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Abstract

Abstract

Condition assessment of water distribution pipeline assets has been the focus of water
authorities for many years. Transient response analysis, including Inverse Transient
Analysis (ITA), provides a new potential method for performing specific non-
destructive tests that gives much broader information regarding the condition of
pipelines than existing technologies. The basic concept involves inducing a transient
in a pipeline and measuring its pressure response. The pressure response is
theoretically afunction of the condition of the pipeline wall (which is the fundamental
characteristic related to the propagation of a transient wavefront) and reflections and
damping from any fault that may be present. If an accurate transient model of the
pipeline under examination can be developed then it may then be possible to isolate
particular parameters in it (relating to the wall thickness of the pipeline or faults such
as blockages, air pockets and leaks) and fit these to give optima matches between the
model predicted and measured response of the pipeline. This process is often referred
to as inverse analysis (and hence the derivation of the name Inverse Transient

Analysis).

While a significant amount of numerical and laboratory investigation has been carried
out focussing on the use of ITA for leak detection, few field studies have been
undertaken. The goal of this research is to determine whether transient response
analysis and Inverse Transient Analysis (ITA) can be applied in field situations to
provide useful information regarding the condition of pipeline walls and the presence
of specific faults such as blockages, air pockets and leaks. Numerous field tests are
conducted on large scale transmission pipelines, small scale distribution pipelines and
a distribution network in order to obtain a view of the nature of the measured transient
responses at each scale and to identify any common characteristics. The capacity of
existing transient models to replicate the measured responses is then assessed and they
are found to be generally incapable of replicating the field data. Given the physical
complexity of field pipelines, and a number of complex phenomena that have been
traditionally neglected, this result is not unexpected. The research proposes the
development of transient models that can be calibrated to measured responses. These

models incorporate mechanisms for including mechanical dispersion and damping



Abstract

and follow precedents developed in other fields of engineering in which damping of
transient phenomena is significant. Inverse methods are used to calibrate the proposed
transient models using the measured field responses. Similar inverse methods are then
used to perform transient response analysis and/or ITA to appraise the wall condition
of atransmission pipeline and locate and characterise artificial blockages, air pockets
and leaks on transmission and distribution pipelines and networks.
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