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Abstract

The rapid growth in demand due to the emergence of mobile communication services with

variable rates, coupled with the resource scarcity of mobile air interface, has encouraged

researchers to find technological solutions to increase spectral efficiency in order to support

different levels of Quality of Service (QoS). Radio resource management (RRM) plays a

major role in QoS provisioning and congestion control for wireless networks. The main

problem with the congestion control mechanisms provided by current RRM schemes is

that they are mostly reactive, triggered only when congestion occurs. The common,

traditional solution to congestion has been for system planners to over-engineer a network

by assigning more resources than are necessary. This approach is very costly because busy

periods are usually brief, causing the network to be often under-utilised outside of these

periods. Current static, usage-based pricing models also fail to assist in traffic shaping to

even out loads.

Economic modelling offers a new perspective into current RRM schemes and enables

efficient utilisation of scarce resources and congestion prevention based on concepts such

as utility, price, Pareto optimality and game theory. Dynamic pricing has been proposed

as a mechanism to encourage users to adapt their resource consumption level according to

network conditions. A good pricing model can provide the necessary positive incentives to

increase users’ arrival rate when the network load is relatively low and negative incentives

for users to defer their usage when the load is relatively high. In this dissertation, we

propose an economic framework for pricing and RRM for 3G and beyond systems. Our

aim is two-fold: to calculate an optimal integrated dynamic pricing and RRM policy; and

to allocate scarce network resources in a fair and Pareto-optimal manner.

The optimal integrated dynamic pricing and RRM policy is computed based on the

stochastic distribution of users’ budget, arrivals, handoffs and departures. Our results
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Abstract

show that the integrated policy is superior in terms of average reward improvement and

congestion prevention to current schemes that use static pricing models. In interference-

based networks such as WCDMA, we suggest users be charged according to their noise

rise factor, i.e. an estimate of the amount of interference generated by the call. This

interference-based pricing model improves on the conventional load-based model in by

delivering higher revenue and lower call blocking and handoff probabilities.

Using the axiomatic bargaining concepts from cooperative game theory, we derive a

class of fair and Pareto-optimal bargaining solutions that allocate wireless resources based

on users’ minimum and maximum rate requirements. We propose two models: symmetric

and asymmetric. In the latter, resource is allocated according to the price paid by the

users. An important significance of the asymmetric bargaining model is that this solution

is still Pareto-optimal and fair according to the users’ bargaining power. Our approach

is also a departure from current works using noncooperative game theory that can only

achieve an inefficient outcome, i.e. the Nash equilibrium; or cooperative game theory

that focus on only one solution on the Pareto-optimal boundary. By analysing a range

of bargaining solutions instead of specific ones, operators can proceed to select the best

outcome out of these Pareto-optimal solutions based on criteria like revenue.
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Chapter 1

Introduction

The high demand for information exchange, evident since the introduction of first gen-

eration analog cellular networks in the early 1980s, has accelerated the development of

wireless communication systems. These analog systems were based on Frequency Divi-

sion Multiple Access (FDMA). In the early 1990s, second generation (2G) cellular systems

based on digital technology were introduced. The deployment of 2G was a huge success

story because of the revolutionary technology, high-quality speech services and global mo-

bility that it provided. The Global Standard for Mobile Communications (GSM), based

on Time Division Multiple Access (TDMA), was deployed in Europe in 1992. In the

United States, there are two digital standards, i.e. TDMA-based IS-54 and narrowband

Code Division Multiple Access (CDMA)-based IS-95. Personal Digital Cellular (PDC)

was also introduced in the 1990s and mainly used in Japan. However, 2G is primarily

designed for voice communication and as a secondary feature, it provides circuit-switched

data services but only at low data rate. There was an obvious need for a greater data

capacity.

The transition of the 2G to the much-hyped third generation (3G) has begun and

taken off around the world in the past few years. 3G systems such as Wideband Code

Division Multiple Access (WCDMA) and cdma2000 can provide high data rates up to 2

Mbit/s and support a broad range of multimedia services including voice, data and video

to mobile users. Although there are as yet no solid specifications on the beyond 3G (B3G)

or fourth generation (4G) technology, it is clear that 4G will support higher data rates
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than 3G and will efficiently integrate different modes of wireless communications. Data

rates in 4G systems are expected to be as high as 20 Mbit/s [11,51].

The emergence of applications with very different throughput, loss rate and delay

underscores the need for a network capable of supporting different levels of quality of

service (QoS). Since radio spectrum is a scarce resource, efficient Radio Resource Man-

agement (RRM) is one of the most important and challenging engineering issues in 3G

and 4G mobile communication systems. Researchers have been focusing on jointly or

singularly optimising parameters such as capacity, modulation scheme, coding scheme,

transmission power and bandwidth. The suggested solutions invariably involve installa-

tion of new infrastructure. For example, due to the limitations of the radio spectrum,

micro- or pico-cellular architectures are used to provide a higher capacity [130]. However,

handoffs occur more frequently in these micro- and pico-cells due to their small coverage

areas.
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Figure 1.1. A typical hourly arrival pattern in a mobile network.

In order to satisfy high resource demand, it is a common strategy for network de-

signer to over-engineer a network or cell so that the probability of users being blocked is

conservatively minimised during the busiest hours. This means that the ever-increasing

peak traffic requirements during these busiest hours (as shown in Fig. 1.1) will trigger

a network upgrade to boost capacity from time to time. It is clear that provisioning a
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Chapter 1 Introduction

network always to meet peak demand, which is only typically several hours in a day, is

very costly for network operators. The vast differences between peak and off-peak demand

patterns mean that network resources will be under-utilised outside of these peak hours

and that idle capacity is expensive to maintain. A strategy is needed to both limit peak

demand and increase utilisation during off-peak hours. This has in turn encouraged re-

searchers to investigate alternative methods for optimal use of the available resources and

to contend with the considerable costs involved in obtaining spectrum and site licences

as well as upgrading infrastructure to boost network capacity.

In this dissertation, we offer a new economic perspective into the important issues

of efficient management of scarce network resources and congestion control in wireless

networks. Our research is multidisciplinary and combines concepts from telecommunica-

tions, economics, decision theory, queueing theory, artificial intelligence and game theory

to address these issues. The rest of this chapter is organised as follows. In Section 1.1,

we discuss the background of this research. In particular, we will analyse existing RRM

schemes and pricing models for wired and wireless networks and highlight the need for

improvements. In Section 1.2, we introduce our proposal for an economic framework for

pricing and RRM. Finally in Section 1.3, we give an overview on the organisation of this

dissertation and our original contributions.

1.1 Background and Motivation

1.1.1 Radio Resource Management

Congestion control measures can be either preventive and reactive. Preventive congestion

control procedures strive to deflect congestion before it occurs by avoiding traffic patterns

that can lead to congestion. Reactive methods will only be triggered to control congestion

when it occurs. A good congestion control strategy should consist of both methods. RRM

plays a major role in congestion control and QoS provisioning for wireless communication

systems. The family of RRM algorithms can be classified into three categories: Call

Admission Control (CAC), which manages admission of new and handoff arrivals; Rate

Control, which determines users’ transmission rate; and Power Control, which controls
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Figure 1.2. Radio Resource Management model consists of call admission control, rate control and

power control.

the transmission power of the mobile stations (MSs) and the base station (BS). We depict

these functions and the general RRM model in Fig. 1.2.

CAC determines whether to admit or reject a call upon its arrival and is one of the

most important aspects of RRM. The main objective is to admit as many calls as possible

to achieve high utilisation while maintaining the QoS guarantees of ongoing calls. QoS is

guaranteed in terms of signal quality and call dropping probability. In interference-limited

wireless networks such as WCDMA, CAC admits new users only if the minimum signal

quality and transmission rates can be maintained for existing users. CAC schemes can

provide preventive and/or reactive congestion control [1]. In preventive CAC, admission

or rejection is based on some assessment of the QoS constraints. In reactive CAC, all

users are admitted and transmission will only begin after some QoS measurements at the

beginning of the call.

There is a considerable literature on CAC schemes, most of which can be classified

into number-based, interference-based and throughput-based. In number-based CAC, any

call will be blocked if N users are connected. Setting an effective CAC threshold for

N can be based on the QoS requirement for the upper bound on packet error proba-

bility [111] or tolerable interference level [53]. Since the capacity in a WCDMA system

varies its interference level, this scheme is generally inaccurate and nonadaptive [130].
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In interference-based CAC, a new call is blocked if the interference level exceeds a pre-

determined level. This scheme is applied on a call-by-call basis. The admission of a new

user can gracefully degrade the performance of other users in the system. Therefore,

this scheme requires more overheads in terms of hardware and computation. It also relies

heavily on the reliability of real-time interference measurements. Examples of this scheme

can be found in [7, 8, 54]. In throughput-based CAC, a call is accepted or blocked if the

additional load introduced by the new user does not result in the system load exceeding

some pre-determined threshold. In WCDMA, cell loading is represented by the system

load factor on the uplink and downlink (see definition in Section 2.1) [49].

A good CAC scheme needs to balance the call blocking of new users and call dropping

of handoff users in order to provide the desired QoS requirements. Specifically, the denial

of service to new calls is better than the unreliability of service to existing calls. Therefore,

handoff calls receive less stringent admission criterion than new calls. Various handoff-

based CAC schemes have been proposed and their strategy for minimising call dropping

can be classified into [33, 75]: guard channel and queueing priority schemes. In guard

channel schemes, some channels are reserved for handoff calls. A new call is rejected

whenever the number of free channels is less than the guard level. Although this scheme

reduces the probability of dropping a handoff call, it may also result in under-utilisation

of system resources. In queueing priority scheme, all calls are accepted whenever there

are free channels. When all channels are busy, either the new calls, handoff calls or all

calls are queued.

Rate control and power control in wireless networks are two inter-related problems.

The achievable data throughput rate depends on the transmission power and propagation

loss of the channel. In FDMA/TDMA-based systems, power control is motivated by

the need to manage co-channel interference, which is caused by frequency reuse due to

limited available frequency. In CDMA-based systems like WCDMA, power control is

needed to remove near-far effect on the uplink, mitigate fading and compensate changes

in propagation conditions. On the uplink, power control should make signal powers from

different users nearly equal at the base station in order to maximise the total capacity in

a cell. Without power control, all users transmit signals to the base station with the same

transmission power, without taking into account the propagation loss due to multipath

fading and shadowing. The signals of the users that are closer to the base station will

cause significant interference to the signals of other mobiles located further away. On the
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downlink, the total transmission power of the base station should be kept at the minimum

required level in order to decrease the interference to users in other cells.

Power control schemes for CDMA-based systems have been extensively surveyed

in [82]. In general, power control schemes can be categorised, among other criteria,

according to their quality measure, power update frequency and strategy, whether they

are centralised or decentralised and closed- or open-loop. Signal quality is very subjective

and can be measured in terms of the signal strength, signal-to-interference ratio (SIR)

and bit error rate (BER). In strength-based systems, the base station will give commands

to increase or decrease transmission power to the users based on the signal strength re-

ceived. This scheme is easy to implement using signal quality measurements. However,

the problem of positive feedback might occur in SIR-based systems. Positive feedback

occurs when a user is under the instruction to increase its transmission power in order

for the base station to receive a desirable SIR. This results in extra interference to other

users, who in turn also increase their transmission power and cause SIR deterioration for

all users. BER is a better measure of signal quality than SIR because of the time-varying

nature of the latter in real systems.

Even with perfect admission control, congestion might happen due to a variety of

factors such as the deterioration of the wireless environment, the mobility of users, users’

activity and power control imperfection [130]. As the number of users increases in a cell,

excessive interference causes traffic loss and deterioration in signal quality. When con-

gestion occurs, the RRM controller can either drop some calls; decrease the transmission

rate of all or some users; or reduce the number of simultaneous transmissions. The main

problem is that these congestion control mechanisms are all reactive and will only be

instantiated when congestion occurs. It is clear that current admission, rate and power

control schemes do not provide sufficient preventive congestion control measures. When

the network load is extremely high during the busiest hours of the day, no matter how

RRM parameters are adjusted, these schemes cannot guarantee QoS to users because no

incentives are provided for users to regulate and adapt their consumption according to

the network conditions [50]. Instead, more focus needs to be placed on providing negative

incentives for users to defer their usage to avoid or relieve congestion when network load

is high; and positive incentives to encourage arrivals and resource consumption when the

network is lightly loaded. These incentives can be provided in the form of pricing.
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1.1.2 Economic Modelling

Economic modelling offers a new perspective into RRM and enables efficient utilisation of

scarce resources and congestion prevention. It is based on the notions of utility functions,

congestion pricing, Pareto optimality and game theory. Formally, economics is concerned

with the production, sale and purchase of commodities, and with how consumers and pro-

ducers interact in a market [116]. In general, economics is a social science which studies

human activity involved in meeting needs and wants. The Father of Economics, Adam

Smith, once defined economics as “the science of wealth” and “the science related to the

laws of production, distribution and exchange”. Economics can be divided into two main

branches: microeconomics and macroeconomics. Microeconomics, which is more relevant

to our research, examines the behaviour of individual entities such as businesses and

individuals in order to understand the decision making in the face of scarcity and the al-

locative consequences on these decisions. Macroeconomics offers a higher-level perspective

and examines economy at an aggregated state, national and international level.

Communication resources such as bandwidth, code and power can be viewed as tradi-

tional economic goods and well-established economic ideas can be applied. These resources

are non-storable goods and if not utilised, will be wasted and are non-recoverable. When

one additional user is admitted into the network, he/she causes QoS degradation to other

existing users. In economic terms, this phenomenon is called a congestion externality,

i.e. the congestion, delay and cost of exclusion a user imposes on others [68]. Wireless

resources are limited and scarce. In fact, scarcity is central to the economic problem.

Scarcity is a situation where people’s wants exceed their resources and implies that peo-

ple must make a choice – to forgo one thing in favour of another. Price is a measure of

relative scarcity, i.e. of supply relative to demand. When the resource becomes relatively

scarce, because supply constricts or demand expands, the price increases. This restricts

the supply, making it available to those willing to pay the higher price. Therefore, price

is an effective arbitration mechanism to affect user behaviour and control congestion,

especially in the face of scarcity.

With different prices associated with different levels of scarcity, users have to analyse

the trade-off between convenience and money. For example, when the price is relatively

high, users can delay their calls and pay less when network resource becomes less scarce.

Otherwise, they can pay more to access the network immediately out of convenience.
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As Adam Smith once stated, these users are simply “paying the difference out of their

convenience”. The model economists use to explain how prices are determined in a market

economy is called the supply and demand model. For example, exchange rates in the

currency market are determined by the relative supply and demand of different currencies.

Supply is a positive relationship between the price of and the quantity supplied of the

good by producers, higher prices give producers more incentive to produce. Demand is

a negative relationship between price and the quantity people will buy at each price.

Demand is also defined as the utility maximising choice of a consumer when constrained

by price. The price and quantity demanded are negatively related, i.e. consumers will

demand less of a good if its price increases. When producers and consumers interact in

a market, the equilibrium price is at the intersection of the supply and demand curves.

At this point, the quantity producers are willing to supply at the current price equals the

quantity consumers demand at that price, resulting in no shortage or surplus in resources.

Network user preferences, which determine demand at various prices, may be mod-

elled using utility functions, which describe how sensitive users are to changes in network

performance. A utility is defined as the benefit or satisfaction that a person gets from the

consumption of goods and services. Utility function is usually a non-increasing function

of the amount of consumption. Higher values of utility indicate increased satisfaction

and the consumer’s objective of maximum satisfaction. Utility can be used to indicate

users’ level of satisfaction numerically and may be modelled using users’ willingness to

pay, amount of allocated resources, the perceived blocking probability or a combination of

QoS parameters in general [23], [50]. The concept of utility function is also used in Pareto

maximisation. Pareto efficiency, or Pareto optimality, is a central theory in economics

with various applications in game theory, engineering and social science. An allocation

is Pareto optimal if there is no wasted utility, i.e. it is impossible to make any one party

better off without making any other worse off. A formal overview on game theory will be

provided in Section 2.2.1 of Chapter 2.

Consumers always try to minimise their expenditure for a given level of utility or

maximise their utility for a given budget. These problems are as the expenditure minimi-

sation problem and utility maximization problem respectively. A producer, like a network

operator, is a supplier of different services. Profit is the difference between the prices at

which these services can be sold and the cost of production. On the other hand, total

revenue is the total number of dollars the producer receives from customers who purchase
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its products. Producers aim to maximise their revenue, a problem known as the revenue

maximisation problem. Communications services are usually costly to produce but cheap

to reproduce [26]. When the producers aim to maximise the aggregate utilities of all

consumers, the problem is known as the social welfare maximisation problem.

1.1.3 Pricing and Charging Models in Communication Networks

Billing, charging and accounting are the most critical operational support activities con-

ducted by network or service providers. Based on the 3rd Generation Partnership Project

(3GPP) standards, charging is the process of collecting information about chargeable

events; accounting is the process of determining revenue sharing among operators in cases

of roaming and other services; and billing is the process of employing specific pricing

policies and issuing bills for the users [30]. In this research, our main focus is on charging

models. The role of pricing can be analysed from two perspectives. From the economic

perspective, it enables the network operator to recover its investments and ongoing costs;

and make profits to finance future capacity expansion. It is also an important marketing

tool for the provider to attract new subscribers. Secondly, and perhaps more interestingly

for engineers, pricing is a mechanism for traffic shaping and congestion control that can

efficiently allocate and influence the way users utilise scarce network resources. Pricing

policies can be static, in which prices are independent of the current network utilisation

or dynamic, in which prices fluctuate as a result of some network conditions. Both assume

that the network operator has mechanisms to set prices, and to perform accounting and

billing for network usage on a per-user basis.

The most dominant charging model used in the mobile telecommunications is the

static, flat-rate model. Users are mainly billed based on their type of subscription and

other parameters such as call duration, type of communication and location of destination.

Such widespread use of flat-rate pricing is attributed to the fact that most mobile service

providers emerged from the traditional fixed-line, telephony world where distance- and

time-based billing are common [30]. However, with almost all users paying a flat-rate

charge, they have little incentive to manage their consumption. Other static charging

models proposed for wired networks include time-of-day pricing, Paris-Metro pricing [83],

priority pricing [22, 23], reservation-based pricing [87, 88], edge pricing [104] and usage-

based pricing based on effective bandwidth [25, 26]. We will elaborate more on these
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schemes in Chapter 2. We also refer our readers to [27] for a comprehensive comparisons

of pricing schemes for broadband IP network.

Under such static models, users act independently and selfishly without considering

the current network conditions. If price is set too low, self-serving users will tend to over-

use and cause congestion. On the other hand, too high a price will discourage users from

accessing the network. In addition, flat-rate pricing models are inadequate in providing

QoS choices to users, especially in the event of congestion. For example, some users

(e.g. business users) are willing to pay more to always have access to the network and

also to receive high signal quality at all times. However, these users might be blocked

by admission control during congestion because current static pricing models are not

adaptive to user preferences and network conditions. Such lack of choice translates into a

loss of opportunity for operators to generate additional revenue and it restricts the utility

derived from a given network capacity.

Dynamic pricing models adjust prices according to the demand pattern and conges-

tion level in a network. Monetary incentive can influence the way users utilise resources,

so that important resources are not wasted by users who do not value them enough. They

offer flexibility to react to fluctuations in the incoming traffic in order to achieve some sys-

tem performance objectives. This enables the tracking of the optimal prices to be charged

by a network at a given time in order to achieve some system objectives such as revenue

and social welfare. However, these schemes are in general more complex than static pric-

ing schemes and expensive to implement. Perhaps the absence of dynamic pricing models

might be attributed to the lack of sophisticated billing and accounting mechanisms to

support such models. Dynamic pricing models for wired networks, such as the Internet,

can be categorised into three main approaches: auction-based [63, 68, 117], shadow pric-

ing [38,61] and stochastic control [89,90]. These pricing schemes will be outlined in detail

in Section 2.2.2 in Chapter 2.

In the auction-based approach, the network or service provider allocates resources

according to users’ bids. For example, in smart-market pricing [68], each packet contains

a bid in its header and will only be serviced by routers if the bid exceeds a threshold.

The shadow pricing approach, first proposed in [61], involves solving a social welfare

maximisation problem and the Lagrangian multiplier of the optimisation problem can be

interpreted as the shadow price. When resource allocation is decentralised, the system is
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optimal when the users’ demand, based on the shadow price, coincides with the network’s

optimal choice of allocation. Both the auction-based and shadow pricing approaches are

designed to optimise resource allocation for a fixed number of users in the system and

only provide reactive congestion control. The final approach is different. It makes pricing

decisions based on the stochastic attributes of the network traffic and is both preventive

and reactive in terms of congestion control. The problem is modelled as a Markov decision

problem and the outcome, i.e. a congestion-dependent pricing policy, is obtained using

dynamic programming techniques.

In the case of wireless networks, the bulk of the pricing literature is motivated by

power control. There are two main approaches: shadow pricing [70,108,109] and noncoop-

erative power control game with pricing [32,66,67,71,98,99,126,131]. Similarly to [38,61],

the first approach computes a shadow price to achieve an optimal allocation that max-

imises the social welfare of all users. In recent years, there has been an increasing trend to

use game theory to examine resource allocation problems. In the noncooperative game-

theoretic approach with pricing, resource allocation is decentralised and users determine

their own transmission power. The common approach is to first define a suitable user’s

utility function for the problem. The utility functions proposed are the throughput per

terminal life [32, 71, 98, 99], the sigmoid function of SIR [66, 126] and the step function

of Signal-to-Interference-plus-Noise-Ratio (SINR) [67, 131]. Users then enter into a de-

centralised, noncooperative game to select the transmission power that maximises their

utility. The outcome of the game is known as the Nash Equilibrium, which is not optimal

(or inefficient) due to the lack of cooperation among the self-serving users. In order to

achieve an outcome that gives Pareto improvements, a usage-based price per transmission

power is incorporated into the models.

We summarise the drawbacks of these schemes as follows. Firstly, price only acts as an

internal mechanism and does not reflect the actual charges that users pay. It is a reactive

congestion control measure and only provides negative incentive to discourage selfish usage

of network resources such as power. If users are actually charged according to a different

pricing model, it is not clear whether they will react to the price per transmission power

announced by the base station. Furthermore, the price in the users’ utility functions is

only a static parameter that is optimised for a fixed number of users in the network. In

reality, the network providers can make use of their knowledge and historical data of the

stochastic nature of users’ traffic to develop an effective scheme. Nothing is mentioned
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about how to determine the optimal price as more users arrive to the network. In these

schemes, the important role of pricing to provide positive incentive to encourage usage

when the network is lightly loaded has been ignored. Moreover, the outcome of the

noncooperative games, i.e. the Nash equilibrium is well-known to be inefficient. Even

with the introduction of prices, which provides some Pareto improvements, a socially

optimal outcome cannot be achieved. The resulting degree of efficiency loss is known as

the price of anarchy. For example, selfish behaviour of users leads to an efficiency loss

of up to 25% in a network with inelastic supply [57]. These noncooperative solutions

also burden users’ mobiles, which have limited battery power, with additional complex

computations. The crucial issue of fairness in resource allocation has also been ignored

in these works.

1.2 An Economic Framework for Pricing and RRM

Up to this point, we have outlined current RRM models and discussed the role of pricing

in congestion control and helping network operators to improve revenue. Existing RRM

schemes focus on relieving congestion when it occurs and fail to provide the necessary

incentives to discourage resource consumption before the network becomes relatively con-

gested or encourage consumption otherwise. In this section, we will introduce our proposal

for an economic framework for pricing and RRM. This integrated model is illustrated in

Fig. 1.3. We propose a two-tier model to

• calculate an optimal integrated dynamic pricing and RRM policy in order to in-

fluence the demand pattern of incoming users, minimise handoff call dropping and

maximise operator’s revenue; and

• allocate scarce resources to admitted users in a fair and Pareto-optimal manner

using bargaining concepts from cooperative game theory.

We compute the optimal integrated policy based on the stochastic distribution of

users’ willingness to pay, arrival and departure using dynamic programming and neuro-

dynamic programming (NDP). The former technique is suitable for smaller networks such

as the fixed-capacity, cellular network that we will consider in Chapter 3. We then extend

this concept to an interference-limited WCDMA cell in Chapter 4. This problem has
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Figure 1.3. An Economic Framework for Pricing and Radio Resource Management.

a large state space and simulation-based methods such as NDP is more suited to such

problem. Unlike the pricing proposals for wireless networks discussed in the previous

section, the calculated state-dependent dynamic prices will reflect the actual admission

price that users will pay. Based on the prices advertised by the base station when users

make a call, they can choose the service class that best suits their expectation in terms

of QoS and cost of access. In our models, to minimise accounting and billing overheads,

we assume that once users are granted access, their admission price will be honoured

by system throughout their call. The final call charge still depends on the amount of

resources utilised by the users. Of course the use of dynamic pricing models does not

always mean the users will end up paying more. Price-sensitive users can defer their calls

until the network load is relatively low and benefit from lower prices.

Efficient allocation of scarce resources after users are admitted into system is an

equally important problem that will be dealt with in Chapter 5. There is an increasing

trend to apply game theory in various power control and resource allocation problems (a

survey is available in [4]). The noncooperative game model, which is the most common

in existing literature, leads to a solution that is not Pareto-optimal and in some cases

unfair. In order to achieve an optimal operating point, arbitration is necessary [19]. In this

research, we shift the focus to cooperative game theory. Cooperative game theory provides
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an excellent framework for this resource allocation problem, in that it considers fairness

by means of the axiomatic properties a solution must possess and efficiency through the

notion of Pareto optimality. The notion of axiomatic bargaining in cooperative game

theory provides a good analytical framework to derive a desirable operative point that

is fair and Pareto-optimal. An allocation is Pareto-optimal if there is no wasted utility,

i.e. it is impossible to make any one party better off without making any other worse off.

Such an outcome is said to be efficient.

1.3 Organisation and Original Contributions

1.3.1 Chapter 2: Background

In Chapter 2, we discuss the technical background of this research in WCDMA system and

radio resource parameters; economic modelling concepts of game theory; and stochastic

decision theory concepts of dynamic programming and NDP. We will also review the vast

number of existing static and dynamic pricing proposals for wired, broadband networks

such as the Internet. Then, we will analyse the existing power-control-motivated pricing

proposals for wireless networks. Dynamic programming is used in Chapter 3, NDP in

Chapter 4 and game theory in Chapter 5.

1.3.2 Chapter 3: Integrated Call Admission Control and Dy-

namic Pricing Cellular Networks

In Chapter 3, we present our model of optimal integrated call admission control and

dynamic pricing for fixed-capacity networks. Our model captures the price-affected be-

haviour of users; considering the effects of price on users’ arrivals, retrials, substitutions

and departures. We show, via the computation of optimal policy and average reward

using dynamic programming, that the performance of the integrated policy is superior

to other conventional policies that consider call admission control and dynamic pricing

as separate problems. Due to the limitations of the dynamic programming method, this

model is designed for small, fixed-capacity cellular systems. We summarise the original

contributions of this chapter as follows:
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• Bandwidth reservation for handoff calls based on satisfaction revenue

It has been widely accepted that handoff call requests have higher priority than new

calls since premature termination of a call is less desirable than a rejection in the

first place. In our model, we capture the importance of handoff calls by associating

a pseudo revenue called satisfaction revenue. Satisfaction revenue should be set

higher than the actual revenue from admitting a new call so that handoff calls have

higher admission priority than new calls.

