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Summary 

This study comprised three major parts: a comparative physiological study of drought 

responses under controlled conditions; a genetic study to construct the skeleton map of a 

doubled haploid (DH) population; and a quantitative trait loci (QTL) analysis to identify 

QTLs associated with drought tolerance traits in the field.  

In the first part (Chapter 3), three cultivars of wheat (Triticum aestivum L.) adapted to 

South Australian conditions were tested for drought tolerance under cyclic drought in 

growth rooms and glasshouse. Extensive physiological traits, including stomatal 

conductance, chlorophyll content and fluorescence, ABA content, water status traits 

(e.g. osmotic adjustment, RWC and leaf water potential), water soluble carbohydrates 

(WSC) and carbon isotope discrimination (∆
13

C) were measured during experiments. 

Through these experiments, the drought responses of the three cultivars were 

physiologically dissected and the likely processes contributing most to drought 

tolerance were identified. 

In the South Australian wheatbelt, cyclic drought is a frequent event, represented by 

intermittent periods of rainfall which can occur around anthesis and post-anthesis in 

wheat. Three South Australian bread wheat cultivars, Excalibur, Kukri and RAC875, 

were evaluated in two growth room experiments under cyclic water-limiting conditions. 

In the first experiment, where plants were subjected to severe water stress, RAC875 and 

Excalibur (drought tolerant) showed significantly (P < 0.05) higher grain yield under 

cyclic water availability compared to Kukri (drought susceptible), producing 44% and 

18% more grain yield compared to Kukri, respectively. In the second growth room 

experiment, where plants were subjected to a milder drought stress, the differences 

between cultivars were less pronounced, with only RAC875 showing significantly 

higher grain yield under the cyclic water treatment. Grain number per spike and the 

percentage of aborted tillers were the major yield components that affected yield under 

cyclic water stress. Excalibur and RAC875 adopted different morpho-physiological 

traits and mechanisms to reduce water stress. Excalibur was most responsive to cyclic 

water availability and showed the highest level of osmotic adjustment (OA), highest 

stomatal conductance, lowest ABA content and most rapid recovery from stress under 

cyclic water stress. RAC875 was more ‘conservative’ in its responses, with moderate 

OA, high leaf waxiness, high chlorophyll content and slower recovery from stress. 
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Within this germplasm, the capacity for osmotic adjustment was the main physiological 

attribute associated with tolerance under cyclic water stress, which enabled plants to 

recover from water deficit. 

In the second part (Chapter 4), the genetic linkage map of a DH population including 

368 lines, which was developed from a cross between ‘RAC875’ and ‘Kukri’, was 

constructed. The genetic linkage map consisted of about 500 molecular markers 

including ~300 DArT (Diversity array technology) and ~200 SSR (Microsattelite 

markers). 

In the third part (Chapter 5), Quantitative Trait Loci (QTLs) linked to plant phenology 

and production traits under irrigated and drought stress conditions were mapped by 

means of a DH population. To phenotype the population, 368 DH lines were cultivated 

in two replicates in five environments (three sites across South Australian wheatbelt in 

collaboration with Australian Grain Technology (AGT) in 2006, and two trials in 

Mexico in collaboration with CYMMIT, 2007). Data of grain yield, yield components, 

maturity related traits and some morpho-physiological traits such as leaf chlorophyll 

content, leaf waxiness, plant height, peduncle length, flag leaf and spike length were 

measured. Raw data were then analysed for spatial variation for each single trial using 

the REML procedure in GenStat (version 6). The DH lines showed significant variation 

for plant phenology, grain yield and yield components under irrigated and drought stress 

conditions. QTL analyses were performed using QTLCartographer and QTLNetwork 

for each trait in each site. Two major QTL for maturity traits were identified on 

chromosomes 2BS and 2DS corresponding to Ppd-B1 and Ppd-D1, respectively. A 

region was identified on chromosome 7A that harbored major QTL for grain yield, 

number of grains per square meter, number of grain per spike and spike fertility under 

drought stress. For yield data in the irrigated trial, two major QTL were identified on 

chromosome 3B which were not detected in drought stress environments. By using 

different datasets in the QTL analysis (splitting the population into two subpopulation 

based on heading time and also adjusting the phenotypic data for heading time to 

eliminate heading time effect), a QTL for grain yield was consistently detected on 

chromosome 7A in drought-affected environments. The coincidence of a drought 

response index QTL on this chromosome indicated that it might be a QTL for yield 

response under drought. This study demonstrated that the region on the long arm of 

chromosome 7A identified for grain yield and yield components is a drought response 
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QTL which is closely linked to, but separate from, a heading time QTL. This QTL 

cluster on chromosome 7A could be used as a good target for positional cloning and 

gene isolation. However further work would be required to confirm and validate the 

identified QTLs in this preliminary QTL analysis. 
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