Mass Loading and Stokes Number Effects in Steady and Unsteady Particle-laden Jets

M.Eng. Science Thesis

Richard J. Foreman The University of Adelaide The School of Mechanical Engineering June 2008

Abstract

In single phase, steady, turbulent axisymmetric jets, the time-averaged velocity field can be characterised by the decay in centreline velocity and increased spread with increasing distance from the jet orifice. In a two-phase or 'particle-laden' jet, the particles will modulate the jet turbulence and exchange momentum with the gas phase. Consequently, these effects reduce both the centreline velocity decay and spreading rates with respect to the single-phase jet. Empirical exponential scaling factors were found by previous authors to describe the reduced centreline decay and spreading rates well for low Stokes numbers. In this thesis, power-law scaling factors are found to scale well a wide range of centreline velocity decay and spreading rate data published over the past 40 years, for a wide range of Stokes numbers.

The power-law scaling is composed of three different regimes. For low Stokes numbers $St_o \leq 20$, it is found that the gas phase centreline velocity, u_o/u_c collapses if plotted as a function of $x/D(1 + \phi_o)^{-1}$, and the velocity profile half widths $r_{1/2}$ collapse if plotted as a function of $x/D(1+\phi_o)^{-1}$. Here, u_o is the exit velocity, ϕ_o is the exit mass loading, x is the axial coordinate and D is the pipe diameter. For intermediate Stokes numbers, u_o/u_c collapses if plotted as a function of $x/D(1 + \phi_o)^{-1}$ and $r_{1/2}$ collapses if plotted as a function of $x/D(1 + \phi_o)^{-1/2}$. For high Stokes numbers $St_o \gtrsim 200$, u_o/u_c collapses if plotted as a function of $x/D(1 + \phi_o)^{-1/2}$ and the half width is approximately independent of ϕ_o .

In addition to the velocity of the gas phase, other aspects of particle-

laden jets are found to be amenable to scaling by power-law functions. It is found that reported solid phase mass flux data scales similarly to gas phase measurements. Limited solid phase concentration and entrainment measurements reported in the literature are also found to scale by power-law functions. Whereas that limited data was obtained from the literature, measurements of the distribution of particles in particle-laden jets were conducted to further assess the validity of the scaling regimes to the solid phase.

A planar light scattering technique is conducted to measure the distribution of particles in an axisymmetric jet and their subsequent scaling (or lack thereof) are reported for a variation in ϕ_o , Stokes number and gas phase jet exit density. For Stokes numbers based on the pipe friction velocity $St_o^* \sim 1$, half widths of particle distributions were found to scale with $x/D(1+\phi_o)^{-1/2}$. The apparent centreline concentration was found to be independent of ϕ_o at this same St_o^* . For Stokes numbers based on the pipe friction velocity $St_o^* < 1$, half widths are independent of ϕ_o . The effect of the other parameters, i.e. Stokes number and density ratio, on centreline distributions and half widths are also investigated.

Measurements of particle distributions, delivered via an annular channel, in a triangular oscillating jet (OJ) flow are also reported for a variation in momentum ratio, the ratio of OJ momentum to channel momentum and mass loading. The results of the variation in momentum ratio on particle distributions are compared with an existing precessing jet (PJ) study. It is the aim of this study to determine the experimental conditions for which the OJ nozzle is superior to the PJ nozzle. The use of an OJ nozzle is preferable at an industrial scale by virtue of its lower driving pressure compared with a PJ nozzle. It is found that particle distributions in a PJ flow spread at a greater rate with increasing momentum ratio compared with the spread of particles in an OJ flow. However, at momentum ratios approximately less than unity, the absolute spread from an OJ is greater. This also corresponds to nozzle driving pressure less than approximately 10kPA. For an increase in mass loading, the spread of particle distribution in the OJ decreases and recirculation increases.