• Price-affected arrival model with retrial, substitution and abandonment

We propose an advanced arrival model that incorporates retrials, abandonments

and substitution effects among services and through time. When users are blocked

or have insufficient budget to begin a call, they will remain in the orbit of the

system until they receive service, use another service as a substitute or abandon

their intention completely. The queueing model is found to have a level-dependent

quasi-birth-death [16] structure and we derive various system parameters through

its stationary distribution.

• Reduction of computational cost using non-discriminatory pricing scheme

Price discrimination refers to the practice of varying the price of a product (i.e.

bandwidth in our case) between users or applications to improve revenue. For

example, the price per kbit of a voice call differs from that of an SMS. However,

when price discrimination is avoided, the computational cost of the optimal policy

is reduced. This is because the optimal price control only has to compute one price,

instead of J prices for J services. We will show that an integrated policy with

non-discriminatory pricing closely approximates that of one which enforces price

discrimination.

1.3.3 Chapter 4: Interference-based Radio Resource Manage-

ment and Dynamic Pricing for WCDMA Networks

In Chapter 4, we extend our proposal to soft-capacity, CDMA-based systems. We will

present our model of optimal interference-based radio resource management and dynamic

pricing for soft-capacity. We formulate the integrated model as an NDP problem and solve
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for the optimal policy using a simulation-based temporal difference algorithm. The dy-

namic programming method that we have used in Chapter 3 is unsuitable for this problem

due to its large state space. We will prove that this interference-based scheme provides

improvement in terms of congestion control and efficient utilisation in an interference-

based system over schemes that charge users based on their bandwidth usage. We will

also study the effects of heavy traffic load, action exploration and the introduction of

a price sliding window to reduce the size of the price control space on our results. We

summarise the original contributions of this chapter as follows:

• Interference-based dynamic pricing and noise rise factor

Existing pricing schemes for wireless networks charge users based on the amount of

bandwidth used in terms of the transmission rate used. However, in interference-

based networks such as WCDMA, the relationship between one’s transmission rate

and the interference imposed on others as the system loading reaches its threshold

is not linear. We introduce a parameter called noise rise factor as a basis for

setting the price. This parameter quantifies the expected amount of interference

generated by a call based on users’ expected transmission rate, service type and

the current system load. As we will prove in Chapter 4, interference-based pricing

scheme is better than load-based pricing in terms of congestion control and reward

improvement.

• Optimal integrated dynamic pricing and RRM with QoS guarantee

Our work is the first to analyse conventionally separate but inter-related problems

of pricing and RRM in terms of call admission control and rate allocation as a joint

problem. Our model incorporates QoS guarantee by requiring users to select their

minimum and maximum transmission rates during admission and allow the network

operator to vary their rates within these upper and lower bounds throughout the

call.

• Neuro-dynamic programming (NDP) method with action-based approx-

imation architecture

Using NDP, the design of a suitable approximation architecture is highly-dependent

on the nature of one’s problem. The essence of problem is captured using features

that closely approximate the actual reward function. In this problem, we propose

to have the features of the problem dependent on the price and RRM actions. The
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motivation for this proposal stems from our experience of using dynamic program-

ming in Chapter 3, where state transitions depend on the actions that are chosen

by the optimal policy.

1.3.4 Chapter 5: Cooperative Resource Bargaining Games for

Shared Networks

Chapters 3 and 4 focus on the computation of an optimal integrated policy to manage

incoming arrivals such that the long-term average reward of the operator is maximised.

In Chapter 5, we apply the bargaining theory from cooperative game theory to deal with

the issue of radio resource allocation for connected users. The aim of this work is to

devise a strategy for network operator to allocate resources in a fair and Pareto-optimal

manner to its users and to smaller providers known as Mobile Virtual Network Operators

(MVNOs). The MVNOs purchase resources from the network operator in order to resell

them to their own subscribers. Our work is the first comprehensive treatment of resource

allocation in shared networks. We summarise the original contributions of this chapter as

follows:

• Symmetric bargaining: fair and Pareto-optimal resource allocation

Conventional works have only considered specific bargaining solutions (see Section

2.2.1) such as the Nash bargaining solution [76]. Other bargaining solutions on the

Pareto-optimal boundary such as the Raiffa-Kalai-Smorodinsky solution have been

relatively ignored. Based on the preference function concept proposed by Cao [18],

we derive the explicit formulas of a class of bargaining solutions between Nash

and Raiffa-Kalai-Smorodinsky. The benefit of having such closed-form solutions is

immense, enabling easy implementation and avoiding the use of complex derivation

algorithm. The solutions derived are fair and Pareto optimal according to the users’

minimum and maximum resource requirements.

• Asymmetric bargaining: resource allocation based on bargaining powers

The symmetric bargaining model enforces fairness according to users’ minimum and

maximum resource requirements. In this model, we allow the amount of resource

allocated to depend on the price paid by the users. For example, the price can be

the admission price derived in Chapters 3 and 4. However, if the price is allowed to
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vary during a call, users can submit bids to the operator to influence the bargaining

outcome. An important significance of this asymmetric bargaining model is that,

unlike conventional auction models, the outcome is still Pareto-optimal and fair

according to the users’ bargaining power. This asymmetric model also provides

opportunity for the operator to select a bargaining solution out of the class of

solutions derived to maximise its revenue.

• Cooperative resource sharing in multi-operator networks

In networks shared by more than one licensed 3G operator, operators can bene-

fit from temporary resource exchange due to dissimilar usage patterns and non-

coincident peak demand. In our model, we classify operators according to their

resource surplus or deficit. The model keeps a history of the amount of resources

they have obtained in the past when there has been a deficit and contributed when

there has been a surplus. Operators who have contributed more in the past will

therefore be allocated a bigger share of the common pool of resources when deficit

occurs.

1.3.5 Chapter 6: Conclusion

Finally, in Chapter 6, we present the conclusions and re-highlight the significance of our

work. We will also suggest areas for some possible extension of our work.

Page 18



Chapter 2

Background

In this chapter, we will provide some background on the concepts used throughout this

dissertation. In Section 2.1, we will give an overview of WCDMA and define some resource

usage parameters. Then in Section 2.2, we elaborate on the concepts of game theory and

discuss in detail existing pricing schemes for wired and wireless networks. Finally in

Section 2.3, we introduce the dynamic programming and neuro-dynamic programming

used in Chapters 3 and 4 respectively.

2.1 WCDMA System

Wideband Code Division Multiple Access (WCDMA) has emerged as the most widely

adopted third generation (3G) air interface technology [49]. WCDMA is a wideband

Direct-Sequence CDMA (DS-CDMA) system, in which user information bits are spread

over a wide bandwidth by multiplying the user data with quasi-random bits (called chips)

derived from CDMA spreading codes. An important advantage of WCDMA is its ability

to support variable and very high bit rates of up to 2 Mbps through the use of variable

spreading factors and multiple codes. The chip rate of 3.84 Mcps leads to a carrier

bandwidth of approximately 5 MHz. DS-CDMA systems with a bandwidth of about 1

MHz, such as IS-95, are commonly known as narrowband CDMA systems. Each user is

allocated frames of 10 ms duration, during which the user’s data rate is kept constant.

However, the data capacity among the users can change from frame to frame.
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WCDMA supports four traffic classes: conversational (voice, video telephony); stream-

ing (streaming multimedia); interactive (web browsing, network games); and background

traffic (background download of emails, SMS, MMS). The speech codec in UMTS employs

the Adaptive Multi-Rate (AMR) technique. The multi-rate speech coder in a single inte-

grated speech codec with eight source rates: 12.2 (GSM-EFR), 10.2, 7.95, 7.40 (IS-641),

6.70 (PDC-EFR), 5.90, 5.15 and 4.75 kbps. The AMR bit rates can be controlled by the

radio access network. Some of the modes are the same as in existing cellular networks

to facilitate interoperability. The AMR speech codec is capable of switching its bit rate

every 20 ms speech frame, which corresponds to 160 samples at the sampling frequency

of 8000 samples per second, upon command.

Traditional definitions of capacity of networks are either related to the number of

calls they can handle (pole capacity) or to the arrival rate that guarantees that the

rejection rate (or outage) is below a given fraction (Erlang capacity). One of the main

features of CDMA-based system is soft-capacity, where the cell capacity is not determined

by available resources as in the case of TDMA. The capacity of a particular cell is not

known exactly as it depends on the user density distribution, their movements and the

propagation conditions in the cell and its neighbouring cells. As the situation in the

cell changes dynamically, the instantaneous capacity varies, leading to QoS fluctuations.

Capacity analysis has been considered in [122] for a voice-based CDMA system, in [34] for

CDMA system with multirate sources, [48] for downlink WCDMA, [42] for multiservice

WCDMA networks with variable GoS and [110] for WCDMA system with multimedia

packet transmission.

2.1.1 Wireless Resource Parameters

Uplink

In order for a signal to be received on CDMA-based systems, the ratio of its received

power to the sum of the background noise and interference must be greater than a given

target [49,109,122]. On the uplink, the constraint is given by

W

νixi

gipi
∑N

j 6=i gjpj + Iother + σ2
≥

(

Eb

N0

)

i

, (2.1)

Page 20



Chapter 2 Background

where W = WCDMA chip rate,

νi = activity factor,

N = number of users,

xi = allocated transmission rate,

gi = path gain between the base station and user i

pi = transmission power of ith user,

σ2 = background thermal noise power,

Iother = other-cell interference, and

(Eb/N0)i = bit-energy-to-noise density ratio to meet a target BER level.

gipi is the received power at the base station from user i. The total interference received

at the base station is denoted as Itotal, where

Itotal =
N

∑

j 6=i

gjpj + Iother + σ2. (2.2)

The other-cell interference, Iother, can be taken into account by some constant f [123],

i.e. Iother = f
∑N

j=1 gjpj. Interference coefficient f typically has values between 0.1 and

0.6 [49]. Therefore, the capacity of the cell depends on the load of the neighbouring cells.

The cell has less capacity if the neighbouring cells have a high load.

Definition 2.1. The individual uplink load factor of user i is defined as the ratio of one’s

received power at the base station with respect to the total uplink interference, i.e.

ηUL
i =

gipi

Itotal

=
1

W
(

Eb
N0

)

i
νixi

+ 1
. (2.3)

When other-cell interference is considered, the individual uplink load factor becomes

ηUL
i =

1 + f
W

(

Eb
N0

)

i
νixi

+ 1
. (2.4)

Definition 2.2. The uplink system load factor is defined as the sum of uplink individual

load factors of all users in the cell, i.e.

ηUL
sys =

N
∑

j=1

ηUL
j < ηUL

max < 1 (2.5)

The constraint on the uplink system load factor asserts that the uplink is interference-

limited. Even when there are no power constraints on users’ transmit power, they cannot

Page 21



2.1 WCDMA System

increase their power without bound due to the interference they will cause others. In

actual systems, the load threshold ηUL
max must be significantly less than one, usually between

0.5 and 0.7, due to the limited transmission power of users, imperfect power control, path

loss, shadowing and inter-cell interference. In radio planning, the cell loading can be

translated into another parameter called noise rise or interference margin.

Definition 2.3. The uplink noise rise is defined as the total received power to the noise

power:

αUL
sys =

Itotal

σ2
=

1

1 −
∑N

j=1 ηUL
j

=
1

1 − ηUL
sys

. (2.6)

Downlink

On the downlink, WCDMA employs orthogonal codes to separate users. However, users

will still see part of the signal as multi-access interference (MAI) due to multipath propa-

gations and neighbouring cell transmissions. When the orthogonality factor of the ith user

θi = 1, signals are perfectly orthogonal. Typically, θi is between 0.4 and 0.9 [49]. On the

uplink, transmission is asynchronous and therefore the signals are not orthogonal. The

downlink load factor depends on the orthogonality factor and the maximum transmission

power available at the base station. Assuming perfect power control [49,108],

W

νixi

gipi

θigi

∑N
j 6=i pj + σ2

≥

(

Eb

N0

)

i

, (2.7)

where θi is the orthogonality factor of the codes used in the downlink. The total trans-

mission power to the users on the downlink is limited by the maximum power pmax the

base station can transmit, i.e.
N

∑

j=1

pj ≤ pmax. (2.8)

Hence, the downlink is power-limited.

Definition 2.4. Assuming perfect power control, the downlink individual load factor is

defined as

ηDL
i =

1 + σ2

giθipmax

1 + W

θi

(

Eb
N0

)

i
νixi

. (2.9)
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Definition 2.5. The downlink system load factor is defined as the sum of downlink indi-

vidual load factors of all users in the cell, i.e.

ηDL
sys =

N
∑

j=1

ηDL
j ≤ 1. (2.10)

In the case of multiple cells, the intercell coefficient fi depends on the position of the

user within the cell and is therefore different for each user. If only the average value is

considered, θi and fi can be replaced by with θ and f .

2.2 Economic Modelling Concepts

2.2.1 Game Theory

Game theory [37, 72, 85] is a tool for analysing the interaction of decision makers with

conflicting objectives. Economists have long used it as a tool for examining the actions

of economic agents such as firms in a market. Game theory must be understood as

situations of conflict and cooperation between intelligent and rational individuals (or

groups of people) for which the objectives are generally more complex than just beating

their opponents. Game theory deals with all real-life situations where rational people

interact with each other, that is when one individual’s actions depend essentially on what

other individuals might do. The rational choice is the action chosen by a decision-maker

that is at least as good as every available action according to his or her preferences.

There are two main branches of game theory: noncooperative and cooperative games.

These two branches differ in how the interdependence and interactions among the players

are formalised. In noncooperative game theory, a game is a detailed model of all available

decisions available for the players. By contrast, cooperative game theory ignores these

details and only describes the optimal outcome when the players come together.

Noncooperative Games

In noncooperative games, decisions are based on players’ perceived self-interest and they

are unable to make binding agreements except for those explicitly allowed by the rules
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of the games. Noncooperative games are not defined as games in which players do not

cooperate, but as games in which any cooperation must be self-enforcing. Games in which

cooperation is exogenous are termed cooperative games. For non-cooperative games, there

are two types of standard representations: extensive form and strategic form models. The

extensive form provides an exact description of players’ successive moves and the payoff

obtained in the form of a game tree. The extensive representation is only suitable for

simple games as the number of nodes can approach infinity for large games with many

players.

A strategic game is a model of interacting decision makers. An n-player game consists

of: a set of players, labelled i = 1, . . . , n; the set of actions, X1, . . . , Xn, available to the

players; and the utility functions, ui(x1, . . . , xn) xi ∈ Xi for every i, that describe the

preferences over the set of actions. A strategy is a complete specification of how a player

intends to play in every contingency that might arise. The game is viewed from the

point view of a single player. Each player takes a decision without the knowledge of the

decisions taken by their opponents. The Nash equilibrium of a strategic game with ordinal

preferences is an action profile from which no user may gain by unilaterally deviating.

Definition 2.6. An outcome x∗ = (x∗
1, . . . , x

∗
n) of an n-player game (X1, . . . , Xn; ) is a

Nash equilibrium if the following is satisfied:

ui(x
∗
i , x

∗
−i) ≥ ui(x

′
i, x

∗
−i), for all xi ∈ Xi and 1 ≤ i ≤ n. (2.11)

Note that x−i = (x1, . . . , xi−1, xi+1, . . . , xn).

The definition implies neither that a strategic game necessarily has a Nash equilib-

rium, nor that it has at most one. Note that Nash equilibria do not always entail the same

payoff (or utility). The definition of a Nash equilibrium is designed to model a steady state

among experienced players where no player has any incentive to deviate from his or her

strategy given that the other players do not deviate. Nash, in [77], showed that if each

player in an n-player game has a finite number of pure strategies, then the game has a

Nash equilibrium in pure (one action or the other) and mixed (probabilistic) strategies.

In a two-player game, the outcome x∗ = (x∗
1, x

∗
2) is a Nash equilibrium if and only if x∗

1

yields the maximum payoff given that player 2 chooses x∗
2 and vice versa. Such a strategy

is called a best response.
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Pareto optimality, which is also known as Pareto efficiency, is an important concept

to compare different outcomes of the game. A Pareto optimal solution is defined being

efficient. Not every Nash equilibrium is Pareto efficient.

Definition 2.7. An action vector x is said to be Pareto optimal if for every other vector

y in the feasible region that

ui(yi) ≤ ui(xi), for all i, (2.12)

with at least one strict inequality for one i. In other words, an action vector is said to

be Pareto optimal if it is impossible to improve the utility of any player without harming

another player.

Cooperative Games

Cooperative game theory abstracts from the procedures and details of reaching an out-

come and concentrates on the possibility for an agreement. It studies the frictionless

negotiations among rational players who can make binding agreements about the rule of

the game. Commitments are fully binding and enforceable, i.e. cooperation is exogenous.

Bargaining Games

The formal theory of bargaining was founded by Nash in his two seminal papers [76,78].

The final outcome is of the main interest here and it is often convenient to analyse the

domain of all possible outcomes in order to find an efficient outcome. The desirable

solution can be expressed in terms of axioms, which ideally should incorporate some

fairness and efficiency features of the solution. A bargaining problem is represented as a

pair (S,d) in the utility space. S ⊆ <N is the compact and convex set of all utility vectors

and d ∈ <N is the disagreement or threat point. The disagreement point represents the

minimum utility level that the bargainers will obtain if negotiations fail. The set S must

include points that dominate the disagreement point, i.e. there is a positive surplus to

be divided among the players once their minimum requirements are reached. The main

question then is “how should this surplus be divided?”. Approaches to bargaining fall into

two divisions: strategic bargaining and axiomatic bargaining. The former describes what

the outcome will be and the latter emphasises how negotiations can evolve to reach an

outcome.
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Strategic bargaining [74] studies the exact specification of the negotiation procedure

(such as the timing, communication devices and threats) and identifies the rational be-

haviour in them. An example of a strategic bargaining procedure is Rubinstein’s model

of alternating offers. The negotiation is modelled explicitly as a real-time game. Suppose

that there are two players bargaining over the division of a surplus of 1. In period 1,

Player 1 will make a proposal of the division. Player 2 can either reject or accept this

proposal. If it is accepted, the negotiation ends. If it is rejected, Player 2 will make a

proposal in period 2. Then, Player 1 must respond. The negotiation continues until an

outcome is reached. In the T -period horizon game, the disagreement will be imposed after

T proposals have been rejected.

Axiomatic bargaining [95, 96] assumes some desirable properties about the outcome

of the bargaining process and then identifies process rules that guarantee this outcome. It

ignores the negotiation process completely. Nash proposed the Nash bargaining solution

while he was still an undergraduate in his paper [76]. Nash specifies four axioms, which

impose properties that a bargaining solution should satisfy:

• Symmetry: Two players with symmetric utilities get the same payoff. It ensures

the solution yields a fair outcome.

• Pareto Optimality: The solution is on the Pareto boundary. This axiom reflects

the rationality of the players. If they work together, they would not accept the

disagreement point as the outcome when they can do better than that.

• Invariance with respect to affine transformation: If the utility functions are

rescaled, the solution should be rescaled in the same fashion. For example, a change

of currency of the players’ utility implies a change in the currency of the outcome.

• Independence of Irrelevant Alternatives (IIA): Suppose the solution for bar-

gaining problem (S,d) is s∗. Now consider a new bargaining (S ′,d), where S ′ ⊆ S.

Then the solution for the new bargaining problem is also s∗. That is, the solution

is independent of “alternatives” that are deemed irrelevant because they were not

chosen in the larger S, so their absence should not alter the outcome.
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Definition 2.8. The Nash bargaining solution satisfies the axioms of symmetry, Pareto

optimality, invariance with respect to affine transformation and IIA and is defined as

f(S,d) = arg max
s∈S

N
∏

i=1

(si − di), (2.13)

subjected to constraints si ≥ di, i = 1, . . . , N . The product of (si − di), ∀i, is called the

Nash product.

Axiom IIA received a number of criticisms from a number of researchers. Kalai and

Smorodinsky [59] (and Raiffa [93] in an earlier work) proposed to drop IIA and replace it

by the axiom of individual monotonicity. That axiom states that players’ assigned utility

should be proportional to their aspiration level or maximum gain.

Definition 2.9. The Raiffa-Kalai-Smorodinsky bargaining solution satisfies the axioms of

symmetry, Pareto optimality, invariance with respect to affine transformation and mono-

tonicity and it is the intersection point of a line connecting the disagreement point and

the utopia point of the Pareto optimal boundary.

Figure 2.1. The Nash, Raiffa-Kalai-Smorodinsky and utilitarian bargaining solutions are special in-

stances on the Pareto-optimal boundary. They can be obtained by varying the value of

β in the preference function.
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Besides these solutions, there are other axiomatic bargaining solutions such as utili-

tarian and egalitarian (see [118]). Cao in [18] showed that these solutions can be expressed

using preference functions. By varying a parameter β, which represents the trade off be-

tween one’s gain and the losses of others, a class of bargaining solutions with Nash,

Raiffa-Kalai-Smorodinsky and modified Thomson as special cases can be obtained (see

Fig. 2.1). We will apply this concept to efficient radio resource management in a WCDMA

network in our work in Chapter 5. For a more comprehensive introduction to the theory

of bargaining, we refer our readers to [101].

Coalitional Games

The bargaining games introduced previously assume that the final outcome is achieved

with the cooperation of all players. By contrast, coalitional games allow the formation

of coalitions that influence the final outcome. The solution concepts can be divided into

two families [41]:

• Valuation approach: This solution concept was introduced by Shapley [103] and

is a powerful tool for evaluating the power structure in a coalitional game. Shapley

suggested to summarise the complex possibilities facing each player in a game in

coalitional form by a single number expressing the value of playing the game, i.e.

the Shapley value. The Shapley value satisfies the axioms of group rationality,

symmetry, dummy player condition and additivity. It can be interpreted as the

expected marginal contribution of each player when he/she enters a coalition.

• Domination approach: This concept uses domination or objection to derive re-

sults concerning stability and coalition formation. The aim is to look at deviation

possibilities of coalitions for delimiting the set of outcomes which are “unobjection-

able”. The concepts in this approach are the core, stable set, bargaining set, kernel

and nucleolus.
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2.2.2 Pricing Schemes for Wired Networks

Static Pricing

The simplest form of static pricing is fixed pricing, schemes that charge a fixed price

independently of either call duration or bandwidth usage. Although this scheme is simple,

easy to budget for and has little overhead for billing and accounting, it is unresponsive to

the fact that resource demand varies throughout the day, the month and the year. It lacks

flexibility and fails to provide incentives to shape their demand in response to network

congestion.

• Flat Pricing

Under flat pricing [6], users are charged a fixed amount per time unit such as per month,

regardless of the actual usage. This charging method is akin to that of all-you-can-eat

restaurants. At such restaurants, a customer is charged not for his own food consumption,

but rather for the average amount that similar customers have eaten in the past. The

advantage of flat pricing is that it is simple to understand from the users’ perspective and

easy to deploy since no measurements are required to record users’ usage for the purpose

of billing and accounting. However, it is obvious that users have no incentive to alter

their usage behaviour in response to the network providers’ need for congestion control

and traffic management. The lack of penalty for over-use encourages heavy users for using

more than the average amount of resources.

• Time-of-Day Pricing

The definition of static pricing also encompasses time-of-day pricing, schemes that try

to accommodate peak and off-peak network periods. This policy attempts to take ad-

vantage of demand elasticity by utilizing historical information about expected peak load

and congestion periods [87]. The peak period, which is during business hours, has a much

higher call arrival rate. Off-peak periods such as late evening or early morning are periods

where network utilization is predicted to be low. Rates are lower during this off-peak time

in hopes of stimulating user demand for resources. Although this scheme is marginally

better than fixed pricing, being more responsive to users’ arrival patterns, it only has

two variations in a day based on what network operators anticipate the load would be
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without variation. It does not vary price with respect to the actual load and so will not

be able to react to unexpected increase in network traffic. One wad in which this can be

a problem is that potential users during expected peak hours might be discouraged to use

the network although it is not in a congested state.

• Paris-Metro Pricing

This pricing scheme is based on the concept of travel class, as used in public transport

systems [83]. The network is partitioned into several logical subnetworks that operate on

a best-effort basis. Each subnetwork is priced differently, for example based on customer

surveys. Depending on the expected network congestion, users select one of these logical

networks (and therefore price) that is within their budget constraint. As a result of dif-

ferential pricing, differential quality can be provided for users in best-effort networks. As

with flat pricing, this scheme is simple to use and easy to deploy. However, Paris-Metro

pricing does not provide any individual QoS guarantee. During periods of congestion,

price-insensitive users might choose a higher-priced network in expectation of a better

service. However, this may lead to congestion in the higher-priced network and thus

cause instability.

• Priority- and Reservation-based Pricing

Priority pricing is introduced in [22, 23] and uses the concept of price discrimination to

price users differently based on their price elasticity demand. Under this scheme, users

are forced to indicate the level of their resource use by selecting a priority level set by

the provider. High priority services are charged accordingly. During congestion, traffic

transmitted by priority level and low-priority traffic may be delayed or dropped. Under

the assumption that users are sensitive to the network’s performance and price signals,

prices can be set carefully such that the overall user satisfaction is higher under priority

pricing than under flat and Paris-Metro pricing. However, this scheme assumes knowledge

of users’ utility function over all time frames throughout the transmission. This model is

further extended by [87,88] to allow for bandwidth reservation. In this reservation-based

scheme, users choose a class of service and pay a fee per packet based on the class of ser-

vice chosen. At the time of call setup, users not only determine the class of service they

desire, but also how long they need the network resources. Based on this information,
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the network will simply reserve the necessary resources to accommodate the call or reject

it. Unfortunately, this policy requires enormous a priori knowledge, which is difficult and

not always realistic to obtain.

• Effective-Bandwidth Pricing

A usage-based charge that is based on effective bandwidth [62] is constructed in [60]

and [24] where charge is a function of both static parameters which are part of the traffic

contract (such as peak rate and average rate parameters) and dynamic parameters (cor-

responds to the actual traffic of the connection, such as volume and duration). Charges

depend upon both a priori, i.e. traffic contract parameters, and a posteriori, i.e. actual

usage, measurement of network resources. Static parameters (a priori) are policed while

dynamic parameters (a posteriori) are measured and effective bandwidth is bounded by a

linear function of the measured parameters. The charge proposed is incentive compatible

and hence a rational user will seek to minimise his/her charge by minimise resource use,

i.e. minimise its effective bandwidth subjected to peak and average usage. This is just one

example of constraints that can arise as part of the traffic contract between the network

and the user. On the other hand, the network will maximise the number of users subject

to the limits of capacity and buffer size of the network. The authors argued that fair

usage-based charging schemes, i.e. schemes that capture the relative amount of resources

used by connections, are required to achieve economic efficiency.

