RADAR AND OPTICAL STUDIES OF THE ATMOSPHERE

A Thesis Submitted for the degree of DOCTOR OF SCIENCE

of

The University of Adelaide

by

Iain Murray Reid School of Chemistry and Physics The University of Adelaide 2008

Co	ontents	5	i
Lis	st of T	ables	iii
Lis	st of F	igures	iv
Ac	know	ledgments	vi
At	stract		. vii
De	clarat	ion	viii
Or	ganiza	ation of the Thesis	ix
1.	Intro	duction	1
	1.1	University Research	1
	1.2	Current research	9
	1.3	University Research Outcomes	. 11
	1.4	ATRAD Research and Development	. 13
	1.5	ATRAD R&D Outcomes	. 14
	1.6	References not cited elsewhere in the thesis	. 14
2.	Curr	Curriculum Vitae	
	2.1	Education	. 17
	2.2	Positions Held	. 17
	2.3	Membership of Professional Bodies and Societies	. 18
	2.4	Professional Activities	. 18
	2.5	Research	. 19
	2.6	Teaching	. 19
	2.7	University Administration	. 19
3.	List	of Publications	. 23
	3.1	Publications in refereed journals	. 23
	3.2	Refereed Conference Papers	. 29
	3.3	Unrefereed Conference Papers and Reports	. 30
	3.4	Invited Oral Presentations	. 35
	3.5	Contributed oral papers	. 38

Contents

4.	Rese	arch Grants		
5.	Research Supervision			
	5.1	Honours Students & Projects Supervised		
	5.2	<i>M.Sc.</i> Student Supervision		
	5.3	<i>PhD</i> Student Supervision		
	5.4	Post Doctoral Fellows & Research Associates		
6.	Com	mentary and Selected Journal Publications57		
	6.1	Introduction		
7.	Selec	ted Commercial Radar Systems		
	7.1	Overview		
	7.2	<i>VHF</i> Radar		
	7.3	<i>MF/HF</i> Radar		
	7.4	Radar Sub-systems		
	7.5	ATRAD Acquisition, Display, Analysis and Control (ADAC) Software763		
8.	Sum	nary and Conclusions767		
	8.1	University work		
	8.2	Applied Research and Development		
	8.3	Conclusion		
Ap	pendi	x 1: Citation Summary		
Appendix 2: Acronyms and Abbreviations				

List of Tables

Table 1: Research Instrumentation at Buckland Park	10
Table 2 Types of Atmospheric Radar	729
Table 3 Radars produced prior to the formation of Adelaide Radar Systems	730
Table 4 Radars produced by Adelaide Radar Systems and ATRAD	730

List of Figures

Figure 1 Radars or major radar sub-systems produced by ATRAD.	.727
Figure 2 The schematic diagram of the dual SA / DBS VHF ST radar	.736
Figure 3 Antenna field of the Davis Station, Antarctica VHF ST radar	.737
Figure 4 Esrange space launch facility (left), and Wakkanai VHF radar (right)	.738
Figure 5 Mount Gambier VHF radar (left), and Davis Station VHF radar (right)	.738
Figure 6 Kühlungsborn VHF radar (left), and the Andøya VHF radar (right)	.739
Figure 7 (above) Schematic diagram of the VHF DBS ST radar	.740
Figure 8 Part of the Buckland Park field site	.741
Figure 9a (above) the 55 MHz ST array at BP	.741
Figure 10 the UKMO wind profiler antenna array on South Uist	.742
Figure 11 the VHF antenna array at Jinquan (left), and at Wuhan (right)	.742
Figure 12 the VHF antenna array at Xian (left), and at Kunming, China (right)	.743
Figure 13 the VHF antenna array at Woomera (left), and Xian radar hardware	.743
Figure 14 Schematic diagram of the combination ST / Meteor radar	.745
Figure 15 (above) the Wuhan antenna array	.745
Figure 16 Kunning ST radar hardware (left), and BP MDR Tx antenna (right)	.746
Figure 17 (above) Schematic diagram of the Meteor Detection Radar (MDR)	.747
Figure 18 Tx antenna at Svalbard (left), and the Kunming MDR (right)	.748
Figure 19 KGI MDR Rx antennas (left), and Kunming MDR Rx array (right)	.748
Figure 20 (above) Schematic of the IR to be installed Hainan Island	.750
Figure 21 Shigaraki IR antenna (left), and radar returns at Sakata (right)	.750
Figure 22 Shigaraki radar equipment (left), and radar array (right)	.750
Figure 23 Map of Australia showing ATRAD BLT and ST radars	.752
Figure 24 (above) Schematic diagram of the BL and BLT VHF SA radars	.753
Figure 25 Adelaide Airport BLT radar (left) and Darwin BLT hardware (right)	.753
Figure 26 Schematic diagram of the MF Spaced Antenna radar	.755
Figure 27 MF SA radar at Pontianak (left); 64 kW MF radar equipment (right)	.755
Figure 28 (above) Schematic of the MF DBS radar installed on Andøya	.757
Figure 29 Antenna of the Andøya MF DBS radar (left), and its installation (right)	757
Figure 30 aerial view of BP (left), and the working SAURA radar (right)	.758
Figure 31 the VTX-1 tube PA (left), and the VTX-6 Tx (right)	.760
Figure 32 the 12 kW BLT radar (left) and a 4 kW STX-I PA (right)	.761

