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Abstract

In single phase, steady, turbulent axisymmetric jets, the time-averaged ve-

locity field can be characterised by the decay in centreline velocity and in-

creased spread with increasing distance from the jet orifice. In a two-phase

or ‘particle-laden’ jet, the particles will modulate the jet turbulence and ex-

change momentum with the gas phase. Consequently, these effects reduce

both the centreline velocity decay and spreading rates with respect to the

single-phase jet. Empirical exponential scaling factors were found by previ-

ous authors to describe the reduced centreline decay and spreading rates well

for low Stokes numbers. In this thesis, power-law scaling factors are found to

scale well a wide range of centreline velocity decay and spreading rate data

published over the past 40 years, for a wide range of Stokes numbers.

The power-law scaling is composed of three different regimes. For low

Stokes numbers Sto . 20, it is found that the gas phase centreline velocity,

uo/uc collapses if plotted as a function of x/D(1 + φo)
−1, and the velocity

profile half widths r1/2 collapse if plotted as a function of x/D(1+φo)
−1. Here,

uo is the exit velocity, φo is the exit mass loading, x is the axial coordinate

andD is the pipe diameter. For intermediate Stokes numbers, uo/uc collapses

if plotted as a function of x/D(1 + φo)
−1 and r1/2 collapses if plotted as a

function of x/D(1 + φo)
−1/2. For high Stokes numbers Sto & 200, uo/uc

collapses if plotted as a function of x/D(1 + φo)
−1/2 and the half width is

approximately independent of φo.

In addition to the velocity of the gas phase, other aspects of particle-

i



laden jets are found to be amenable to scaling by power-law functions. It

is found that reported solid phase mass flux data scales similarly to gas

phase measurements. Limited solid phase concentration and entrainment

measurements reported in the literature are also found to scale by power-law

functions. Whereas that limited data was obtained from the literature, mea-

surements of the distribution of particles in particle-laden jets were conducted

to further assess the validity of the scaling regimes to the solid phase.

A planar light scattering technique is conducted to measure the distribu-

tion of particles in an axisymmetric jet and their subsequent scaling (or lack

thereof) are reported for a variation in φo, Stokes number and gas phase jet

exit density. For Stokes numbers based on the pipe friction velocity St∗o ∼ 1,

half widths of particle distributions were found to scale with x/D(1+φo)
−1/2.

The apparent centreline concentration was found to be independent of φo at

this same St∗o. For Stokes numbers based on the pipe friction velocity St∗o < 1,

half widths are independent of φo. The effect of the other parameters, i.e.

Stokes number and density ratio, on centreline distributions and half widths

are also investigated.

Measurements of particle distributions, delivered via an annular channel,

in a triangular oscillating jet (OJ) flow are also reported for a variation in

momentum ratio, the ratio of OJ momentum to channel momentum and

mass loading. The results of the variation in momentum ratio on particle

distributions are compared with an existing precessing jet (PJ) study. It is

the aim of this study to determine the experimental conditions for which the

OJ nozzle is superior to the PJ nozzle. The use of an OJ nozzle is preferable

at an industrial scale by virtue of its lower driving pressure compared with

a PJ nozzle. It is found that particle distributions in a PJ flow spread at a

greater rate with increasing momentum ratio compared with the spread of

particles in an OJ flow. However, at momentum ratios approximately less

than unity, the absolute spread from an OJ is greater. This also corresponds

to nozzle driving pressure less than approximately 10kPA. For an increase

in mass loading, the spread of particle distribution in the OJ decreases and

recirculation increases.
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w Time averaged transverse velocity in z direction (ms−1)

x Axial coordinate (m)

xn Axial location of peak apparent centreline concentration (m)

xp Axial location of pinch-effect (m)

∆x Fringe spacing (m)

y Transverse coordinate (m)

z Transverse coordinate (m)

xxi



Greek

η Similarity parameter

θ Angle between intersecting beams

λ Laser light wavelength (m)

µ Dynamic viscosity (kgm−1s−2)

ν Kinematic viscosity (ms−2)

ξ Similarity parameter

ρ Gas phase density (kgm−3)

ρj Jet exit density (kgm−3)

ρp Particle density (kgm−3)

ρa Ambient fluid density (kgm−3)

σsp Single phase turbulence intensity

σtp Two phase turbulence intensity

τ Reynolds stress (kgm−1s−2)

τf Fluid timescale (s)

τp Particle timescale (s)

τrec Recirculation timescale (s)

φ Mass loading

ψ Volumetric fraction

xxii
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