• Edge Pricing

Edge pricing [104] provides a conceptual shift of focus to locally computed charges based

on simple expected values of congestion and route. Shenker offers the criticism that those

usage-based pricing schemes which optimise overall user benefit ignore architectural and

technical issues. Instead, this model charges for usage at the edge of the network scope for

the subscriber, rather than along the expected path of the source and destination of the

calling session. The networks in turn cross-charge each other at the network edges. This

approach has the advantage of capturing billing data locally without having to exchange

data of all sessions with other networks and partners for subscriber billing, as for current

roaming arrangements between mobile markets. However, this model lacks visibility of

the routing via external networks and the costs of the traffic to both networks.
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Dynamic Pricing

Dynamic pricing could provide an additional strategy for stimulating demand and en-

couraging more efficient use of available resources. In these schemes, the price of calls

changes as demand fluctuates. Various dynamic pricing schemes have been proposed for

packet-based networks. In general, there are three major approaches for in the design of

seller-centric dynamic pricing schemes for wired networks:

• Auction-based approach: The seller, i.e. the service provider, engages the users to

bid for the network resources. Resources are allocated according to users’ bids.

• Shadow pricing approach: The seller derives a shadow price that maximises the

aggregate utility of all users. Resources are allocated according to the ratio of users’

payment with respect to the shadow price. This scheme is designed for a fixed

number of users.

• Stochastic control approach: The seller computes an optimal dynamic pricing policy

based on its knowledge of the stochastic nature of users’ arrival and departure.

The first two approaches are designed for a fixed number of users in the system. Conges-

tion control measures provided by them are reactive because prices are optimised for these

users and will only increase when the aggregate resource demand increases. By contrast,

the stochastic control has the ability to set low prices to encourage arrivals when the

system is lightly loaded, in addition to setting high prices to alleviate congestion when

the system approaches a busy state. Therefore, it is both preventive and reactive.

• Auction-based Approach

Auction-based smart-market pricing has users inform the network of their willingness

to pay for a transmission of a packet prior to transmission. It has been proposed in [68],

where it has been shown to take into account the issues of capacity expansion and the

social cost imposed on other users. To register user information, each packet carries a

bid in the packet header and packets are serviced at each router if their bids exceed some

threshold, which is also the actual charge. This threshold is chosen to be a market clearing

price, ensuring that the network is fully utilized. This scheme addresses the important

problem of congestion externalities, the congestion that one user imposes on others.
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A similar approach has been considered in [117] for service provisioning in a connection-

oriented network. A nonlinear mathematical programming model that maximises the ex-

pected revenue is proposed in [63]. The problem is solved using an auction algorithm to

search for the optimal prices, subject to the constraints on the resource allocation implied

by finite resources and QoS guarantees. The implementation of auction-based pricing

involves major structural changes not only to network management but also to users’ ap-

plications, which must be able to submit bids to the network. In addition, accurate bids

cannot be submitted without precisely knowing the delay associated with each bid [104].

• Shadow Pricing Approach

The concept of proportional fairness pricing, i.e. that a resource allocation is fair if it is in

proportion to users’ willingness to pay, was proposed in [61] and further developed in [38]

for fixed capacity networks. This technique applies optmisation techniques to maximise

operator’s revenue and the aggregate utilities of all users. In the latter, the solution is

called the social optimum outcome. Suppose that R users share a communication link

with capacity C > 0. Denote dr as the rate allocated to user r and Ur(dr) as the utility

received by user r when dr is received. The system optimal rates can be obtained from

the following problem:

max
d=(d1,...,dR)

R
∑

r=1

Ur(xr) (2.14)

s.t.
R

∑

r=1

dr ≤ C

dr ≥ 0, r = 1, . . . , R.

Depending on the characteristics of the objective and and constraint functions, this

problem can be solved using linear programming, nonlinear programming and integer

programming. When the objective function is continuous and the feasible region is com-

pact, an optimal solution exists. If the feasible region is convex and the functions Ur(dr)

are strictly concave, the optimal solution is unique. The Lagrangian function of problem

(2.14) can be written as:

L(λ,µ) =
R

∑

r=1

Ur(xr) − λ(
R

∑

r=1

dr − C) +
R

∑

r=1

µrdr. (2.15)

The Lagrange multiplier, λ, is interpreted as the shadow price of using a unit of resource.
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Users’ utility function are usually unavailable to the resource manager. If they are

charged a shadow price µ, the utility maximisation problem of the user is given by

max
dr

Ur(dr) − λdr (2.16)

s.t. dr ≥ 0.

Similarly, users can also submit a resource bid wr to the resource manager based on

shadow price λ. The decentralised utility maximisation problem becomes

max
wr

Ur(
wr

λ
) − wr (2.17)

s.t. dr ≥ 0.

A system optimum is achieved when users’ choices of resource usage in (2.16) or bid in

(2.17) coincide with the network’s choice of allocated rates in equilibrium in (2.14). Such

an allocation of resources guarantees economic efficiency, since the sum of users’ utilities

is optimised. A particular application of with this approach is in an ATM network offering

available bit rate service. Assuming the users are price-anticipating, Johari and Tsitsiklis

extended this resource allocation method to a congestion game [56].

• Stochastic Control Approach

The dynamic pricing mechanisms we have introduced thus far only deal with a fixed

number of users and do not take into account any stochastic knowledge of the system.

In [90], a stochastic control model for congestion-dependent pricing based on dynamic

user arrivals is proposed. The optimal pricing policy for the single link case is computed

using dynamic programming (see Section 2.3.1), with the objective of maximising revenue

or social welfare. The authors conclude that static pricing is asymptotically optimal

under extreme conditions, i.e. very large or many relatively small users. Later in [89],

Paschalidis and Liu extended the model to a network setting with more than one node.

The optimal prices for the network case are computed using a simulation-based approach.

This approach has been further developed in [124] and [91].

2.2.3 Pricing Schemes for Wireless Networks

While the previous section has shown that there is considerable literature which ap-

plies pricing schemes in telecommunication networks, research into the design of pricing
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schemes for wireless networks has been relatively new and few. The use of pricing in

wireless networks has been tightly coupled with power control and rate allocation. We

summarise the resource control via pricing approach in Table 2.1. The common approach

is to associate users’ satisfaction or requirement with a utility function and achieve a

socially optimal outcome using pricing. In these works, prices are only used as an internal

control mechanism and do not reflect the actual charges that end-user pay. We classify

the approaches used in existing proposals into two categories:

• Shadow pricing approach: Similar to [38, 61], the seller computes a shadow price

that maximises the social welfare of all users. Facing such a shadow price, the users

then make resource request such that their net utility, i.e. utility minus cost, is

maximised. Hence, a social welfare optimum can be achieved in a decentralised

manner if the resource requests of users coincide with the optimal allocation of the

network.

• Noncooperative game-theoretic approach: The main focus of the works that fall into

this category is decentralised, noncooperative power control. Noncooperative game

theory was first used as a framework for the power control problem in [39]. Users

adjust their transmit power so that their utility is maximised. The stable point at

which no user can unilaterally improve their utility is called the Nash equilibrium

of the system. Due to the competitive nature of the users’ interaction, a Nash

equilibrium does not always exist, and even if it does, it is likely to be inefficient.

A linear, static pricing scheme is used to discourage selfish behaviour such that

a solution that provides Pareto improvements (see Definition 2.7) over the Nash

equilibrium can be achieved.

• Shadow Pricing Approach

Marbach and Berry [70] proposed a model for resource allocation and pricing for the

downlink of time-slotted CDMA systems, where the base station can only transmit to a

single user at any given time. Users’ utility is a function of their throughput, which is in

terms of the number of packets transmitted. The pricing framework analysed is receiver

driven, i.e. the receiver pays for service. Two pricing models are considered: a pre-

determined pricing scheme and a resource auction mechanism. In the first model, users

agree to pay a pre-determined price and the base station allocate resources such that the
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Table 2.1. Summary of the use of pricing in wireless networks.

Paper Summary

[70] Problem: Downlink rate allocation with shadow pricing

Utility function: Concave function of throughput

Pricing function: Linear function of throughput

Objective: Resource manager maximises throughput, revenue and

social welfare.

[108,109] Problem: Rate and signal quality assignment with shadow pricing

Utility function: Product of transmission rate and signal quality

Pricing function: Linear function of utility

Objective: Resource manager maximises social welfare. Users

maximises their net utility.

[32,71,98,99] Problem: Uplink power control using noncooperative game theory

Utility function: Throughput per terminal life

Pricing function: Linear function of transmit power

Objective: Users maximises their net utility.

[126] Problem: Downlink power control using noncooperative game theory

Utility function: Sigmoid function of SIR

Pricing function: Linear function of transmit power

Objective: Users maximises their net utility.

[66] Problem: Downlink power control using noncooperative game theory

Utility function: Sigmoid, concave or convex function of SIR

Pricing function: Linear function of transmit power

Objective: Users maximises their net utility.

[67,131] Problem: Downlink power control with partial cooperation

Utility function: Step function of SINR

Pricing function: Linear function of transmit power and code

Objective: Users maximises their net utility.

revenue or social welfare is maximised. This pricing scheme is similar to the static pricing

scheme with service differentiation. The second model is similar to problem (2.17). Based

on the knowledge of the utility functions of all users, the base station announces a shadow
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price that maximises social welfare. Users respond by submitting bids that indicate the

amount of resources they need. In each frame, users pay a price that is equal to their bid,

which is independent of the amount of data they receive.

In [108, 109], joint optimisation of the transmission rate and signal quality, which

is defined in terms of target energy-bit-to-noise-density ratio, is considered. Users’ util-

ity is defined in terms of the product of their rate and target energy-bit-to-noise-density

ratio. However, in the case of elastic traffic, this joint problem can be decoupled into

two problems. In particular, the base station first selects an optimal target bit-energy-

to-noise-density ratio for each user and announces a shadow price per unit resource λ.

Similar to problem (2.16), the users react to the price by selecting a transmission rate that

maximises their net utility. Users are charged linearly with respect to the utility obtained.

• Noncooperative Game-Theoretic Approach

In [32,98,99], utility is a function of the throughput (bits transmitted) per terminal battery

lifetime, which is measured in bits/joule. The focus of these works is the transmission of

wireless data on the uplink. Users enter into a non-cooperative game to maximise their

individual utilities by adjusting their transmitter powers. The authors show that the

resulting noncooperative game has a Nash equilibrium that is inefficient. Pricing is used

to achieve a more Pareto efficient equilibrium solution. The base station informs each user

of a fixed price per unit transmit power and each self-optimising user adjusts its power

level to maximise their net utility (utility minus cost of power allocation). They then show

that there exists equilibria in the noncooperative power game with pricing and that these

equilibria are Pareto-superior compared to the equilibrium of the game without pricing.

However, a socially optimum power solution cannot be obtained even with pricing. The

single-cell problem presented in [99] is extended to a multi-cell environment in [98], where

each user experiences interference from other terminals outside its cell in addition to the

ones within the same cell. A similar utility function is considered in [71].

A framework for downlink utility-based power control (UBPC) for systems with soft-

ened SIR requirements is presented in [126]. Similar to [32,98,99], the problem is modelled

as a noncooperative game, in which the BS informs each user of a fixed price per unit

power and each user requests a power level that maximises its net utility (utility minus

cost). There is no constraint on the total power transmitted. A sigmoid-like function
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is used to model users’ utility as a function of SIR requirements. By adjusting the pa-

rameters of the sigmoid function, the utility functions of voice and data users can be

treated in a unified way. By softening the SIR requirement, the algorithm suggested is

exempt from the divergence problem of models with hard SIR requirements. When the

transmission environment becomes very hostile, transmissions that do not have positive

net utility will be totally shut off by UPBC and the system will still be feasible. The cost

function used is a linear function of the transmit power. However, the authors did not

provide an algorithm for how to obtain the optimal price.

A power and code allocation policy using pricing for a single-cell CDMA network

is considered in [67]. The focus is on voice users and users’ utility is a step function

of the signal-to-interference plus noise ratio (SINR). The BS announces a price per unit

transmitted power αp and a price per code αc. Each user responds by requesting the

amount of resources that maximise his/her individual surplus (utility minus cost). The

total charge for the user with power Pk is therefore αc + αpPk. Their motivation is power

and code allocation and the prices set serve only as internal network parameters to guide

the resource allocation. Therefore, users may not actually pay the prices set by the

network. This work is extended to the two-cell setting by [131].

A distributed algorithm similar to [126] is proposed in [66] to obtain an approximation

to the social optimal downlink power allocation for multi-class CDMA networks. Unlike

in [126], a total power constraint is exercised. The algorithm consists of two stages:

mobile selection, i.e. the base station selects mobiles to which power is allocated, and

power allocation, i.e. the base station allocates socially optimal power to the mobiles

selected. Since the base station needs some cooperation from unselected mobiles to not to

participate in the power allocation game in the second stage, the problem is expressed as

a partial-cooperative power allocation game. The algorithm also incorporates a dynamic

pricing component. Instead of using a fixed price per unit power, as in [32,98,99,126], the

base station dynamically adjusts the price to obtain a good approximation to the socially

optimal power allocation problem, i.e. when the total power allocated is closest to the

total power constraint.

Page 38



Chapter 2 Background

2.3 Optimal Control Theory

2.3.1 Dynamic Programming

The concept of dynamic programming was introduced by Bellman in 1957 [10]. In this

section, we will provide an overview on Markov decision process (MDP) and dynamic pro-

gramming. Treatments of dynamic programming can be found in a number of textbooks

and particularly, we recommend [12] and [92] for further reference. Markov decision the-

ory provides powerful tools for the analysis of probabilistic sequential decision processes

and has been widely applied in inventory control, maintenance, computer science and

resource allocation. An MDP is characterised by the following:

• States: A state i represents some properties of the system. For example, the

number of users, n, in a system. The state space of the system is denoted as S.

• State transitions: A transition describes a change in the system due to its stochas-

tic nature or a decision by the decision maker. For example, an arrival or departure

that respectively increases or decreases the number of users in a system.

• Transition rates and probabilities: The transition rate qij describes how often

state transitions occur. For example, the transition rate from state s = i to j

depends on the arrival rate of users. A continuous-time MDP can be converted to its

discrete-time equivalent using uniformisation techniques. In the equivalent process,

state transitions are described by transition probability pij, where
∑

j∈S pij = 1, for

every i ∈ S.

• Control actions: State transitions can be controlled by the users or the system

owner. Control actions u refer to the decisions that the owner can make in order to

achieve some system objectives. For example, the owner might block an arrival so

that the system state remains the same. The control space is denoted as U .

• Reward function: Reward function g(i, u, j) gives the amount of reward obtained

once a decision is executed in state i ∈ S and resulting a transition to state j ∈ S.

The reward function is set up such that a long-term objective is met.
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• Policy: The control u depends on the state i and the rule by which the controls

are selected is called a policy. Once an optimal policy is computed off-line, the

decision-maker can refer to the policy every time an action has to be taken.

In computing the optimal control u in state i, it is not enough to compare the mag-

nitude of the reward g(i, u, j). The desirability of going to the next state j is equally

important. The next state is ranked using the optimal reward-to-go of state j, denoted

as J∗(j).

Definition 2.10. The Bellman equation for a system with state space S, control space

U , reward function g(i,u,j) and transition probabilities pij(u) for i, j ∈ S is given as

J∗(i) = max
u∈U(i)

E [g(i, u, j) + J∗(j)|i, u] , ∀i, (2.18)

where j is the state subsequent to i, and E[·|i, u] denotes the expected value with respect

to j, given i and u. J∗

For our work in Chapter 3 and 4, we are only interested in the average reward problem

because immediate actions are as important as future actions. In that case, the Bellman

equation can be rewritten as:

J∗ + h(i) = max
u∈U(i)

{

∑

j∈S

pij(u)[g(i, u, j) + h(j)]

}

, (2.19)

where J∗ is now defined as the optimal expected revenue per state transition and h(i) is

the relative or differential value of state i. The objective is to compute an optimal policy

such that the long-term, expected reward is maximised.

The Bellman equation can be solved using dynamic programming algorithms such

as value iteration, policy iteration or linear programming. Dynamic programming meth-

ods are closely related to heuristic search. Like a heuristic search algorithm, dynamic

programming is an off-line procedure for designing an optimal control policy. However,

unlike heuristic search algorithms, dynamic programming produces an optimal closed-

loop policy instead of an open-loop policy for a given initial state. The main drawback

of this method is that the computational complexities of classical dynamic programming

algorithms increases exponentially with the size of the state space. For this reason, an

exact solution using dynamic programming is feasible only when the number of states is

quite small.

Page 40



Chapter 2 Background

2.3.2 Neuro-Dynamic Programming

Dynamic programming offers a class of algorithms for computing optimal control poli-

cies. For many problems where the number of states and controls are very large, dy-

namic programming suffers from the well-known Bellman curse of dimensionality due to

overwhelming computational requirements. In such situations, a suboptimal solution is

required. Neuro-dynamic programming (NDP) [13] refers to approximate methods that

centre around the evaluation and approximation of the optimal reward-to-go function,

possibly through simulation and/or the use of neural networks.

Instead of computing the differential reward function h(i) for every state i ∈ S,

NDP uses a compact representation h̃(·,θ) to approximate h∗(·), using parameter vector

θ. Naturally, we want to define the general structure of h̃(·,θ) and calculate parameter

vector θ so as to minimise the error between the functions h∗(·) and h̃(·,θ). The process

of tuning parameter vector θ is often referred to as training or learning. The average

reward per time J∗ is approximated by tunable scalar J̃ . If h̃(·,θ) and J̃ are close enough

to the h∗(s) and J∗, then the greedy control policy induced is, in some sense, close to an

optimal policy. Hereafter, we denote the kth step estimate of h̃(·,θ) and J̃ as h̃(·,θk) and

J̃k respectively. There are two major parts in NDP:

• Approximation architecture: The approximation architecture of the problem

refers to the development of an approximate representation of the differential reward

function h̃(·,θ) so that the problem does not suffer from the curse of dimensionality.

This should provide an acceptably close approximation to the function itself. The

design of an appropriate approximation architecture is usually problem-dependent.

Approximation architectures can be classified into two main categories: linear and

nonlinear.

• Simulation and learning: Using simulation (or learning by experience) to com-

pute the approximate reward-to-go is a key distinguishing aspect of NDP. The sig-

nificant advantage of this method is that a detailed model of the system is not

necessary. During training or learning, the parameter vector θ is systematically

tuned. Examples of learning algorithms are temporal difference algorithm TD(λ),

Q-learning and λ-policy iteration. These algorithms are derived based on dynamic

programming ideas of value and policy iterations.
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Integrated Dynamic Pricing and Call

Admission Control

3.1 Introduction

Call admission control (CAC) and dynamic pricing have been proposed as arbitration

mechanisms to regulate traffic and reduce congestion in a network. CAC is a provisioning

strategy that limits the number of call connections. It means that users are not au-

tomatically admitted, even when there are resources available. Dynamic pricing makes

adjustments often, according to the demand pattern and congestion level in order to in-

fluence the way users utilise network resources, especially to allocate limited resources to

those who value them most. Dynamic pricing also enhances network operators’ ability to

recover costs and make profits to finance capacity expansions.

In this chapter, we provide a generic framework to formulate an integrated call ad-

mission and dynamic pricing problem for a multiservice, single-cell, cellular network with

fixed capacity as a Markov Decision Problem (MDP) [92] and solve it using Dynamic

Programming methods [12], with the objective of maximising the long-term expected rev-

enue. Given a particular configuration of network users, the objective is to determine both

whether or not to accept a new connection and the optimal price per bandwidth time to

shape demand. Since premature termination of ongoing calls is more undesirable than

rejection of new call requests, it has been widely accepted that a system should allocate

a higher priority to handoff call requests. Our model allows for bandwidth reservation
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Figure 3.1. Integrated call admission control and dynamic pricing model.

for handoff calls by associating a satisfaction revenue (SR) with the admission of handoff

calls. SR is not real income to the service operator but rather an incentive which favours

handoff calls.

Our approach is similar to the stochastic control approach used in [90] and [89].

Their proposal, which does not consider handoffs, is a special case of ours since our model

jointly optimises dynamic pricing and CAC policy to handle new and handoff calls. Also,

we allow an incoming call request to be rejected even though the user has sufficient budget

and enough bandwidth is available, in order to give way to future connection requests that

generate higher expected long-term revenue. Our work is also different from a number

of papers on CAC such as [5], [33] and [20], which assume that prices are fixed and are

concerned with admission decisions only. The call admission problem that we analyse is

similar to the stochastic knapsack problem in [5], where an optimal call admission policy

is derived from a fluid model.

A similar problem, but with different approach, has been considered in [50]. In that

work, the pricing component of the integrated system is only active when the arrival rate

of the system exceeds a pre-determined optimal level. Their approach does not provide

opportunity to the network operator to generate additional revenue when the traffic level

is below average. Therefore, in addition to congestion control during high-traffic periods,

we use price as an incentive to encourage arrivals during low-traffic periods. Our CAC
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approach is also better because the number of guard channels can be optimally calculated

to reserve resources for future-arriving users so that the long-term revenue is maximised.

Apart from the differences highlighted above, our problem is different because we consider

the integrated problem in a decision-theoretic framework under an explicit model of users’

reaction to prices. The integrated control problem is depicted in Fig. 3.1 and will be

explained in the following sections.

A major assumption in all of the papers mentioned is that users arrive independently

according to a Poisson process and will be automatically lost if blocked. This queueing

model creates an underestimation of the actual arrival rate in the system, especially

during congestion. We consider an advanced arrival model that incorporates retrials and

substitution effects among services and through time. We assume that some users remain

in the vicinity of the system when they are blocked. They have a choice to defer their

call requests or to use another service as a substitute. These deferred users, together with

new arrivals, provide a more realistic estimate of the actual arrival rate to the system

than do conventional arrival models. Unlike the immediate substitution model proposed

in [89], our model allows both immediate and deferred substitutions and considers the

rate of substitution to be a random variable.

The system model is found to have a level-dependent quasi birth death (LDQBD)

structure. Using matrix-analytic methods (see [65, 79]), we can derive various system

characteristics through the stationary distribution of the Markov chain. Finally, we con-

sider a simplified version of the control problem that sets the price per bandwidth time for

all services to an optimal value, instead of one for each service, that maximises the total

expected revenue. The original optimal policy, which allows for price variation among

the services, is an example of price discrimination. The near-optimal case (no price dis-

crimination) provides lower expected revenue but has the benefit of reduced complexity

because it considers a smaller price control space.

The remainder of the chapter is organised as follows. In Section 4.2, we present our

system model. We then formulate our integrated problem as an MDP in section 4.3.

The stationary distribution of the model is then derived in Section 3.4 to obtain system

characteristics. We then present computational results and discuss price discrimination

in section 4.5. Finally, we present our main conclusions and suggestions for possible

extensions in section 4.6. This work has been partially presented in [45].
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3.2 System Model

We consider a network with a total capacity of B units of bandwidth and J classes of

service. The price per unit time for using one unit of bandwidth of service class j is

denoted by upj
, j = 1, 2, . . . , J . Each service class j, which uses bj units of bandwidth, is

characterised by its Poisson-distributed new and handoff call arrival rates λn
j and λh

j ; and

exponentially-distributed call holding time 1/µj. The satisfaction that users gained from

a call is quantified by their willingness to pay (WTP) Ψj, which is a Weibull-distributed

parameter with mean ψj and shape βj. WTP is similar to the concept of utility and

measures how much a user values the call.

The Weibull distribution is one of the most widely used lifetime distribution in re-

liability engineering. We use the Weibull distribution to model users’ WTP because it

is versatile and can take up the characteristics of other types of distributions, based on

the value of the shape parameter [86]. Within the telecommunications framework, it has

been used to model the traffic characteristics of packet audio streams in [21], to simulate

data traffic in wireless networks in [106] and to characterise fading channels in [129]. As

shown in Fig. 3.2, different values of the shape parameter can have different effects on the
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behaviour of the distribution. For example, when β = 1, the probability density function

of the Weibull reduces to that of an exponential distribution. Exponential demand func-

tions, as used in [50] and [36], are special instances of the WTP distribution considered in

this work. As mentioned in [50] and [36], the parameters that define the utility function

must be identified by adequate market research. CAC is triggered by call connection

requests. At the time that a new or handoff call is accepted, the system must have at

least bj units of bandwidth available.

Definition 3.1. A CAC policy determines the state-dependent admission policy:

uc(s) = (uh
c (s),u

n
c (s)) = (uh

c1
(s), . . . , uh

cJ
(s), un

c1
(s), . . . , un

cJ
(s)) (3.1)

for all states s ∈ S, where un
cj

, uh
cj

∈ {0, 1}. A handoff (new) connection can either be

accepted with uh
cj

= 1 (un
cj

= 1) or rejected with uh
cj

= 0 (un
cj

= 0).

Definition 3.2. Price control determines the state-dependent pricing policy:

up(s) = (up1
(s), . . . , upJ

(s)), (3.2)

with upj
(s) ∈ Upj

, to regulate new call arrivals. Upj
is the set of possible values of upj

.

We will use upj
(s) and upj

, and ucj
(s) and ucj

interchangeably in this chapter. A new

user will decide to either make a connection request if his or her budget is sufficient to cover

the expected call cost, i.e. Ψj ≥ upj
bj/µj or defer the request otherwise. When blocked,

handoff users will leave the system immediately. However, new users of service j who are

rejected by control or have insufficient WTP will either retry later with probability αRj
,

substitute out to another service k 6= j, with probability αSOjk
or abandon the system

with probability αAj
. New users of service j who retry later and users of service k 6= j who

substitute into service j are said to be in orbit and will independently generate requests

for service at exponentially-distributed time intervals with mean 1/σj until they obtain

service, abandon or substitute out. In other words, our model incorporates substitution

effects among classes and through time, i.e. users can use another service as a substitute

or defer their call until the price falls below their WTP.

Definition 3.3. The probability of having the sufficient WTP to make a call is defined

as the access probability. The access probability of service j is given as

αPj = 1 − FW (upj
bj/µj), (3.3)
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where FW (y) = P [Ψj ≤ y |ψj, βj] is the cumulative distribution function of the Weibull-

distributed Ψj.

New call arrival rate λ0j is the maximum arrival rate, limited by the access probability

αPj. Thus, the total price-affected new call arrival rate to a service is

λT
j = αPj(λ

n
j + xjσj), (3.4)

where xj is the number of users in orbit and xjσj is the retrial rate of these users. The

access probability can be seen as an arrival gate that controls the flow of price-affected

arrivals of new users to the system. By varying the admission price per bandwidth time

upj
for every state in the system, the new arrival rate of a particular service can be

encouraged or discouraged. Note that handoff arrivals are not price-affected.

Our pricing policy relies on the operator’s ability to estimate the statistical distribu-

tion of users’ WTP. In reality, this information can be obtained in a number of ways. For

example, information on users’ call budget can be extracted from a network operator’s

historical data on users’ spending patterns. With suitable incentives offered by the net-

work operator, users can also willingly share their WTP with their operator. Although it

is expected that most users would like to spend as little as possible and some would only

indicate their minimum WTP, higher-end users would place a higher value on a call during

congestion when their initial WTP is not sufficient. This procedure can be automated by

including a simple call-budgeting program into users’ mobile device.

