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Chapter 1

Introduction

1.1 Wider Significance

It is widely accepted that human activities, especially the combustion of fossil

fuels, are the primary cause of global warming (IPCC, 2007). The combustion

of fossil fuels are the dominant source of energy for industry, transportation

and suburbia, which makes them integral to the functioning of society in its

current form. Consequently, if the output of harmful emissions proceed at

their current rate, the IPCC predicts a global average temperature rise of

up to 4oC by the year 2100. As a result, the planet may endure potentially

damaging events such as rising sea levels from between 0.5 and 2m (due to

both the thermal expansion of oceans as well as the melting of ice caps),

reduced precipitation over most land areas, as well as increased droughts,

heat waves and cyclone intensity.

The chief cause of global warming is predominantly due to the release of

the greenhouse gas, CO2, from the combustion of coal. Some ways to mitigate

CO2 emissions include the more effective and efficient use of fossil fuels, or

their substitution for some renewable energy source, such as biofuels. The

combustion of coal represents the most significant source of greenhouse gases
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Figure 1.1: The contribution of CO2 to the atmosphere by the three fossil fuels in the 

past and in the future if current trends continue (adapted from Vernon, 2006). 

 

because it is abundant and cheap compared with other sources of energy (e.g. 

Nuclear). In Figure 1.1 is a diagram indicating the relative contributions of 

atmospheric CO2 by coal, gas and oil 100 years prior and 150 years into the future 

assuming current lifestyle and combustion trends are maintained. From this figure it 

can be seen that by about 2050, gas and oil supplies would have peaked (although 

there are those that predict this to occur much earlier) and the excess energy 

requirements due to diminished gas and oil reserves are expected to have to be 

replaced with coal, contingent that other renewable energy sources are not used in 

place of fossil fuels. 

 

Naturally, the use of coal in lieu of gas and oil is predicted to have devastating 

consequences for the planet. However, it is unlikely that renewable sources will play 

no role in the future. Other alternatives to renewable energy may encompass carbon 

offsets and sequestration techniques, as well as the focus in improving energy 

efficiency. Until there is an economic and political will to halt the dominant role fossil 

fuels have in satiating global energy requirements though, fossil fuels and especially 

coal, will continue to be an important source of energy and hence, CO2. 
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NOTE:  This figure is included on page 2 of the print copy of the 

thesis held in the University of Adelaide Library. 
 



This leads to the wider aim of the following research. This research is

expected to contribute to the body of knowledge concerning the combustion

of pulverised fuel, whether that be coal or an alternative fuel such as biomass

or waste. Knowledge of the fundamental physics driving these processes will

facilitate their improved combustion performance and efficiency, thus helping

reduce the output of harmful CO2 emissions.

1.2 Multiphase flow

Prior to combustion in most industrial processes such as a coal fired power

generation plant, the coal is milled into fine particles to be subsequently

conveyed to the burner. The conveying and combustion of particle-laden

flows is a practical realisation of the much broader field of multiphase flow.

Multiphase flow falls within the discipline of fluid mechanics. Here, the fluid

flow is complicated by the extra interactions and dynamics that arise as

a result of the addition of at least one extra phase. A multiphase system

may be a gas-liquid (e.g. sprays), gas-solid (e.g. fluidised beds), liquid-solid

(e.g. slurries) or three-phase (e.g. bubbles in slurries) flow (Crowe et al.,

1998). The conveying and combustion of particles in air is a type of gas-solid

flow. Also encountered in many power generation plants are gas-liquid flows

such as the flow of liquid-vapour mixtures through boilers, condensers and

even turbines. An understanding of the physics that govern multiphase flow

processes is thus crucial for the optimal design of power generation plants

and naturally, any other plant where multiphase flows are encountered.

However, a lack of understanding in the field of gas-solid flows has been

attributed to the poor design performance in plants where the processing of

solids is a significant aspect of operation. Merrow, Phillips and May (1981)

found that plants such as these performed on average below their design ca-

pacity at approximately 35% greater than plants processing primarily liquids

or gases. This was attributed to a poorer theoretical understanding of the

behaviour of solids compared with gases or liquids. The trends found in that

3



study, while conducted more than 25 years ago, is believed to still reflect

the current situation in industry today, despite the subsequent theoretical

and technological advances in the field since then (DTI, 2004). For engi-

neers to possess a greater capability to design and optimise the necessary

plant, at least to standards comparable to gas and liquid processing plants,

the understanding of the processing of solids, whether that be for conveying,

combustion or any other purpose, must be improved.

The theory and experimental data in this thesis is presented in the con-

text of a practical aim to improve combustion systems and so to ameliorate

harmful emissions. Perhaps the simplest burner is an axisymmetric pipe

jet, which is described below. The effect of the addition of solid particles

(simulating pulverised coal in an industrial flame) to such a jet, termed a

‘particle-laden jet’, is the primary focus of this thesis. The effect of particles

on the jet itself and the distribution of particles within the jet is of a fun-

damental importance to the performance of the flame, as this dictates the

local air-fuel ratios and hence affects the combustion efficiency (Crowe, 2006)

and also the production of most pollutants. Thus, there is a clear need to

understand the effect of particles on the flow and the distribution of particles

within the flow.

1.2.1 Gas-Solid Flows

Consider a spherical particle of diameter dp, density ρp and volume Vp. The

equation describing the motion of such a particle in a fluid is

ρpVp
dũp

dt
= Fp, (1.1)

where Fp is the force on the particle with instantaneous velocity, ũp. In dilute

gas-solid flows, the density of the solid phase is generally much greater than

that of the gas phase and as a result, all forces, other than the drag force
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DF , may be neglected (Crowe et al., 1998). In that case,

ρpVp
dũp

dt
= DF . (1.2)

In the limit of very small particle Reynolds numbers, i.e.

Rep =
ρ |ũ− ũp| dp

µ
< 1, (1.3)

where ũ is the fluid velocity, ρ is the fluid density, and the drag coefficient,

CD is related to the Reynolds number by the linear relation (Munson et al.,

2002)

CD =
24

Re
. (1.4)

The equation of motion for a particle in this regime (the ‘Stokes flow’ regime)

thus becomes (after rearranging)

dũp

dt
=

18µ

ρpd2
p

fd |ũ− ũp| . (1.5)

The dimension of the ratio ρpd
2
p/18µ is seconds and is commonly known as

the ‘particle time scale’, τp, and fd is the drag factor. After the substitution

of τp, then
dũp

dt
=
fd

τp
(ũ− ũp). (1.6)

The solution of this equation, assuming a constant fluid velocity (e.g. 1-

dimensional channel flow), and initial conditions, t = 0 and up = 0, is

up = u

[
1− exp

(
− t

τp

)]
. (1.7)

This equation shows that the particle timescale is a quantitative measure of

the time (t = τp) required for a particle with initial velocity, up(t = 0) = 0,

to obtain a velocity of approximately 63% that of the fluid velocity.

For some flows of practical interest, the conditions of one-dimensionality,

constant fluid velocity and up(t = 0) = 0 are not realistic, which means de-
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Figure 1.2: Conceptual realisation of the different regimes of Sto (adapted
from Crowe et al., 1988).

termining the precise position or velocity of a particle after time t is very

difficult. Instead, the particle timescale is usually compared with some char-

acteristic flow timescale, τf . The ratio of these timescales forms the impor-

tant non-dimensional parameter, the Stokes number, where

St =
τp
τf
. (1.8)

In essence, the Stokes number is a relative measure of the responsiveness of

a particle to the state of the flow. Particles are usually classified into three

broad regimes: St > 1 (‘unresponsive’), St ∼ 1 (‘partially responsive’) and

St < 1 (‘responsive’). Figure 1.2 illustrates the relative movement particles

in each of these regimes relative to an eddy with some ‘turnover’ timescale,

τf = le/ue, where le and ue are the characteristic length and velocity scales of

the eddy, respectively. While particles of St < 1 will follow the vortical eddy

structure well, particles of larger St will possess entirely different trajectories

from that of the eddy.

Two common ways of classifying the quantity of particles in a flow are the

ratio of the masses of each phase, the ‘loading’, and the volumetric fraction.

The mass loading is defined as

φ =
ṁp

ṁf

, (1.9)
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where ṁp is the solid phase mass flow rate and ṁf is the gas phase mass flow

rate. The volumetric fraction is defined as

ψ = N
Vp

V
, (1.10)

where N is the number of particles and V is the fluid volume.

As the quantity of particles in a flow increases, their effect on the flow

dynamics also increases. For example, if ψ < 10−6, the addition of particles

is sufficiently small that they will not bring about an appreciable alteration

to the turbulence of the flow, i.e. ‘one-way coupling’ is closely approximated.

On the other hand, if ψ > 10−6, particles are found to affect the gas phase

flow dynamics. One way this may happen is through ‘turbulence modula-

tion’, which refers to the influence of the particles on the fluid turbulence

(Crowe, 2000). For example, the timescale, τf of the ideal eddy described in

Figure 1.2 may be increased by some damping action by the particles and

this correspondingly changes St. Hence, the dispersion of the particles by the

action of the fluid will be affected also, i.e. ‘two-way coupling’ (Elghobashi,

1994).

1.3 Single Phase Flow

Although the governing equations in gas-solid flows are still being debated,

the Navier-Stokes equations are thought to describe the motion of single

phase flows completely (Crowe et al., 1998). The Reynolds averaged Navier-

Stokes equations, for a Cartesian reference frame and a constant density

system are (Rajaratnam, 1976)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
−(

∂u′2

∂x
+
∂u′v′

∂y
+
∂u′w′

∂z

)
(1.11)
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∂v

∂t
+ v

∂u

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2uv

∂z2

)
−(

∂u′v′

∂y
+
∂v′2

∂x
+
∂v′w′

∂z

)
, (1.12)

∂w

∂t
+ w

∂u

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ ν

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
−(

∂u′w′

∂x
+
∂v′w′

∂y
+
∂w′2

∂z

)
. (1.13)

Here, u, v and w are the time averaged velocity components in the x, y

and z directions respectively, primes and over bars denote fluctuating and

averaged quantities respectively, p is the static pressure and ν is the kinematic

viscosity. On the left hand side, the first term is the unsteady term followed

by the inertial terms. On the right are the pressure, viscous and Reynolds

stress terms.

The Reynolds ‘stress’ (e.g. −ρu′v′) arises from the Reynolds averaging

of the original Navier-Stokes equations. It can be physically described as

the transfer of momentum between ‘clumps’ of fluid moving with different

velocity. For example, in a turbulent shear flow with mean velocity u = u(y),

drawn in Figure 1.3, a clump of fluid with velocity u′ < 0 will be transported

upwards (positive y) with velocity v′ > 0 and for clumps of fluid u′ > 0, they

will be transported downwards with velocity v′ < 0. The Reynolds stress in

this scenario will amount to u′v′ < 0.