Declarations

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

Richard J. Foreman

Acknowledgments

The following work presented in this thesis would have been impossible without the talents and effort of my principal supervisor Prof. Gus Nathan. Gus, despite a heavy workload and looming deadlines, would never hesitate to take time to answer questions and sort through various ideas. I am truly thankful for this. The same could be said of my co-supervisor, A/Prof. Richard Kelso, whose insightful comments were greatly appreciated. The efforts of my second co-supervisor Dr. Chong Wong throughout the early part of my candidature are also appreciated. The support for this work was provided by the Australian Research Council and FCT-Combustion through a Linkage Grant, which is gratefully acknowledged.

The support of many people within the School of Mechanical Engineering, such as workshop staff, postgraduates, technical and administrative support is also acknowledged. I especially thank the efforts of my honours project supervisor Dr. Peter Lanspeary whose advice, helpful discussions and voluminous knowledge have continued to assist me well into my post-graduate candidature. The skill and speed of Steve Kloeden in the workshop is also greatly appreciated. I am also thankful for the efforts in the lab of coresearchers, Cris Birzer and Guo Qi. Lastly, I am thankful for the support of my father David, brother Martyn, and friends Indra and Zebb, throughout my candidature.

Richard J. Foreman

Contents

1	Intr	oduction	1
	1.1	Wider Significance	1
	1.2	Multiphase flow	3
		1.2.1 Gas-Solid Flows	4
	1.3	Single Phase Flow	7
	1.4	Turbulent Jets	9
		1.4.1 Steady axisymmetric and plane turbulent jets	9
		1.4.2 Particle-laden axisymmetric jets	19
		1.4.3 Unsteady jets: The precessing and triangular oscillat-	
		$\operatorname{ing}\operatorname{jets}$	26
	1.5	Measurement Techniques	27
		1.5.1 Laser Doppler Anemometry, LDA	28
		1.5.2 Isokinetic Sampling \ldots \ldots \ldots \ldots \ldots \ldots	31
		1.5.3 Planar Imaging Measurements	31
	1.6	Thesis Objectives	32
	1.7	Thesis Outline	33
2	Mas	s loading and Stokes number effects in particle-laden ax-	
	isyn	nmetric jets	35
	2.1	Introduction	35
	2.2	Interphase momentum transfer and turbulence modulation in	
		particle-laden jets	36
	2.3	Power-law scaling of the gas phase	45
		2.3.1 The high Stokes number regime, $St_o \gtrsim 200 \dots \dots$	45

		2.3.2	The intermediate Stokes number regime, $20 \leq St_o \leq 200$	49
		2.3.3	The low Stokes number regime, $St_o \lesssim 20$	52
		2.3.4	Summary of correlations	53
		2.3.5	Anomalous Results	58
	2.4	Power	-law scaling of the solid phase and entrainment	61
		2.4.1	Solid phase mass flux	61
		2.4.2	Solid phase concentration	63
		2.4.3	Entrainment	64
	2.5	Conclu	usions	65
3	Mea	asurem	nents of particle distributions in a particle-laden	
	turł	oulent	axisymmetric jet	69
	3.1	Introd	uction	69
		3.1.1	Mass loading effects	70
		3.1.2	Stokes number effects	71
		3.1.3	Variable density effects	72
		3.1.4	Summary	73
	3.2	Exper	imental Details	73
		3.2.1	Experimental Conditions	73
		3.2.2	Apparatus	75
		3.2.3	Optics	77
		3.2.4	Post-processing	77
	3.3	Result	58	78
		3.3.1	The variation of ϕ_o	78
		3.3.2	The variation of St_o^*	88
		3.3.3	The variation of ρ_j/ρ_a	91
	3.4	Conclu	usions	93
4	Mea	an par	ticle distributions in a two phase triangular oscil-	
	lati	ng jet	flow	95
	4.1	Introd	uction	95
	4.2	Exper	imental details	98
		4.2.1	The triangular OJ Nozzle	98