The objective is to exercise call admission and pricing to maximise the long-term

expected revenue. Intuitively, an optimal integrated admission and price control policy

should regulate demand by providing incentives for users to access the network when

bandwidth utilisation is low and defer low-valued calls when bandwidth utilisation is

high so that resources can be allocated to users who value them most. We assume that

a fixed block of bandwidth is allocated to each call for the entire duration of that call,

meaning that the quality of service (QoS) of all calls is guaranteed by the network. Hence,

our approach fits well with a conventional, circuit-switched network but also applies to

network in which a virtual circuit is provided to each call.
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3.3 Markov Decision Problem Formulation

In this section, we formulate our problem as an infinite-horizon MDP with a finite set

of states. MDP has been a popular paradigm for sequential decision making problems

under uncertainty and dynamic programming provides a framework for studying such

problems. The state evolves through time according to given transition probabilities, a

function of the system parameters and state-dependent CAC and pricing decisions uc and

up described. The interval between two transitions is referred to as a stage.

3.3.1 State Space and Transition Rates

We first define the set of states where the system is full and no new or handoff calls can

be admitted as follows:

Sfull = {(x,n)|
J

∑

j=1

njbj = B}. (3.5)

The system can be described by a Markov Chain on the state space:

S = {(x,n) : 0 ≤ xj ≤ Xj, (x,n) /∈ Sfull, ∀j = 1, . . . , J}.

where vectors n = (n1, . . . , nJ)T, x = (x1, . . . , xJ)T and b = (b1, . . . , bJ)T represent the

number of active connections, the number of users in orbit and the amount of bandwidth

required for all services respectively. To ensure that the state space remains finite, we

limit the number of users in orbit to X. When the number of users of service j in orbit

reaches Xj, the blocked calls will be lost and no users from other services can substitute

in and they have no further influence on the system. This truncation method is often

used in the analysis of retrial systems to reduce the complexity involved [31]. Methods

for choosing appropriate level of truncation are discussed in [80] and [15].

We will now derive the transition rates from a state s = (x,n). The number of active

connections in the system increases due to arriving handoff users at a rate of

q((x,n), (x,n + ej)) = λh
j u

h
cj

= λ0j(u
h
cj

). (3.6)

The value of an indicator function I(a) is 1 if condition a is true and 0 otherwise. New

and retrying users in orbit increase the number of connections at rates

q((x,n), (x,n + ej)) = αPj
(upj

)λn
j u

n
cj

= λ1j(upj
, un

cj
) (3.7)

q((x,n), (x − ej,n + ej)) = αPj
(upj

)xjσju
n
cj

= λ2j(upj
, un

cj
) (3.8)
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Figure 3.3. Transition Diagram of state s = (x,n).

respectively, where ej is a unit vector with 1 in its jth position. The number of connections

will decrease at a rate of:

q((x,n), (x,n − ej)) = njµj. (3.9)

The number of users in orbit j will only decrease if users abandon service at a rate of

q((x,n), (x − ej,n)) = (1 − αPj
(upj

)un
cj

)αAj
xjσj = λ3j(upj

, un
cj

) (3.10)

or substitute out to another service k, k 6= j, at

q((x,n), (x − ej + ek,n)) = (1 − αPj
(upj

)un
cj

)αSOjk
xjσj = λ4jk(upj

, un
cj

). (3.11)

The number of users in orbit j will increase if new users retry at a rate of

q((x,n), (x + ej,n)) = (1 − αPj
(upj

)un
cj

)αRj
λT

k +
J

∑

k 6=j

(1 − αPk
(upk

)un
ck

)αSOkj
λT

k

= λ5j(up,u
n
c ) (3.12)

or users of another service, say k, where k 6= j, substitute in at a rate of

q((x,n), (x + ej − ek,n)) = (1 − αPk
(upk

)un
ck

)αSOkj
xkσk = λ4kj(upk

, un
ck

). (3.13)

Note that (3.11) and (3.13) are actually the same. In order to avoid calculating the

same rates twice, we only need to consider the rates associated with a user substituting
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out for each service. We also note that transitions q((x,n), (x−ek,n+ej)) are disallowed

and set to zero. This means that users substituting in from service k need to enter the

orbit of service j before reattempting. Users who reattempt unsuccessfully and decide to

reattempt again and new users who abandon do not change the state of the system, and

therefore need not be considered. With reference to Fig. 3.3, the transition rates from

state s = (x,n) are summarised as follows:

q(s, s′) =























































































−ν(s) if s′ = (x,n)

λ0j(u
h
cj

) + λ1j(upj
, un

cj
) if s′ = (x,n + ej)

λ2j(upj
, un

cj
) if s′ = (x − ej,n + ej)

λ3j(upj
, un

cj
) if s′ = (x − ej,n)

λ4jk(upj
, un

cj
) if s′ = (x − ej + ek,n)

λ5j(up,u
n
c ) if s′ = (x + ej,n)

njµjI(nj > 0) if s′ = (x,n − ej)

0 otherwise.

(3.14)

where the total transition rate out of state s is given by

ν(s) =
J

∑

j=1,k 6=j

[λ0j(u
h
cj

) + λ1j(upj
, un

cj
) + λ2j(upj

, un
cj

) + λ3j(upj
, un

cj
) + λ4jk(upj

, un
cj

)

+λ5j(up,u
n
c ) + njµj]. (3.15)

3.3.2 Event and Control Space

Even though the process evolves in continuous time, we only have to consider the state of

the network when certain events take place. We say that an event happens at a certain

time if any of the transitions derived in the previous section occurs. Let Ω denote the

set of possible events, i.e. Ω = {ω |ω ∈ {0, 1, 2, 3, 4, 5, 6, 7}J}. The list of possible events

corresponds to the possible transitions outlined previously, i.e. event 0 indicates a handoff

arrival, 1 indicates a new arrival, 2 indicates an arrival from orbit and so on. Event 7

indicates no event occurring. For each state s ∈ S and event ω ∈ Ω, U(s, ω) is the set of

available decisions:

U(s, ω) =







{Uc × Up} if ω ∈ Ωa

{Up} if ω /∈ Ωa,
(3.16)
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where Ωa is the set of all events consisting of arrival events 1 or 2. Uc and Up denote

the set of all possible call admission and price control decisions and are defined as Uc =

{uc |u
n
cj
∈ {0, 1}, ∀j} and Up = {up |upj

∈ Upj
, ∀j} respectively.

Given that the system is in state s ∈ S with control actions u ∈ U available and an

event ω ∈ Ω occurred, the next state, s′ ∈ S, is given by a function f : S × Ω × U such

that

f(s, ω,u) =























































































(x,n + ej) if ωj = 0, uh
cj

= 1

(x,n + ej) if ωj = 1, un
cj

= 1

(x − ej,n + ej) if ωj = 2, un
cj

= 1

(x − ej,n) if ωj = 3

(x − ej + ek,n) if ωj = 4

(x + ej,n) if ωj = 5

(x,n − ej) if ωj = 6

(x,n) otherwise.

(3.17)

3.3.3 Revenue Maximisation Problem

Using uniformisation [12], the continuous-time MDP can be transformed into its discrete-

time equivalence with the so-called uniform transition rate, where the total transition rate

out of any state is bounded by ν. The transition probabilities p(s, ω,u) for state s are

then given by

p(s, ω,u) =























































































λ0j(u
h
cj

)

ν
if ωj = 0

λ1j(upj
,un

cj
)

ν
if ωj = 1

λ2j(upj
,un

cj
)

ν
if ωj = 2

λ3j(upj
,un

cj
)

ν
if ωj = 3

λ4jk(upj
,un

cj
)

ν
if ωj = 4

λ5j(up,un
c )

ν
if ωj = 5

njµj

ν
if ωj = 6

1 − ν(s)
ν

and if ωj = 7,

(3.18)

where the total transition rate out of state s ∈ S is given by (3.15).
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The revenue rate collected by the system at a particular state s = (x,n) is be given

by the reward function

g(s, ω,u) =



















SRj if ωj = 0 and uh
cj

= 1

rj(upj
(s)) = upj

(s)bj/µj if ωj = 1, 2 and un
cj

= 1

0 otherwise.

(3.19)

Reward rj(upj
(s)) is the revenue collected when a user of class j is admitted. In order

to reflect the higher importance of accepting handoff calls, SRj should be greater than

the actual revenue provided by the admission of new call requests of class j. A user is

admitted based on a single admission price that will not change for the entire duration of

the call.

Proposition 3.1. All policies Λ = {u = (uc(s),up(s)) | s ∈ S,u ∈ U} are unichain if

αPj
(upj

(s)) < 1 (3.20)

for all states s ∈ S.

Proof. A policy Λ is said to be unichain if the corresponding Markov chain has no two

disjoint closed sets of states [92,107]. When a state sK is accessible from s0, i.e. s0 → sK ,

there exists a sequence of states s1, s2, . . . , sK−1 ∈ S such that

p(s1|s0,u(s0))p(s2|s1,u(s1)), . . . , p(sK |sK−1,u(sK−1)) > 0. (3.21)

To prove that there is no disjoint closed set of states, we show that all states (x,n) ∈ S are

accessible from (0,0) when condition (3.20) is satisfied. We show our proof in two parts.

First, we show that (x,n) → (x,0) for all (x,n) ∈ S. Next, we prove that (x,n) → (0,n).

Part 1 : For every states (x,n) ∈ S and service j, (x,n) is accessible from (x,0), i.e.

(x, (n1, . . . , nj, . . . , nJ)) → (x, (n1, . . . , 0, . . . , nJ)), nj > 0,

p((x,n − ej)|(x,n))p((x,n − 2ej)|(x,n − ej)) . . . p((x,n − njej)|(x,n − (nj − 1)ej))

=
njµj

ν

(nj − 1)µj

ν
. . .

µj

ν
= nj!

(µj

ν

)nj

> 0. (3.22)

The probability of a user of service j departing from service is independent of the optimal

control u. Since (x, (n1, . . . , nj, . . . , nJ)) → (x, (n1, . . . , 0, . . . , nJ)) for all j ∈ {1, . . . , J},

it is easy to see that

(x,n) → (x,0). (3.23)
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Part 2 : Denote sk = (x − kej,n), k = 0, . . . , xj, the probability of accessing state

((x1, . . . , 0, . . . , xJ),n) from state ((x1, . . . , xj, . . . , xJ),n) is given by

p(s1|s0,u(s0))p(s2|s1,u(s1)) . . . p(sxj
|sxj−1,u(sxj−1))

=
(1 − αPj

(upj
(s0))u

n
cj

(s0))αAj
xjσj

ν
. . .

(1 − αPj
(upj

(sxj−1))u
n
cj

(sxj−1))αAj
σj

ν

= xj!
(αAj

σj

ν

)xj
xj−1
∏

k=0

[1 − αPj
(upj

(sk))u
n
cj

(sk)]. (3.24)

It is obvious that (x,n) → (x − xjej,n) when αPj
(upj

(sk)) < 1 for all k = 1, . . . , xj − 1

and un
cj

(sk) ∈ {0, 1}. In that case, (0,n) is accessible from all states (x,n) ∈ S, i.e.

(x,n) → (0,n). (3.25)

Based on (3.23) and (3.25), we can conclude that all states (x,n) ∈ S are accessible from

(0,0) and vice versa, i.e.

(x,n) → (0,0) (3.26)

when αPj
(upj

(sk)) < 1. Therefore, no disjoint closed set of states exists for all policies

when condition (3.20) is satisfied.

For unichain models, all stationary policies have constant gain. It is shown in [92] that

whenever a stationary policy has nonconstant gain, a stationary policy can be constructed

to dominate the nonconstant gain policy. For simplicity, we assume that condition (3.20)

is always satisfied by only allowing prices upj
(sk) that result in αPj

(upj
(sk)) < 1. The

average reward-to-go function is given by the Bellman equation:

J∗ + h(s) = max
u∈U(s,ω)

[

∑

ω∈Ω

p(s, ω,u)[g(s, ω,u) + h(f(s, ω,u))]

]

(3.27)

where J∗ and h(s) denote the optimal expected reward per stage and the relative or

differential reward rate of state s ∈ S, respectively. A stage here means a transition in

the uniformised chain.
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For example, when s = (x,n), the Bellman equation becomes

J∗ +h(x,n)

= max
up,uc

[

J
∑

j=1

(
λ0j(u

h
cj

)

ν
[SRj + h(x,n + ej)] +

λ1j(upj
, un

cj
)

ν
[rj(upj

(s)) + h(x,n + ej)])

+
J

∑

j=1

(
λ2j(upj

, un
cj

)

ν
[rj(upj

(s)) + h(x − ej,n + ej)] +
λ3j(upj

, un
cj

)

ν
h(x − ej,n))

+
J

∑

j=1

J
∑

k 6=j

λ4jk(upj
, un

cj
)

ν
h(x − ej + ek,n) +

J
∑

j=1

λ5j(up,u
n
c )

ν
h(x + ej,n)

+
J

∑

j=1

njµj

ν
h(x,n − ej) + (1 −

ν(x,n)

ν
)h(x,n)

]

,

where ν(x,n) is defined in (3.15). Rearranging the previous equation, we have

J∗ + h(x,n) =
J

∑

j=1

njµj

ν
[h(x,n − ej) − h(x,n)] + h(x,n)

+ max
up,uc

[

J
∑

j=1

λ0j(u
h
cj

)

ν
[SRj + h(x,n + ej) − h(x,n)]

+
J

∑

j=1

λ1j(upj
, un

cj
)

ν
[rj(upj

(s)) + h(x,n + ej) − h(x,n)])

+
J

∑

j=1

λ2j(upj
, un

cj
)

ν
[rj(upj

(s)) + h(x − ej,n + ej) − h(x,n)]

+
J

∑

j=1

λ3j(upj
, un

cj
)

ν
[h(x − ej,n) − h(x,n)]

+
J

∑

j=1

J
∑

k 6=j

λ4jk(upj
, un

cj
)

ν
[h(x − ej + ek,n) − h(x,n)]

+
J

∑

j=1

λ5j(up,u
n
c )

ν
[h(x + ej,n) − h(x,n)]

]

.

The Bellman equation can then be expressed in terms of the operators for handoff and

new users, Hh
j [h(x,n)] and Hn

j [h(x,n)], as follows:

J∗+h(x,n) = h(x,n) +

1

ν

J
∑

j=1

[

λh
j H

h
j [h(x,n)] + Hn

j [h(x,n)] + njµj[h(x,n − ej) − h(x,n)]
]

.
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The operator Hh
j [h(x,n)] represents the choice between accepting and rejecting a hand-

off users, taking into account the immediate and future expected reward. Given that
∑J

j=1 njbj ≤ B − bj, Hh
j [h(x,n)] is given by

Hh
j [h(x,n)] = max

uh
cj∈{0,1}

[uh
cj

(SRj + h(x,n + ej) − h(x,n))]. (3.28)

Therefore, a handoff user will only be admitted only if the satisfaction revenue it provides

exceeds the loss of expected revenue, or opportunity cost, due to an additional user. The

optimal handoff CAC action is given by

uh
cj

=







1 if SRj > h(x,n) − h(x,n + ej)

0 otherwise.
(3.29)

Hn
jk[h(x,n)], represents the integrated CAC and pricing control operator for new

users, is defined as follows:

Hn
j [h(x,n)] = max

up,uc

[

λ1j(upj
, un

cj
)[rj(upj

(s)) + h(x,n + ej) − h(x,n)] + λ2j(upj
, un

cj
)rj(upj

(s))

+λ2j(upj
, un

cj
)[h(x − ej,n + ej) − h(x,n)] + λ3j(upj

, un
cj

)[h(x − ej,n) − h(x,n)]

+
J

∑

k 6=j

λ4jk(upj
, un

cj
)[h(x − ej + ek,n) − h(x,n)] + λ5j(up,u

n
c )[h(x + ej,n) − h(x,n)]

]

.

If the system is allowed to set a very high price upj
such that the corresponding access

probability αPj
(upj

) = 0, price can be used as the sole admission control parameter for

new users. In that case,

un
cj

(s) = I(αPj
(upj

(s)) = 0)I(s /∈ Sfull) (3.30)

and the operator Hn
jk[h(x,n)] reduces to

Hn
j [h(x,n)] = max

up

[

λ1j(upj
)[rj(upj

(s)) + h(x,n + ej) − h(x,n)]

+λ2j(upj
)[rj(upj

(s)) + h(x − ej,n + ej) − h(x,n)] + λ3j(upj
)[h(x − ej,n) − h(x,n)]

+
J

∑

k 6=j

λ4jk(upj
)[h(x − ej + ek,n) − h(x,n)] + λ5j(up)[h(x + ej,n) − h(x,n)]

]

. (3.31)

For any stationary policy for unichain Markov models, the optimal expected revenue

per stage is independent of the initial state. It has been argued that the standard infinite-

horizon average reward dynamic programming theory applies and there exists a stationary
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policy which is optimal [12]. There are a number of methods for obtaining the values of

J∗ and h(s). Most of them are value iteration and policy iteration algorithms, which

can be computed off-line and before the system starts to operate. A policy Λ∗ is said

to be optimal if J∗
Λ∗(s) ≥ J∗

Λ(s) for every other policy Λ. If policy iteration is used, we

can simplify (4.19) by exploiting the repetitive Quasi-Birth-Death (QBD) structure of

the chain (see Section 3.4) [125]. (4.19) can be rewritten using dynamic programming

operator T , which maps the set of functions on the state space to itself:

(Th)(s) = J∗ + h(s). (3.32)

Then, (Thk)(s) is just the total optimal expected average reward in a k-stage problem,

starting from state s. The natural version of the value iteration method for the aver-

age reward problem is simply to generate successively the finite horizon optimal costs

T kho, k = 1, 2, . . ., starting with the zero function ho. It is then intuitive that the k-stage

average reward limk→∞
T kho

k
converges to the optimal average reward vector (as proven

in [12]). However, some components of T kho typically diverge to ∞ or −∞ and therefore

direct computation of limk→∞
T kho

k
is numerically impractical. To solve this problem, we

introduce the minimum and maximum error bounds:

ck = min
s

[(Thk)(s) − hk(s)], (3.33)

ck = max
s

[(Thk)(s) − hk(s)] (3.34)

and stop the iteration when ck − ck ≤ ε.

3.4 Calculation of Stationary Probabilities

In this section, we will present the method for deriving performance measures of the system

from its stationary distribution, which will be used in the results analysis in Section 4.5.

Firstly, we analyse the Level-Dependent Quasi-Birth-Death (LDQBD) structure of the

system model in Section 3.4.1. Secondly, we present the matrix analytic methods used

in 3.4.2. Finally, we provide the derivation of important system characteristics from the

stationary distribution in 3.4.3.
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3.4.1 Level-Dependent Quasi-Birth-Death Process

The system model is found to have a general LDQBD structure (see [65] and [15]). An

LDQBD differs from a QBD process in that the transition rates at each level can be

dependent upon the level the process is in. The level of a QBD process is usually indicated

by its first entry in the system state. In our case, a level is best indicated by the number

of users in orbit of Service 1. The LDQBD process has an infinitesimal generator Q of

the block partitioned form:

Q =



















Q
(0)
1 Q

(0)
0 0

Q
(1)
2 Q

(1)
1 Q

(1)
0

. . . . . . . . .

Q
(X1−1)
2 Q

(X1−1)
1 Q

(X1−1)
0

0 Q
(X1)
2 Q

(X1)
1



















(3.35)

where Q
(x1)
0 and Q

(x1)
2 are non-negative matrices. Q

(x1)
1 has non-negative off-diagonal

entries. They give the rates of going up one level (forward transitions), staying in the

same level (local transitions) or going down one level (backward transitions) respectively.

We say that the process is skip-free in the levels. Forward and backward transitions are

events that are associated with the arrival and departure of a user in the orbit of service

1 respectively while local transitions include all other events. The transition rates have

been described in (3.14). The states can be partitioned into levels:

l(k) = {s = (k, x2, . . . , xJ , n1, . . . , nJ) : s ∈ S}. (3.36)

Position (x2, . . . , xJ , n1, . . . , nJ) within the level is termed its phase. Matrices Q
(x1)
0 , Q

(x1)
1

and Q
(x1)
2 are of size L × L, where L = ΠJ

j=0(Xj + 1)M and M is the number of possible

values of vector n given that the system has a capacity of B. The detailed entries of Q
(x1)
0 ,

Q
(x1)
2 and Q

(x1)
1 for a two-service network are detailed in the Appendix.

3.4.2 Matrix Analytic Methods

In order to obtain stationary probabilities vector π, we need to solve the simultaneous

equations πQ = 0 and πe = 1. The key to a general solution for generator Q is the

assumption that a geometric relation holds among the stationary probability vectors π(x1),

expressed as follows:

π(x1) = π(x1−1)Rx1−1, x1 ≥ 1. (3.37)
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The family of {Rx1
, x1 ≥ 0} matrices is defined as the expected sojourn time in k per

unit of sojourn time in k − 1 and satisfy the following non-linear matrix equation:

Q
(x1)
0 + Rx1

Q
(x1)
1 + Rx1

Rx1+1Q
(x1+1)
2 = 0, x1 ≥ 0. (3.38)

Rx1
is the minimal non-negative solution of the above equation, whose solutions are not

necessarily unique. The matrices {Ux1
, x1 ≥ 1} are defined by

Ux1
= Q

(x1)
1 + Rx1

Q
(x1+1)
2 , x1 ≥ 1. (3.39)

Suppose that the LDQBD starts in level x1 and we observe the process only at time

points when it is in level x1, before it visits level x1 − 1 for the first time. If we call this

partial process Bk, then Ux1
is the infinitesimal generator for Bx1

. Assuming that we

know truncation level X, the stationary vector π can be calculated iteratively using the

equations defined earlier using the following algorithm [65]:

Step 1 Initialise UX1
= Q

(X1)
1 .

Step 2 Recursively calculate Rk for k = X1 − 1 to 0 using Rk = Q
(k−1)
0 (−Uk+1)

−1

and Uk = Q
(k)
1 + RkQ

(k+1)
2 .

Step 3 Solve π(0)(Q
(0)
1 +R0Q

(1)
2 ) = 0 subject to normalizing equation πe =

∑X1

k=0 π(k) =

π(0)
∑X1

k=0

[

∏k−1
m=0 Rm1

]

= 1.

Step 4 For k = 1 to X1, compute π(k) using π(k) = π(k−1)Rk−1.

3.4.3 System Characteristics

The new and handoff call blocking probabilities can be calculated using the stationary

distribution under a given policy Λ.

Definition 3.4. The handoff call blocking probability of service class j is defined as

PHj
=

∑

s∈S

(1 − uh
cj

(s))π(s) (3.40)

where π(s) is the stationary probability of state s ∈ S.
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Definition 3.5. The new call blocking probability of service class j under admission

control un
cj

(s), s ∈ S, is given as

PBj
=

∑

s∈S

(1 − un
cj

(s))π(s), (3.41)

where π(s) is the stationary probability of state s ∈ S.

Table 3.1. System parameters derived using stationary distribution of the system.

System Parameter Definition

Expected price P j =
∑

s∈S upj
(s)π(s)

Channel utilisation U =
∑B

c=1

∑

s∈Sfull

c
B

π(s)

Expected number of users in orbit Xj =
∑Xj

i=0

∑

s∈S iπ(s|xj = i)

Expected number of users in service N j =
∑bB/bjc

i=0

∑

s∈S iπ(s|nj = i)

Expected number of users in system NT =
∑J

j=0 Xj + N j

Mean time spent by users in orbit Woj =
Xj

αPj
(λ1j+Xjσj)

Mean time spent by users in system Wsj =
Xj+Nj

αPj
(λ1j+Xjσj)

Mean number of retrials rj = σjWoj

Other important system parameters are presented in Table 3.1. Note that the mean

time spent by an arbitrary network user in orbit, Woj and in the system, Wsj, are derived

using Little’s Theorem [94]. The theorem states that the average number of users can

be determined from the product of the average user arrival rate and time spent in the

service.
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3.5 Numerical Results

In this section, we will firstly discuss the choice of parameters in our numerical experi-

ments. Then, we analyse the results in terms of reward maximisation in Section 3.5.1,

congestion control in Section 3.5.2, exponential WTP distribution in Section 3.5.4 and

price discrimination in Section 3.5.3.

We consider a simple problem with two services because the size of the state space

grows exponentially with the number of services in the system. We compare our Opti-

mal Call Admission and Dynamic Pricing (OCADP) policy numerically in the revenue

maximisation problem with three other policies:

1. Always Accept and Static Pricing (AASP)

2. Optimal Call Admission and Static Pricing (OCASP)

3. Always Accept and Dynamic Pricing (AADP)

Definition 3.6. An Always Accept admission policy always admit an additional user if

sufficient bandwidth is available, i.e.

ucj
(s) = I(s /∈ Sfull). (3.42)

This strategy is equivalent to having no call admission control at all. On the other

hand, the Optimal Call Admission policy, as defined in Definition 3.1, is a state-dependent

policy that may, depending on the network parameters, reject a connection request even

though sufficient bandwidth is available. For both AASP and OCASP, we use a standard

static pricing mechanism that sets the price per bandwidth time to the average price. For

the dynamic pricing setting (see Definition 3.2) in AADP and OCADP, we allow price

upj
and αPj

(upj
) to vary in order to maximise the long-term expected revenue.

To illustrate the benefits of our integrated policy, we also purposely set up service 2

to generate higher expected revenue than service 1. In this simulation, the SR of each

service is set to 3 times of the expected reward, rj, to reflect the higher priority of handoff

calls. However, as SR increases, so does the number of guard channels and, consequently,

more new calls will be blocked. All other parameters are listed in Table 3.2. We will

analyse the results for two WTP distributions (see Fig. 3.4), i.e. with β = 3.5 and 1.0.

Both have the same mean WTP ψ = (1, 1) per bandwidth time but different distribution.
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3.5 Numerical Results

Table 3.2. Simulation parameters for AASP, OCASP, AADP and OCADP policies.

Simulation Parameter Value

Total bandwidth B = 20

Maximum number of users in orbit X = (3, 4)

New arrival rate λn = (1.0, 2.0)

Handoff arrival rate λh = 0.25λn

Call hold time 1/µ = (1, 2)

Reattempt rate σj = (0.5, 0.5)

Bandwidth usage b = (2, 2)

Probability of reattempt αR = (0.6, 0.6)

Probability of substitution out αSO = (0.2, 0.2)

Probability of abandonment αA = (0.2, 0.2)

Satisfaction revenue SRj = 3rj, j = 1, 2
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Figure 3.4. WTP pdfs and access probabilities vs. price with β = 3.5 and 1.0.
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Chapter 3 Integrated Dynamic Pricing and Call Admission Control

3.5.1 Policy Comparison

The advantage of integrating CAC with dynamic pricing is evident. Integrated policy

OCADP, as shown in Fig. 3.5, generates the highest optimal expected reward per stage,

J∗, followed by AADP, OCASP and AASP. Under policy AASP, the average reward

increases at first due to the higher total new call arrival rate. However, as the new call

arrival rate increases from λ = (1.0, 2.0) to (1.0, 8.0), AASP is unable to handle the

additional traffic load and results in a decrease in the average reward. Policy OCASP

improves over AASP by exercising optimal CAC to give priority to handoff calls and

higher revenue-generating new calls of service 2. The effect of optimal CAC becomes more

significant as the total new call arrival rate increases and resources become increasingly

scarce.