With the introduction of the continuity equation,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (1.14)

in addition to equations 1.11 to 1.13, it can be seen that there are 10 un-

knowns, yet only 4 equations. It is the endeavour of turbulence modeling to
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Figure 1.3: Two-dimensional shear flow indicating the correlation of fluid
‘clumps’.

find a generalised set of closed equations. For relatively simple cases, such

as the axisymmetric turbulent jet to be considered next, semi-empirical solu-

tions are attainable if a number of assumptions are invoked. However, such

solutions are applicable only for that type of flow and boundary conditions.

1.4 Turbulent Jets

1.4.1 Steady axisymmetric and plane turbulent jets

A simple turbulent axisymmetric jet, with initial momentum, M and density,

ρ issuing from a pipe of some diameter, D is a particular class of free shear

flow. Turbulent jets, in contrast to laminar ones, are notable for the myriad

of length scales, the smallest being the Kolmogrov scale, the largest, an order

of magnitude equal with the width of the jet as seen in the instantaneous

image of a water jet marked with dye, Figure 1.4. The turbulence results in

the rapid exchange of momentum within the jet, and between the jet and

9



 
 
 
 
 
 
 
 
 
    
Figure 1.4: An instantaneous image showing that a wide range of turbulent scales are 

present in a water jet marked by dye, Re = 2.5 ×103 (Dimotakis et al., 1983). 

 

ambient flow, up to length scales the order of the jet diameter. In contrast, the mixing 

and momentum exchange in laminar jets occurs at a molecular scale, described by the 

fluid viscosity. Differences between the two can be quantified in terms of the famous 

dimensionless parameter, the Reynolds number, which for a jet, is defined as 

     

 UD 
RE = --------- 
 μ      (1.15) 

 

Here, U is the jet bulk exit velocity and μ is the dynamic viscosity. Physically, the 

Reynolds number expresses a ratio of inertial forces to viscous forces in any type of 

flow. Laminar jets possess low Reynolds numbers which infers that viscous forces are 

more dominant than inertial forces. 

Shown in Figure 1.5 is a schematic diagram of the important parameters of the time 

averaged flow in a tur bulent a xisymmetric je t. In the ini tial r egion is the  pot ential 

core, the region where the velocity is constant across the width of the exit diameter. 

This potential core is only strictly present for smooth contraction jets. Differences in 

exit profiles (as well as  other properties downstream of  the exit) a re found between 

smooth c ontractions a nd pi pe j ets ( Mi e t a l., 2001) . H owever, f or s implicity, a  

constant exit profile 
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Figure 1.5: Key time-averaged features of a turbulent jet (adapted from
Rajaratnam, 1976).

will be assumed here. At the tip of the potential core, the shear layers merge

and after a brief transition region, the fully developed region begins. In that

region, the mean velocity profile approximates a Gaussian profile, with the

maximum velocity occurring on the jet axis. As one proceeds downstream,

the profiles will spread to greater radial extents as seen by the ever increasing

jet boundary. The centreline velocity, uc, will correspondingly decrease as x

increases. The spread of the jet is usually defined in terms of the half width,

r1/2, which is the distance between the centreline and some point where the

velocity is half that of uc. The use of the half width is preferred since the

actual jet boundary can be ambiguous and many more measurements must

be performed for it to be detected.

When analysing a flow of this type, a number of assumptions can be

made to simplify the Navier-Stokes equations 1.11 to 1.13. The first such

assumption is of axisymmetry for the case of a round jet and an infinitely

long thin section for the case of a plane jet. In both cases, the number of

dimensions is reduced to two, which means the number of variables is reduced

by 4 by the removal of equation 1.13. Following Rajaratnam (1976) a plane

jet will be analysed first and this will be extended to the case of a round or

axisymmetric jet. The second simplification is an assumption of steadiness,
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which implies the time-averaged velocity is constant. Hence, the term ∂()/∂t

is removed from equations 1.11 and 1.12. With these simplifications, the

system of equations are as follows:

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
−

(
∂u′2

∂x
+
∂u′v′

∂y

)
, (1.16)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
−

(
∂u′v′

∂x
+
∂v′2

∂y

)
(1.17)

and (continuity)
∂u

∂x
+
∂v

∂y
= 0. (1.18)

One of the fundamental concepts of modern fluid mechanics is the bound-

ary layer assumption (Kundu & Cohen, 1999) which states that streamwise

or axial (the x direction) variations within the boundary layer are insignifi-

cant relative to variations perpendicular (the y direction) to a thin layer as

illustrated in the idealised flow over a flat plate in Figure 1.6. This implies

that
∂

∂x
� ∂

∂y
. (1.19)

Further, u is much larger than v, hence

u� v. (1.20)

A jet is a class of shear flow which, because of the absence of boundaries, is

regarded as a free shear flow.

As a result, boundary-layer like approximations can be made to reduce

equations 1.16 and 1.17 to

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2
− ∂u′v′

∂y
(1.21)
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Figure 1.6: Flow over a flat plate. Dashed line denotes the hypothetical
boundary layer.

and

0 = −1

ρ

∂p

∂y
− ∂v′2

∂y
. (1.22)

The pressure gradient ∂p
∂x

can be found by integrating equation 1.22 to give

p = p∞ − ρv′2, (1.23)

where p∞ is the ambient pressure. The quantity ρv′2 is maximum at the jet

centreline (George, 1990), which implies there is a pressure gradient toward

the centre of the jet and as a result, ambient fluid is entrained toward the

centreline. However, p can be approximated as being constant, but it does

vary according to the imposed conditions from outside the jet boundary

(Kundu & Cohen, 1999). Hence, equation 1.21 can be approximated as

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂x2
− ∂u′v′

∂y
, (1.24)

which can also be written as

u
∂u

∂x
+ v

∂u

∂y
=

1

ρ

∂

∂y

(
µ
∂u

∂y
− ρu′v′

)
. (1.25)

Written in this way, the terms µ∂u
∂y

and −ρu′v′, the laminar and Reynolds

shear stresses, are revealed. An implication of the assumption of a high

Reynolds number is that turbulent stresses are much higher than the laminar
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stresses. If the laminar stresses are neglected, equation 1.25 becomes

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂ρu′v′

∂y
, (1.26)

while continuity remains as

∂u

∂x
+
∂v

∂y
= 0. (1.27)

These set of equations are nearly closed since there are three unknowns

and two equations. Another concept can be used to further reduce the com-

plexity of these equations. The phenomena of profiles of some physical prop-

erty collapsing onto one another, once normalised with some characteristic

scale, is called ‘self-preservation’. This occurs in the fully developed region

of a turbulent jet. Shown in Figure 1.7(a) are radial profiles in the fully de-

veloped region of an axisymmetric jet at a number of axial locations. If these

profiles are normalised by the characteristic velocity scale, the centreline ve-

locity uc, and by a length scale, the half widths r1/2, then it is found that

the profiles collapse onto a single curve as is shown in Figure 1.7(b). The

‘self-similar’ velocity profiles indicate the velocity field is now independent

of the axial or streamwise direction. Physically, it has been said (George,

1989) that self-similarity implies a dynamic equilibrium of all the terms con-

trolling the motion. As a result, the rate of change of each dynamic term

in the equation of motion is equal (further meaning the flow is absent of an

external force).

The absence of an external force is shown by integrating equation 1.26

with respect to y from either boundary of the jet (−∞ to +∞). Firstly,

rearranging equation 1.26 such that

u
∂u

∂x
+
∂uv

∂y
− u

∂v

∂y
= −1

ρ

∂ρu′v′

∂y
, (1.28)
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Figure 1.7: (a) Radial velocity profiles at a number of axial locations and (b)
those profiles normalised by uc and r1/2 in a round jet (Rajaratnam, 1976).

and using continuity equation 1.27, then

∂v

∂y
= −∂u

∂x
. (1.29)

Thus

u
∂u

∂x
+
∂uv

∂y
+ u

∂u

∂x
= −1

ρ

∂ρu′v′

∂y
(1.30)

and therefore
∂(u2)

∂x
+
∂uv

∂y
= −1

ρ

∂ρu′v′

∂y
. (1.31)

Integrating this equation gives

d

dx

∫ ∞

0

u2dy + 2[uv]∞0 = −2[u′v′]∞0 . (1.32)

Assuming the following boundary conditions, u(y = ∞) = 0, v(y = 0) = 0,

gives [uv]∞0 = 0. The following graph of measurements of the turbulent shear

stress in an axisymmetric jet shows (Figure 1.8) that u′v′ is zero along the

jet axis, rises to a maxima at r/x ≈ 0.17, then falls to zero as the transverse

coordinate y, or in this case r for cylindrical coordinates, goes to infinity. A
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Figure 1.8: Turbulent shear stress for a round jet according to Hussein et al.
(1994)

similar result is found in a plane jet. Therefore, u′v′(y = 0) and u′v′(y = ∞),

thus reducing equation 1.32 to

d

dx

∫ ∞

0

u2dy = 0, (1.33)

which shows that the momentum flux (M/ρ) is conserved in the axial (x)

direction.

The concept of self-similarity can be represented (Pope, 2000) by a func-

tion F, such that

F (x, r) = F (x, ξ)Fo(x), (1.34)

where ξ = r/rl and Fo(x) is some characteristic scale. Here, r is the radial

direction and is normalised by some scale in that direction, rl. If it can be

shown that F (x, ξ) is independent of x, (as was done in Figure 1.7), then

F (x, ξ) = f(ξ), (1.35)

where f is some function and rl = r1/2. Substituting the velocity, u, for the
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arbitrary function F in equations 1.34 and 1.35 then,

u(x, r) = f(ξ)u(x, 0) = f(ξ)uc. (1.36)

Rearranging equation 1.36 in terms of ξ gives

u

uc

= f(ξ). (1.37)

Equation 1.37 describes the function f as seen in the scaled velocity profiles

of Figure 1.7.

The axial momentum equation (equation 1.26) is now converted to cylin-

drical coordinates as this simplifies the analysis of an axisymmetric jet:

u
∂u

∂x
+ v

∂u

∂r
=

1

ρ

1

r

∂rτ

∂r
, (1.38)

where τ = ρu′v′. The turbulent shear stress, when normalised by the squared

centreline velocity, is equal to the function h where

τ

ρu2
c

= h(ξ). (1.39)

If similarity relations 1.39 and 1.37 are substituted into equation 1.38, then

it follows that
1

ρ

1

r

∂rτ

∂r
=

1

r

∂(ru2
ch)

∂r
=

u2
c

r1/2

H(ξ), (1.40)

where H(ξ) = h/ξ + ∂g/∂ξ.

