond pulses

of radio-waves produced when a UHE particle interacts in the Moon’s outer layers, either

the cosmic rays (CR) themselves, or their elusive counterparts, the UHE neutrinos, may be

detected. The LUNASKA collaboration aims to develop both the theory and practice of

the lunar Cherenkov technique in order to utilise the full sensitivity of the next generation

of giant radio telescope arrays in searching for these extreme particles. My PhD project,

undertaken as part of the collaboration, explores three key aspects of the technique.

In the first three chapters, I describe a Monte Carlo simulation I wrote to model the full

range of lunar Cherenkov experiments. Using the code, I proceed to calculate the aperture

to, and resulting limits on, a UHE neutrino flux from the Parkes lunar Cherenkov exper-

iment, and to highlight a pre-existing discrepancy between existing simulation programs.

An expanded version of the simulation is then used to determine the sensitivity of past and

future lunar Cherenkov experiments to UHE neutrinos, and also the expected event rates for

a range of models of UHE CR production. Limits on the aperture of the Square Kilometre

Array (SKA) to UHE CR are also calculated. The directional dependence of both the in-

stantaneous sensitivity and time-integrated exposure of the aforementioned experiments is

also calculated. Combined, these results point the way towards an optimal way utilisation

of a giant radio-array such as the SKA in detecting UHE particles.

The next section describes my work towards developing accurate parameterisations of

the coherent Cherenkov radiation produced by UHE showers as expected in the lunar re-

golith. I describe a ‘thinning’ algorithm which was implemented into a pre-existing elec-

tromagnetic shower code, and the extensive measures taken to check its veracity. Using

the code, a new parameterisation for radiation from electromagnetic showers is developed,

accurate for the first time up to UHE energies. The existence of secondary peaks in the

radiation spectrum is predicted, and their significance for detection experiments discussed.

Finally, I present the data analysis from three runs of LUNASKA’s on-going observa-

tion program at the Australia Telescope Compact Array (ATCA). The unusual nature of

the experiment required both new methods and hardware to be developed, and I focus on

the timing and sensitivity calibrations. The loss of sensitivity from finite-sampling of the

electric field is modelled for the first time. Timing and dispersive constraints are used to

determine that no pulses of lunar origin were detected, and I use my simulation software to

calculate limits on an UHE neutrino flux from the experiment.
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