The dynamic pricing component in AADP and OCADP further provided reward

improvements over AASP and OCASP by setting higher admission prices for new calls

when bandwidth becomes scarcer. Extra reward is obtained by charging lower admission

prices when traffic load is light. However, as the arrival rate to the system increases,

higher prices alone will no longer be sufficient to deter high WTP users. By integrating

the CAC and dynamic pricing components, the optimal policy OCADP maximises revenue
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Figure 3.5. Optimal revenue per stage J∗ for WTP shape β = 3.5.
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3.5 Numerical Results

by exercising optimal control to give higher priority to high reward-generating new and

handoff calls of service 2. The optimal policy also adjusts prices according to the system

state, i.e. increasing prices as bandwidth becomes scarce to discourage arrivals of all

services and decreasing prices when bandwidth consumption is low.

Assuming that the operator is allowed to charge very high prices such that users will

be blocked when αP = 0, we focus our discussion on the CAC policy for handoff users.

We illustrate the optimal CAC policy for the case of λh = (1, 6) in Fig. 3.6. The policy

is defined as uh
c (s) = (uh

c1
(s), uh

c2
(s)), with uh

c1
, uh

c2
∈ {0, 1}, and can either reject users of

both services with uh
c (s) = (0, 0); only reject service 1 users with uh

c (s) = (0, 1); only reject

service 2 users with uh
c (s) = (1, 0); or admit both with uh

c (s) = (1, 1). In our simulation,

service 2 provides higher expected reward and therefore has higher a priority. Since the

SR of both services is set to three times the revenue generated from the admission of
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Figure 3.6. Optimal call admission policy of OCADP. The x and y axes indicate the state of service

1, s1 = (n1, x1), and 2, s2 = (n2, x2), respectively. The combination of s1 and s2

forms a state s = (s1, s2) in the system. The CAC policy of each state is indicated by

the following symbols: ’◦’ represents uc = (0, 1) and ’⊗’ represents uc = (0, 0). States

with ’¤’ are states where the bandwidth of the system is fully utilised. In other states,

uc = (1, 1).
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new users, handoff users have higher priority than the new users within the same service.

However, as indicated by (3.29), the handoff users of service 1 are blocked in some states

because the SR provided by them in these states is less than the expected reward gained

from a future arrival of a handoff or new user of service 2. Therefore, by appropriately

setting the SR of each service, the system has the flexibility to block some low priority

handoff calls when the system becomes increasingly congested.

The higher priority of service 2 users is also reflected in the structure of the optimal

differential reward function, h(s). Referring to Fig. 3.7, we observe that h(x,n) first in-

creases as (n1, x1) and (n2, x2) increase but then decreases as the bandwidth consumption

in s = (x,n) approaches the system limit. The rate at which h(x,n) increases according

to (n2, x2) is higher than that of (n1, x1), i.e.

δh(x1, x2, n1, n2)

(n2, x2)
>

δh(x1, x2, n1, n2)

(n1, x1)
. (3.43)

Again, this shows the preference of the system to admit service 2 users in order to maximise

the expected reward. As the system becomes congested, it is more profitable to deter

service 1 users from receiving service by imposing higher prices and blocking them if

necessary.
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Figure 3.7. Optimal differential reward rate, h∗(s).
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Figure 3.8. Optimal prices per bandwidth time for OCADP with B = 20, ψ = (1, 1) per bandwidth

time and b = (2, 2). The x and y axes indicate the state of service 1, i.e. s1 = (n1, x1),

and 2, i.e. s2 = (n2, x2) respectively. The combination of s1 and s2 forms a state.
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As the network becomes congested, the optimal pricing policy deters low-WTP ar-

rivals by charging higher price per bandwidth time. The state- and service-dependent

dynamic pricing policy is illustrated in Fig. 3.8. Additional revenue is generated by of-

fering lower prices per bandwidth time to users when the network is under-utilised. This

result is in line with the laws of demand and supply from economics which require that

prices rise when demand is large relative to available supply and fall in the contrary

case [116]. A static pricing scheme that offers average, state-independent price generates

lower expected revenue as it fails to offer the same incentives.

3.5.2 Congestion Control

So far in this chapter, we assume that arrival rates are stationary. This leads to a station-

ary integrated admission and pricing policy. In practice, there are vast differences between

peak and off-peak demand patterns and the new call arrival rate λn
j typically varies with

the time of the day. For example, the peak period for a typical cell in a central business

district is between 9 a.m. to 6 p.m. while the busy period in popular night spots occurs

well after 6 p.m. For this exercise, we analyse the effectiveness of OCADP in congestion

control for a network with λn = (1, 2) and λn = (5, 10) to simulate low and heavy traffic.

The stationary probabilities of both cases are illustrated in Figs. 3.9 and 3.9 respectively.

Since we design service 2 to generate higher reward than service 1, the steady state

probability that the system has more than 4 service 1 users is very low. The spikes

in both graphs are due to the variation of the number of users in orbit. In both cases,

there is an evident displacement of probabilities from congested states, i.e states with high

bandwidth consumption, to less congested states when OCADP is used. In particular, the

probabilities of being in congested states are shifted to other states when the arrival rates

are increased to λn = (5, 10). The explanation for this phenomenon is simple. OCADP

blocks call requests that generate lower revenue and sets high prices to subsequent call

admissions when the network is congested. Persistent users who are blocked or have

insufficient WTP will be deferred to less congested periods, thereby easing the burden on

the network of needing to always cater for the peak demand.
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(b) Under OCADP with λ = (1, 2)

Figure 3.9. Stationary probabilities of a system with B = 20 and b = (2, 2). The x and y axes

indicate that the state of service 1, s1 = (n1, x1), and 2, s2 = (n2, x2), respectively.

The intersection of s1 and s2 forms a state s ∈ S. OCADP controls network congestion

by shifting stationary probabilities from states with high number of busy connections to

less busy states.

Page 68



Chapter 3 Integrated Dynamic Pricing and Call Admission Control

(0, 0) (1, 0)
(2, 0)

(3, 0)
(4, 0) (5, 0)

(6, 0)
(7, 0) (8, 0)

(9, 0)
(10,0)

(0, 0)
(1, 0)

(2, 0)
(3, 0)

(4, 0)
(5, 0)

(6, 0)
(7, 0)

(8, 0)
(9, 0)

(10,0)

0

0.005

0.01

0.015

0.02

0.025

State of Service 1 (n1,x1)State of Service 2 (n2,x2)

S
ta

tio
na

ry
 P

ro
ba

bi
lit

y

(a) Under AASP with λ = (5, 10)
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Figure 3.10. Stationary probabilities of a system with B = 20 and b = (2, 2). OCADP controls

network congestion by shifting stationary probabilities from states with high number

of busy connections to less busy states.
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3.5.3 Price Discrimination

Up to this point, we have optimised admission and price based on different expected

revenue and the same WTP per bandwidth time of each service. The conclusion drawn

from the previous section is that the optimal dynamic pricing scheme in AADP and

OCADP is discriminatory, i.e. the optimal price per bandwidth time of each service is

different in the same state, even though users have the same WTP per bandwidth time.

Such price variation to optimise revenue is an example of price discrimination. We will now

investigate how setting the same state-dependent price per bandwidth time, i.e. without

price discrimination, for all services is a good approximation of the optimal policy. This

setting is not to be confused with static pricing, where price is the same in all states.

In general, price discrimination refers to the practice of varying the price of a product

(in this case, bandwidth) through time or between customers or applications so as to

improve revenue. It is widely practised in various forms, including hotels and airlines,

where it is known as yield management. All applications rely on the proposition that

revenue can be increased by raising the prices of goods with inelastic demand and reducing

the price of goods with elastic demand. The idea behind price discrimination is that, if

demand responds more than proportionately to price (elastic demand), revenue will rise

with declines in price while the opposite is true if demand responds less proportionately

with price.

In this work, we do not make estimates of demand elasticity. Instead, the modelling

of demand responses to price changes relies on the distribution of WTP among users, i.e.

raising the price means that fewer arrivals are admitted and might mean a reduction on

demand, depending on the WTP of arriving users. This amounts to saying that those

users who are willing to pay more than the current price are impervious to price changes

up to that point, implying they have infinitely inelastic demand up to the price which

equals their WTP. The impact on revenue therefore depends on the shape and scale of

the WTP among arriving users. These factors determine the average elasticity of demand

for arriving users as a whole.

We analyse the two price settings, with and without price discrimination, by com-

paring them over a range of arrival rates for service 2. The optimal rewards per stage J∗

for both cases are depicted in Fig. 3.11. It is evident that the non-price-discrimination
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Figure 3.11. Optimal reward per stage J∗ under OCADP (with and without price discrimination).

scheme closely approximates the optimal reward per stage J∗ as the arrival rate to ser-

vice 2 increases. Although we have established in the previous section that reward is

maximised when price discrimination is practised, there are various reasons for not im-

plementing it. Firstly, the computational cost of the Bellman equation (4.19) is reduced

if price discrimination is avoided. This is because the size of the control space is now

smaller and the system will only need to compute the single optimal price that maximises

revenue in that state. Instead of solving for 2J control variables (price and admission

each), the non-price-discrimination strategy has only J + 1 variables for every state. Sec-

ondly, the practical implementation of such scheme is simplified because only one price

has to be announced to all network users. The burden of choice on users is also reduced

by providing them with a single price that applies to all services.

3.5.4 Exponential WTP Distribution

When the probability distribution function of the WTP reduces to an exponential distri-

bution by setting β = 1.0 (see Fig. 3.5), we obtained similar results as when β = 3.5 was

used in Fig. 3.5. However, OCASP and AASP provide lower revenue but OCADP and
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AADP achieve higher revenue, compared to when β = 3.5 is used. These results can be

explained using Fig. 3.4. The first result is due to the higher WTP placed by users with

β = 1 for the same access probability αP = 0.5. In the dynamic pricing case, the average

optimal access probabilities for OCADP when β = 1 and 3.5 are α∗
P = (0.11, 0.25) and

(0.13, 0.45) respectively. The higher revenue is due to the WTP of users being higher at

αP = 0.25 when β = 1 compared to αP = 0.45 when β = 3.5.
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Figure 3.12. Optimal reward per stage J∗ for WTP shape β = 1.0.

3.6 Conclusions

We have introduced and analysed a model for optimal integrated call admission and

dynamic pricing of services on a resource-sharing, multiservice network. We have also

shown how matrix analytic methods can be applied to solve for the stationary distribution

and system characteristics of the model. We summarise our main results as follows:

• Integrated policy OCADP outperforms other conventional policies which consider

call admission and price as separate problems. It has the flexibility to reject a new

connection request when this is advantageous to the network even though there is
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sufficient bandwidth to accommodate the call. This strategy provides monetary in-

centives to low-WTP users to access the network when the load is relatively light and

allocating resources to high-WTP users when the network is relatively congested.

• OCADP is effective in congestion control because it displaces traffic from congested

to less congested states. The blocking probabilities of the services decrease because

occasions of high price-per-bandwidth-time shift and even out the load, resulting in

lower stationary probabilities of the network being in congested states.

• The revenue-maximising optimal pricing policy is discriminatory even when users of

all services have the same WTP per bandwidth time. However, a non-discriminatory

pricing scheme can closely approximate the optimal results. This scheme has the

benefit of reduced computation effort due to its smaller price control space.

Page 73



Chapter 4

Interference-based Dynamic Pricing

and RRM

4.1 Introduction

In this chapter, we extend our proposal from Chapter 3, designed for fixed-capacity,

cellular networks, to soft-capacity CDMA-based systems such as WCDMA. The effective

capacity of such systems is not determined by the available resources as in TDMA. Each

user experiences interference from users outside its cell, in addition to the ones within

the same cell. The ability to adapt to such interference, called graceful degradation, is

one of the most essential features of CDMA systems. Good interference handling via

radio resource management (RRM) plays an important role in increasing system capacity

and providing Quality of Service (QoS) guarantee. Dynamic pricing can assist the RRM;

it can act as an arbitration mechanism for efficiently allocating network resources by

influencing the way users utilise scarce network resources. Dynamic pricing can also

enhance operators’ ability to recover costs and make profits to finance capacity expansions.

With those motivations in mind, we will study the problem of optimally integrating

dynamic pricing and RRM, in terms of CAC and resource allocation, in a multiservice

WCDMA network. A major difference from much of the literature on pricing outlined

in Sections 2.2.2 and 2.2.3 in Chapter 2 is that we consider charging users based on

their Noise Rise Factor, i.e. a new parameter that measures one’s contribution to the

total interference. We call pricing strategies of this nature interference-based pricing. We
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propose that the rate at which price rises as the network reaches its interference limit

should depend on the nonlinear relationship between one’s transmission rate and the

interference imposed on others. Conventional bandwidth- or load-based pricing schemes

fail to capture such relationship. This strategy is non-discriminatory in the sense that

it charges the same price per unit interference to all users, regardless of their service.

Unlike [43,98,126], which have been developed to deal with static scenarios and optimised

for a fixed number of users on the network, our work will also use pricing to influence the

rate of stochastic incoming traffic. By considering dynamic user arrivals, handoffs and

departures, the objective is to develop an optimal policy that maximises the long-term,

expected reward. Handoff call dropping is minimised via CAC.

The approach used here exploits another characteristic of WCDMA services, viz that

it can operate within a range of transmission rates. For example, the UMTS Adaptive

Multi-Rates (AMR) voice codec offers transmission rates that vary between 4.75 and

12.2 kbit/s for conversational voice service [49]. As the level of interference increases,

the network recalculates the optimal transmission rate of all services such that existing

connections can be maintained with the addition of new users. A service can be further

classified according to the range of acceptable transmission rates, which reflects users’

perception of QoS. Unlike typical congestion-dependent pricing schemes that increase

price as the number of users increase, our model allows the possibility of maintaining the

price if existing users are tolerant towards the degradation of QoS during their call and

the long-term, expected reward of the operator is still maximised.

This problem is naturally formulated as a Dynamic Programming (DP) problem, but

the evaluation function is too complex for an exact solution. Offline DP methods are of

limited utility for problems with large state spaces because they require full expansion

of all possible states and storing the reward for each state. This often leads to space

complexity exponential in the number of state variables, the situation infamously known

as the “curse of dimensionality”. We will use Neuro-Dynamic Programming (NDP) [13],

a simulation-based learning method, to solve the problem. This method has been suc-

cessfully applied in a CAC problem [69] and a retailer inventory management problem

in [121].

The rest of the chapter is organised as follows. In Section 4.2, we describe our

network model. We then formulate our problem as DP and NDP problems in Section
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4.3 and Section 4.4 respectively. Experimental results are presented in Section 4.5 and

conclusions are summarised in Section 4.6. This work has been partially presented in [44].

4.2 System Model

We consider the uplink of a multi-service WCDMA system with J classes of service. New

and handoff calls of class j arrive at the cell according to Poisson process with rates λn
j

and λh
j respectively. The call holding time and cell residence time of a class j call are both

exponentially distributed with mean 1/µj and 1/γj respectively. During a connection, it is

assumed that a call alternates between ON and OFF states at rate αj and βj. We denote

the probability that a connection is active as the activity factor νj =
βj

αj+βj
. Although

the system cannot distinguish between idle and active periods and is unable to use the

idle periods to transmit other calls, idle periods do not contribute any interference and

network users will benefit from the interference reduction [128]. Users arrive with a mean

budget or willingness to pay (WTP) of Ψj that quantifies the satisfaction gained from a

call.

The system state can be represented by a column vector, n = (n1, . . . , nJ)T , where nj

is the number of admitted users of service j. The state space of the system depends on the

interference generated by users within and outside of the cell. In WCDMA, services can

operate within a range of transmission rates. The controller jointly controls the resource

allocation (i.e. transmission rate), admission price and call admission of the system.

The resource allocation policy determines the state-dependent optimal transmission rate

vector:

ur(n) = (ur1 , . . . , urJ), urj
∈ Rj. (4.1)

The transmission rate of service j users belongs to a finite set Rj = {Rj1, . . . , RjMj
},

where Mj is the number of discrete transmission rates supported by the system. The dis-

cretisation of transmission rates is due to the allocation of Orthogonal Variable Spreading

Factor (OVSF) codes. The OVSF code is of length between 1024 to 4 chips, allowing

transmission rates between 15 kbit/s and 1.92 Mbit/s [49]. Users’ data rate is between 3

kbit/s and 768 kbit/s after data correction.

In order for a signal to be received, the ratio of its received power to the sum of

the background noise and interference must be greater than a given target. When there
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are n users transmitting simultaneously in a given cell, the target quality is translated

to the following inequality that must be satisfied for each user i = 1, . . . , nj of service

j = 1, . . . , J [49] [42]:

W

νjurj(n)
×

Pj

σ2 + Iown + Iother − Pj

≥

(

Eb

N0

)

j

, (4.2)

where W is the WCDMA chip rate, νj is the activity factor, urj(n) is the allocated

transmission rate, Pj is the received signal power from the ith user, σ2 is the back-

ground thermal noise power, Iother and Iown are the other-cell and own-cell interference

and (Eb/N0)j is the ratio of energy per bit to noise density required to meet predefined

bit error rate (BER). The total received interference at the base station is defined as

Itotal = σ2 + Iown + Iother. For simplicity, the other-cell interference can be taken into

account by some constant f [123], i.e. Iother = fIown.

Definition 4.1. Dynamic pricing determines the state-dependent admission price policy,

up(n) = up, up ∈ Up, (4.3)

where Up is the set of possible values of up. Price up is defined as the price per load-time

in load-based pricing and price per interference-time in interference-based pricing.

4.2.1 Load-based Pricing

In load-based pricing, users are charged according to their Individual Load Factor (ILF)

ηj, which is the ratio of their individual load with respect to the system loading. Assuming

that the transmit power of each mobile station (MS) is perfectly controlled based on the

receiving level at the base station (BS), the minimum power that the ith user of service j

must transmit in order to achieve (5.1) is given by Pj = ηj(urj(n))Itotal, where ηj(urj(n))

is defined as:

ηj(urj(n)) = (1 + f)

(

1 +
W

( Eb

No
)jurj(n)νj

)−1

. (4.4)

The system load factor is defined as the sum of all individual load factors. With n users,

the system load factor is given by:

ηsys(n,ur(n)) =
J

∑

j=1

ηj(urj(n))nj. (4.5)
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When a user requests a call connection of service j with price per ILF-time up, they

will decide to either make a connection request if their budget is sufficient to cover the

expected call cost of length 1/µj or defer the request otherwise. We denote the probability

of having the sufficient WTP as the access probability :

αpj
(n,u) = Pr

(

Ψj ≥
upηj(urj(n))

µj

)

. (4.6)

Access probability can be seen as an arrival gate that controls the flow of price-affected

arrivals to the system. λn
j is the maximum new arrival rate, limited only by αPj. Since

handoff calls are pre-admitted at another price, their arrival rate will be independent

of the current admission price and should never be dropped on the basis of insufficient

budget.

4.2.2 Interference-based Pricing

In interference-based pricing, users are charged according to the interference generated

by their call. The total interference on the uplink can be estimated using the system load

factor defined in (4.5). The system noise rise can be expressed as

ϕsys(n,ur(n)) = 10 log10

(

Itotal

PN

)

= −10 log10(1 − ηsys(n,ur(n))). (4.7)

using Itotal = σ2+Iown+Iother = σ2+
∑J

j=1 Pj = σ2+ηsys(n,ur(n))Itotal. When the system

is empty, the system load factor and noise rise are ηsys(n,ur(n)) = 0 and ϕsys(n,ur(n)) = 0

dB respectively. The system noise rise, defined as the ratio of the total received wideband

power to the background thermal noise, is a metric for measuring the total interference in

the cell. From (4.7), the system noise rise increases logarithmically with the system load

factor, which depends on the individual load factor of all users. The relationship between

the system noise rise and system load factor is illustrated in Fig. 4.1. We now propose a

metric to measure the amount of interference generated by a call.

Definition 4.2. The Noise Rise Factor (NRF), ϕj(n,ur(n)), of a call with load factor

ηj(urj(n)) is defined as

ϕj(n,ur(n)) =
ϕsys(n,ur(n))

ηsys(n,ur(n))
ηj(urj(n)), (4.8)

where ηsys(n,ur(n)) and ϕsys(n,ur(n)) are the system load factor and noise rise respec-

tively. Note that the first component gives the noise rise per load factor. Multiplying this

component with the load factor of a call gives its individual noise rise.
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Figure 4.1. The interference level in the network, indicated by the system noise rise, rises exponen-

tially as the system load factor increases.
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Figure 4.2. The noise rise factor, i.e. the interference generated by a call, increases exponentially

as the system load factor increases although the individual load factor remains the same

throughout.
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For example, assume that J = 1 and all users have the same ILF, i.e. η = 0.1. When

there is one user, say A, in the system with ηA = 0.1, the equivalent system load factor,

system noise rise and system noise rise are ηsys = 0.1 and ϕsys = 0.46 dB respectively.

The NRF of user A is also the same as the system noise rise, i.e. ϕA = 0.46(0.1)
0.1

= 0.46

dB. Now consider the case where there are two additional users, say B and C, in the

system. User B and C also have the same ILF as A, i.e. ηA = ηB = ηC = 0.1. The

addition of two new users results in an increase in the system load factor and system

noise rise, each of which becomes ηsys = 0.3 and ϕsys = 1.55 dB. Given that all users have

the same ILF, their NRFs are also the same. However, the NRF has now increased to

ϕA = ϕB = ϕC = 1.55(0.1)
0.3

= 0.52 dB. Therefore, the amount of interference generated per

load factor increases at a nonlinear rate as the number of users increases. Note that the

NRF defined in (4.2) is in terms of the system noise rise in dB because of the additive

nature of the noise rise. The system noise rise ϕsys(n,ur(n)), also in dB, is therefore

defined as the total NRF of all users:

ϕsys(n,ur(n)) =
J

∑

j=1

njϕj(n,ur(n)) dB. (4.9)

The nonlinear relationship between the NRF and the system load factor in the previous

example is illustrated using Fig. 4.2 and will be derived in the following proposition.

Proposition 4.1. There exists a nonlinear relationship between the system load factor

ηsys(n,ur(n)) and noise rise factor ϕj(n,ur(n)). As ηsys(n,ur(n)) increases, the individual

noise rise factor will increase nonlinearly by

10ηj(urj(n))

ηsys(n,ur(n))

[

1

(log 10)(1 − ηsys(n,ur(n)))
+

log10(1 − ηsys(n,ur(n)))

ηsys(n,ur(n))

]

, (4.10)

where ηj(urj(n)) is the individual load factor of a call of class j.

Proof. Let ϕj, ηj and ηsys represent ϕj(n,ur(n)), ηj(urj(n)) and ηsys(n,ur(n)) respectively.

Equation (4.2) can be rewritten using (4.7) as

ϕj =
ηj

ηsys

× 10 log10

(

1

1 − ηsys

)

. (4.11)

Taking the derivative of this equation with respect to ηsys, we have the following:

dϕj

dηsys

= 10ηj

[

1

ηsys

d

dηsys

log10

(

1

1 − ηsys

)

+ log10

(

1

1 − ηsys

)

d

dηsys

1

ηsys

]

= 10ηj

[

1

ηsys

1

log 10

(

1

1 − ηsys

)

−
1

η2
sys

log10

(

1

1 − ηsys

)]
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We can obtain the relationship in (4.10) by rearranging this equation.

When a user requests a call connection of service j with price per NRF-time up, they

will decide to either make a connection request if their budget is sufficient to cover the

expected call cost of length 1/µj. or defer the request otherwise. The access probability

of users is given by:

αpj
(n,u) = Pr

(

Ψj ≥
upϕj(n,ur(n))

µj

)

. (4.12)

CAC is triggered whenever new or handoff users request a call connection.

Definition 4.3. A CAC policy determines the state-dependent call admission vector:

uc(n) = (un
c (n),uh

c (n)), un
cj

, uh
cj
∈ [0, 1], (4.13)

where un
c (n) = (un

c1
, . . . , un

cJ
) and uh

c (n) = (uh
c1

, . . . , uh
cJ

) represent the admission probability

of a new and handoff call request when n users already exist respectively.

When ηsys(n,ur(n)) approaches 1, the system reaches its capacity threshold, ηmax and

ϕsys(n,ur(n)) approaches infinity. The admission condition of a new user of service j is:

ηsys(n + ej,ur(n + ej)) ≤ ηmax < 1. (4.14)

Note that there is an important distinction between our definition of (4.14) and in [49].

Since the optimal transmission rate of service k 6= j, urk(n), might be adjusted by the

system to accommodate a new user of service j, the new system load factor, ηsys(n +

ej,ur(n + ej)) does not necessarily equal the sum of ηsys(n,ur(n)) and ηj(ur(n + ej)).

A new call will only be admitted if the interference threshold constraint (4.14) is still

satisfied and the user has sufficient WTP to cover the cost of the call.

4.3 Dynamic Programming Formulation

Any state transition is caused by one of the following events: an arrival of a new call;

an arrival of a handoff call; and departure or handoff of an ongoing call. Since we do

not keep track of the number of users in other cells, departure and handoff of ongoing

calls can be treated as the same event. Let Ω denote the set of possible events, Ω =
{

ω |ω ∈ {0, ωn
j , ω

h
j , ωd

j }, j ∈ [1, J ]
}

, where 0, ωn
j , ωh

j and ωd
j represent no state transition,
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a new or handoff call arrival and a departure respectively. Pricing, resource allocation

and CAC are triggered when there is a new or handoff call request. Let U(n, ω) be the

set of available actions in state n when event ω occurs:

U(n, ω) = {Uc × Ur × Up} if ω ∈ ωn
j , ω

h
j , (4.15)

where Uc, Ur and Up are the set of possible call admission, resource allocation and dynamic

pricing actions.

Using uniformisation [12,92], the continuous-time Markov Decision Problem (MDP)

can be transformed into its discrete-time equivalence with the so-called uniform transition

rate, where the total transition rate out of any state is bounded by τ . The transition

probabilities are then given by:

p(n, ω,u) =



































un
cj

αpj
(n,u)λn

j /τ if ω = ωn
j

uh
cj

λh
j /τ if ω = ωh

j

nj(µj + νj)/τ if ω = ωd
j

1 − τ(n)/τ otherwise,

(4.16)

where τ(n) =
∑

j un
cj

(αpj
(n,u)λn

j + λh
j ) + nj(µj + νj) ≤ τ is the total transition rate out

of a state n. Given that the system is in state s = n with an event ω ∈ Ω and control

actions u ∈ U(n, ω) available, the next state, s′, is given by a function y such that:

s′ = y(n, ω,u) =



































n + ej if ω = ωn
j , un

cj
= 1

n + ej if ω = ωh
j , uh

cj
= 1

n − ej if ω = ωd
j ,

n otherwise.