Further from Rajaratnam (1976), the quantities on the left hand side of

equation 1.38 are

u
∂u

∂x
= uc

duc

dx
f 2 −

u2
c

dr1/2

dx

r1/2

ξf
df

dξ
(1.41)

and

v
∂u

∂r
=
u2

c
dr1/2

dx

r1/2

df

dξ

F1

ξ
− uc

duc

dx

df

dξ

F2

ξ
(1.42)

where F1 =
∫ ξ

0
ξ2(df/dξ)dξ and F2 =

∫ ξ

0
ξfdξ. If equations 1.40 to 1.42 are
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inserted into 1.38, then it is found that

H(ξ) =
r1/2

uc

duc

dx

[
f 2 − df

dξ

F2

ξ

]
+
dr1/2

dx

[
df

dξ

F1

ξ
− ξf

df

dξ

]
. (1.43)

In this equation, H(ξ) is independent of x and the terms in the square brack-

ets are independent of x because f , F1 and F2 are all independent of x. It

must follow then that
r1/2

uc

duc

dx
and

dr1/2

dx
must be independent of x. Therefore,

let
dr1/2

dx
= constant, (1.44)

which implies (after integration) that r1/2 ∝ x, and

r1/2

uc

duc

dx
= constant. (1.45)

Equation 1.45 is dealt with below.

The relationship between uc and r1/2 is found from the conservation of

momentum flux, equation 1.33, which, after substitution of f and ξ gives

d

dx
u2

cr
2
1/2

∫ ∞

0

f 2ξdξ = 0. (1.46)

Since
∫∞

0
f 2ξdξ is constant, then

ucr1/2 = constant (1.47)

and hence uc ∝ 1/r1/2 and from equation 1.44, uc ∝ 1/x. Substituting

uc ∝ 1/x into equation 1.45 gives r1/2 ∝ x, consistent with equation 1.44.

In conclusion, in an axisymmetric turbulent jet, the centreline velocity

and half width are inversely and directly proportional to x, respectively.

Non-dimensionalising uc and r1/2 gives

uo

uc

= K1
x

D
(1.48)
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Figure 1.9: (a) Centreline velocity, uc, in a axisymmetric jet measured by
Hussein et al. (1994) and (b) half width, r1/2, measured by Xu and Antonia
(2002).

and
r1/2

D
= K2

x

D
. (1.49)

Here, K1 is the centreline decay coefficient andK2 is the spreading coefficient.

These results have been supported by experimental data. Shown in Figure

1.9 are the linear dependence of uo/uc and r1/2 on x, as reported by Hussein

et al. (1994) and Xu and Antonia (2002). In Figure 1.9, it can be seen that

the line of best fits through uo/uc and r1/2 do not pass through the origin.

The distance between the x−intercept and the actual origin is called the

virtual origin. This will be ignored here for the purposes of simplicity.

1.4.2 Particle-laden axisymmetric jets

The addition of solid particles of some diameter, dp to a turbulent jet will

alter the gas phase mean velocity field and turbulent structure with respect

to a single phase jet. Hardalupas et al. (1989) estimate that alterations

to the mean velocity field will occur if the mass loading at the orifice exit,
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φo & 0.1. The exit mass loading is defined as

φo =
ṁp

ṁfo

, (1.50)

where ṁp is the solid phase mass flow rate and ṁfo is the gas phase exit

mass flow rate.

In the pioneering experimental work of Laats (1966), the effect of φo

on the gas phase centreline mean velocity and half width of a turbulent

axisymmetric jet was reported and is reproduced in Figure 1.10. Budilarto

(2003), almost 40 years later, reported the same trend for the gas phase

centreline velocity (Figure 1.11). His measurements were conducted with a

Laser Doppler Anemometer, while those of Laats were measured using an

isokinetic suction tube and rotameter arrangement. A brief review of these

experimental techniques are included below. Other well known experimental

works that report trends similar to that displayed in Figures 1.10 and 1.11,

are those by Modarress et al. (1984a,b), Shuen et al. (1985), Tsuji et al.

(1988), Hardalupas et al. (1989), Sheen et al. (1994), Fan et al. (1997) and

others. The physical mechanisms responsible for the reduction in centreline

decay and spreading rates, as displayed in Figures 1.10 and 1.11, are usually

attributed to interphase momentum transfer and turbulence damping (e.g.

Fleckhaus et al., 1987).

The effect of particle mass loading φo on the gas phase centreline velocity,

uc and on the velocity half width, r1/2 has been considered previously by

Melville and Bray (1979). They began their analysis of particle-laden jets

by writing the gas phase velocity distribution as the following function of

dimensionless parameters:

u

uo

= fn

( x
D
,
r

D
,Re, φo, Sto

)
, (1.51)

where u is the time-averaged axial component of the gas phase velocity and r

is the radial distance from the jet axis. The Reynolds number, Re = ρUD/µ,

is defined using the bulk mean exit velocity U , the gas phase density ρ and
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Figure 1.10: The dependence (a) of the mean centreline gas phase velocity and (b) 
half width reported by Laats (1966). Sto = 19. 

 

 

 

 

 

 

Figure 1.11: Gasphase centreline velocity as reported by Budilarto (2003). Sto = 3.  
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dynamic viscosity, µ. The Stokes number at the exit is defined as

Sto =
ρpd

2
pU

18µD
, (1.52)

where ρp is the particle density and dp is the mean particle diameter. Initially,

Melville and Bray neglect both Reynolds and Stokes numbers effects and they

write the gas-phase centreline velocity as

uo

uc

= K1

( x
D

)
a(φo) (1.53)

and the gas-phase velocity half width as

r1/2 = K2(x)b(φo), (1.54)

where a and b are functions of φo. Melville and Bray propose that a and b

are exponential functions, giving

uo

uc

= K1
x

D
e−0.69φo (1.55)

and
r1/2

D
= K2

x

D
e−0.69φo . (1.56)

Their scaling of the gas-phase centreline velocity and half width as re-

ported by Laats (1966) are reproduced in Figure 1.12. While the corre-

lations for both uo/uc and r1/2 are strong, Melville and Bray acknowledge

that a physical justification for their exponential scaling is not forthcoming.

Measurements published since Melville and Bray (1979) provide further in-

sight into the effect of particles on the mean and turbulent properties of a

particle-laden jet. However, no other scaling approach has since been pre-

sented, which leads to a primary aim of this thesis. This is to obtain new

scaling factors for gas phase centreline velocity and half width measurements

published prior to (i.e. Laats, 1966) and since (i.e. Shuen et al., 1983)

Melville and Bray (1979). As opposed to the exponential scaling factors pro-

posed by Melville and Bray (1979), power-law scaling factors are presented
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Figure 1.12: Melville and Bray’s correlation of Laats’ (1966) gas phase cen-
treline velocity (a) and half width data (b), based on equations 1.55 and 1.56,
respectively.

in chapter 2 for all previously published data sets which encompass a range

of exit Stokes numbers.

The reported measurements of other jet properties such as jet entrain-

ment, concentration and mass flux exhibit similar trends to the gas phase

velocity. That is, jet entrainment, the spread of mass concentration and mass

flux are all decreasing functions of φo. For example, both the centreline mass

flux, ṁp,c, and half width ṁp,1/2 are shown in Figure 1.13 and reported by

Laats and Frishman (1970) for Sto = 18, illustrate this. However, the mass

flux decay and spreading rates are not linear as they were with the gas phase

velocity. An exponential scaling of mass flux data was also proposed by

Melville and Bray (1979). Likewise with gas phase velocity measurements,

no scaling of entrainment, concentration or mass flux measurements have

been reported since. The scaling of these aspects of particle-laden jets will

also be addressed in Chapter 2, following the scaling of gas phase velocity

measurements.

Whereas Figure 1.13 reports only a variation of mass flux with φo,
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Figure 1.13: (a) Solid phase centreline mass flux and (b) half widths as reported by 
Laats and Frishman (1970). Sto = 18. 

 
 
 
 
 

 
 
 
 
 
 

 
Figure 1.14:  Centreline mass f lux measurements as  reported by Laats and Frishman 

(1970). øo= 0.3. 
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Figure 1.14 illustrates different effects for a variation in Sto. For example,

centreline mass flux measurements at low Stokes numbers (i.e. Sto = 5, 18)

exhibit an increase in centreline concentration downstream of the jet exit,

denoted the ‘pinch-effect’ after Frishman et al. (1997). The pinch-effect was

originally attributed to the Magnus effect (Laats and Frishman, 1970) but,

recently, numerical simulations have determined the effect to be much more

complex, with the history of the particle motion within the pipe a factor

that must be considered among other things (Frishman et al., 1997). While

the pinch-effect is detected for relatively low Stokes numbers, it is absent for

larger Stokes numbers (i.e. Sto = 42, Figure 1.14). Rather, there is a rapid

reduction in ṁp,c immediately downstream of the jet exit. Beyond the initial

region and pinch-effect, the decay of ṁp,c is greater for the smaller particles

(Sto = 5) compared with the larger ones (Sto = 42). Also, the shape of

the concentration profiles at the jet exit are also dependent on the Stokes

number (Frishman et al., 1997). For example, a concave concentration pro-

file, with the minimum value located on the nozzle centreline, is detected for

low Stokes numbers. All these Stokes numbers effects, the pinch-effect, the

centreline decay and exit profile shape are investigated further in Chapter 3.

These effects will be assessed by measurements of the time-averaged particle

distributions.

Measurements of particle distributions, (i.e. Planar scattering measure-

ments, see section 1.5.3), have been used in the past to discern important in-

formation concerning the instantaneous location of particles relative to the jet

structure (e.g. Longmire and Eaton, 1992). In this study, the time-averaged

distribution of particles will be measured to investigate the variation of the

Stokes number and mass loading. The Stokes number effects as briefly de-

tailed in the previous paragraph will investigated. However, primarily, the

scaling of particle distributions will be investigated also. These measure-

ments and their subsequent scaling of mass loading effects will be reported

in Chapter 3. As with mass flux data, no scaling of these measurements have

been reported to date.
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Figure 1.15: A simplified schematic representation of the PJ nozzle and the emerging 

precessing jet flow (Nathan et al., 2006). 

 
 
1.4.3 Unsteady jets: The precessing and triangular oscillating 
jets 
 
 
Unsteady jets are even more complicated than the steady axisymmetric jets discussed 

above. Many o f the  s implifying a ssumptions tha t f acilitated a s emi-empirical 

dimensional s olution for the  axisymmetric je t (Equations 1.48 a nd 1.4 9), s uch a s, 

obviously, s teadiness, t wo-dimensionality a nd s elfpreservation, are i napplicable f or 

the unsteady jets to be considered here, at least in the near f ield. The precessing jet 

(PJ), first described in Nathan (1988), is an unsteady jet that is produced by a nozzle 

such a s t hat s hown in F igure 1.15. From t hat di agram, it can be s een that t he f low 

emerges at an angle t o the cent reline and ‘precesses’ pe riodically i n the az imuthal 

direction. A hypothesised mechanism (Kelso, 2001) driving the external jet precession 

is the  a symmetric a zimuthal di stribution of vor tices that g enerate a p ressure 

differential w ithin the c hamber, inducing uns teady a ttachment t   the cha mber w all 

after sudden expansion through the orifice, d1. 

 

Important pr operties t hat di stinguish t he PJ f rom a  s teady j et a re a n increased near 

field spread (Parham, 2000), as well as  l arger j et s tructures (Newbold e t al., 1997) . 