Figure 33 the STX-II 8/20 kW Tx (left) and the STX-II 40 kW Tx (right)	762
Figure 34 (above) ADAC Control window (left) and DAE display window (right).	764
Figure 35 the FCA display window (left) and the DBS display window (right)	764

Acknowledgments

It is a pleasure to acknowledge the contribution of my colleagues to the work presented herein. My career started under the supervision of Basil Briggs and Bob Vincent in Adelaide, and continued in Canada, working with Alan Manson and Chris Meek. There I met Adolf Ebel, who was instrumental in my next appointment, at the Max Planck Institute for Aeronomy in Germany. Adolf taught me a great deal about science and about being a good citizen in science. At the Max Planck Institute, I worked with the SOUSY Group, most closely with the very professional Rüdiger Rüster and Peter Czechowsky.

Since my return to Adelaide, I have had the privilege of supervising a number of Honours and PhD students, many of whom I have continued working with subsequent to their graduations. David Holdsworth and Jonathan Woithe stand out in this context. My colleagues in ATRAD have always presented a counterpoint to the academic worldview and I have particularly enjoyed this part of my career to date.

In terms of encouraging me to pursue an education, I start by thanking my parents, Mabel and Robert, for whom achievement was always expected; my grandmother Margaret Murray, for whom education was a natural and expected form of advancement; and her son Bill Murray, who provided an early model for me.

Finally, I wish to acknowledge my wife Holly's support and encouragement throughout my career, without which, I wouldn't have achieved much at all. Thank you Holly.

Abstract

The research described in this thesis can be categorized into three main areas. The first area concerns the interpretation of observations of various atmospheric processes and phenomena. The focus here has been on internal atmospheric gravity waves and their manifestation in radar winds and in airglow intensities, but also includes investigation of atmospheric tides and planetary scale waves, *D-region* electron densities and collision frequencies, the aspect sensitivity of backscattering and partially reflecting regions of the atmosphere, Polar Mesosphere Summer Echoes and Mesosphere Summer Echoes, meteor trails, mesospheric temperatures, long period variations in airglow intensities, and Kelvin Helmholtz Instabilities.

The second major area has been in the development of new experimental techniques and the validation of existing techniques for investigating the atmosphere. New techniques have included the dual-beam radar technique for measuring momentum fluxes, and radar Time Domain Interferometry and Hybrid Doppler Interferometry for use with multi-receiver channel Doppler radars. The Doppler Beam Steering technique in the presence of non-uniform and periodically varying wind fields has been investigated analytically, and various spaced sensor techniques have been investigated using a numerical model of atmospheric radar backscattering and by direct comparison with other techniques. The Sodium Lidar technique has been investigated through numerical model calculations and a solid state system is currently being developed.

Finally, a major activity has been the development of new radars and radar subsystems. This has included the development of a modular Medium Frequency Doppler radar and a Medium Frequency Spaced Antenna radar, a variety of Stratosphere Troposphere / Mesosphere Stratosphere Troposphere radars, an Ionospheric radar, a Boundary Layer Tropospheric radar and an All-Sky meteor radar.

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

Signed:

Dated: April 18, 2008

Organization of the Thesis

The body of this thesis begins with a brief overview of my research career. This is followed by my *CV*, and a complete publication list, including un-refereed articles and reports, invited presentations, and contributed oral presentations. Next there is a list of my research students and then my grant record. The main part of the thesis follows, and here I present a commentary on each refereed journal publication. When taken together these form a narrative providing the context and significance of my research. A commentary is provided for all papers, but copies of only *35* are included here. The last part of the thesis is concerned with my contribution to the design and development of radar systems. This represents a major contribution to the field and I have provided a brief commentary for each major radar type. This follows as closely as possible the format used in the first part of the thesis for refereed journal publications. A complete summary of radars produced by *Atmospheric Radar Systems Pty Ltd* and its precursor *Adelaide Radar Systems* is included in Chapter 7.