(4.17)

As previously introduced in Chapter 3, we will again use the term Satisfaction Rev-

enue (SR) to denote the monetary measure of users’ satisfaction with the continuation of

a call when a handoff is successful. The immediate revenue collected by the system when

a user is admitted is:

g(n, ω,u) =



















un
cj

up
1
µj

ηj(urj(n)) if ω = ωn
j for ILF-based pricing

un
cj

up
1
µj

ϕj(n,ur(n)) if ω = ωn
j for NRF-based pricing

uh
cj

SR if ω = ωh
j .

(4.18)
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In order to reflect the higher importance of accepting a handoff call, SR should be greater

than the actual revenue collected when a new call request is accepted. The average reward-

to-go function, known as the Bellman equation, is given by:

J∗ + h(s) = max
u∈U(s,ω)

[

∑

ω∈Ω

p(s, ω,u)[g(s, ω,u) + h(y(s, ω,u))]

]

. (4.19)

J∗ and h(s) denote the optimal average reward and the differential reward rate of state

s respectively. A stage here means a transition in the uniformised chain. The optimal

expected reward per stage is independent of the initial state. Standard average-reward

DP theory applies and there exists a stationary policy which is optimal [12].

4.4 Neuro-Dynamic Programming Formulation

NDP refers to approximate methods that centre around the evaluation and approximation

of the optimal cost-to-go function (4.19), possibly through simulation and/or the use of

neural networks. In the artificial intelligence community, where the methods originated,

they are also known as reinforcement learning [115]. Instead of computing the differential

reward function h(s) for every state s ∈ S, NDP uses a compact representation h̃(·,θ)

to approximate h∗(·), using parameter vector θ. Naturally, we want to define the general

structure of h̃(·,θ) and calculate parameter vector θ so as to minimise the error between

the functions h∗(·) and h̃(·,θ). The process of tuning parameters θ is often referred as

training or learning. The average reward per time J∗ is approximated by tunable scalar

J̃ . If h̃(·,θ) and J̃ are close enough to the h∗(s) and J∗, then the greedy control policy

induced is, in some sense, close to an optimal policy. Hereafter, we denote the kth step

estimate of h̃(·,θ) and J̃ as h̃(·,θk) and J̃k respectively.

There are two major parts in NDP: an approximation architecture to define the

structure of h̃(·,θk) and a learning method for tuning h̃(·,θk) and J̃ . As illustrated in

Fig. 4.3(a), a general, feature-based approximation architecture involves:

• feature extraction, i.e. the design of a feature vector f(·) that enhances the approx-

imation, and

• function approximation, i.e. the definition of a function to approximate h̃(f(·),θk).
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There are several simulation-based algorithms that can be used to tune the vector θk

and scalar J̃k. Like [69], we will use the TD(0) algorithm for average reward problems.

This algorithm preserves the same convergence properties and error guarantees as its

discounted version. The TD(0) algorithm belongs to the class of Temporal Difference

learning algorithms, often known as the TD(λ). In the next subsections, we will propose

a modified version of the general feature-based approximation architecture and TD(0)

learning algorithm that includes the decision/action uk in the feature vector f(.). This

modified version is illustrated in Fig. 4.3(b). Finally, we discuss the tradeoffs between

exploration and exploitation in the learning algorithm.
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Figure 4.3. (a) A general feature-based approximation architecture. (b) An approximation architec-

ture with feature vector θk and future reward rate.

4.4.1 Approximation Architecture

Feature Extraction: Feature vectors summarise what considered to be important char-

acteristics of a state. It is often the case that the complexity of function h̃(sk,θk) can be
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reduced by feeding a set of features of the state into an approximation architecture. A

set of features can be defined as a mapping of fl : S → R. Given a collection of

f(sk) = (f1(sk), . . . , fL(sk)) , (4.20)

we approximate for h̃(f(sk),θk) instead of h̃(sk,θk). The task of selecting the appropriate

set of features is usually problem-dependent. Feature vectors are effective in simplifying

the approximation of the optimal cost-to-go function when they can capture the nonlin-

earities that present in the function.

We are interested in an optimal, decision-making policy that maximises the long-term,

expected reward. Based on various experiments, we discovered that the approximation

architecture is most effective when the “effects” of action vector uk are captured in the

feature vector f(.). Therefore, we redefine f(sk) in (4.20) as:

f(sk,uk) = (f1(sk,uk), . . . , fL(sk,uk)) . (4.21)

From (4.19), each decision not only results in some immediate reward but also affects the

reward obtained in future stages. In our case, the “effects” of uk are best described by

the future reward rates, which are defined as the product of the future arrival rate due to

the integrated pricing, resource allocation and CAC action and the expected call cost.

There are two sources of reward in this problem, i.e. the reward obtained from new

and handoff users. The first feature f1(sk,uk) is usually set as a scalar offset f1(sk,uk) = 1.

The next J features are the future reward rates due to new users and are defined as:

fl(sk,uk) =







un
cjαpj

(sk,uk)λ
n
j upj

ηj(urk) OR

un
cjαpj

(sk,uk)λ
n
j upj

ϕ(sk,urk).
(4.22)

for load-based and interference-based pricing respectively. In the equations, l = 2, . . . , J +

1 and j = l − 1. The last feature is the sum of future reward rate due to handoff users:

fL=J+2(sk,uk) =
J

∑

j=1

uh
cjλ

h
j SR. (4.23)

Function Approximation: Choosing an appropriate function approximator for

h̃(f(sk,uk),θk) is the second stage in designing an approximation architecture. A non-

linear function approximation like a multilayer perceptron (neural network) often has the
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disadvantage of time-consuming tuning of θk. A linear approximation architecture is gen-

erally more reliable because of the linear dependence of: h̃(f(·,uk),θk) on θk. It has the

form of

h̃(f(sk,uk),θk) = θT
k f(sk,uk). (4.24)

The learning process becomes a linear regression problem. The dimension of the parameter

vector θ is equal to the number of features, L. We will only consider linear approximation

function in this work. The derivative of h̃(f(sk,uk),θk) with respect to θk is:

∇θ(h̃(f(sk,uk),θk)) = f(sk,uk). (4.25)

4.4.2 TD(0) Learning Algorithm

Temporal difference learning was originally proposed by Sutton [114] and has been adapted

to average reward problems by Tsitsiklis and Van Roy in [120] to approximate differential

reward function h(·,θ) and average reward J . Parameter vector θ is iteratively adapted

based on information from simulation or observation of a Markov process. Updates of θ

and J̃ occur upon each state transition that requires decision making with the objective of

improving the approximation as time progresses. Starting with an initial parameter vector

θ0 and scalar J0, TD(0) generates a sequence of θk and Jk. The number of simulation

steps is set at N . At simulation step k ≤ N , h̃(f(sk,uk),θk) is used as an approximation

of h∗(sk) to compute the greedy policy that approximates π∗.

Algorithm 4.1. Suppose that ∇θ(h(f(sk,uk),θk)) exists for every sk ∈ S and θk ∈ RL.

With initial θ0 ∈ RL, J0 ∈ R and s0 ∈ S, we generate θk and Jk using the following

recursive procedure:

Step 1 Assume that we are given state sk and parameter vector θk, obtain the event

ωk+1 ∈ Ω according to the transition rates outlined in the model in Section 4.2.

Step 2 Choose action vector uk ∈ U(sk, wk+1) that satisfies:

uk = arg max
uk∈U

[

g(sk, ωk+1,u) + h̃(f(s′k+1,uk),θk)
]

, (4.26)

using s′k+1 = y(sk, ωk+1,uk). Each potential decision uk is evaluated in the process

of feature extraction.
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Step 3 Update vector θk and scalar J̃k with:

sk+1 = y(sk, ωk+1,uk)

dk = g(sk, ωk+1,uk) − (tk+1 − tk)J̃k + h̃(f(sk+1,uk),θk) − h̃(f(sk,uk),θk)

θk+1 = θk + γkdk∇θ(h̃(f(sk,uk),θk))

J̃k+1 = J̃k + τk(g(sk, ωk+1,uk) − (tk+1 − tk)J̃k)

Step 4 Return to step 1 if k ≤ N .

Scalar dk is known as the temporal difference corresponding to the transition from sk to

sk+1. The terms γk and τk are small step size parameters.

Under a fixed policy and standard diminishing step size conditions, Jk and θk will

converge to the average reward J∗ and vector θ. The algorithm presented is known

as optimistic TD(0) because the parameter vector θk is updated according to the greedy

action chosen in (4.26) during each step of the simulation. This algorithm has been widely

used in practice, albeit its convergence properties have never been studied thoroughly [13]

[120].

4.4.3 Exploitation and Exploration

In order to maximise the reward obtained in each step, optimistic TD(0) method relies

on taking the greedy action defined by (4.26). In order words, the algorithm is exploit ing

actions that it has tried before and which have proven to be effective in producing rewards.

However, to discover such actions, it has to explore and try actions that it has not selected

before. In other words, the algorithm not only has to exploit what it already knows,

but also to explore in order to make better decisions in the future. This is known as

the Exploitation-Exploration Dilemma [115]. The inadequacy of state space exploration

means that certain profitable alternatives are never explored and remain undiscovered.

In our simulation, a greedy action is chosen with probability 1−Pε and a random action,

uk ∈ U , is used with probability Pε.
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4.5 Numerical Results

In this section, we present the results obtained using the modified NDP algorithm defined

previously. We will compare the following policies, which charge users based on their

Individual Load Factor (ILF) or Noise Rise Factor (NRF):

• S-ILF: Static ILF-based Pricing, Always Accept and Average Transmission Rates,

• S-NRF: Static NRF-based Pricing, Always Accept and Average Transmission Rates,

• O-ILF: Optimal ILF-based Pricing, CAC and Rates, and

• O-NRF: Optimal NRF-based Pricing, CAC and Rates.

The Always Accept component in S-ILF and S-NRF always admits a new user if the

system load factor constraint (4.14) is not violated. We simulate a system of three services

and the parameters used are listed in Table 4.1. The value of chip rate W , other-to-own

cell interference ratio f , activity factor ν and target Eb/N0 used are the same as those

used throughout [49].

The first two services are AMR voice, each with a different range of operating trans-

mission rates. Users’ choice on this range reflects their tolerance towards the degradation

of service quality during high interference. Service 1 only operates within the upper

half of the AMR rates provided in Table 4.1. In other words, users of service 2 are more

interference-tolerant when the system is heavily loaded. The third service is a data service.

We summarise the transmission rate set Rj as follows: R1 = {7.40, 7.95, 10.20, 12.20},

R2 = {4.75, 5.15, 5.90, 6.70}∪R1 and R3 = {16, 32, 64} kbit/s. We will be experimenting

with the network working at extreme capacity level, i.e. ηmax = 0.98. In practice, the

target system load factor is between 0.50 and 0.75, which results in a system noise rise

of between 3dB and 6dB [49]. The maximum load factor that can be supported by a

network usually increases towards the pole capacity as the WCDMA technology matures.

To ensure a fair comparison among the policies mentioned, the same set of WTP

per unit time is used for all simulations. The mean WTP per unit time of each service

is proportional to its average transmission rate. We assume that the WTP of users can

be fitted into a Weibull distribution with parameters shape βj and scale ζj using mean

WTP Ψj. This distribution is versatile and can take up the characteristics of other types
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Table 4.1. Simulation parameters for S-ILF, S-NRF, O-ILF and O-NRF policies.

Simulation Parameter Value

WCDMA Chip Rate W = 3.84 Mcps

Other-to-Own Cell Ratio f = 0.55

Activity Factor ν = 0.67 (voice), 1.00 (data)

Target Eb/N0
Eb

N0
= 5.0 dB (voice), 1.5 dB (data)

Satisfaction Revenue SR = 50 per handoff call

AMR Transmission Rates 12.20, 10.20, 7.95, 7.40,

6.70, 5.90, 5.15, 4.75 kbit/s

Transmission Rates for Data 16, 32, 64 kbit/s

New User Arrival Rate λn = (5, 10, 10)

Handoff User Arrival Rate λh = (1, 2, 2)

User Departure Rate µ + γ = (5, 5, 3)

Minimum Transmission Rates Rmin = (7.40, 4.75, 16.0) kbit/s

Maximum Transmission Rates Rmax = (12.2, 12.2, 64.0) kbit/s

Willingness to Pay per Time Ψ = (0.86, 0.63, 3.98)

Number of Simulation Steps N = 1.5 × 106

of distributions based on the value of its shape. As discussed in Chapter 3, the Weibull

distribution has been previously used in [21,106,129] to model traffic characteristics and

fading channels within the telecommunications framework. In reality, users’ WTP can be

obtained in a number of ways. For example, information on users’ WTP can be extracted

from a network operator’s historical data on users’ spending patterns. Users can also

willingly inform network operator of their WTP. Although it is expected that most users

would like to spend as little as possible and only indicate their minimum WTP, higher-end

users would place a higher value on a call during high interference when their initial WTP

is not sufficient.

Using the Weibull distribution, we can deduce the range of prices per ILF-time or

NRF-time using:

αmin
p ≤ αpj

(sk,uk) ≤ αmax
p , (4.27)
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where αmin
p and αmax

p are the minimum and maximum access probabilities set by the

operator. Then, up can be calculated from the αpj
obtained from (4.6) and (4.12) using

average transmission rates. The minimum price that corresponds to αmax
p should be set

such as to recover the cost needed to deliver the service. We set αmin
p and αmax

p to 0.1

and 0.8 respectively and select 35 uniformly distributed prices between them as the price

decision space, Up. The chosen size, denoted as #Up, is based on various experiments

that indicate that further increase of the pricing space will not provide significantly better

results.

The choice of step sizes τ and γ are crucial to convergence and after some trial and

error, they are set to 10−3 and 10−8 respectively throughout the simulation. For all cases,

we use the same random number seed and run the simulation for N steps. Although we

do not need to run the TD(0) algorithm for static policies S-ILF and S-NRF, their average

reward can be approximated using the update rule for Jk in step 3 of the algorithm. In

the following subsections, we present the results for the following: (i) simulations under

normal traffic load (ii) simulations under heavy traffic load, i.e. twice the arrival rates
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Figure 4.4. Average reward per time, J̃k, and parameter vector, θk, averaged for every 250 steps,

under O-NRF.
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Figure 4.5. Average reward and proportion of reward obtained under normal load.

in Table 4.1, (iii) the effects of active exploration on the results and (iv) the effects of a

price sliding window on the average reward.

4.5.1 Normal Traffic Load

The estimation of average reward per unit time J̃k and parameter vector θk for O-NRF

during training are shown in Fig. 4.4. The average reward J̃N and proportion of the

reward obtained are illustrated in Fig. 4.5. The proportion of reward obtained is the ratio

between the average reward and its potential reward if no users are blocked or dropped

due to insufficient budget or the violation of constraint (4.14). Optimal policy O-NRF

accumulated the highest average reward and proportion of reward obtained, followed

by O-ILF, S-NRF and S-ILF. The improvement of O-NRF is about 38% over S-ILF,

27% over S-NRF and 19% over O-ILF. As we have verified using Proposition 4.1, NRF

increases exponentially as the system load factor approaches 1. By contrast, as indicated

in Fig. 4.6, ILF remains constant regardless of the level of interference in a network. Even

when static price per unit NRF is used, the price per unit time will rise with the level of

system interference because the noise rise generated by a call has increased. This helps
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Figure 4.6. The relationship between ILF/NRF and System Load Factor

to prevent low-WTP users from entering the system when the interference level is high,

thus avoiding them to further aggravate the situation.

The access, blocking and dropping probabilities of all policies are given in Fig. 4.7.

The average access probability is lower with NRF-based pricing compared to their ILF

counterpart. This re-emphasises the earlier point about the exponential increase of price

during high interference level in the network. The higher access probability when O-NRF

is used, compared to S-NRF, is due to the flexibility of the optimal policy to offer low

prices to users when interference is low in the network. Even though the average access

probabilities of O-NRF and S-ILF are close, the optimal policy provides a significantly

better average reward due to resource allocation and CAC, in addition to interference-

based pricing.

The NRF-based policies are also far more effective in controlling the blocking of new

users and dropping of handoff users. The blocking and dropping probabilities decrease

dramatically to negligible values when interference-based pricing is used in S-NRF and

O-NRF. The results from Fig. 4.8 affirm that interference-based pricing as an effective

mechanism for congestion control. The load factor of all policies is well below its constraint
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Figure 4.7. Blocking, dropping and access probabilities under normal load.

ηmax = 0.98, which translates to a maximum noise rise of about 17 dB, under normal traffic

load. However, the system load factor and noise rise of O-NRF and S-NRF are notably

lower. Compared to S-NRF, the use of O-NRF results in higher system load factor and

noise rise because more users are allowed access to service. This results in more efficient

usage of system resources.

4.5.2 Heavy Traffic Load

To simulate the system under heavy traffic conditions, we now double the arrival rates for

both new and handoff users. The arrival rates become λn = (10, 20, 20) and λh = (2, 4, 4).

All other simulation parameters from Table 4.1 remain the same. The average reward and

proportion of reward obtained are shown in Fig. 4.9. Again, O-NRF collected significantly

better average reward and proportion of reward obtained compared to other policies. The

average reward collected by O-NRF after N simulation steps is 76%, 23% and 51% more

than of S-ILF, S-NRF and O-ILF respectively.
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Figure 4.8. Average load factor and noise rise under normal load.
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Figure 4.9. Average reward and proportion of reward obtained under heavy traffic load.
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Figure 4.10. Average load factor and noise rise under heavy traffic load.

Due to the higher traffic load, the proportion of reward obtained by all policies are

less than under normal traffic load because of the interference constraint of the system.

The system load factor and noise rise (see Fig. 4.10) are correspondingly higher as well.

However, O-NRF and S-NRF are more effective in controlling the system load factor and

noise rise below ηmax = 0.98 and ϕmax = 17 dB respectively. Contrary to the initial

expectation, the performance of O-ILF is worse than S-NRF. O-ILF only collected 47%

of the available reward per time, compared to 58% by the S-NRF. A closer look at the

simulation statistics indicates that the O-ILF is unable to find the higher prices during

high interference. We will discuss in the next section how exploration can improve the

performance of O-ILF.

4.5.3 Effects of Exploration

The results of O-NRF and O-ILF in the previous two subsections are solely based on the

exploitation of the system current knowledge on actions that are effective in generating

reward in the past. The lack of action exploration results in the load-based pricing

optimal policy O-ILF performing worse than S-NRF in the previous section. Therefore,
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Figure 4.11. Average reward and proportion of reward obtained under policies O-ILF and O-NRF

with 20% to 80% state exploration.

we repeat the simulation under heavy traffic using exploration probabilities Pε of 0.20,

0.40, 0.60 and 0.80. For example when Pε = 0.20, a random action uk ∈ U is chosen in

20% of the decision-making steps, instead of the greedy action given by (4.26). Fig. 4.11

shows that the average reward of O-ILF improve with the increase of exploration. Its J̃N

even exceeds the average reward of S-NRF in the previous subsection when Pε ≥ 0.60.

Correspondingly, the proportion of reward obtained by O-ILF also increases with Pε.

However, exploration does not improve the performance of O-NRF at all. It produces

worse results. The average reward collected decreases from 605.9566 when Pε = 0 to

571.5817 when Pε = 0.8. Simulation results of O-NRF indicate that random selection of

lower prices reduced the average reward collected.

4.5.4 Effects of a Price Sliding Window

Up to this point, we have optimised O-ILF and O-NRF using #Up = 35 uniformly dis-

tributed price levels given by (4.27). To accelerate the computation of J̃k and θk using

TD(0) learning algorithm, we restrict the size of the price decision space Up using a price
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sliding window. We denote the size of the sliding window as SW. Given that the current

price decision is upk and Up(i) = upk, where i is the index of upk in Up, the price decision

space for the next event is limited to:

Uk+1
p = Up(a, . . . , i, . . . , b), (4.28)

where a = max(1, i − bSW/2c) and b = min(a + SW − 1, #Up). The size of the price

decision space is #Uk+1
p = SW . For example, if the current price index is i = 9 and

SW = 9, a = 5 and b = 13, and therefore Uk+1
p = Up(5, . . . , 13).

The motivation for this strategy is based on the observation that a huge leap of price

is unlikely during the simulation. A change from the minimum to the maximum price is

unusual when a state transition of n to n+ej occurs. The restriction on how much prices

should change from one step to another also prevents sharp changes in price.

We repeat the simulation under heavy traffic load using no exploration and varying

sizes of price sliding window of SW = 5, 10, 15, 20, 25 and 35, the last of which is equivalent

to having no sliding window. The average reward and proportion of reward obtained in

all cases are displayed in Fig. 4.12 The average reward decreases from 605.96 when no

sliding window is used to 588.94 when SW = 5, a total reduction of only 2.89%. The

number of seconds needed for the execution of the simulation also decreases from 4817s

when there is no sliding window to 4641s when SW = 5. This saving in computation

time is expected to be more significant when more services are simulated.

4.6 Conclusions

In this chapter, we formulated an integrated dynamic pricing and radio resource man-

agement problem for an interference-limited network as a Neuro-Dynamic Programming

problem. We also modified the conventional feature-based approximation architecture to

have the effects of each decision on future reward rate be evaluated before the decision

is made. A new parameter, Noise Rise Factor, is suggested as a basis for setting price in

an interference-limited network. This parameter can effectively capture the positive, non-

linear relationship between resource usage and the interference generated as the system

loading increases. The average-reward TD(0) has been successfully applied and adapted

to a pricing problem. We summarise the key results of this chapter as follows:
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Figure 4.12. Results under heavy traffic load using a price sliding window.

• Optimal interference-based dynamic pricing and RRM policy increases average re-

ward and reduces blocking and dropping probabilities compared to load-based schemes.

• Although the average reward obtained under optimal integrated policy increases,

the average system load factor and noise rise actually decrease. This means that

the optimal policy can achieve more with less! Higher reward in terms of actual and

satisfaction revenue can be generated without overloading the system and generating

high interference. The gain in average reward is also due to the admission and

allocation of resources to users with high WTP.

• Action exploration during TD(0) learning can improve the integrated load-based and

RRM policy. However, active exploration does not always lead to the improvement

of the reward obtained in the case of the interference-based optimal policy.

• By implementing a price sliding window that restricts the size of the price decision

space, the sub-optimal policy closely approximates that of the optimal policy with

full choice of prices. This idea is based on the observation that price is unlikely to

increase or decrease a lot during simulation.

Page 99



Chapter 5

Cooperative Resource Allocation

Games in Shared Networks

5.1 Introduction

Previously, in Chapters 3 and 4, our focus has been on the computation of an inte-

grated admission pricing and resource management policy that maximises the operator’s

long-term expected reward in terms of actual and satisfaction revenue. In Chapter 4,

we suggested users to preselect their minimum and maximum resource requirements at

admission and allow the network operator to vary their transmission rates throughout

their call. QoS was guaranteed in that at least their minimum transmission rate will be

delivered. In this chapter, we will shift the focus to providing fair and Pareto-optimal

resource allocation for connected users. As defined in Definition 2.7, an allocation is

Pareto-optimal if there is no wasted utility, i.e. it is impossible to make any one party

better off without making any other worse off. Such an outcome is also said to be efficient.

The main question we are answering is:

“Given that all the users have received their minimum resource requirement and there is

a resource surplus, how should the surplus be divided among them such that the

allocation is fair and there are no wasted resources?”.

The notion of axiomatic bargaining (see Section 2.2.1) in cooperative game theory

provides a good analytical framework to derive a desirable operating point that is both fair
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and Pareto-optimal. The issue of fairness have been mostly ignored in problems where the

objective is to maximise the total utility or minimise the transmission power under some

constraints such as [38,61,69,84,108,109]. Fairness is also not considered in power-control-

motivated pricing literature using noncooperative game theory in [32,66,67,71,98,99,126,

131]. It is also well known that the Nash equilibria from these noncooperative power

control games are Pareto inefficient and the pricing mechanisms proposed only provide

some Pareto improvements. The resulting degree of efficiency loss is known as the price

of anarchy [57]. One measure of fairness that existed early in network literature is the

notion of max-min fairness, which maximises the allocation for the most poorly treated

user. However, max-min fairness gives priority to the worst performer, which in turn

will reduce system performance. A notion of proportional fairness, where an allocation

is made such that the sum proportional gains cannot be reduced, has been introduced

by Kelly in [61]. It has been shown in [127] that proportional fairness is indeed a Nash

bargaining solution.

Previous work on other resource allocation problems using cooperative game theory

emphasise only one bargaining solution such as the Nash bargaining solution [18,40,127]

and Raiffa-Kalai-Smorodinsky (Raiffa, hereafter) bargaining solution [35]. Our work is

a major improvement over these works because it presents and analyses a class of fair

and Pareto-optimal bargaining solutions based on the concept of preference functions

developed by Cao for a two-user problem in [18]. To the best of our knowledge, this work

is the first that provides explicit formulas for the Raiffa solution and all solutions between

the Nash and Raiffa solutions on the Pareto-optimal boundary for both the symmetric and

asymmetric cases. Our approach is better because it enables us to find a range of solutions

on the Pareto-optimal boundary with Nash and Raiffa as special cases and choose the

best solution within these optimal solutions that maximises some other criteria such as

revenue. Besides, network operators can implement the solutions without any complex

derivation algorithms such as in [40].

Unlike our work in Chapters 3 and 4, we will also consider the presence of other

providers who share network resources with the main operator in the network. The high

cost associated with the rollout of 3G services encourages operators to share network

infrastructure. Network sharing among competing operators opens up a whole new range

of research opportunities, especially in devising Radio Resource Management (RRM)

strategies in a shared network. This work is the first comprehensive treatment of resource
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Figure 5.1. Resource allocation games in a shared network.

allocation problems in shared networks. Our focus is on networks that are completely-

shared, where the operators share the core network, gateway core, RAN and sites, as in

the case of Mobile Virtual Network Operator (MVNO), as well as geographical network

sharing. Referring to Fig. 5.1, the resource allocation problem in a shared network can

be divided into two sub-problems:

• resource sharing among the operators, i.e. the co-owners of the network; and

• resource bargaining among the users and MVNOs of each operator.

MVNOs, which are smaller service providers who do not own a 3G license, can be

treated similarly to other network users with minimum and maximum resource require-

ments. These virtual operators purchase resources from the main operator with the

intention of redistributing them to their subscribers. There are few existing published

works that explore resource allocation strategies in a shared network environment. A

simple admission control strategy with non-preemptive priority queueing has been pro-

posed in [55], which sets the call admission priority of an operator according the ratio of

its pre-agreed guaranteed load and its current load. In [52], the authors discuss a frame-

work to manage radio resources using Service Level Agreements (SLA) among a network

operator and its MVNOs. The downside of this proposal is that the SLA needs to be

repeatedly renegotiated when the users traffic characteristics evolve.
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In our asymmetric bargaining model, players are allowed to influence the bargaining

outcome using their bargaining powers. This is achieved by relaxing the axiom of symme-

try used in [18]. Bargaining power is defined as the ratio of one’s to the others’ price or

bid. If the price per unit resource is fixed throughout a call, as in Chapters 3 and 4, the

bargaining power of users’ is proportionate to their admission price compared to the total

revenue. However, if prices are allowed to vary during a call, players can submit bids to

the arbitrator to influence the bargaining outcome. The bargaining power is then inter-

preted as the ratio of one’s bid with respect to others’. Asymmetric bargaining provides

an opportunity to the operators to maximise their revenue and allocate scarce resources

to users who need them most via the optimisation of parameter β. Unlike other resource

auction approaches such as [57], the solution that we propose is still Pareto-optimal, so

long as that appropriate value of β is selected. Pareto optimality is crucial in wireless

networks because no scarce resources will be wasted.