For c ombustion a pplications, t his ha s r esulted i n a n increased flame vol ume, 

luminosity, residence time and stability (Parham, 
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2000, Smith, 2000). Under certain conditions, a PJ nozzle offers advantages

over a standard burner because it gives an increase in heat transfer (improved

efficiency) and reduced NOx emissions (Smith, 2000). However, these benefits

come at the expense of a relatively high driving pressure. While this is

readily available in natural gas plants, it is beyond the attainable limits of

standard plant fans, especially those plants that are fueled by a solid such as

coal. This is important since the majority of say, cement kilns and furnaces,

specific applications where unsteady nozzle are proposed to be used, use coal

as their primary fuel. To address this problem, the triangular oscillating jet

(OJ) nozzle was developed. This also generates a large scale oscillation of

the emerging jet but at a comparatively lower driving pressure (Lee et al.,

2003). Its construction is similar to the PJ nozzle, but as its name suggests,

the circular orifice is replaced with a triangle. Importantly for the purposes

of this work, there are some differences in the emerging flow as well. The

most basic difference is that the absolute mean spread of the flow from an

OJ nozzle is less than a PJ nozzle (Lee et al., 2003).

No measurements of the effect of oscillating jet momentum and the exit

mass loading on particle distributions has been conducted. Furthermore,

a comparison with existing measurements in a particle-laden precessing jet

(Birzer et al., 2005) is yet to be conducted. Hence, a planar imaging tech-

nique similarly to that used for a particle-laden steady jets in Chapter 3,

is used to measure particle distributions in a triangular oscillating jet flow.

These are presented in Chapter 4 and compared with similarly obtained PJ

measurements.

1.5 Measurement Techniques

The measurement techniques used to obtain some of the published data pre-

sented above, such as gas and solid phase velocities, as well as the solid phase

mass flux, are discussed in this section. Some of the concepts presented here

are also related to the measurement methods applied to obtain the data
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NOTE: 	 This figure is included on page 28 of the print copy of the 
thesis held in the University of Adelaide Library. 

Figure 1.16: Doppler shift of scattered light from a moving particle (Crowe 
et al., 1998) 

presented in Chapters 3 and 4, such as the dependence of scattered light in­

tensity on particle diameter. Finally, a justification for these measurements 

technique is provided. 

1.5.1 Laser Doppler Anemometry, LDA 

Velocity measurements of both phases in particle-laden jets are most com­

monly obtained with a Laser Doppler Anemometer (LDA). The basic compo­

nents of a LDA setup are displayed in Figure 1.16. Shown is a laser emitting 

light of frequency, Is in the direction of the unit vector k. Laser light is 

scattered by a particle moving with velocity, up, and subsequently observed 

by a photodetector. As a consequence of the Doppler effect, the frequency 

of scattered light as measured by the photo detector is 

(1.57) 


where c is the speed of light. This equation accounts for the modulation of 

the laser light as scattered by the moving particle and the moving particle 

relative to the photodetector. 
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NOTE: 	 This figure is included on page 29 of the print copy of the 

thesis held in the University of Adelaide Library. 


Figure 1.17: Typical LDA setup detecting backscattered light. The fringe 
pattern of spacing Llx, created by the intersection of the two beams is shown 
along with the detected photo-detector signal of period TD (adapted from 
Sorensen, 2005). 

The scattered light frequency, id in the setup shown in Figure 1.16 is too 

high to be resolved by a photodetector. Instead, a laser beam may be split 

into two, and subsequently directed into an interference region which creates 

a fringe pattern as shown in Figure 1.17 of spacing Llx, where 

A
LlX= --. 	 (1.58 ) 

2sin ~ 

Here, A is the laser wavelength and e is the angle between the intersecting 

beams. The particle velocity is found from the measured signal frequency or 

period, TD , so that 

(1.59) 

Here, up is the particle velocity perpendicular to the axis of the intersecting 

beams (see Figure 1.17). 

The intensity of light scattered by the particle is dependent on the laser 

light incident intensity, wavelength and polarisation, particle diameter and 

index of refraction and the detected scattering angle. If all variables, other 

than the particle diameter are held constant, the scattered intensity, as dis­

played in Figure 1.18 is proportional to the square of the diameter of larger 
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NOTE: This figure is included on page 30 of the print copy of the 
thesis held in the University of Adelaide Library. 

Figure 1.18: Dependence of scattering intensity on particle size for incident 
intensity = 107w1m2 , detector angle with incident light beam = 15°, receiv­
ing solid aperture angle = 10° and complex refractive index = 1.5 (Crowe et 
al., 1998) 

particles. Crowe et al. (1998) used Mie scattering theory (see van de Hulst, 

1981) to generate this plot. 

The dependence of scattered light intensity on particle diameter is some­

times used to discriminate LDA measurements of the gas phase from that 

of the solid phase phase. In two phase flows, seeding particles with a Stokes 

number much less than one are assumed to be representative of gas phase 

velocities. For example, in gas flows, seeding particles will have a diameter of 

O(l),um. The solid phase, having a much larger diameter, say of O(100),um, 

scatters more intense light and hence, this type of signal can be identified as 

scattered by the solid phase. However, errors are introduced by the detection 

of larger particles passing through the edge of the interference region so that 

the signal amplitude from a large particle may appear as if it were scattered 

from a seeder. This error may be limited though if particles with a much 

larger velocity difference from the gas are used so that the velocities may 

be separated out (Sheen et al., 1994). Another way to discriminate between 
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the phases is to use a Phase Doppler Anemometry(PDA)/LDA technique

(Hardalupas et al., 1989). A PDA is able to determine the particle diame-

ter by comparing the phase difference from signals obtained from different

photodetectors.

1.5.2 Isokinetic Sampling

The solid phase mass flux data presented above were obtained by the isoki-

netic sampling method which, unlike the LDA method, is intrusive. A probe

is inserted into the flow and particles are extracted at a rate equal to the local

flow velocity (hence, isokinetically) for a set time interval. One way to ob-

tain isokinetic sampling is to adjust the extraction rate so that the measured

pressure difference between the free stream and within the probe is negligi-

ble (Crowe et al., 1998). Extracted particles are subsequently collected and

weighed to give the solid phase mass per unit time, per probe cross sectional

area, Ap (kg/m2s). Laats (1966) and Laats and Frishman (1970) used a sim-

ilar method to this to obtain mass flux data. Their gas phase measurements

were also additionally obtained by attaching a rotameter to their rig which

measured the suction velocity (Ivanov, Laats & Frishman, 1970).

1.5.3 Planar Imaging Measurements

Planar imaging measurements can be used to obtain the instantaneous and

mean distribution of particles in a two-dimensional cross section of a two

phase flow. The particle field is illuminated by a sheet of light that has

usually been formed from a laser (continuous or pulsed) beam. The scattered

light, as can be seen above in Figure 1.18, is proportional to the square

of the particle diameter. The light is captured by a CCD camera whose

number of pixels and magnification determines, in addition to the thickness

of the light sheet, the spatial resolution. In the case of a pulsed laser, the

pulse duration (approximately a few nanoseconds) determines the temporal
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resolution, which allows the solid phase field to be essentially frozen in time.

Planar imaging measurements of the solid phase in particle-laden axisym-

metric and triangular oscillating jets are to be presented below in Chapters

3 and 4, respectively. The work presented in Chapter 2 draws on previously

published data of which there is a sufficient amount readily available from

the literature for these purposes. However, measurements of particle distri-

butions in axisymmetric jet flows for mass loadings in the two-way coupling

regime (section 1.2.1) are not readily available, hence they are measured.

Two phase velocity and mass flux measurements in a particle-laden triangu-

lar oscillating jet flow are not available because of their inherent complexity.

It has been demonstrated already that single phase measurements are suffi-

ciently difficult (Wong, 2005). Hence, planar imaging measurements are also

performed in a particle-laden triangular oscillating jet flow.

1.6 Thesis Objectives

This thesis has two primary objectives:

1. To scale the distribution of flow and particles as a function of mass

loading in particle-laden axisymmetric jets by correlation of existing

gas and solid phase measurements, as well as new measurements of

particle distributions.

2. To determine the operating conditions for which a particle-laden oscil-

lating jet flow is superior at spreading particle distributions to that of

an equivalent precessing jet flow. Further, it is intended to determine

the effect of the exit mass loading on the spread of particle distribu-

tions.

The effect of mass loading on the centreline decay and spread in a particle-

laden axisymmetric jet have been discussed above. The first primary objec-

tive of this thesis is to develop scaling factors that account for the reduced
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centreline decay, uo/uc and spreading rates, r1/2 of a particle-laden jet com-

pared with a single phase jet, for the range of Sto reported in the literature.

As has been discussed, a complete basic scaling of gas phase centreline veloc-

ity and half width measurements in particle-laden jets has not been reported.

The results of the scaling will be verified with previously published experi-

mental data such as that of Laats (1966) shown above in Figure 1.10.

Related to the first objective is the scaling of other particle-laden jet prop-

erties such as solid phase mass flux, concentration, entrainment and mean

particle-distributions. While limited data is available for the first three of

those properties, practically none exists for particle distributions of φo in the

two-way coupling regime. Measurements of particle-distributions using a pla-

nar imaging technique like that described in section 1.5.3 are thus presented

here and assessed for scaling. Some secondary investigations into the effect

of exit Stokes number and gas phase exit density on particles distributions

are also considered.

A planar imaging study is performed to study the effect of a triangular

oscillating jet flow on particle-distributions. It is the aim of this part to

determine under what conditions the oscillating jet results in a greater spread

of particles than a precessing jet flow. It also aims to assess the effect of a

variation of exit mass loading on particle distributions.

1.7 Thesis Outline

In Chapter 1, the basic fluid dynamics of an axisymmetric jet have been

reviewed and shown that the centreline velocity and half width are inversely

and directly proportional to the axial coordinate, respectively. Measurements

of the gas phase in particle-laden jets have shown that particles inhibit the

decay of centreline velocity and jet spread. A method to scale the gas phase

centreline velocity and half width for various φo are presented in Chapter 2.

Measurements from previous authors are presented throughout that chapter
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to verify the scaling. These results are then used to scale other particle-laden

jet properties such as the solid phase mass flux. In Chapter 3, the scaling

(and lack thereof) is applied to measurements of particle distributions for a

variation in φo, Sto and the jet density ratio. In Chapter 4, new measure-

ments of particle distributions in a particle-laden triangular oscillating jet

flow are presented. These are then compared with existing measurements in

a particle-laden precessing jet flow. In Chapter 5, the results of the scaling of

previous data and subsequent scaling of other jet properties are summarised,

along with the results of the particle-laden triangular oscillating jet flow

study.
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Chapter 2

Mass loading and Stokes

number effects in particle-laden

axisymmetric jets

2.1 Introduction

Particle-laden (two-phase) turbulent axisymmetric jets have been the sub-

ject of research for more than 50 years because they have a large number

of practical applications, particularly in the combustion of solid fuels. An

understanding of the behaviour of particle-laden jets is necessary for the re-

liable modelling and optimisation of pulverised fuel burners because the in-

teractions between the gas and the particles strongly influences heat transfer

and pollutant emissions. Particle distributions are also important in many

natural processes such as pollutant dispersion and the formation of rain.