		4.2.2	The annular section	. 99
		4.2.3	Experimental conditions	. 100
		4.2.4	Apparatus	. 102
		4.2.5	Optics	. 103
		4.2.6	Post-processing	. 105
		4.2.7	Sources of error	. 105
	4.3	Result	s	. 109
		4.3.1	Mean images & Exit Profiles	. 109
	4.4	Centre	eline decay and spreading rates	. 116
	4.5	The ef	fect of mass loading, ϕ_o	. 120
	4.6	Conclu	sions	. 126
5	Con	clusio	ns	129

List of Figures

1.1	The contribution of CO_2 to the atmosphere by the three fossil	
	fuels in the past and in the future if current trends continue	
	(adapted from Vernon, 2006). \ldots \ldots \ldots \ldots \ldots	2
1.2	Conceptual realisation of the different regimes of St_o (adapted	
	from Crowe <i>et al.</i> , 1988)	6
1.3	Two-dimensional shear flow indicating the correlation of fluid	
	${\rm `clumps'.} \ldots \ldots$	9
1.4	An instantaneous image showing that a wide range of turbu-	
	lent scales are present in a water jet marked by dye, $Re = 2.5$	
	$\times 10^3$ (Dimotakis et al., 1983)	10
1.5	Key time-averaged features of a turbulent jet (adapted from	
	Rajaratnam, 1976)	11
1.6	Flow over a flat plate. Dashed line denotes the hypothetical	
	boundary layer	13
1.7	(a) Radial velocity profiles at a number of axial locations and	
	(b) those profiles normalised by u_c and $r_{1/2}$ in a round jet	
	(Rajaratnam, 1976)	15
1.8	Turbulent shear stress for a round jet according to Hussein et	
	al. (1994) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	16
1.9	(a) Centreline velocity, u_c , in a axisymmetric jet measured by	
	Hussein <i>et al.</i> (1994) and (b) half width, $r_{1/2}$, measured by	
	Xu and Antonia (2002). \ldots	19
1.10	The dependence (a) of the mean centreline gas phase velocity	
	and (b) half width as reported by Laats (1966). $St_o=19.~$	21

1.11	Gas phase centreline velocity as reported by Budilarto (2003).	
	$St_o = 3.$	21
1.12	Melville and Bray's correlation of Laats' (1966) gas phase cen-	
	treline velocity (a) and half width data (b)	23
1.13	(a) Solid phase centreline mass flux and (b) half widths as	
	reported by Laats and Frishman (1970). $St_o = 18. \ldots \ldots$	24
1.14	Centreline mass flux measurements as reported by Laats and	
	Frishman (1970). $\phi_o = 0.3$	24
1.15	A simplified schematic representation of the PJ nozzle and the	
	emerging precessing jet flow (Nathan <i>et al.</i> , 2006)	26
1.16	Doppler shift of scattered light from a moving particle (Crowe	
	$et al., 1998) \ldots \ldots$	28
1.17	Typical LDA setup detecting backscattered light	29
1.18	Dependence of scattering intensity on particle size	30
2.1	Single, gas and solid phase centreline velocity as reported by	
	Budilarto (2003). $St_o = 24.$	37
2.2	Single phase, gas phase and solid phase centreline velocity data	
	as reported by Budilarto (2003). $St_o = 3.$	39
2.3	CTI plotted versus St_o as reported by Cui <i>et al.</i> (2006)	41
2.4	Single phase, gas phase, solid phase centreline velocity as re-	
	ported by Hardalupas <i>et al.</i> (1989) \ldots \ldots \ldots \ldots	41
2.5	(a) Single phase, gas phase, solid phase centreline velocity and	
	(b) shear stress data as reported by Shuen <i>et al.</i> (1988) \ldots	42
2.6	Scaling of gas phase centreline velocities reported by (a) Sheen	
	<i>et al.</i> (1994) and (b) Shuen <i>et al.</i> (1983) \ldots \ldots \ldots	47
2.7	Scaling of gas phase centreline velocities and half widths re-	
	ported by Tsuji <i>et al.</i> (1988) \ldots \ldots \ldots \ldots \ldots	48
2.8	Radial velocity profiles as reported by (a) Shuen <i>et al.</i> (1983)	
	and (b) Sheen <i>et al.</i> $(1994) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	48
2.9	Scaling of gas phase centreline velocities reported by (a) Shuen	
	et al. (1985) and (b) Tsuji et al. (1988) \ldots	51