We then extend our axiomatic bargaining approach to cooperative resource sharing

among network operators. Although the amount of resources assigned to each operator is

usually well-specified when the partnership is formed, operators who experience dissim-

ilar demand patterns and non-coincident peak usage can benefit from exchanging their

resources temporarily. We tackle the resource sharing game by categorising the oper-

ators as buyers, sellers or dummy players. To avoid the situation where the operators

take additional resources but refuse to contribute, the allocation is history-dependent and

will be based on the amount of resources the buyers contributed and/or obtained in the

past. This problem is similar to the problem of electricity exchange between independent

power producers studied in [97]. The operators can then redistribute their resources to

their users and MVNOs.

The rest of the chapter is organised as follows. In Section 5.2, we will give an overview

of network sharing in 3G networks. In Section 5.3, we present our system model. Then,

we introduce our model of resource bargaining and derive the solutions in Sections 5.4 and

5.5 respectively. The resource sharing model among the operators is proposed in Section

5.6. Result analysis and conclusion are presented in Sections 5.7 and 5.8. This work has

been partially presented in [46] and [47].
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5.2 Network Sharing Models

Network infrastructure sharing has become a popular strategy among operators in the roll-

out of 3G services, especially in the wake of substantial investments in licensing and slow

3G user growth. Operators are attracted to network sharing because of the lower capital

expenditure (CAPEX) in infrastructure establishment and reduced operation expenditure

(OPEX) in the long run. For example, a greenfield operator can save considerable costs

by sharing its infrastructure with an incumbent operator. The acceleration of roll-out of

3G services, enabled by substantial cost savings, facilitates an earlier user acceptance of

WCDMA and its related services.

In addition, operators can increase coverage by sharing or having complementary,

geographically separated sites, especially in low-density suburban and rural areas where

it is more cost-effective to share. The reduction in the number of new sites being built

for base stations will also have positive environmental effects. Beyond the CAPEX and

OPEX reductions, network sharing is argued to contribute far more to the 3G business

case than cost reductions by allowing the value chain to be disaggregated into operators

and other entities in the network [9]. Referring to Fig. 5.2, there are several sharing

models available [29,81,105]:

• Site sharing : Operators share the site for the base station, the transmission to the

Radio Network Controller (RNC) and equipment such as antenna towers, antenna

environmental facilities, physical access and power supplies.

Node B


RNC

Gateway


Core


Core


Network


Node B


RAN sharing


with gateway


core


Complete


sharing


(MVNO)

RAN sharing
Site sharing


Figure 5.2. Models of network sharing.
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• Radio Access Network (RAN) sharing : Operators share Node Bs and RNC but

maintain their own gateway core and Core network. Operators have their own

transceivers within the Node-B and use their own licensed frequencies. Operators

still have a high level of independence.

• RAN sharing with gateway core: Operators have their own Core network and share

a common RAN and gateway core. Operators use licensed frequencies from one

operator only.

• Mobile Virtual Network Operators (MVNOs): This approach is primarily used by

MVNOs who do not have a 3G licence and have little infrastructure of their own

except for their own home location register (HLR) and billing systems. At least one

operator, who owns the network and has a 3G license, and radio-less MVNOs share

a full-scale 3G infrastructure (RAN, Core network and backbone).

• Geographical network sharing : Operators have complementary 3G infrastructure in

different areas of a country and share them via national roaming to extend coverage.

The last two models involve complete sharing of network infrastructure. A number of

white papers, i.e. [29,81,105], have quantified the benefits of network sharing. Site sharing

typically brings an overall saving of 20-30% while the savings increase to up to 40% when

RAN sharing is also used.

5.3 System Model

We first consider a shared network with one operator and M MVNOs, denoted by m ∈

{1, . . . ,M}. The cooperative resource sharing model for networks shared by more than

one operator will be proposed in Section 5.6. Apart from serving its users, the operator

sells unused resources to its MVNOs. These MVNOs do not own any resources and only

have the ability to purchase them from the network operator and then resell them to their

users. It is reasonable to assume that there is a pre-existing SLA between the operator

and each MVNO to guarantee it at least Rmin
m units of resources. We denote the number of

users associated with the operator or any of the mth MVNO as N0 and Nm respectively.

Assume that the services provided by the operator are elastic and defined by a range of

transmission rates bounded by minimum and maximum Rmin and Rmax. For example, the
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UMTS Adaptive Multi-Rate (AMR) codec offers transmission rates that vary between

4.75 and 12.2 kbps for conversational voice service [49]. The transmission rate can be

dynamically adjusted every 20 ms. We assume that users can select their acceptable QoS

level by setting their range of transmission rates. In order to allocate resources in a fair

and Pareto-optimal way, we first need to derive the meaning of a unit of resource. In a

WCDMA network, resources can be expressed in terms of the load factors of the users.

The load factors are commonly used to make a semi-analytical prediction of the capacity

of a WCDMA cell without performing system-level simulations [49].

5.3.1 Uplink Load Factor

Consider a single WCDMA cell. In order for a signal to be received, the ratio of its

received power to the sum of the background noise and interference must be greater than

a given target. The target quality is translated to the following inequality that must be

satisfied for each user i = {1, . . . , N} [122], [109]:

W

νixi

gipi
∑N

j 6=i gjpj + σ2
≥

(

Eb

N0

)

i

, (5.1)

where W is the WCDMA chip rate, νi is the activity factor, xi is the allocated transmission

rate, gi is the path gain between the base station and user i, pi is transmission power, σ2

is the background thermal noise power, Ii =
∑N

j 6=i gjpj is interference received by the base

station from all the other users within the same cell and
(

Eb

N0

)

i
is the target bit-energy-to-

noise-density required to a meet predefined bit error rate (BER). In the case of multiple

cells, the interference from other cells can be taken into account by using a coefficient f ,

i.e. Ii = (1 + f)
∑N

j 6=i gjpj. Interference coefficient f typically has values between 0.1 and

0.6 [49].

Assuming perfect power control and solving the set of equations in (5.1), we obtain

the following:

gipi = ηUL
i (

N
∑

j=1

gjpj + σ2) =
σ2ηUL

i

1 −
∑N

j=1 ηUL
j

, (5.2)
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where the load factor ηUL
i and total interference I are respectively given by

ηUL
i =

1
W

(

Eb
N0

)

i
νixi

+ 1
(5.3)

I =
N

∑

j=1

gjpj =
σ2

∑N
j=1 ηUL

j

1 −
∑N

j=1 ηUL
j

. (5.4)

The number of users that can be supported by the network is limited by the maximum

uplink system load factor allowed, i.e.

N
∑

j=1

ηUL
i ≤ η̄UL < 1. (5.5)

When the total load factor approaches unity, the system reaches its pole capacity and the

total interference increases to infinity in (5.4). If this constraint is violated, the target
(

Eb

N0

)

i
for all users will not be satisfied. We say that the uplink is interference-limited,

i.e. users cannot increase their power without bound because of the increased interference

they caused to other users. The corresponding transmission rate allocated is

xi =
W

(

Eb

N0

)

i
νi(

1
ηUL

i

− 1)
, (5.6)

which increases according to the load factor allocated.

5.3.2 Downlink Load Factor

In the downlink, the target signal quality of user i is [109]

W

νixi

gipi

θigi

∑N
j 6=i pj + σ2

≥

(

Eb

N0

)

i

, (5.7)

where Ii = θigi

∑N
j 6=i pj and θi is the orthogonality factor of the codes used in the downlink.

Although WCDMA employs orthogonal codes, users will receive part of the base station

signal due to multipath propagation. In the uplink, transmission is asynchronous and

therefore the signals are not orthogonal. Typically, the orthogonality factor θi can be

approximated by an average value θ, which is usually between 0.5 (ITU Vehicular A

channel) and 0.9 (ITU Pedestrian B channel) [49]. The total transmission power in the

downlink is limited by the maximum power that the base station can transmit, i.e.

N
∑

j=1

pj ≤ pmax. (5.8)
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Assuming perfect power control, the transmission power to the ith user can be ex-

pressed as

pi =

∑N
j=1 pj + σ2

giθi

1 + W

θi

(

Eb
N0

)

i
νixi

. (5.9)

Using (5.9) and (5.7), the downlink load factor is given as

ηDL
i =

1 + σ2

giθipmax

1 + W

θi

(

Eb
N0

)

i
νixi

. (5.10)

Unlike in the uplink, the downlink load factor depends on the orthogonality factor and

path gain between the user and the base station. Similar to the uplink, the total downlink

load factors must satisfy

N
∑

i=1

ηDL
i ≤ 1. (5.11)

Using η̂DL
i =

ηDL
i

1+ σ2

giθipmax

to express (5.9) in terms of the downlink load factor, we have the

following:

pi = η̂DL
i (

∑N
j=1 η̂DL

j
σ2

gjθj

1 −
∑N

j=1 η̂DL
j

+
σ2

giθi

). (5.12)

Given ηDL
i , the transmission rate allocated to the ith user is then expressed as

xi =

W

θi

(

Eb
N0

)

i
νi

1
ηDL

i

(1 + σ2

giθipmax ) − 1
, (5.13)

which increases as the allocated downlink load factor ηDL
i and path gain gi increase.

5.4 Cooperative Game Theory Framework

In the bargaining framework, the players or bargainers in our problem are the MVNOs and

users of the operators. Therefore, there are a total number of N = N0 + M players in the

network. Define S as the bargaining domain or the feasible set of all possible outcomes.

S is assumed to be convex, closed and bounded sets of R
N . Each player i ∈ {1, . . . , N}

competes for the use of resources and has a
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• utility function ui = ηi, which is represented by the allocated load factor. Any point

u ∈ S represents an outcome or solution of the game.

• desired initial performance umin
i , which is the minimal performance required by the

user without any cooperation in order to enter the game. It is also known as the

disagreement point or threat point. Players will not enter the game if umin
i is not

achievable.

The bargaining problem and outcome can be defined as (S,umin) and F (S,umin) ∈

S respectively. Approaches to bargaining fall into one of two divisions: strategic and

axiomatic bargaining. Strategic bargaining, such as the Rubinstein’s model of bargaining

[74], assumes that there is a bargaining process where the solution is achieved in a series

of offers and counteroffers. The bargaining solution emerges as the equilibrium of a

sequential game. The need for a bargaining process among the players is time-consuming

and therefore unsuitable for WCDMA network with many users.

Axiomatic bargaining ignores the bargaining process and assumes some desirable

properties about the outcome of the bargaining process and then identifies process rules

or axioms that guarantee this outcome. The operator serves as the arbitrator in the co-

operative resource bargaining game. Nash specifies four axioms, which impose properties

that a bargaining solution should satisfy:

A1 Invariance with respect to affine transformation: If u∗ is the solution to (S,umin)

and y is any positive affine transformation, the solution to (y(S), y(umin)) is y(u∗).

A2 Symmetry : If the bargaining problem is symmetric, in the sense that (e.g. N = 2)

umin
1 = umin

2 and (u1, u2) ∈ S ⇔ (u2, u1) ∈ S, then F1(S,umin) = F2(S,umin). This

means that two players with symmetric utilities get the same payoff.

A3 Pareto Optimality : The bargaining solution will be on the Pareto boundary. If

(S,umin) is a bargaining problem and u,u′ ∈ S and u′
j > uj, j = 1, . . . , N , then the

outcome F (S,umin) 6= u.

A4 Independence of Irrelevant Alternatives: If (S,umin) and (S ′,umin) are bargaining

problems with S ⊆ S ′ and F (S ′,umin) ∈ S, then F (S,umin) = F (S ′,umin).

Axiom A4 has received a number of criticisms. In particular, Kalai and Smorodinsky [59]

(and Raiffa in an earlier work [93]) argued that one’s gain should be proportional to its
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maximum gain but the Nash solution fails to satisfy this requirement. They retained

A1-A3 and proposed a new axiom:

A5 Monotonicity : If S ⊆ S ′ (N = 2), u1(S
′) = u1(S) and u2(S

′) ≥ u2(S), F2(S
′,umin) ≥

F2(S,umin).

Cao in [18] explained that the Nash and Raiffa solutions represent different solution

points on the Pareto boundary. There is no special reason why they should be chosen

and one might choose another point on the boundary if one dislikes the properties of the

Nash and Raiffa solutions. Bargaining solutions can be analysed using players’ preference

function. In the two-user case, with disagreement points umin
1 = umin

2 = 0, the players’

preference functions are defined as [18]

v1 = u1 + β(1 − u2) (5.14)

v2 = u2 + β(1 − u1), (5.15)

where 0 ≤ u1, u2 ≤ 1 and β is a weighting factor that measures the trade-off be-

tween one’s gain and another’s loss. The bargaining outcome, u∗ is the solution to

u∗ = arg maxu(v1v2). The special cases of β = 0, 1,−1 correspond to the Nash, Raiffa

and modified Thomson solutions. The Nash solution only considers individual gains and

ignores how much other players may gain or lose. The Raiffa solution places the same

weight on individual gain and other players’ losses. The modified Thomson solution, also

known as the relative utilitarian outcome, maximises the sum of all players’ normalised

utilities.

For the multi-player case, we define the ith player’s preference function with minimum

and maximum utility, umin
i and umax

i , as follows:

vi(β) = ui − umin
i +

β

N − 1
(
∑

j 6=i

umax
j − uj), (5.16)

where β = 0, 1,−(N −1) corresponds to the Nash, Raiffa and utilitarian solutions respec-

tively. Our definition does not require ui to be normalised by its maximum value since

umax
i is included and it is general enough to include the special case of normalised utility

in [18] and [28]. The β-dependent bargaining outcome, u∗(β), is the solution to

u∗(β) = arg max
N
∏

i=1

vi(β). (5.17)

We call this the symmetric parameterised solution of the bargaining problem.
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5.5 Resource Bargaining in WCDMA

In our WCDMA resource bargaining problem, ηmin
i and ηmax

i correspond to the minimum

and maximum acceptable load factors based on the player’s requirement of the minimum

and maximum transmission rates, xmin
i and xmax

i , defined in (5.3) and (5.10). If the

player is a user of the operator, Rmin ≤ xmin
i , xmax

i ≤ Rmax, i ∈ {1, . . . , N}. For the mth

MVNO, its guaranteed minimum resource allocation is Rmin
m , which can be in terms of

the transmission rate or load factor. Its maximum requirement will be in terms of the

maximum requirements of all of its Nm users.

5.5.1 Symmetric Bargaining

We first derive the symmetric bargaining problem with ui = ηi where all players are

assumed to have equal bargaining power. The symmetric resource bargaining problem is

defined as (P1):

max
η

N
∏

i=1

(

ηi − ηmin
i +

β

N − 1

∑

j 6=i

(ηmax
j − ηj)

)

s.t. ηi ≥ ηmin
i , ηi ≤ ηmax

i ,

N
∑

i=1

ηi ≤ T. (5.18)

Referring to (5.5) and (5.11), the resource constraint parameter T corresponds to η̄UL

and 1 for the uplink and downlink respectively. Note that a similar formulation has been

considered in [127] but the authors only focus on the Nash solution, i.e. β = 0. We are

interested in deriving a range of bargaining solutions, parameterised by β, on the Pareto

boundary.

Proposition 5.1. Under the assumption of ηmin
i ≤ ηi ≤ ηmax

i ,
∑N

i=1 ηi ≤ T and
∑N

i=1 ηmin
i < T <

∑N
i=1 ηmax

i , the symmetric bargaining solution, parameterised by weight-

ing factor β, −(N − 1) < β ≤ 1, of the problem (P1) is given by

ηi(β) = min{η̃i(β), ηmax
i }, (5.19)

where η̃i(β) =
T

N
+

(N − 1)(Nηmin
i −

∑N
j=1 ηmin

j ) + β(Nηmax
i −

∑N
j=1 ηmax

j )

N(N − 1 + β)
. (5.20)
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Proof. Let bargaining domain S be a nonempty, convex and compact set. The optimi-

sation of (P1) is equivalent to the optimisation of its logarithm [127]. The Lagrangian

equation of the equivalent problem is given as

L(η,λ,µ, γ) =
N

∑

i=1

ln

(

ηi − ηmin
i +

β

N − 1

∑

j 6=i

(ηmax
j − ηj)

)

−

N
∑

i=1

λi(η
min
i − ηi)

−
N

∑

i=1

µi(ηi − ηmax
i ) − γ(

N
∑

i=1

ηi − T ).

Let f(ηi) = 1

ηi−ηmin
i + β

N−1

∑

j 6=i(η
max
j −ηj)

, the necessary and sufficient Karush-Kuhn-Tucker

(KKT) conditions for optimality for i ∈ {1, . . . , N} are

f(ηi) −
β

N − 1

N
∑

j 6=i

f(ηj) = λi − µi + γ (5.21)

γ(
N

∑

i=1

ηi − T ) = 0. (5.22)

When constraints (
∑N

i=1 ηi − T ) is active and (ηmin
i − ηi) and (ηi − ηmax

i ) are inactive for

all i ∈ {1, . . . , N}, λi = µi = 0 and γ ≥ 0. Solving these equations, we have f(ηi) = f(ηj)

for all j 6= i, i, j ∈ [1, N ] or

ηi(β) = ηj +
(N − 1)(ηmin

i − ηmin
j ) + β(ηmax

i − ηmax
j )

N − 1 + β
. (5.23)

Using (5.23) and condition
∑N

j=1 ηj = T , the solution ηi can be derived accordingly.

Proposition 5.2. When players take into account the utility loss of other players in their

preference function by setting weighting factor 0 < β ≤ 1, the absolute gap between the

new outcome and the Nash solution increases by up to

∆i =
(N − 1)(ηmax

i − ηmin
i ) − (

∑N
j 6=i η

max
j − ηmin

j )

N2
(5.24)

when β = 1. The utility, measured in terms of the load factor, of ith player using the

Raiffa solution (β = 1) is more than the Nash solution if ηmax
i − ηmin

i >
∑N

j 6=i

ηmax
j −ηmin

j

N−1
.

Proof. From Proposition 5.1, the Nash (β = 0) and Raiffa (β = 1) solutions are respec-

tively given by ηi(β) = min{η̃i(β), ηmax
i } and

η̃i(0) = ηmin
i +

T −
∑N

j=1 ηmin
j

N
(5.25)

η̃i(1) = η̃i(0) + ∆i. (5.26)

The second part of the proposition is obvious.
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The Nash solution in (5.25) only takes into account the individual gain ηi − ηmin
i and

coincides with the two-user bargaining outcome derived in [74]. The result is known as

the split-the-difference rule. The Raiffa solution in (5.26) places the same importance on

one’s gain and the losses of others. This solution is fairer to players with high maximum

utility. On the other hand, as β approaches −(N − 1), more weight is placed on other

players’ gain. When β = −(N − 1), the problem maximises the sum of utilities of all

players. However, there is no trivial solution for this problem as (N − 1 + β) approaches

0 in (5.1) when β approaches −(N − 1). When −(N − 1) < β < 0, the weight on other

players’ utility is less than 1.

5.5.2 Asymmetric Bargaining

Imposing the axiom of symmetry A2 in (P1) assumes that all players have equal bargaining

skills. In practice, the bargaining outcome may be influenced by other variables such as

the tactics employed by the bargainers, the negotiation procedure and the information

structure [74]. In our asymmetric resource bargaining model, we allow the final outcome

to be influenced by the price paid by all players. Suppose that each player i ∈ {1, . . . , N}

can submit a bid τi ∈ R to the network operator, which is also the arbitrator. We then

define the asymmetric resource bargaining problem (P2) as follows:

max
η

N
∏

i=1

(

ηi − ηmin
i +

β

N − 1

∑

j 6=i

(ηmax
j − ηj)

)τi

s.t. ηi ≥ ηmin
i , ηi ≤ ηmax

i ,

N
∑

i=1

ηi ≤ T. (5.27)

Proposition 5.3. Under the assumption of ηmin
i ≤ ηAS

i ≤ ηmax
i ,

∑N
i=1 ηi ≤ T and

∑N
i=1 ηmin

i < T <
∑N

i=1 ηmax
i the asymmetric bargaining solution, parameterised by weight-

ing factor β, −(N − 1) < β ≤ 1, of the problem (P2) is given by

ηAS
i (β) = min{η̃AS

i (β), ηmax
i }, (5.28)

η̃AS
i (β) = τ̂iT +

(N − 1)(ηmin
i − τ̂i

∑N
j=1 ηmin

j )

N − 1 + β

+
β[(1 − Nτ̂i)T + ηmax

i + ((N − 1)τ̂i − 1)
∑N

j=1 ηmax
j ]

N − 1 + β
. (5.29)
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τ̂i = τi
∑N

j=1 τj
can be interpreted as the bargaining power of the ith player and the sum of all

bargaining powers is equal to one. When the bids submitted by all players are the same,

the asymmetric solution (5.28) is the same as the symmetric solution derived in (5.19).

Proof. The derivation is similar to the one in the previous section and will therefore be

omitted. It is easy to see that the symmetric solution (5.19) is a special instance of the

asymmetric solution. The second part of the proof can be obtained using τ̂i = τi = 1
N

.

Proposition 5.4. Similar to Proposition 5.2, when players take into account the utility

loss of other players, i.e. 0 < β ≤ 1, the absolute gap between the new outcome and the

Nash solution increases by up to

∆AS
i =

(1 − Nτ̂i)T + τ̂i(N − 1)ηmax
i + [(N − 1)τ̂i − 1]

∑N
j 6=i η

max
j − ηmin

i + τ̂i

∑N
j=1 ηmin

j

N
(5.30)

when β = 1.

Proof. Using Proposition 5.3, the Nash and Raiffa solutions are respectively given by

η̃AS
i (0) = ηmin

i + τ̂i(T −

N
∑

j=1

ηmin
j ) (5.31)

η̃AS
i (1) = η̃AS

i (0) + ∆AS
i . (5.32)

When the Raiffa solution is used, the utility of the ith player will only be greater than

the utility derive from the Nash solution, i.e. ηAS
i (1) > ηAS

i (0), when ∆AS
i > 0.

The asymmetric Nash and Raiffa solutions derived in (5.31) and (5.32) exhibit the

same properties as the symmetric solutions in the previous section. The asymmetric Nash

solution only varies according to the minimum load factor requirements and bargaining

powers of all players. The asymmetric Raiffa solution also takes into account the players’

maximum load factor requirements. In Proposition 5.3, the bargaining solution η̃AS
i (β) is

limited by its maximum bound ηmax
i . In cases where η̃AS

i (β) > ηmax
i for some β ∈ [0, 1], the

excess can be redistributed to other players with η̃AS
j (β) < ηmax

j for some i, j = 1, . . . , N

and i 6= j. One way of doing this is to use Proposition 5.3 to reallocate the total excess,

T ′ =
∑

i∈IE
η̃AS

i (β) − ηmax
i to other players j /∈ IE who haven’t reached their maximum

requirement. IE = {i : η̃AS
i (β) > ηmax

i , i = 1, . . . , N} denotes the set of players with

surplus. Another way of redistributing the excess is to choose a feasible range of β such

that ηmin
i ≤ ηAS

i (β) ≤ ηmax
i ∀i.
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Proposition 5.5. For a given bid vector τ = (τ1, . . . , τN), β must satisfy the following

condition such that ηmin
i ≤ η̃AS

i (β) ≤ ηmax
i for all players i = 1, . . . , N :

β







∈ [βmin, βmax] if βmin < βmax

/∈ [0, 1] otherwise.
(5.33)

Minimum and maximum constraints, βmin and βmax, are defined as:

βmin = arg max{β1
i : β1

i ≥ 0, i = 1, . . . , N} (5.34)

βmax = arg min{β2
i : 0 ≤ β2

i ≤ 1, i = 1, . . . , N} (5.35)

using the following individual constraints on β for each player i = 1, . . . , N :

β1
i =

(N − 1)[ηmax
i − ηmin

i − τ̂i(T −
∑N

j=1 ηmin
j )]

(1 − (N − 1)τ̂i)(T −
∑N

j=1 ηmax
j )

(5.36)

β2
i =

−(N − 1)τ̂i(T −
∑N

j=1 ηmin
j )

ηmax
i − ηmin

i + (1 − (N − 1)τ̂i)(T −
∑N

j=1 ηmax
j )

. (5.37)

Proof. This proposition can be obtained by first deriving the individual minimum and

maximum constraints β1
i and β2

i on β of each player i using η̃i(β) ≤ ηmax
i and η̃i(β) ≥ ηmin

i :

η̃i(β) ≤ ηmax
i ⇒ β ≤ β1

i (5.38)

η̃i(β) ≥ ηmin
i ⇒ β ≤ β2

i if β2
i < 0 or β ≥ β2

i if β2
i ≥ 0. (5.39)

Since we are considering β in the range of [0, 1], we can ignore β ≤ β2
i when β2

i < 0. The

resulting βmin and βmax are the maximum of β1
i and minimum of β2

i , respectively.

The second case in (5.33) corresponds to the situation where there is no feasible

range of β within [0, 1]. This situation occurs because one or more players have very

high bargaining power compared to the others, as revealed through submission of very

high bids. In practical situations where there are many players in the resource bargaining

game, it is unlikely to have a few players who are very dominant and have incentives to

submit very high bids that return η̃i > ηmax
i . In any case, the network operator can set

minimum and maximum bounds, τmin
i and τmax

i , on the bid submitted by each player to

prevent this situation from occurring. The bounds are given by:

τmin
i =

β(ηmin
i + T −

∑N
j 6=i η

max
j )

∑N
j 6=i τj

(N − 1 − Nβ)T + (
∑N

j=1 Nβηmax
j − (N − 1)ηmin

j ) − β(ηmin
i + ηmax

i )
(5.40)

τmax
i =

[(N − 1)(ηmax
i − ηmin

i ) + β(T −
∑N

j=1 ηmax
j )]

∑N
j 6=i τj

(N − 1 − Nβ)T +
∑N

j=1(Nβηmax
j − (N − 1)ηmin

j ) − (N − 1)(ηmax
i − ηmin

i )
.(5.41)
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5.5.3 Revenue Optimisation

The asymmetric bargaining solutions proposed in Proposition 5.3 provide a range of so-

lutions with varying emphasis on one’s gain and others’ losses. When the bargaining

power of all players are the same (i.e. Proposition 5.1), the selection of β is arbitrary.

However, when players submit asymmetric bids, β can be chosen such that the total rev-

enue received by the operator is optimal. Therefore, we consider the following revenue

optimisation problem (P3):

max
β

R(β) =
N

∑

i=1

ηAS
i (β)τi (5.42)

where R(β) is the sum of revenue generated.