However, despite the significant advances in understanding, basic scaling

properties of particle-laden jets are yet be reported. This task is addressed

in this chapter.

In this chapter, a review of previously published data is conducted initially
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to draw attention to the mechanisms considered to be the most significant in

particle-laden jets. Based on this review, gas phase velocity scaling regimes

are able to be defined with some physical justification. The strength of the

scaling of previously published data is subsequently tested with the help of

correlations. Finally, the scaling of other properties, such as solid phase mass

flux and entrainment is conducted.

2.2 Interphase momentum transfer and tur-

bulence modulation in particle-laden jets

As stated in chapter 1, the reduction in gas phase centreline velocity and jet

spread with increasing φo is usually attributed to a combination of mean axial

interphase momentum exchange and turbulence damping (e.g. Fleckhaus et

al., 1987). A description of both of these mechanisms is performed in this

section.

The process of mean momentum transfer between the phases in particle-

laden axisymmetric jets is typically as follows. In the near field, if the parti-

cles lag the fluid within the pipe, the mean gas phase velocity will be higher

than that of the solid phase, resulting in the acceleration of the solid phase

by drag. Beyond this region, the particle velocity ‘overshoots’ that of the gas

phase as a result of particle inertia. Subsequently, particles become a source

of momentum responsible for reducing the axial decay of gas phase velocity,

compared with that of the single phase case. The process is illustrated in

Figure 2.1, as reported by Budilarto (2003). For that particular Sto, momen-

tum transfer from the gas to the solid phase is evident for x/D . 5 as seen in

the slight increase in solid phase centreline velocity in that region. Beyond

x/D & 5, evidence of momentum transfer is seen in the reduced solid phase

centreline decay rate relative to the gas phase. This mechanism has been

attributed at least partly to the reduction in gas phase centreline decay with

respect to the single phase case, also shown in Figure 2.1 by many authors
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NOTE: 	 This figure is included on page 37 of the print copy of the 
thesis held in the University of Adelaide Library. 

Figure 2.1: Single, gas and s'olid phase centreline velocity as reported by 
Budilarto (2003). Sto = 24. 

(e.g. Fleckhaus et at., 1987, Hardalupas et at., 1989 and Sheen et al., 1994). 

The relative effect of mean momentum exchange on U c and r1/2 are a 

function of Sto , and hence the slip velocity, (u - up). Equation 1.5 shows 

that the momentum gained by a particle from the gas phase via the drag force 

is proportional to (u - up) in the Stokes flow regime. To illustrate the effect 

of Sto on the slip velocity, the data of Budilarto (2003), Hardalupas et al. 

(1989) and Shuen et al. (1983), each with an increasing Sto, are reproduced 

below. These cases are thought to be representative of other data at a similar 

Sto' Since Sto is not constant with xlD, the mean Stokes number, Stm is 

introduced following Hardalupas et al. (1989). The critical location where 

Stm ~ 1 indicates the axial location where particles will become responsive 

to the decay of centreline velocity. The deceleration time scale, Tdec accounts 

for the centreline decay of gas phase velocity, defined as 

[dd~ ]-1 	
(2.1)Tdec = 

The solution for this is obtained by first differentiating U c with respect to x 
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(equation 1.48), which gives

Tdec = K1

(
D

uo

)( x
D

)2

. (2.2)

The ratio of the particle time scale, τp to Tdec is the mean Stokes number,

where

Stm =
τp
Tdec

=
1

K1

Sto

(
D

x

)2

(2.3)

and K1 ≈ 0.15 for a single phase jet.

Figure 2.2 presents the single phase, gas and solid phase centreline ve-

locities as reported by Budilarto (2003), as well as Stm calculated according

to equation 2.3 based on Sto = 3. These measurements correspond similarly

to those of Modarress et al. (1984a). With increasing distance downstream

from the end of the potential core, the particles move increasingly into the

regime Stm < O(1). It is evident that particles follow closely the mean flow

in the reported axial range sufficiently well. It is hypothesised therefore that

since (u − up) ∼ 0, then axial mean momentum transfer is small for low

Stokes numbers such as that displayed in Figure 2.2. However, the rate of

centreline decay and hence spread of the gas phase, is much lower for the

case with particles. This may be explained by damping or attenuation of the

intensity of large scale eddies by the presence of the particles.

In two phase turbulent flows, it is well known that particles may either

enhance or attenuate the level of turbulence, i.e. turbulence modulation (e.g.

Gore and Crowe, 1989). Gore and Crowe (1989) have inspected measured

turbulence intensities in jet and pipe studies published prior to 1989. They

defined the change in turbulence intensity (CTI) that occurs with the addi-

tion of particles as

CTI =
σtp − σsp

σsp

, (2.4)

where σtp and σsp are the two and single phase turbulence intensities (
√
u′2/uc),

respectively. Gore and Crowe were able to demarcate turbulence measure-

ments in two phase pipes and jets by the parameter dp/le, where the critical
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Figure 2.2: Single phase, gas phase and solid phase centreline velocity data
as reported by Budilarto (2003) for dp = 25µm, φo = 0.5 and Stm calculated
from equation 2.3. Sto = 3.

value of dp/le is approximately 0.1, above which the sign of CTI is positive

and below this it is negative, corresponding to the generation and attenuation

of turbulence, respectively. It is noted however that turbulence modulation is

not yet well understood and is the subject of much current research (Crowe,

2006).

Nevertheless, Gore and Crowe (1989) reasoned that, if particles are at

least partially responsive to turbulent fluctuations, particles will obtain ki-

netic energy at the expense of the gas phase. For example, Owen (1969)

showed that the average rate of work done by an eddy on N particles is

equal to 3πµdpu
′2Nτp/τf . This illustrates that, for particles sufficiently re-

sponsive such that they are completely entrained into an eddy for the course

of the eddy lifetime, the eddy will expend work accelerating the rms particle

velocity u′p → u′ for a period equal to the particle timescale. In a turbulent

jet, this could be expected to result in less energy available for large scale

eddies to interact with the ambient fluid. Consequently, jet spread is im-

peded and hence, the decay of the centreline velocity will be reduced with

increasing number of particles, or φo. For very small particles (St << 1),
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eddies could be expected to expend minimal work on the solid phase as the

particles have a quick response time. In that case, the solid phase is merely

an addition to the density of the gas phase. Similarly, minimal work is lost

by eddies to very large particles (St >> 1) since they remain in an eddy

for only a brief period of time. Instead, larger particles may generate fine

scale turbulence by the mechanism of vortex shedding provided Rep > 400

(Hetsroni, 1989). For example, Cui et al. (2006) assessed the dependence

of CTI on Sto. They showed that the sign of CTI switches from negative

to positive at approximately Sto = 150 (Figure 2.3). Flow visualisation also

indicated that for Sto < 150, vortex growth is impeded, whilst for Sto > 150,

vortex growth is enhanced Cui et al. (2006).

Figure 2.4 presents the single phase, gas and solid phase centreline ve-

locities as reported by Hardalupas et al. (1989), as well as Stm calculated

according to equation 2.3 based on Sto = 51. The critical value, Stm = 1,

occurs at x/D ≈ 20. These measurements are representative of other cases

of similar Sto, such as those by Hishida et al. (1987) and Budilarto (2003)

(Figure 2.1). The greater Sto in this figure compared with Figure 2.2, ex-

plains why a significant slip velocity develops in the near field. For x/D <

15, the solid phase centreline velocity is approximately constant while the

gas phase decays by approximately half. Beyond that range, the solid phase

decay rate approaches that of the gas phase as x/D → 30. Since (u−up) 6= 0,

the effects of mean momentum exchange on the gas phase decay rate are sig-

nificant. Hardalupas et al. (1989) deduced the reduction in mean gas phase

centreline decay in this data to be proportional to the momentum transferred

from the solid phase, because the decay rate of mean solid phase velocity is

independent of mass loading (see the closed symbols in Figure 2.4).

Figure 2.5(a) presents the single phase, gas and solid phase centreline

velocities as reported by Shuen et al. (1983), as well as Stm calculated

according to equation 2.3, based on Sto = 799. Also included for reference is

the case Sto = 264, φo = 0.66. The decay of gas phase centreline velocity for

the case Sto = 799 is less than the case Sto = 264, even though φo is the same

for both Sto. It is hypothesised that the reason for this can be found from
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Figure 2.3: CTI plotted versus Sto as reported by Cui et al. (2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Single phase, gas phase and solid phase centreline velocity data as 
reported by Hardalupas et al. (1989) for øo = 0.23, 0.86 and Stm calculated from 
equation 2.3 based on Sto = 51. 
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NOTE:  This figure is included on page 41 of the print copy of 
the thesis held in the University of Adelaide Library. 



Figure 2.5: (a) Single phase, gas phase and solid phase centreline velocity
data as reported by Shuen et al. (1988) for φo = 0.66 and Stm calculated from
equation 2.3 based on Sto = 799. (b) Turbulent shear stresses as reported
by Shuen et al. (1983)

Figure 2.5(b) where the turbulent shear stress at x/D = 20 is reproduced for

Sto = 799, as well as the case Sto = 264 for reference. Whereas the case Sto

= 264 exhibits considerable damping of u′v′/u2
c , the turbulent stresses are

essentially unmodified by the addition of the larger particles (Sto = 799). It

is hypothesised that this can further be explained with reference to Figure

2.5(a) again. For the entire range of x/D shown, Stm > O(1), meaning

that the solid phase velocity is at best weakly responsive to the decay of

gas phase centreline velocity over the reported axial range. As a result, it

can be seen that the solid phase centreline velocity is reduced by only 50%

after 50 diameters. So while there is a considerable source of solid phase

momentum, the effects of turbulence damping for high Stokes numbers is

small relative to the other, lower cases of Sto presented already. As suggested

above already, there is likely turbulence generation of fine scale turbulence at

these high Stokes numbers (Hetsroni, 1989). However, this is not expected

to be a significant influence on the large scale eddies. The turbulence stress

measurements as reported by Sheen et al. (1994) for similar Sto also only
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exhibited small differences with the single phase case, despite much higher

mass loadings (φo = 0.98, 3.06).

In summary, the measurements reported by previous authors indicate

that the relative effects of turbulence modulation and mean momentum ex-

change in particle-laden jets depend significantly on Sto. Three particular

data sets, each with different magnitudes of Stokes number were presented

to highlight these relative effects. These data sets are those by Budilarto

(2003) for low Stokes numbers (Figure 2.2), Hardalupas et al. (1989) for

intermediate Stokes numbers (Figure 2.4) and Shuen et al. (1983) (Figure

2.5) for high Stokes numbers. These measurements are representative of

those reported by other authors for similar Stokes numbers. For example,

the measurements of Modarress et al. (1984a) yield similar results for low

Stokes numbers, Hishida et al. (1987) and Budilarto (2003) (Sto = 24, see

Figure 2.1) for intermediate Stokes numbers and Sheen et al. (1994) for large

Stokes numbers. Table 2.1 provides a description of the relevant details of all

particle-laden jet axisymmetric pipe measurements reported in the literature

for φo > 0.1. Inspection of this data leads to the following conclusions:

• For low Stokes numbers, mean axial momentum exchange is hypothe-

sised to be negligible, but damping of the large scale eddies is signifi-

cant.