2.10	Scaling of Gas phase velocity half widths reported by (a) Laats and Frishman (1970) and (b) Hishida <i>et al.</i> (1985)	51
2.11	Scaling of gas phase centreline velocity half widths reported by (a) Budilarto (2003) and (b) Hardalupas <i>et al.</i> (1989)	52
2.12	Scaling of gas phase centreline velocity reported by (a) Laats (1966) and (b) Modarress <i>et al.</i> (1984a)	54
2.13	Scaling of gas phase centreline velocity and half width reported by Laats and Frishman (1970)	55
2.14	Results of the linear correlation analysis	56
2.15	Scaling of gas phase centreline velocity (a) and velocity half width (b) reported by Modarress <i>et al.</i> (1984b)	60
2.16	Scaling of gas phase centreline velocity reported by Fan <i>et al.</i> (1997)	60
2.17	Scaling of (a) gas phase centreline velocity reported by Ferrand et al. (2001) and half width slopes reported by Wall et al. (1982)	61
2.18	Scaling of (a) solid phase centreline mass flux and (b) half widths reported by Laats and Frishman (1970)	62
2.19	Scaling of (a) solid phase centreline mass flux reported by Subramanian and Raman (1984) and (b) half width slopes as reported by Wall <i>et al.</i> (1982)	63
2.20	Scaling of concentration half widths reported by Ferrand $et al.$ (2001)	64
2.21	Scaling of entrainment measurements reported by (a) Field (1963) and (b) Wall <i>et al.</i> (1982)	66
2.22	Entrainment measurements as reported by Wall <i>et al.</i> (1982) and Field (1963)	66
		00
3.1	Qcel 5070s and Spheriglass 3000 particle size distribution	75
3.2	A schematic diagram of the air and particle feeding systems, working section and optical arrangement	76
3.3	(a) Mean image of particle distributions for the case $\phi_o = 0.19$ and (b) exit profiles for three ϕ_o	79

3.4	(a) Radial profiles for the case $\phi_o = 0.19$ at various x/D and	
	(b) a comparison for three cases of ϕ_o at $x/D = 25. \dots$	80
3.5	(a) Half widths and (b) centreline values $(St_o = 11)$	81
3.6	Cumulative size distributions	82
3.7	Instantaneous images and schematic illustration	83
3.8	(a) Image of the locally normalised rms/mean signals and (b)	
	'jet boundary'. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	84
3.9	(a) Half widths and (b) jet widths scaled by $x/D(1+\phi_o)^{-1/2}$.	
	(c) Half widths scaled by $x/D(1+\phi_o)^{-1}$.	86
3.10	(a) Mean image of the case $\phi_o = 0.19$ and (b) exit profiles for	
	all cases. $St_o = 0.4$	87
3.11	(a) Centreline values, (b) Half widths, (c) Loci of maximum	
	particle dispersion and (d) cumulative size distribution indi-	
	cating the axial distances at which $St_m = 1$	89
3.12	a) Mean image and (b) its exit profiles for the case $St_o^* = 3$,	
	$\phi_o = 0.71. \dots \dots$	90
3.13	The dependence of the location of the pinch-effect, x_p , on (a)	
	ϕ_o and (b) St_o^* .	91
3.14	(a) Centrelines and (b) half widths for a variation in St_o^* . For	
	$St_o^* = 0.4 \& 1, \phi_o = 0.19 \text{ and for } St_o^* = 3, \phi_o = 0.71. \dots$	92
3.15	(a) Centreline values and (b) half widths for the case $\phi_o =$	
	0.66 and the 'hot' jet $\phi_o = 0.62^n$	93
4.1	The configuration of an oscillating triangular jet nozzle \ldots .	97
4.2	Schematic diagram of the key components of the OJ nozzle	
	(adapted from Lee <i>et al.</i> , 2003). \ldots \ldots \ldots \ldots	99
4.3	Qcel 5070s particle size distribution	101
4.4	Experimental arrangement.	103
4.5	Location of Laser sheet relative to the OJ nozzle	104
4.6	Exit profile for $G_1/G_2 = 0$ showing resolution and width of	
	annular streams of particles	106
4.7	Locus of the points of maximum signal	107

