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Abstract
_________________________________________________________________________
Molybdenum (Mo) is an essential micronutrient required by plants. It is biologically

inactive until bound in a pterin compound named the molybdenum cofactor (Moco) that

binds to apoproteins used in both reductive and oxidative reactions such as nitrate
reductase (NR), xanthine dehydrogenase (XDH), aldehyde oxidase (AO) and sulfite

oxidase (SOX). In Vitis vinifera cv. Merlot, molybdenum deficiency is common amongst

vines grown on own roots in acidic soils often resulting in yield reductions. Foliar
application of molybdenum sprays increases yield and remedies deficiency indicating that

Merlot grown on own roots has a reduced capacity for molybdenum uptake from the soil.

Molybdenum generally occurs as molybdate (MoO4
2-) within the soil solution. The

mechanism(s) involved in molybdenum transport have recently been discovered in plants,
although are well characterised within prokaryotic systems. Unfortunately, no homologues

of prokaryotic genes involved in molybdate transport exist within eukaryotes. It has been
suggested that molybdenum transport in plants may occur through other systems including

sulfate transporters due to chemical similarities between sulfate and molybdate.

A yeast functional complementation approach using a sulfate transport mutant was initially

used to identify novel putative plant molybdenum transport proteins. A cDNA library
derived from Pinot noir roots starved of molybdenum was screened for transporters.

Unfortunately, no cDNAs were identified that met the requirements of a molybdenum

transporter when screened on media containing low amounts of molybdenum. However, a
number of putative cDNA’s partially complemented the yeast mutant YSD1, however

none of these could be validated in second round screens.

A candidate gene approach was then initiated to identify pre-characterised genes that may

also have capacity to transport molybdenum. The plant sulfate transporter, SHST1,
restored growth of YSD1 on media containing low amounts of molybdenum. Kinetic

analysis using 99MoO4
2- to trace molybdenum transport in yeast cells demonstrated that

SHST1 enhanced the uptake of molybdenum at nM concentrations. The uptake was not
inhibited by sulfate, but the transport of sulfate was reduced with molybdenum. Further

analysis demonstrated that SHST1 did prefer sulfate as the substrate but molybdenum
could compete at higher concentrations. This result is the first measurement of

molybdenum being transported through a pre characterised sulfate transport protein.
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Whole plant experiments using rooted grapevine cuttings and 99MoO4
2- to trace

molybdenum movement into plants indicated that Merlot did not have reduced capacity to
uptake molybdenum compared to other varieties that do not suffer from molybdenum

deficiencies such as Chardonnay. When plants were grown with molybdenum, Merlot

accumulated more molybdenum than Chardonnay, with the reverse being true when plants
were grown without molybdenum. Similar experiments were performed on symbiosomes

isolated from Glycine max grown with and without molybdenum. Symbiosomes absorbed

more molybdenum when plants were grown without molybdenum.

A field site was established to look at the molybdenum profiles within petioles against
yield responses over a 3-year period. Molybdenum application did not increase the yield

amongst vines despite all vines initially being deficient in molybdenum. There were no

cumulative effects of molybdenum application over the trial, however, molybdenum did
have limited translocation ability within the vine system.
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