• For intermediate Stokes numbers, both mean axial momentum ex-

change and turbulence damping are significant.

• For larger Stokes numbers, since particles are unresponsive to large

eddies, there is negligible turbulence damping but rather, particles are

a significant source of axial momentum exchange.
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Author Re D U dp ρp Sto Fr φo

(mm) (m/s) (µm) (kg/m3)
Budilarto
(2003)

8400 14.2 8.9 25 2500 3 0.79 0.25-1.0

70 24 0.48
Gillandt et al.
(2001)

5700 12 7.7 110 2000 48 0.39 1.0

Fan et al.
(1997)

53500 40 20 72 1250 10 1.19 0.22

Sheen et al.
(1994)

20000 15 20 210 1020 186 0.87 0.98,2.75

460 893 0.59 0.98,3.06
780 2568 0.45 0.49-3.06

Hardalupas et
al. (1989)

13000 15 13 80 2950 51 0.57 0.23,0.86

Tsuji et al.
(1988)

15000 20 11 170 1020 50 0.56 2.0

33000 24 500 950 0.64 1.85
Hishida et al.
(1985)

22000 13 30 64 2590 76 1.47 0.3

Shuen et al.
(1985)

22000 10.9 30 79 2620 140 0.91 0.2

19000 25 119 264 1.69 0.2,0.66
19000 207 799 1.32 0.66

Modarress et
al. (1984a)

13300 20 10 50 2990 12 0.55 0.32,0.85

Modarress et
al. (1984b)

14100 20 10 200 2990 191 0.28 0.8

Subramanian
& Raman
(1984)

25000 25.4 15 165 3200 160 0.4 0-2.5

Laats &
Frishman
(1970)

120000 35 50 17 3950 5 3.31 0.3

32 18 2.27 0.3-1.4
49 42 1.83 0.3,0.4
72 91 1.44 0.3

Laats (1966) 74000 27 40 40 2550 19 2.14 0.2-1.0

Table 2.1: The experimental conditions under which previous particle-laden
pipe jet investigations were conducted where dp is based mostly on the volume
or mass averaged diameter except for Shuen et al. (1985), where dp is the
Sauter mean diameter. Measurements conducted prior to 1984, excluding
those of Modarress et al. (1984a,b) used an isokinetic sampling tube and
rotameter arrangement (see section 1.5.2). Measurements conducted since
1984 used some LDA or PDA based technique (see section 1.5.1)
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2.3 Power-law scaling of the gas phase

Based on the conclusions from the previous section, three different power-law

scaling regimes are proposed for the data shown in Table 2.1. They are, in the

order presented, the high Stokes number regime, Sto & 200, the intermediate

Stokes number regime, 20 . Sto . 200 and the low Stokes number regime

Sto . 20. These values of Sto are based on the linear correlation analysis

presented below. Previously published data (see table 2.1) will be presented

to verify the proposed scaling.

An assessment of the strength of each correlation of data is performed

with the help of the correlation coefficient which is defined as

Rxu =

∑
(xi − x) (ui − u)√∑

(xi − x)2∑ (ui − u)2
, (2.5)

where xi represents (x/D) (1 + φo)
−n values (Here, n = 1 or 1/2 depending on

Sto), ui represents uo/uc values and the over bar denotes the mean. The half

width correlation coefficient, Rxr1/2
is defined similarly. Data points outside

the region of linear jet growth (x/D . 7) are not included in correlations.

The squared correlation coefficient R2
xu is used to accentuate departures from

Rxu ≈ 1. For example, the collapse of Laats’ centreline and half width

in Figure 2.12(a) and (b) below, yields R2
xu = 0.996 and R2

xr1/2
= 0.994,

respectively. The correlation coefficient associated with ‘uncorrected’ data

(xi representing x/D values alone in equation 2.5) is denoted R2
xu, R

2
xr1/2

.

For example, Laats’ unscaled data yields R2
xu = 0.69 and R2

xr1/2
= 0.54.

2.3.1 The high Stokes number regime, Sto & 200

While Melville and Bray (1979) provided an empirical exponential scaling as

reproduced in Figure 1.12, they also attempted a power-law scaling. However,

they attempted to apply their power-law scaling to data in the regime Sto .
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20, which was the only available data at the time. It is contended here that

their solution applies for the regime Sto & 200. Recall the functions a(φo)

and b(φo) defined above by equations 1.53 and 1.54. Melville and Bray’s

power-law scaling takes the form, a(φo) = (1 + φo)
−1/2 and b(φo) = 1, hence

uo

uc

= K1
x

D

(
1

1 + φo

)1/2

(2.6)

and
r1/2

D
= K2

x

D
. (2.7)

In essence, equations 2.6 and 2.7 are equivalent to the far field solutions of

a variable density jet. This is seen by the scaling of the centreline velocity

by the effective jet diameter (Beer and Chigier, 1972), D(ρo/ρ)
1/2, where

the particle-laden jet exit density, ρo = ρ(1 + φo), while the jet spread is

independent of φo (Chen and Rodi, 1981).

Equation 2.6 is a consequence of the complete far field transfer of mo-

mentum from the solid to the gas phase. The conservation of total (gas and

solid) momentum is described by∫
A

ρu2(1 + φ)dA = πρ(1 + φo)u
2
or

2
o. (2.8)

Here, A is the cross-sectional area of the jet and φ = φ(x, r) is the spatial

variation of mass loading. Substitution of the functions g(η) = φ/φc and

f(η) = u/uc gives

2πρu2
cr

2
1/2

[∫ ∞

0

f 2(η)ηdη + φc

∫ ∞

0

g(η)f 2(η)ηdη

]
= πρ(1 + φo)u

2
or

2
o. (2.9)

In the far-field, the absolute centreline mass concentration of particles, φc →
0, hence equation 2.9 becomes

2πρu2
cx

2

∫ ∞

0

f 2(η)ηdη ∼ πρ(1 + φo)u
2
or

2
o, (2.10)

so that in the far field, practically all momentum is carried by the gas phase
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Figure 2.6: Gas phase centreline velocities as reported by (a) Sheen et al.
(1994) (Sto = 950, R2

xu = 0.99, R2
xu = 0.72) and (b) Shuen et al. (1983) (Sto

= 799, R2
xu = 0.99, R2

xu = 0.88), but plotted as functions of x/D(1+φo)
−1/2.

as proposed by Melville and Bray (1979). This equation implies that uc ∝
1
x

(1 + φo)
1/2, i.e. equation 2.6. It is believed that the weak dependence of

r1/2 on φo in this regime is a consequence of the unresponsive nature of very

large particles to large eddies. Hence, the extraction of turbulence kinetic

energy from the gas phase by the action of the particles is not significant and

turbulent mixing and jet spread in a two phase jet proceeds similarly to that

of a single phase jet.

Shown in Figure 2.6 are gas phase centreline velocities as reported by

Sheen et al. (1994) (a) and Shuen et al. (1983) (b), but plotted as functions

of x/D(1 +φo)
−1/2. A poor collapse of uc in the near field in Figure 2.6(a) is

evident. In contrast, the collapse of Shuen et al.’s measurements are good for

the reported axial range. This may be related to Shuen et al.’s slightly lower

Sto compared with Sheen et al.’s. This appears to be consistent with the

poor collapse of uo/uc in the near field for very high Sto in the data of Tsuji

et al. (1988) plotted as functions of x/D(1 + φo)
−1/2 in Figure 2.7(a). Since

this regime is suspected to be a far-field scaling regime (as equation 2.10
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Figure 2.7: Gas phase centreline velocity plotted as a function of
x/D(1 + φo)

−1/2 (a) and velocity half width (b) as reported by Tsuji et al.
(1988),. Sto = 950, R2

xu = 0.81, R2
xu = 0.96.

Figure 2.8: Radial velocity profiles as reported by (a) Shuen et al. (1983)
and (b) Sheen et al. (1994) for φo = 0.66, x/D = 40 and φo = 0.98, x/D =
60, respectively.
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implies), the high Stokes number data of Tsuji et al. (1988) is not included

below in Figure 2.14. Figure 2.7(b) illustrates the weak dependence of r1/2

on φo in Tsuji et al ’s data. The relatively weak dependence of r1/2 on φo can

be seen further in the radial profiles of Figure 2.8, reproduced from Shuen et

al. (1983) and Sheen et al. (1994). For constant φo, the comparatively lower

spread for smaller Sto is evident. To this author’s knowledge, there is no

available data of half widths published for the very far field in this regime,

thus, equation 2.7 can not be fully assessed.

2.3.2 The intermediate Stokes number regime, 20 .

Sto . 200

In this regime it is hypothesised that a(φo) = (1 + φo)
−1 and b(φo) =

(1 + φo)
−1/2, hence

uo

uc

= K1
x

D

(
1

1 + φo

)
(2.11)

and
r1/2

D
= K2

x

D

(
1

1 + φo

)1/2

. (2.12)

These equations are consistent, as with the previous regime, with the com-

plete far-field transfer of momentum from the solid to the gas phase. In

equation 2.9, the similarity variable η = r/x was used under the assumption

that the half widths were independent of x. In this regime, ξ = r/r1/2 is the

chosen similarity parameter because it accounts for the dependence of r1/2

on φo in gas phase velocity radial profiles (see Laats and Frishman, 1970).

If profiles were normalised by η = r/x in this regime, they would not be

self-similar as they become narrower with increasing x/D as described by

equation 2.12. Substituting the functions g(ξ) = φ/φc and f into equation

2.8 gives

2πρu2
cr

2
1/2

[∫ ∞

0

f 2(ξ)ξdξ + φc

∫ ∞

0

g(ξ)f 2(ξ)ξdξ

]
= πρ(1 + φo)u

2
or

2
o. (2.13)
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Similarly to above, it is inevitable that the absolute centreline mass loading

will approach zero with increasing x, i.e φc → 0 as x→∞. Hence, equation

2.13 becomes

2πρu2
cr

2
1/2

∫ ∞

0

f 2(ξ)ξdξ ≈ πρ(1 + φo)u
2
or

2
o, (2.14)

and thus

r1/2 ∝
(1 + φo)

1/2

uc

. (2.15)

The increased dependence of r1/2 on φo in this regime compared with

that for Sto & 200, is a consequence of the increase in turbulence damping.

For high Stokes numbers, the extraction of turbulent kinetic energy from

the gas phase by the particles is negligible since the particles are effectively

unresponsive. For intermediate Stokes numbers, particles exhibit a partial

response to large eddies and hence kinetic energy is obtained by the particles

at the expense of the gas phase. Consequently, there is a damping of the large

eddies, those most responsible for entrainment of the ambient fluid. The

damping is expected to occur mostly in the near field since the concentration

of particles rapidly approaches zero as described by equation 2.14.