4.8	(a) Half widths taken with respect to the adjusted centreline
	and (b) $\Delta r_{1/2}$
4.9	Mean images of particle distributions $\ldots \ldots \ldots$
4.10	Single raw image, $G_1/G_2 = 6.1, \phi_o = 0.51$
4.11	Contour plots of the mean images (Figure 4.9) $\ldots \ldots \ldots \ldots 111$
4.12	(a) Exit radial profiles, (b) loci of maximum signal and (c)
	exit profiles with a different scale $\hfill \ldots \hfill \hfill \ldots \h$
4.13	Contour plots for the case $G_1/G_2 = 6.1 \dots \dots$
4.14	Mean exit profiles for the case $G_1/G_2 = 6.1$
4.15	(a) Centreline particle distributions, (b) their half widths, (c)
	Inverse centreline distributions and (d) loci of peak centreline
	distributions
4.16	Comparison between PJ and OJ near field spreading coefficients 119 $$
4.17	The influence of ϕ_o on (a) the centreline signal and (b) strong
	side, $K_{2,s}$, weak side, $K_{2,w}$ spreading rates $\ldots \ldots \ldots$
4.18	(a) Exit profiles and (b) centreline exit values, $S_{o,c}$, for a vari-
	ation in exit mass loading, ϕ_o for the case $G_1/G_2 = 0123$
4.19	(a) Centreline values, (b) exit profiles and (c) centreline exit
	values for the case $G_1/G_2 = 6.1$ as a function of ϕ_o
4.20	(a) Half widths based on loci of maximum signal, r_{max}/D_n for
	the case $G_1/G_2 = 6.1$ and (b) the mean spreading constant
	plotted against ϕ_o

List of Tables

2.1	The experimental conditions under which previous particle-	
	laden pipe jet investigations were conducted	44
2.2	Numerical values of squared correlation coefficients	58
3.1	Details of the experimental conditions	74

xviii

Notation

- A Jet cross sectional area (m^2)
- A_p Probe cross sectional area (m²)
- a Width of annular gap (m)
- C_D Drag coefficient
- CTI Change in turbulence intensity
- D Jet exit diameter (m)
- D Chamber diameter (m)
- D_A Inside annulus diameter (m)
- D_n Nozzle diameter (m)
- D_o Inlet orifice diameter (m)
- d_1 Orifice diameter (m)
- d_2 Exit lip diameter (m)
- d_{43} Volume weighted mean diameter (m)
- d_e Equivalent diameter (m)
- d_p Particle diameter (m)
- F_p Force on particle (kgms⁻²)
- F Function
- F_o Characteristic scale
- *Fr* Particle Froude number
- f Similarity function
- f_s Light frequency (Hz)
- f_d Scattered light frequency (Hz)
- f_d Drag factor
- G_1 Bulk mean momentum through central jet (kgms⁻²)
- G_2 Bulk mean momentum through annulus (kgms⁻²)
- *h* Similarity function
- K Coefficient xix

