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Abstract

The rapid growth in demand due to the emergence of mobile communication services with

variable rates, coupled with the resource scarcity of mobile air interface, has encouraged

researchers to find technological solutions to increase spectral efficiency in order to support

different levels of Quality of Service (QoS). Radio resource management (RRM) plays a

major role in QoS provisioning and congestion control for wireless networks. The main

problem with the congestion control mechanisms provided by current RRM schemes is

that they are mostly reactive, triggered only when congestion occurs. The common,

traditional solution to congestion has been for system planners to over-engineer a network

by assigning more resources than are necessary. This approach is very costly because busy

periods are usually brief, causing the network to be often under-utilised outside of these

periods. Current static, usage-based pricing models also fail to assist in traffic shaping to

even out loads.

Economic modelling offers a new perspective into current RRM schemes and enables

efficient utilisation of scarce resources and congestion prevention based on concepts such

as utility, price, Pareto optimality and game theory. Dynamic pricing has been proposed

as a mechanism to encourage users to adapt their resource consumption level according to

network conditions. A good pricing model can provide the necessary positive incentives to

increase users’ arrival rate when the network load is relatively low and negative incentives

for users to defer their usage when the load is relatively high. In this dissertation, we

propose an economic framework for pricing and RRM for 3G and beyond systems. Our

aim is two-fold: to calculate an optimal integrated dynamic pricing and RRM policy; and

to allocate scarce network resources in a fair and Pareto-optimal manner.

The optimal integrated dynamic pricing and RRM policy is computed based on the

stochastic distribution of users’ budget, arrivals, handoffs and departures. Our results
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Abstract

show that the integrated policy is superior in terms of average reward improvement and

congestion prevention to current schemes that use static pricing models. In interference-

based networks such as WCDMA, we suggest users be charged according to their noise

rise factor, i.e. an estimate of the amount of interference generated by the call. This

interference-based pricing model improves on the conventional load-based model in by

delivering higher revenue and lower call blocking and handoff probabilities.

Using the axiomatic bargaining concepts from cooperative game theory, we derive a

class of fair and Pareto-optimal bargaining solutions that allocate wireless resources based

on users’ minimum and maximum rate requirements. We propose two models: symmetric

and asymmetric. In the latter, resource is allocated according to the price paid by the

users. An important significance of the asymmetric bargaining model is that this solution

is still Pareto-optimal and fair according to the users’ bargaining power. Our approach

is also a departure from current works using noncooperative game theory that can only

achieve an inefficient outcome, i.e. the Nash equilibrium; or cooperative game theory

that focus on only one solution on the Pareto-optimal boundary. By analysing a range

of bargaining solutions instead of specific ones, operators can proceed to select the best

outcome out of these Pareto-optimal solutions based on criteria like revenue.
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