Shown in Figure 2.9 are gas phase centreline velocities as reported by

Shuen et al. (1985) and Tsuji et al. (1988) plotted as functions of

x/D(1 + φo)
−1. In Figure 2.10 are half widths as reported by Laats and

Frishman (1970) and Hishida et al. (1985), but plotted as functions of

x/D(1 + φo)
−1/2. The centreline velocity measurements of Budilarto (2003)

and Hardalupas et al. (1989), but plotted as functions of x/D(1 + φo)
−1,

indicate that for their data, the correlations get progressively worse as φo

is increased (see Figure 2.11). The effect of larger φo on the scaling of half

widths can not be assessed since, to this author’s knowledge, half widths for

loadings greater than 0.3 have not been published.
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Figure 2.9: Gas phase centreline velocity as reported by (a) Shuen et al.
(1985) (Sto = 264, R2

xu = 0.99, R2
xu = 0.88) and by (b) Tsuji et al. (1988)

(Sto = 50, R2
xu = 0.98, R2

xu = 0.58), but plotted as functions of x/D(1+φo)
−1.

Figure 2.10: Gas phase velocity half widths as reported by (a) Laats and
Frishman (1970) (Sto = 42, R2

xr1/2
= 0.99, R2

xr1/2
= 0.82) and by (b) Hishida

et al. (1985) (Sto = 76, R2
xr1/2

= 0.99, R2
xr1/2

= 0.97), but scaled according
to equation 2.12.
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Figure 2.11: Gas phase centreline velocity half widths as reported by (a)
Budilarto (2003) (Sto = 24, R2

xr1/2
= 0.97, R2

xr1/2
= 0.58) and by (b) Hardalu-

pas et al. (1989) (Sto = 51, R2
xr1/2

= 0.95, R2
xr1/2

= 0.76), but scaled accord-
ing to equation 2.12.

2.3.3 The low Stokes number regime, Sto . 20

In this regime, it is hypothesised that a(φo) = (1 + φo)
−1 and b(φo) =

(1 + φo)
−1, hence

uo

uc

= K1
x

D

(
1

1 + φo

)
, (2.16)

and
r1/2

D
= K2

x

D

(
1

1 + φo

)
. (2.17)

These equations are consistent with the negligible transfer of momentum from

the solid to the gas phase. If a jet is laden with particles fine enough that they

are able to respond sufficiently well to large scale turbulent motions, then

it can be assumed to a first-order approximation, that the time averaged

axial velocity of both phases are almost equal, i.e. u ≈ up. For example,

the measurements of Budilarto (2003) show that the axial component of the

solid phase velocity is within approximately 10% of the gas phase velocity
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for x/D < 20, Sto = 3 and φo = 0.5 (Recall Figure 2.1). Consequently, in

this low Sto regime, the effects of mean interphase momentum exchange are

expected to be small.

The relationship between the centreline velocity, uc, and r1/2 is found

from the conservation of mean gas phase momentum,

d

dx
2πρ

∫ ∞

0

u2rdr ≈ 0, (2.18)

where the contribution of the solid phase momentum has been neglected,

consistent with there being negligible mean momentum transfer between the

phases (i.e. u ≈ up). If the slip velocity is small, there is no significant ex-

change of mean axial momentum between the phases. Substitution of f into

this equation gives uc ∝ 1/r1/2 (see equation 1.46), consistent with equations

2.16 and 2.17. It should also be noted that Melville and Bray’s exponential

scaling applied to data in this regime (Figure 1.12) is also consistent with

equation 2.18. In this regime, the stronger dependence of r1/2 on φo com-

pared with the other regimes is a result of the much stronger damping of

the large eddies since particles are assumed ‘responsive’ to turbulent fluctu-

ations. Hence, responsive particles obtain a greater portion of kinetic energy

at the expense of the gas phase compared with partially responsive particles.

Figures 2.12 and 2.13 show that the gas phase centreline velocity and half

width measurements of Laats (1966), Modarress et al. (1984a) and Laats and

Frishman (1970), for Sto = 19, 12 and 18, respectively, collapse if plotted as

functions of x/D(1 + φo)
−1.

2.3.4 Summary of correlations

The power-law scaling of the gas phase centreline velocity and half-width

for three regimes of exit Stokes number are summarised in Figure 2.14. Not

included are measurements that are judged to have not been carried out far

enough downstream to provide a reliable or strong linear correlation (Mostafa
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Figure 2.12: Gas phase centreline velocity as reported by (a) Laats (1966)
(Sto = 19, R2

xu = 0.99, R2
xu = 0.69) and (c) Modarress et al. (1984a) (Sto

= 12, R2
xu = 0.99, R2

xu = 0.86), plotted as functions of x/D(1 + φo)
−1. Half

widths as reported by (b) Laats (1966) (R2
xr1/2

= 0.99, R2
xr1/2

= 0.54) and (d)

Modarress et al. (1984a) (R2
xr1/2

= 0.99, R2
xr1/2

= 0.69), plotted as functions

of x/D(1 + φo)
−1.
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Figure 2.13: Gas phase centreline velocity and half width as reported by
Laats and Frishman (1970) plotted as functions of x/D(1 +φo)

−1. Sto = 18,
R2

xu = 0.98, R2
xr1/2

= 0.99, R2
xu = 0.31 and R2

xr1/2
= 0.52.

et al., 1989, Tsuji et al., 1988, for the cases other than Sto = 50) and flows

issuing from smooth contractions (Ferrand et al., 2001). Circles and squares

denote data that has been scaled with x/D(1 + φo)
−1 and x/D(1 + φo)

−1/2,

respectively. Note that a circle overlaid with a square indicate Fan et al.’s

(1997) measurements which scale with both x/D(1 + φo)
−1 (φo = 0.22) and

x/D(1+φo)
−1/2 (φo = 0.8) depending on the loading (see Figure 2.16 below)

for Sto = 10.

The approximate critical values between circles and squares was used

to estimate the critical values of Sto. For Sto . 200, uo/uc scales with

x/D(1 + φo)
−1, and within that range, r1/2 scales with x/D(1 + φo)

−1/2 for

20 . Sto . 200. Beyond Sto ≈ 200, uo/uc scales with x/D(1 + φo)
−1/2.

However, the value of 200 is an order of magnitude estimate since some

centreline velocity data scales with x/D(1 + φo)
−1/2 for Sto < 200 (Gillandt

et al., 2001), and some with x/D(1+φo)
−1 for Sto > 200 (Shuen et al., 1985).

These inconsistencies, as well as anomalies presented in the next section,
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Figure 2.14: Results of the linear correlation analysis of scaled gas phase
centreline velocities and half widths using previously published data. Circles
and squares denote data that scaled with x/D(1+φo)

−1 and x/D(1+φo)
−1/2,

respectively. Vertical lines and horizontal arrows indicate the approximate
critical values.
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are expected to be partly due to the complicating influence of gravity, the

importance of which may be assessed with the help of the particle Froude

number, defined as

Fr2 =
ρ

ρp

u∗2

gdp

, (2.19)

where u∗ is the friction velocity (see equation 3.2 below). Gravity is of small

importance for Fr > 1 (Liljegren and Vlachos, 1990). From Table 2.1, it

can be seen that the ambiguous data as suggested in the paragraph above

and in the next section, has a Froude number well below 1 (e.g. Gillandt et

al., 2001, Fr = 0.39). Hence, a complete mathematical description of these

scaling regimes would have to take into account the effects of gravity. Also,

in practice, the particle size distribution is rarely fully monodisperse so that

a range of Sto is present in each flow. This is also expected to contribute to

the ambiguity of the exact regime boundaries. See Table 2.1 for details of

the experimental conditions for data used in Figure 2.14.

The numerical values of R2
xu and R2

xr1/2
as illustrated in Figure 2.14 are

listed in Table 2.2. Also included for reference are unscaled correlation coeffi-

cients, i.e. R2
xu and R2

xr1/2
. In addition, values of R2

xu and R2
xr1/2

are provided

for different exponents, i.e. n = 1 and 1/2. The exponent n = 1/3 is also

included to detect the sensitivity of R2
xu and R2

xr1/2
for a variation in the expo-

nent. Highlighted in bold are the proposed scaling regime for each data set.

It can be seen that R2
xu is often comparatively high (e.g. Hishida et al., 1985,

R2
xu = 0.94) due to a comparatively low mass loading (e.g. φo = 0.3), hence

the centreline velocity differs minimally from the single phase case. Hence

sometimes, the exact scaling regime is ambiguous. However, for a high vari-

ation in mass loading (e.g. Sheen et al., 1994, φo = 0 − 2.75, Sto = 186),

R2
xu = 0.41 is comparatively low, and hence, R2

xu = 0.98 (exponent, n = 1)

is unambiguous. As the exponent is reduced from 1 to 1/2 and 1/3, R2
xu is

reduced to values of 0.89 and 0.78 respectively, thus illustrating the lower

correlation for the coefficients of n = 1/2 and 1/3 in this particular case.

Some departure occurs for some cases, however. For example, Sheen et al.

(1994), Sto = 893 gives R2
xu(n = 1/2) = 0.99, while only a relatively small
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Power-law Exponent, n
0 1 1/2 1/3

Author Sto R2
xu R2

xr1/2
R2

xu R2
xr1/2

R2
xu R2

xr1/2
R2

xu R2
xr1/2

Budilarto (2003) 3 0.56 - 0.99 - 0.86 - 0.82 -
24 0.60 - 0.97 - 0.86 - 0.79 -

Gillandt et al. (2001) 48 0.76 - 0.92 - 0.98 - 0.92 -
Fan et al. (1997) 10 0.80 - 0.97 - 0.90 - 0.76 -
Sheen et al. (1994) 186 0.41 - 0.98 - 0.89 - 0.78 -

893 0.72 - 0.89 - 0.99 - 0.96 -
2568 0.84 - 0.83 - 0.98 - 0.99 -

Hardalupas et al. (1989) 51 0.76 - 0.95 - 0.96 - 0.92 -
Tsuji et al. (1988) 50 0.52 0.46 0.98 0.92 0.90 0.96 0.81 0.90

950 0.95 0.94 0.43 0.45 0.81 0.83 0.86 0.88
Hishida et al. (1985) 76 0.94 0.97 0.99 0.97 0.99 0.99 0.98 0.99
Shuen et al. (1985) 140 0.98 - 0.99 - 0.99 - 0.98 -

264 0.80 - 0.99 - 0.86 - 0.84 -
799 0.85 - 0.98 - 0.98 - 0.95 -

Modarress et al. (1984a) 12 0.70 0.86 0.99 0.99 0.97 0.93 0.94 0.87
Modarress et al. (1984b) 191 0.95 0.91 0.80 0.89 0.97 0.99 0.99 0.99
Subramanian & Raman
(1984)

160 0.40 - 0.91 - 0.98 - 0.83 -

Laats & Frishman (1970) 5 0.67 0.71 0.98 0.98 0.95 0.89 0.88 0.84
18 0.31 0.69 0.98 0.98 0.80 0.90 0.66 0.84
42 0.89 0.83 0.98 0.89 0.98 0.99 0.96 0.98
91 0.96 0.94 0.94 0.96 0.99 0.99 0.99 0.97

Laats (1966) 19 0.69 0.68 0.99 0.99 0.94 0.93 0.87 0.87

Table 2.2: Numerical values of squared correlation coefficients R2
xu and R2

xr1/2

of scaled and unscaled data for power-law exponents of 0 (unscaled data), 1,
1/2 and 1/3.

reduction in R2
xu(n = 1/3) = 0.96 is detected. For two data sets, it was

found that R2
xu(n = 1/3) is greater than R2

xu(n = 1/2) (Sheen et al., 1994,

Sto = 2568 and Modarress et al., 1984b, Sto = 191). Since these two data

sets have very low Froude numbers, gravity, as discussed above, is expected

to be significant (see Table 2.1 for values of Fr for each case).

