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1. Introduction

Over the last years interesting results in Landau gauge gluodynamics havebeen found for
gluon and ghost propagators (and, consequently, for the running coupling) both within the semi-
analytical Dyson-Schwinger(DS) as well as Functional Renormalization Group (FRG) approaches
[1, 2] and with the help of lattice computations [3, 4, 5, 6, 7]. They have excited controversal
debates about the behaviour in the deep infrared (IR) region. Within the DS and FRG approach it
was demonstrated [2] that the behaviour strongly depends on the choice of the infrared limit of the
ghost dressing function taken as a boundary condition for solving the (truncated) system of equa-
tions. The so-calledscaling solutionexhibits an IR singular well-defined power-like behaviour of
the ghost dressing function and correspondingly a vanishing gluon propagator in agreement with
the quite attractive confinement scenarios invented some time ago by Gribov and Zwanziger on one
hand and by Kugo and Ojima on the other. Moreover, it was in accordancewith BRST invariance
properties.

Lattice results – as long as they are based on the assumption that one has to choose Gribov
gauge copies as close as possible to thefundamental modular region– support with convincing
numerical evidence the so-calleddecoupling solutionwith finite IR limits of both the gluon prop-
agator and the ghost dressing function. Revisiting the case ofSU(2) lattice gauge theory we give
here further evidence for this observation by a consequent use of anefficient gauge fixing method,
the simulated annealingalgorithm. Since previous lattice investigations of the IR limit both in
SU(2) as well as inSU(3) were carried out at quite strong bare coupling values in order to reach
largest possible physical volumes the continuum limit was not really under control. Therefore, in
the given contribution to LATTICE ’09 we have a look into the scaling properties of the gluon
propagator, which seem to be a bit more involved in theSU(2) than in theSU(3) case. We neglect
so-calledSU(2)-flips which enlarge the class of Landau gauge orbits and allow to extremize the
gauge functional even further.

2. Landau gauge fixing, Gribov ambiguity and gluon propagator

In order to fix the gauge on the lattice we apply gauge transformationsg(x) ∈ G = SU(Nc),
(Nc = 2,3) to sets {Ux,µ} of link variables by mappingUx,µ → gUx,µ = g(x)Ux,µg†(x+ µ̂) .

The set of all admissible{gUx,µ} for a given field {Ux,µ} is called a gauge orbit. The Landau
gauge∂µAµ = 0 for Ax+µ̂/2,µ = (1/2iag0)(Ux,µ −U†

x,µ)traceless is fixed by searching for the local
maxima glmx(x) of the gauge functional

FU [g] =
1
Nc

∑
x,µ

Re Tr gUx,µ . (2.1)

In general for non-Abelian groupsG more than one local maximumglmx(x) can be found, the
so-called Gribov copies. Since the values of the gauge functionalFU [g] and other gauge-variant
quantitiesO(gU) computed for various Gribov copies typically are correlated, further clarification
of the gauge fixing condition is required. In case of Landau (or Coulomb)gauges forSU(Nc) gauge
theories it was proposed [8] to choose theglobal maximum ggmx(x) among all local ones, thus
introducing thefundamental modular region(FMR) inside theGribov region, the latter defined
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by the positivity region of the Faddeev-Popov operator [8]. In the present study we still keep the
FMR condition. In practice it is hard - if not even impossible - to reach the FMR. Therefore, one
is interested to improve the gauge fixing method and/or to apply the method of choicemany times
starting from random gauges in order to find the “best copies” closest tothe FMR.

In what follows we reconsider the question of how the gluon propagator depends on the Gri-
bov ambiguity when the (Landau) gauge is fixed on a lattice. This question hasbeen addressed
for relatively small lattice volumes already in preceding publications (e.g. in [9, 10, 11]). Note
that in previous papers, instead of a comparison between two different gauge-fixing techniques, a
comparison is made of the “best copy” (bc) with respect to the maximalFU [g] value achieved and
“first copy” (fc), i.e. corresponding to a randomly chosen copy [10,12]. In [11] “worst” copies
were used for comparison, as well. There a visible Gribov copy effect was reported for the gluon
propagator in the infrared. However, the effect appeared to be much more pronounced, when (i)
the gauge orbit was extended by admitting nonperiodic (periodic up toZ(Nc)) gauge transforma-
tions (flips) and when (ii) the standard overrelaxation method (OR) was replaced by asimulated
annealingalgorithm (SA) - always followed by finalizing OR steps [13, 14, 15]. Moreover, the
more efficient gauge fixing approach (SA + flips) led to a suppression offinite-volume effects, and
indications were found that the influence of flip transformations on the gluon propagator gradually
weakens with increasing linear lattice sizeL. But all these results were obtained at rather small
lattice volumes.