Proposition 5.6. Given τi of all players, the optimal β that maximises the total revenue

obtained by the network operator is on the boundary of the feasible range:

β =







βmax if
∑N

i=1 τi∆
AS
i ≥ 0

βmin otherwise.
(5.43)

where βmin and βmax are derived in Proposition 5.5 and ∆AS
i is the maximum gap be-

tween the asymmetric Nash and Raiffa solutions in Proposition 5.4. The selection of β is

arbitrary when
∑N

i=1 τi∆
AS
i = 0 in (5.43).

Proof. The first-order derivative of the revenue function is

dR(β)

dβ
=

N
∑

i=1

τi
d

dβ
ηAS

i (β) =
N(N − 1)

(N − 1 + β)2

N
∑

i=1

τi∆
AS
i .

The first-order necessary condition for optimality is dR(β)
dβ

= 0, which there is no trivial

solution. The second derivative of R(β) is given as

d2R(β)

dβ2
= −

2N(N − 1)

(N − 1 + β)3

N
∑

i=1

τi∆
AS
i .

It is then easy to establish that R(β) is a monotonically increasing function of β if
∑N

i=1 τi∆
AS
i > 0 or a monotonically decreasing function of β if

∑N
i=1 τi∆

AS
i < 0. Therefore,

the optimal β is on the boundary of the feasible range of β.
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5.6 Resource Sharing Among Competing Operators

Up until this point, we have considered the resource allocation problem in networks shared

by one network operator, M MVNOs and N users of the operator. Unlike the MVNOs,

the network operator owns the network and plays the role of arbitrator in the cooperative

resource allocation game. In this section, we present a model for cooperative resource shar-

ing among several operators who co-own the network as shown in Fig. 5.2. Assume that L

operators are sharing T amount of resources with sharing factor αSLA = (αSLA
1 , . . . , αSLA

L )

and
∑L

l=1 αSLA
l = T . The sharing factor αSLA is pre-specified in the SLAs among the

operators. However, these operators are likely to have different users’ characteristics and

arriving patterns and, depending on the time-of-day, might require fewer or more resources

than the specified αSLA. Because of these differences, temporary exchanges of resources

will provide benefits to the operators in terms of better overall communication quality for

their users.

Denote the current maximum resource demand of the lth operator, l = 1, . . . , L, as

αmax
l . Depending on αmax

l , the operators will either play the role of buyer if they have a

resource deficit; seller if they have a resource surplus; or dummy if their αSLA
l is sufficient

or they choose not to partipate. The set of buyers, IB, and sellers, IS can then be defined

as:

IB = {l : αSLA
l < αmax

l , l = 1, . . . , L} (5.44)

IS = {l : αSLA
l > αmax

l , l = 1, . . . , L}. (5.45)

The total surplus of the sellers is then given as C =
∑

l∈IS
αSLA

l − αmax
l . When there is

more than one buyer and surplus C exceeds zero but not enough to cover all requests, i.e.

C <
∑

l∈IB
αmax

l −αSLA
l , the buyers enter into a cooperative resource sharing game. Much

of the success of this game depends on the cooperation and willingness of the operators

to share unused resources. To avoid the tragedy of the commons, where the operators

become a buyer when they need additional resources but refuse to become a seller when

there is a surplus, we capture the operators’ history of additional resources obtained and

contributed in the current allocation problem.

Let αt
l be the amount of additional resources allocated to the l ∈ IB operator (as a

buyer) or the amount shared by the l ∈ IS operator (as a seller) at iteration t, the average
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resource allocation in the past k iterations at iteration t is

α̂t
l =

1

k
(αt

l +
k−1
∑

m=1

αt−m
l F ). (5.46)

Note that αt
l > 0 if l ∈ IB, αt

l < 0 if l ∈ IS and αt
l = 0 otherwise. Given

∑

l∈IB
αt

l ≤ C, it is

easy to see that
∑

l∈IB
α̂t

l ≤
1
k
(C +

∑

l∈IB

∑k−1
m=1 αt−m

l ). Therefore, the history-dependent

cooperative resource sharing game at iteration t leads to the following problem (P4):

max
α̂t

∏

l∈IB

(

α̂t
l +

β

N − 1

∑

k 6=l, l,k∈IB

(αmax
k − αSLA

k − α̂t
k)

)

s.t. α̂t
l ≥ α̂min,t

l , α̂t
l ≤ α̂max,t

l ,
∑

l∈IB

α̂t
l ≤

1

k
(C +

∑

l∈IB

k−1
∑

m=1

αt−m
l ), (5.47)

where α̂min,t
l = 1

k

∑k−1
m=1 αt−m

l , α̂max,t
l = 1

k
(αmax

l − αSLA
l +

∑k−1
m=1 αt−m

l ) and αmax
l − αSLA

l is

the maximum amount of additional resources required.

The amount of additional resources allocated to the l ∈ IB operator depends on the

amount obtained and contributed in the past k iterations. Consider allocation α̂t
1 and

α̂t
2 with 1, 2 ∈ IB and α̂t

1 = α̂t
2. When

∑k−1
m=1 αt−m

1 >
∑k−1

m=1 αt−m
2 , i.e. operator 1 has

been allocated more and/or contributed less in the past, it is easy to see from (5.46)

that operator 1 will be allocated less in the current iteration or αt
1 < αt

2. Therefore,

operators who always obtain additional resources from others need to contribute often

to bring down their α̂t
l in order to continue benefiting from the resource sharing game.

Similar to the symmetric bargaining game outlined in Section 5.5, the solution to this

game is the same as in Proposition 5.1 with ηi = α̂t
l , ηmin

i = α̂min,t
l , ηmax

i = α̂max,t
l and

T = 1
k
(C +

∑

l∈IB

∑k−1
m=1 αt−m

l ). Using the outcome of the game, each operator can then

distribute T ′ = αSLA
l +αt

l amount of resources to its users and MVNOs using Propositions

5.1-5.6.

The main challenge of this resource sharing problem is to minimise the disclosure

of commercially sensitive information among these competing operators. In our model,

the only information that the operators need to exchange is their maximum resource

requirement αmax
l . This parameter can be computed independently by each operator

using criteria that are important to them. For example, αmax
l of the lth operator can be

a function of the aggregate maximum resource requirement of its MVNOs and users or

QoS parameters such as the probability of communication loss of existing users or the

blocking probability of incoming users.
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5.7 Numerical Analysis and Discussions

In order to achieve the bargaining outcome in Proposition 5.1, the operator requires knowl-

edge of each player’s ηmin
i and ηmax

i . This is not difficult to achieve in real implementation

because users can select their acceptable transmission rate range at the beginning of a

call or even change it during the call. Moreover, for each service, the operator can set

up several classes with varying guaranteed quality for its users. Using (5.3) and (5.10),

the operator can calculate the minimum and maximum load factor requirements of its

users for both uplink and downlink, respectively. For the MVNOs, ηmin
i is specified in

their SLA with the operator and ηmax
i is a function of the total maximum load factor

requirements of the users supported by them. The MVNOs can in turn redistribute the

resources allocated in a similar manner using (5.19).

The Nash and Raiffa bargaining solutions that we have derived satisfy different axioms

and are both on the Pareto-optimal boundary. The Nash solution maximises the Nash

product, i.e. the product of the gain of all players. The Raiffa solution also considers

the size of the bargaining domain of each player, i.e. how much other players give up

in addition to one’s gain. To illustrate this, we consider the following simple game with

N = 2. Player 1 is a user and Player 2 is an MVNO, which has two users with the

same maximum load factor 0.5. Suppose that T = 1 and the minimum and maximum

requirements of the players are ηmin = (0.1, 0.2), ηmax = (0.70, 1.00) respectively. We

analyse two scenarios, i.e. τ̂ = (0.5, 0.5) and τ̂ = (0.7, 0.3). The latter corresponds to the

case where Player 1 increases his/her bid to the operator.

The solutions are η(0) = (0.45, 0.55) and η(1) = (0.40, 0.60) for the symmetric

case; and ηAS(0) = (0.59, 0.41) and ηAS(1) = (0.53, 0.47) for the asymmetric case. The

geometrical interpretations of the Nash and Raiffa solutions for both cases are illustrated

in Fig. 5.3. The solid line is the Pareto-optimal boundary, i.e. the outcomes that satisfy
∑N

i=1 ηi = T and ηmin
i ≤ ηi ≤ ηmax

i for all i. All solutions on this boundary are Pareto-

optimal or efficient but not necessarily fair. The axiomatic bargaining theory used in this

work characterises the fair solutions on this boundary via axioms A1-5. The area under

the boundary, with ηi ≥ ηmin
i ∀i, is the bargaining domain of the problem. The symmetric

Nash solution is the tangent point of the hyperbola
∏N

i=1(ηi − ηmin
i ) = constant and

only takes into account each player’s individual gain ηi − ηmin
i . The symmetric Raiffa

solution is the intersection point between a line from the disagreement point, (ηmin
1 , ηmin

2 ),
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Figure 5.3. Geometrical interpretation of the symmetric and asymmetric Nash and Raiffa solutions.

to the maximum requirement point, (ηmax
1 , ηmax

2 ), and the Pareto-optimal boundary. In

other words, the Raiffa solution is the maximal point in the bargaining domain on that

line. For the asymmetric case, Player 1 has a higher bargaining power and is therefore

allocated more resources. Hence, by varying the parameters β and τ , all bargaining

solutions on the Pareto-optimal boundary can be reached by the explicit solution derived

in Proposition 5.3. Unlike our approach, the solutions derived using non-cooperative game

theory in [3, 98,99,113,126] are not Pareto-optimal.

The symmetric and asymmetric bargaining solutions are depicted in Fig. 5.4 in solid

lines and dashed lines, respectively. From Propositions 5.1 and 5.3, as β approaches

−(N − 1), the bargaining solutions for Player 1 and 2 increases to +∞ and decreases

to −∞, respectively. Therefore, we will only concentrate of solutions with β ∈ [0, 1].

As β increases from 0 to 1, the load factor allocated to Player 2, which has a higher

maximum rate requirement, increases. Both solutions are Pareto-optimal. However, by

the axiom of monotonicity A5, the Raiffa solution is at the point where each player’s gain

is proportional to its maximum gain and therefore “fairer” to player 2. However, Player

1 is able to increase her load factor by submitting a higher bid, τ1, to the operator. In

that case, Player 2’s bargaining power τ̂2 = τ2
τ1+τ2

decreases. The asymmetric Nash and
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Raiffa solutions are given by ηAS(0) = (0.59, 0.41) and ηAS(1) = (0.53, 0.47). Given η, the

uplink or downlink transmission rate of the players can then be determined using (5.6)

and (5.13), respectively. In practice, players can submit their bids, τi, asynchronously or

the operator can set up a number of price levels for them to select from.

Numerical analysis of Propositions 5.5 and 5.6 is depicted in Fig. 5.5. We plot the

total revenue of the system, i.e. R(β) =
∑N

i=1 τiη̃i(β, τ ), against various combinations of

τ̂ = (τ̂1, τ̂2) for β = 0 (Nash) and 1 (Raiffa). When the bids submitted by the players are

symmetric, i.e. τ1 = τ2, the total revenue collected using the Nash solution coincides to

that of Raiffa. In other words, the selection of β ∈ [0, 1] is arbitrary since all solutions

within that range are Pareto-optimal. However, when the bids are asymmetric, the total

revenue is maximised by either using the Nash solution if
∑2

i=1 τi∆
AS
i < 0 or the Raiffa

solution otherwise. All other solutions using 0 < β < 1 are bounded by these two

solutions. Also, we have established in Proposition 5.5 that a feasible range of β can

be computed such that ηmin
i ≤ η̃i ≤ ηmax

i for i = 1, 2. For example, by Proposition 5.5,

when τ̂ = (0.30, 0.70), βmin = 0 and βmax = 1.00 and when τ̂ = (0.85, 0.15), βmin = 0.50

and βmax = 1.00. In these cases, the total revenue is maximised when β = 0 (Nash) and

β = 1.00 (Raiffa), respectively. When there is no feasible β within [0, 1], e.g. τ̂1 > 0.89

in Fig. 5.5, the arbitrator can signal player 1 to decrease its maximum bid according to

(5.41) or player 2 to increase its minimum bid according to (5.40).

5.8 Conclusion

We have presented a framework for resource allocation in shared WCDMA networks

using the notion of axiomatic bargaining from cooperative game theory. Although our

model is of a shared network, the results can be applied to other networks with similar

resource allocation problem. The resource allocation problem has been divided into two

sub-problems: resource sharing among the operators and resource bargaining among the

users and MVNOs of each operator. For the latter, we have derived the symmetric and

asymmetric resource bargaining solutions. Unlike conventional schemes that only aim

to optimise some system objectives such as throughput; or noncooperative, decentralised

solutions that are inefficient and do not consider fairness, our bargaining outcome are

Pareto-optimal and fair according to the minimum and maximum requirements of each
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player. In the asymmetric model, the players, i.e. the users of the network operator

and the MVNOs, can affect the bargaining outcome by submitting bids to the network

arbitrator. The solutions derived are parameterised by β, which quantifies the preference

for one’s gain and the losses of others. When the solutions are all Pareto-optimal, the

selection of β is arbitrary. However, in the asymmetric model, there is an opportunity

for operators to maximise their revenue through the optimisation of β. In the resource

sharing game, we suggest that the allocation of additional resources to operators who

experience resource shortage should depend on their average of their past allocations and

contributions.
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Conclusion

6.1 Summary

In this dissertation, we have addressed the problem of efficient management of scarce radio

resources and congestion control in wireless networks by proposing an economic framework

for dynamic pricing and RRM. The distinction between this research and existing works

is illustrated in Fig. 6.1. By way of explanation and as discussed in earlier chapters,

existing works focus on the following areas:

• A: static pricing schemes only;

• B: RRM schemes only;

• C: dynamic pricing schemes without RRM, i.e. pricing and RRM strategies are

designed separately; and

• E: power control and pricing schemes using the shadow pricing or noncooperative

game-theoretic approaches discussed in Chapters 1 and 2.

The pricing and RRM policies implemented in most, if not all, wireless networks today

belong to Groups A and B. These policies make pricing and RRM decisions separately

and fail to utilise price as an incentive for users to alter their demand and hence shape the

network load. The bulk of the pricing literature for wired networks belongs to Group C.

We have shown in Chapters 3 and 4 that the proposed integrated policy, labelled as group
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Figure 6.1. Summary of the contributions of this dissertation and key distinctions with existing

works.

D in Fig. 6.1, outperforms policies in groups A, B and C in terms of revenue maximisation

and congestion prevention. The works in group E are motivated by power control so that

the price, which is optimised for a fixed number of users, only serves as an internal

control parameter and does not reflect what users might end up paying. Furthermore,

the approach using noncooperative game theory results in a non-Pareto-optimal outcome

and pricing only provides some Pareto improvements. With those distinction in mind, we

now summarise our key results.

In Chapter 3, we presented a stochastic approach to formulate an integrated dynamic

pricing and admission control problem for a fixed-capacity, multiservice, cellular network

as a dynamic programming problem. The objective is to maximise the long-term expected

reward in monetary term. We associate the admission handoff calls with a satisfaction

revenue such that the optimal policy places a higher priority on handoff calls. The inte-

grated policy proposed outperforms conventional policies that consider admission control

and pricing as separate problems. This policy has the flexibility to reject a new con-

nection request when this is advantageous to the network even though there is sufficient

bandwidth to accommodate the call. This strategy provides monetary incentives for low-

WTP users to access the network when the load is relatively light and allocates resources
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to high-WTP users when the network is relatively congested. The integrated policy is

effective in congestion control because it displaces traffic from congested to less congested

states. The blocking probabilities of the services decrease because occasions of high price

per bandwidth time shift and even out the load, resulting in lower stationary probabilities

of the network being in congested states. Finally, a non-discriminatory pricing scheme

with a smaller price control space can be used to reduce computational effort. It has been

shown to closely approximate the discriminatory pricing policy, which charges different

price per unit resource for different services.

In Chapter 4, we extended the work proposed for fixed-capacity, cellular networks in

Chapter 3 to interference-limited networks. We formulated an integrated dynamic pricing

and resource management problem for WCDMA networks using simulation-based NDP.

We proposed to use the Noise Rise Factor, i.e. the amount of interference generated by

a call, as a basis for pricing. This parameter captures what existing load-based pricing

models cannot, i.e. the nonlinear relationship between resource usage and the interference

generated by a call as system loading increases. Our results show that the proposed

optimal interference-based dynamic pricing and RRM policy increases average reward and

reduces blocking and dropping probabilities compared to load-based schemes. Although

the average reward obtained under the optimal integrated policy increases, the average

system load factor and noise rise actually decrease. This means that the optimal policy

can achieve more with less. Higher reward in terms of actual and satisfaction revenue can

be generated without overloading the system and generating high interference. The gain

in average reward is also due to the admission and allocation of resources to users with

high WTP. By implementing a price sliding window that restricts the size of the price

decision space, the sub-optimal policy closely approximates that of the optimal policy

with full choice of prices. This idea is based on the observation that price is unlikely to

increase or decrease by large amounts during simulation.

In Chapter 5, we analysed the problem of fair and efficient allocation of scarce radio

resources to users who have been admitted to the network, based on the optimal inte-

grated policies proposed in Chapters 3 and 4. We considered the case where there are

other virtual network operators, i.e. MVNOs, who share the network with the main net-

work operator. Similar to the users of the main operator, these MVNOs can be treated

as users with minimum and maximum rate requirements. Using the notion of axiomatic

bargaining from cooperative game theory, we derived a set of bargaining solutions that

Page 127



6.2 Potential Directions for Further Research

are both fair and Pareto-optimal according to the minimum and maximum rate require-

ments of all users. Our approach is a departure from works using noncooperative game

theory that result in inefficient outcomes, i.e. the Nash equilibria; or works using co-

operative game theory that focus on one solution on the Pareto-optimal boundary. The

main advantage of analysing a class of solutions instead of one is that the best outcome,

based on some other objectives such as revenue maximisation, can be selected among

these optimal solutions. The bargaining solutions are situated between the Nash and

Raiffa-Kalai-Smorodinsky bargaining solutions on the Pareto-optimal boundary. These

solutions vary according to a parameter that quantifies the tradeoff between one’s gain

and the losses of others. For example, the Nash bargaining solution is the point that

maximises the Nash product, i.e. a product of the gain of all users. By contrast, the

Raiffa-Kalai-Smorodinsky bargaining solution places equal importance on one’s gain and

the losses of others. When the axiom of symmetry is removed, users’ bargaining out-

come also depends on their admission price or the bid that they submit to the resource

manager. An important contribution of the asymmetric bargaining model is that, unlike

noncooperative auction models, the outcome is still Pareto-optimal and fair according to

the users’ bargaining power. Finally, we provided a model to encourage resource sharing

among operators. When these operators have non-coincident peak demands, they will

benefit from temporarily sharing their resources or borrowing from others. Although our

model is of a shared WCDMA network, it can be easily adapted to networks with similar

problems.

6.2 Potential Directions for Further Research

There are several directions in which our models can be extended.

6.2.1 Online Dynamic Pricing Schemes

The problems considered in Chapters 3 and 4 involve offline computation or approximation

of the average reward (and parameter vector in the latter), assuming some knowledge of

network parameters such as the arrival and departure rates of the users. The dynamic

programming approach used does not naturally extend to an online setting, where the only

model available for the Markov process is the process itself and the lack of robustness to
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unknown or slowly time-varying parameters [17]. However, we have provided a model-free

and easily extendable neuro-dynamic programming solution to the problem in Chapter

4. Once the approximation obtained offline via learning is satisfactory, it can be used to

generate decisions fast enough for use in real time.

To enable online computation of the integrated dynamic pricing and RRM policy,

arrival rates λn and λh can be estimated using parameter estimation techniques such

as maximum likelihood estimation in order to detect changes in the arrival rates. The

parameters estimated, λ̂
n

and λ̂
h
, will then be fed to the feature extraction module

to compute the feature vector. Fig. 6.2 shows the suggested approach for an online

adaptation of this problem. The cost-to-go approximation will then continue to improve

as the system operates in real time. In this work, we have only experimented with linear

features in terms of future revenue rate of the system. The extraction of nonlinear features

might provide better approximation and can be considered in future work.
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Figure 6.2. Modified feature-based approximation architecture with parameter estimation.

6.2.2 Stochastic Pricing and Resource Allocation Games

The dynamic programming and neuro-dynamic programming techniques used in Chapters

3 and 4 addressed the problem for a single decision maker acting in a stationary environ-

ment. In the asymmetric bargaining model introduced in Chapter 5, users’ bargaining

powers depend on their bids, which can be determined using the admission price from

an optimal pricing policy or an auction. Like Kelly’s paper on resource allocation [25],

we have assumed that network users do not anticipate their effect on the price and the

resource allocated. However, when the users recognise that they are not merely “price
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takers”, the problem becomes a game in which the setting of WTP, demand and bids be-

comes strategic for the network users. Users make self-serving decisions and economists

are well aware that these selfish behaviours can lead to inefficiency. Johari and Tsitsik-

lis showed that the price of anarchy in networks with elastic supply amounts to up to

25% in efficiency loss, which they measured by computing the ratio of the Nash Equilib-

rium utility function to the socially optimal utility function and showing that it is 3/4

at worst [57, 58]. Stochastic games are natural extensions of Markov decision processes

to include multiple decision makers. An excellent introduction to stochastic game theory

for environments with multiple reinforcement learners is [14].

6.2.3 Noncooperative Implementation of the Cooperative Bar-

gaining Solutions in Self-organising Networks

In Chapter 5, we have derived a class of bargaining solutions using the axiomatic bar-

gaining concepts from cooperative game theory. The payoffs, indicated by the amount of

resources allocated to the players, are sustained by a binding agreement guaranteed by an

outside enforcer or arbitrator, i.e the network operator in our case. However, in networks

without the presence of an arbitrator, the enforcement of such payoffs falls outside of the

domain of cooperative game theory. In such networks, the decision-making process has to

be decentralised, as in a noncooperative game. Examples of such self-organising architec-

ture are Mobile Ad hoc Networks (MANETs) and Wireless Mesh Networks (WMNs) [2].

A MANET is a collection of nodes which forms a network independent of any fixed

infrastructure. As opposed to networks which use routers to support network functions,

such as packet routing and forwarding, these functions are provided by the nodes (or

hosts) themselves. Such a network can operate in a stand-alone fashion or may be con-

nected to the Internet. The interconnections among nodes often change continually and

arbitrarily. These networks were initially designed for military operations and play an

increasingly important role in many environments, such as ad hoc networking for col-

laborative and distributed disaster recovery, search-and-rescue and crowd control. More

recently, they have been envisaged as able to provide Internet connectivity for nodes that

are not in transmission range of a wireless access point. The IEEE 802.11 wireless protocol

incorporates an ad hoc networking system when no access points are present.
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In WMNs, all routers are capable of organising and auto-reconfiguring themselves

wirelessly, meaning that no cabling is needed to connect them. These routers, or nodes,

form a rich radio mesh connectivity among themselves that is difficult to provision in wired

networks. The principle is similar to the way packets travel around the wired Internet

– data will hop from one node to another until it reaches its given destination. While

wireless node connectivity significantly reduces the up-front deployment and subsequent

maintenance costs, the rich mesh connectivity helps to deliver high levels of reliability

and robustness. Mesh networks are self-healing and extremely reliable because each node

is connected to several others and if one drops out, due to hardware failure or any other

reason, its neighbours simply find another route. Because of these attractive features,

WMN is being considered for a wide variety of applications such as backhaul connectivity

for cellular radio access networks, defence systems, city-wide surveillance systems and

real-time racing car telemetry. It can effectively extend a network by sharing access to

higher cost network infrastructure.

Due to the complexity of the mobility and traffic models as well as the infrastructure-

less, dynamic topology of these networks, noncooperative game theory is the primary tool

for studying individual, independent decision makers whose actions potentially result in

efficiency loss. The vast number of works on the application noncooperative game theory

in MANETs are surveyed in [112]. Another approach is to study the implementation

of the Pareto-optimal bargaining solutions in a noncooperative manner. The distinction

between cooperative and noncooperative games is not new. The Nash Program, initiated

by Nash [78], is an attempt to bridge the gap between these two branches of game theory.

This is accomplished by investigating noncooperative procedures that yield cooperative

solutions as their equilibrium outcomes. A result in the Nash Program is referred to as the

“noncooperative foundation” or “noncooperative implementation” of a cooperative solu-

tion [102]. Nash first expressed the bargaining model as a noncooperative game, called

the Nash demand game, in [78]. Both bargainers demand a utility level simultaneously.

If the vector of demands is feasible, it will be implemented. Otherwise, the disagreement

point will be enforced, if there is one, or, if not, the players will receive nothing. An-

other example is Moulin’s [73] implementation of two-person bargaining games. We refer

our readers to [64,100,102,119] and the references therein for further information on the

noncooperative solutions to the bargaining problem and note their connection with this

work.
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Appendix

A.1 Infinitesimal Generator

Forward Transitions, Q
(x1)
0 Forward transitions, i.e. x1 → x1 + 1 occur when a new

user of service 1 reattempts or a user from service 2 substitutes in. Q
(x1)
0 can be broken

into:

Q
(x1)
0 =















Q
(x1,0)
01 0 0

Q
(x1,1)
02 Q

(x1,1)
01 0
. . . . . . . . .

0 Q
(x1,X2)
02 Q

(x1,X2)
01















(A.1)

where Q
(x1,x2)
01 = Q

(x1)
01 = λ51I and Q

(x1,x2)
02 = λ42(x2)I are M × M matrices, M is the

number of possible allocation of B channels to two services, and I denotes identity matrix

of appropriate size.

Backward Transitions, Q
(x1)
2 Backward transitions, i.e. x1 → x1 − 1 occur when a

user in orbit successfully makes a call connection, abandons the network or substitutes

out to service 2. Q
(x1)
2 can be broken into:

Q
(x1)
2 =















Q
(x1,0)
21 Q

(x1,0)
20 0

0 Q
(x1,1)
21 Q

(x1,1)
20

. . . . . . . . .

0 0 Q
(x1,X2)
21















(A.2)
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where Q
(x1,x2)
21 and Q

(x1,x2)
22 are M × M matrices defined by

Q
(x1,x2)
21 =















λ31(x1)I λ21(x1)I 0

0 λ31(x1)I λ21(x1)I
. . . . . . . . .

0 0 λ31(x1)I















(A.3)

and

Q
(x1,x2)
22 = λ41(x1)I. (A.4)

Local Transitions, Q
(x1)
1 Local transitions, i.e. x2 → x2±1, n1 → n1±1 and n2 → n2±1,

include all other transitions. Q
(x1)
1 can be broken into:

Q
(x1)
1 =















Q
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11 Q
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10 0
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
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(A.5)

where Q
(x1,x2)
10 , Q

(x1,x2)
11 and Q

(x1,x2)
12 are M × M matrices defined by

Q
(x1,x2)
10 = λ52I (A.6)

Q
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11 =
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


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Q
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


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where A = φI + n2(µ2 + γ2)ID + (λ02 + λ12)IU, B = λ32(x2)I + λ22(x2)IU, the diagonal

elements, φ, are such that the row sums of Q are zero and

IU =


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









0 1 0 0 . . .
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...
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. (A.9)

IU and ID are matrices with ones on the upper and lower diagonal respectively and zeroes

everywhere.
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