K_1	Centerline decay coefficient
K_2	Spreading coefficient
K_2, n	Near field spreading coefficient
K_2, s	Strong side spreading coefficient
K_2, w	Weak side spreading coefficient
\vec{k}	Unit vector
L	Chamber length
\vec{l}	Unit vector
l_e	Characteristic eddy length scale (m)
М	Initial Jet momentum $(kgms^{-2})$
\dot{m}_e	Entrained gas mass flow rate (kgs^{-1})
\dot{m}_f	Gas phase mass flow rate (kgs^{-1})
\dot{m}_p	Solid phase mass flow rate (kgs^{-1})
$\dot{m}_{p,1/2}$	Solid phase mass flux half width $(kgs^{-1}m^{-2})$
$\dot{m}_{p,c}$	Solid phase centreline mass flux $(kgs^{-1}m^{-2})$
$\dot{m}_{p,o}$	Solid phase exit mass flux $(kgs^{-1}m^{-2})$
N	Number of particles
n	Exponent
P_d	Driving pressure (kPa)
p	Pressure $(kgs^{-2}m^{-1})$
p_{∞}	Ambient pressure $(kgs^{-2}m^{-1})$
Q	Volumetric flowrate (m^3s^{-1})
Re	Reynolds number
Re_p	Particle Reynolds numbers
R_{xu}	Correlation coefficient
r	Radial coordinate (m)
$r_{1/2}$	Half width (m)
$r'_{1/2}$	Half width calculated with respect to $r/D_n = -0.15$ (m)
$r_{1/2,s}^{\prime}$	Strong side half width calculated with respect to $r/D_n = -0.15$ (m)
$r_{1/2,w}^{\prime}$	Weak side half width calculated with respect to $r/D_n = -0.15$ (m)
r_l	Length scale (m)
r_{max}	Jet boundary (m)
r_{max}	Location of maximum signal (m)
S	Scattered signal intensity

S_c	Centreline signal intensity
$S_{c,o}$	Centreline signal intensity at jet exit
S_{max}	Maximum Signal
S_o	Signal at jet exit
$S_{o,a}$	Average signal at annulus exit
$S_{o,s}$	Strong side peak signal
St	Stokes number
St_m	Mean Stokes number
St_o	Exit Stokes number
St_o^*	Exit Stokes number based on the friction velocity
T_D	Signal period (s)
T_{dec}	Deceleration timescale (s)
t	Time (s)
U	Bulk mean exit velocity (ms^{-1})
U_2	Bulk mean exit velocity through annulus (ms^{-1})
$U_{2,max}$	Maximum exit velocity through annulus (ms^{-1})
u	Time averaged gas phase velocity (ms^{-1})
u'	Rms gas phase velocity (ms^{-1})
u^*	Friction velocity (ms^{-1})
u_c	Centerline velocity (ms^{-1})
u_o	Exit velocity (ms^{-1})
u_p	Time averaged solid phase velocity (ms^{-1})
u'_p	Rms solid phase velocity (ms^{-1})
V	Fluid volume (m^3)
V_p	Particle volume (m^3)
v	Time averaged transverse velocity in y direction (ms ⁻¹)
w	Time averaged transverse velocity in z direction (ms ⁻¹)
x	Axial coordinate (m)
x_n	Axial location of peak apparent centreline concentration (m)
x_p	Axial location of pinch-effect (m)
Δx	Fringe spacing (m)
y	Transverse coordinate (m)
z	Transverse coordinate (m)

Greek

- η Similarity parameter
- θ Angle between intersecting beams
- λ Laser light wavelength (m)
- μ Dynamic viscosity (kgm⁻¹s⁻²)
- ν Kinematic viscosity (ms⁻²)
- ξ Similarity parameter
- ρ Gas phase density (kgm⁻³)
- ρ_j Jet exit density (kgm⁻³)
- ρ_p Particle density (kgm⁻³)
- ρ_a Ambient fluid density (kgm⁻³)
- σ_{sp} Single phase turbulence intensity
- σ_{tp} Two phase turbulence intensity
- τ Reynolds stress (kgm⁻¹s⁻²)
- τ_f Fluid timescale (s)
- τ_p Particle timescale (s)
- τ_{rec} Recirculation timescale (s)
- ϕ Mass loading
- ψ Volumetric fraction