In the present study forSU(2) we neglect the flip gauge transformations and compare the SA
method with the OR algorithm for strictly periodic gauge transformations. Our implementation of
SA gauge fixing in theSU(2) case differs from that forSU(3) gluodynamics [6, 7] only in some
technical details. We note that the “temperature”Tmax, from which SA cooling starts in theSU(2)

case, is chosen to be the “critical” valueTcr of some phase transformation [16, 7], which takes
place in the gauge-fixing fieldg(x) interacting with the Monte Carlo generated equilibrium field
Ux,µ according to the gauge functional (2.1). For theSU(2) case it looks like a higher order phase
transition [16] or even like a “crossover”. Anyhow, we have chosenTmax= Tcr = 1.1 in most cases.
Simulated annealing, also known as “stochastic optimization method” [17], in principle allows
getting arbitrarily close to the global maximumFU [ggmx], if the number of SA “cooling steps” is
large enough. This is the underlying idea of our “single copy” method successfully used in our
SU(3) papers [6, 7]. In fact, in ourSU(2) computations we have used long SA chains withO(104)

steps fromTmax down toTmin = 0.01 [6].
The comparison for the unrenormalized gluon propagator obtained with SA versus OR tech-

niques on 804 lattices atβ = 2.30 is shown in Fig. 1, where we have plotted only results for mo-
mentaq2 surviving the so-called cylinder cut [18, 5]. One can clearly see a noticeable difference
between SA and OR gluon propagator values in the deep infrared regionq2 < 0.2GeV2, where the
Gribov effect leads to a qualitative change of the behaviour of the gluon propagator. The question
remains, whether the Gribov copy effect for the gluon propagator weakens with a further increase
of the lattice volume.

3. Check of scaling and multiplicative renormalizability

The progress to reach the infrared regime had the price to consider lattice gauge fields on
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Figure 1: Comparison of the unrenormalized gluon propagator obtained with SA and OR gauge fixing
methods. The OR data are taken from Ref. [5].
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Figure 2: The unrenormalized gluon propagatorD(q2) for various (L,β ) pairs, i.e. at fixed physical volume.

rather coarse lattices. To our knowledge the continuum limit expressed in a proper scaling and a
multiplicative renormalization behaviour was not yet considered in detail on large volumes. We
have made a step into this direction again neglecting the influence ofZ(2) flip transformations.

We have computed the gluon propagator on a sequence of lattices with increasing linear lattice
sizeL andβ , choosing (L, β ) such that the physical volume was kept more or less constant. We
have produced equilibrium ensembles of MC configurations and fixed the Landau gauge with the
(single-copy) SA method for:(L,β ) = (40,2.2),(56,2.3),(80,2.4),(112,2.5), i.e. for a physical
box size of approximately 10 fm. The bare gluon propagatorD(q2) for these pairs of parameters is
shown in Fig. 2.

There are quite strong differences which have not been observed in theSU(3) case before. But
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Figure 3: The renormalized gluon dressing function in the MOM scheme.

this does not come unexpected. In the continuum or scaling limit the bare propagator is expected
to be multiplicative renormalizable as in perturbation theory. This means that between the results
obtained at different lattice cutoffs a finite multiplicative renormalization up to lattice artifacts
should be possible. In a finite volume – unavoidable for any lattice results – themultiplicative
renormalization could be violated by finite-size effects.

In accordance with the standard momentum-subtraction (MOM) renormalizationscheme we
have multiplicatively rescaled the bare gluon dressing functionsZ(q2,β ) ≡ q2D(q2) (for all β val-
ues considered) equating the renormalized values at someq= µ to the tree-level valueZren(µ2) = 1.
The renormalization point was chosen atµ2 = 5.8 GeV2, sufficiently far away from the cutoff
momentumq2

max = 79.4 GeV2 for β = 2.50. For illustration the finite renormalization factors
Z(µ2,β )/Z(µ2,β = 2.5) are shown in the Table 1. They were obtained by interpolating between
the 7 data points closest to the chosen scaleµ for β = 2.5.

Table 1: Finite renormalization factors forµ2 = 5.8GeV2.

β Z(µ2,β )/Z(µ2,β = 2.5)

2.2 0.815
2.3 0.8925
2.4 0.9489

The MOM-renormalized dressing function is plotted in Fig. 3. One clearly sees that the three
curves for the renormalized dressing functionZren(q2) obtained at lattice sizesL = 56,80,112 lie
nicely on top of each other, thus confirming the expected multiplicative renormalizability. For β =

2.2 andL = 40 there are some scaling violations that can be understood as lattice artifacts. Some
slight variations of the curve obtained with the largest latticeL = 112 probably can be attributed to
problems with the still unsufficient Monte Carlo statistics and/or autocorrelations.

4. Conclusions

The comparison of OR- and SA-based results for the gluon propagator for L = 80 andβ = 2.3
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clearly shows a noticeable Gribov copy effect in the range of momentaq2 < 0.2GeV2. At the
moment the (dis)appearance of this effect for even larger volumes is an interesting open problem.
An open question is also, whether our results obtained on large volumes will be modified, when
Z(2) flips are taken into account. This is a matter of research in a forthcoming papers of one of the
coauthors [19].

Using SA-based Landau gauge fixing we have got numerical confirmationfor a nonpertur-
bative multiplicative renormalizability for the gluon dressing function. Finite-size effects already
seem to be negligible in the given range of momenta.
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