2.3.5 Anomalous Results

This section reviews data that doesn’t fit well into any of the regimes de-

scribed above. Some anomalous results can be expected due to the wide range

of experimental conditions and measurement techniques. This is not to sug-

gest that there is anything necessarily wrong with such data, but rather, the

simplicity of the scaling proposed above does not account fully for what is a

complex interaction of flow and particles. Some measurements (i.e. Ferrand

58



et al., 2001 and Wall et al., 1982) in axisymmetric jets with slightly different

boundary conditions, i.e. a smooth contraction orifice, are also considered

here.

Modarress et al. (1984b) find a clear dependence of r1/2 on φo, where

r1/2 may scale according to equation 2.12 (Figure 2.15b). However, in con-

trast to the scaled data presented in section 2.3.2, the centreline scales with

x/D(1 + φo)
−1/2 (see Figure 2.15a). This may be related to that fact that

the Stokes number of this data (Sto = 191) is straddling the proposed regime

boundaries (see Figure 2.14), i.e. Sto ≈ 200.

The gas phase centreline velocities as reported by Fan et al. (1997) con-

tradict the assumption that the scaling regime is a function of Sto only (see

Figure 2.14). They found that the centreline velocity for the case φo = 0.22

scales with x/D(1+φo)
−1 while the case φo = 0.8 scales with x/D(1+φo)

−1/2,

for a constant Sto = 10 (Figure 2.16). Based on this Stokes number, this

data is in the regime where scaling with x/D(1 + φo)
−1 would be expected

(see Figure 2.14).

Whereas all data presented above were obtained from particle-laden jets

issuing from a pipe (Table 2.1), measurements conducted by Ferrand et

al. (2001) and Wall et al. (1982) were conducted for a jet issuing from a

smooth contraction. In addition, the droplet-size distribution of Ferrand et

al. (2001) is polydisperse with a range of diameters from 1-90µm. The mass

averaged diameter is dp = 60µm (Ferrand et al., 2003). Despite these com-

plications, Ferrand et al.’s gas phase centreline velocity measurements scale

with x/D(1+φo)
−1 satisfactorily (Figure 2.17b). Wall et al. (1982) reported

spreading coefficients, K2 for a range of Sto, which collapse if scaled with

x/D(1+φo)
−1/2 (Figure 2.17b), for constant Sto. These results suggests that

the critical values may depend on the boundary conditions.
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Figure 2.15: Gas phase centreline velocity (a) and velocity half width (b) as
reported by Modarress et al. (1984b), but scaled according to equations 2.6
and 2.7, respectively. Sto = 191.

Figure 2.16: Gas phase centreline velocity as reported by Fan et al. (1997)
but plotted as a function of x/D(1 + φo)

−1 for the case φo = 0.22 and as a
function of x/D(1+φo)

−1/2 for the case φo = 0.8. Sto = 10, R2
xu(n = 1, φo =

0.22) = 0.97, R2
xu(n = 0.5, φo = 0.8) = 0.97.
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Figure 2.17: Gas phase centreline velocity (a) as reported by Ferrand et al.
(2001), but plotted as a function of x/D(1 + φo)

−1 (Sto = 18, R2
xr1/2

= 0.98,

R2
xr1/2

= 0.90). Spreading coefficients, K2, reported by Wall et al. (1982),

but plotted as a function of K2(1 + φo)
−1/2.

2.4 Power-law scaling of the solid phase and

entrainment

Power law scaling functions similar to those presented in section 2.3 are next

presented for measurements of the mass flux, concentration and entrainment.

2.4.1 Solid phase mass flux

The available reports of measurements of the solid phase mass flux support

the hypothesis that the mass flux scales similarly to the gas phase veloc-

ity. The measurements considered here, performed by Laats and Frishman

(1970), Wall et al. (1982) and Subramanian and Raman (1984), were all

obtained with an isokinetic sampling technique (see section 1.5.2). Based on

the gas phase velocity, the data of Laats and Frishman (1970) was found to
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Figure 2.18: (a) Solid phase centreline mass flux, ṁp,c normalised by the exit
mass flux ṁp,o and (b) mass flux half widths ṁp,1/2 as reported by Laats and
Frishman (1970) plotted as functions of x/D(1 + φo)

−1 (Sto = 18).

be in the regime Sto . 20 while that of Subramanian and Raman (1984) is

in the regime Sto & 200. The regime of the data of Wall et al. (1982) is

ambiguous. However, this is believed to be related to the different boundary

conditions, i.e. the jet issues from a smooth contraction nozzle.

Solid phase centreline mass flux and half widths for the case Sto = 18 as

reported by Laats and Frishman (1970) are shown to scale with x/D(1+φo)
−1

in Figure 2.18, similarly to its corresponding gas phase data (see Figure

2.12a,b). Likewise, the centreline mass flux as reported by Subramanian

and Raman (1982) scales satisfactorily with x/D(1 + φo)
−1/2 (Figure 2.19a).

However, the case φo = 0.5, does not collapse as well as the others.

For an assessment of half widths, the mass flux measurements as reported

by Wall et al. (1982) are considered. Wall et al. (1982) report mass flux

slopes, K, similarly to the velocity measurements presented in Figure 2.17(b)

above. These (Figure 2.19b) are found to scale with (1+φo)
−1/2. As discussed

above, the flow of Wall et al. (1982) issues from a smooth contraction. The

cases Sto = 11 and 19 are potentially in the regime where they may otherwise
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Figure 2.19: (a) Scaled solid phase centreline mass flux as reported by Sub-
ramanian and Raman (1984) for Sto = 160 and (b) half width slopes as
reported by Wall et al. (1982), but scaled by (1 + φo)

−1, for a range of Sto.

have scaled with x/D(1 + φo)
−1, i.e. the low Stokes number regime. This

might possibly be explained by the different inflow conditions. Wall et al ’s

jet was introduced through a smooth contraction which generates sufficiently

more coherent motions than does a pipe jet (Mi et al., 2001). These more

coherent motions also lead to a greater rate of spread and decay in a smooth

contraction jet than a pipe jet. Therefore, the characteristic time and length

scales of the two classes of flow must be different, even with the same diameter

and bulk exit velocity. Hence, the critical values of Sto which demarcate the

regimes may be expected to differ between pipe jets and smooth contraction

nozzles. However, further data is required to verify this hypothesis.

2.4.2 Solid phase concentration

It seems that the only measurement available from which to assess the scal-

ing of the solid phase mass concentration (kg/m3) are those by Ferrand et al.

(2001), who report concentration half widths, r1/2,c for Sto ≈ 15 in a jet issu-
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Figure 2.20: Concentration half widths as reported by Ferrand et al. (2001),
but plotted as functions of x/D(1 + φo)

−1. Sto = 15

ing from a smooth contraction orifice. These are found to scale satisfactorily

if plotted as a function of x/D(1 + φo)
−1 (Figure 2.20).

2.4.3 Entrainment

The work of Wall et al. (1982) and Subramanian and Raman (1984) drew

on the earlier work of Field (1963), who originally studied the effect of the

addition of particles on the entrainment of a turbulent axisymmetric jet.

From Ricou and Spalding (1961), the entrainment of ambient fluid by single

phase jets of a different density are related by the following relation:

ṁe

ṁo

= K
x

D

(
ρ

ρo

)−1/2

, (2.20)

where ṁe is the entrained gas mass flow rate, ṁo is the exit mass flow rate

and K is some coefficient. For a particle-laden jet in which the density of

transporting and entraining fluid is the same, φo = ρ(1+φo) so that equation
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2.20 becomes
ṁe

ṁo

= K
x

D

(
1

1 + φo

)−1/2

. (2.21)

Field (1963) provided values of Qe/Qo where Q is the volumetric flux and

subscripts e and o denote the entrained and exit volumetric flow rate of gas

respectively. Since the entrained gas has the same density as the exit gas in

these data, then ṁe

ṁo
= Qe

Qo
and thus

Qe

Qo

= K
x

D

(
1

1 + φo

)−1/2

. (2.22)

Figure 2.21 shows the entrainment data as reported by Field (1963) and

Wall et al. (1982) respectively. These data collapse when scaled according

to equation 2.22. For the high Sto = 160 data of Subramanian and Raman

(1984), the collapse of data (not shown) is not as strong suggesting that

equation 2.22 is valid only for relatively low Sto. A lower limit for equation

2.22 also exists based on the entrainment data for low Sto, as reported by

Field (1963) and Wall et al. (1982) since for Sto = 0.3 and 1, the entrainment

is found to increase with φo relative to the single phase case.

2.5 Conclusions

Exponential scaling factors that account for the effect of the exit mass loading

on the gas phase centreline velocity and half width of a particle-laden jet

were originally proposed by Melville and Bray (1979). However, the bulk of

experimental data published since then suggests that the centreline velocity

and half widths are scaled with a power-law factor. Three regimes have been

identified from the data presented in Table 2.1:

• For low Stokes numbers Sto . 20, the gas phase centreline velocity and

half width scale with x/D(1 + φo)
−1.

• For intermediate Stokes numbers, 20 . Sto . 200, the gas phase
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Figure 2.21: Entrainment measurements as reported by (a) Field (1963) (Sto
= 5) and (b) Wall et al. (1982) (Sto = 45), but plotted as functions of
x/D(1 + φo)

−1/2.

Figure 2.22: Entrainment measurements as reported by Wall et al. (1982)
and Field (1963). An increase in entrainment is evident for an increase in φo

at very low exit Stokes numbers (Sto . 1).
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centreline velocity scales with x/D(1 + φo)
−1, and half width with

x/D(1 + φo)
−1/2.

• For higher Stokes numbers, Sto & 200, the gas phase centreline velocity

scales with x/D(1 + φo)
−1, while the half widths are thought to be

approximately independent of φo.

It is thought that these approximate regime boundaries may well depend on

the boundary conditions.

In addition to the gas phase velocity field, power-law scaling factors for

other particle-laden jet properties, such as the mass-flux, concentration and

entrainment were found. Although this data is limited, it suggested that

the solid phase mass-flux scaled similarly to the gas phase velocity. One

concentration data set scaled with x/D(1 + φo)
−1 and two entrainment data

sets scaled with x/D(1 + φo)
−1/2.
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