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ABSTRACT 

Net feed intake or residual feed intake is the feed intake of an animal after 

adjustment for its average weight and weight gain while on the feed test. High net 

feed efficiency (NFE) animals have a low net feed intake, so the aim is to select 

animals that have high net feed efficiency in order to reduce the 70% expenditure for 

feed costs. Thus far, very few studies have been undertaken on beef cattle to identify 

genetic markers for NFE and to understand the molecular genetics of feed intake 

regulation and energy balance. Therefore, in an attempt to identify genes and 

metabolic pathways controlling feed efficiency in beef cattle, three different 

experimental approaches were taken herein: a) linkage and linkage disequilibrium 

quantitative trait loci (OTL) mapping for net feed intake in Lirnousin x Jersey animals, 

b) mitochondrial oxidative phosphorylation enzyme assays in high and low NFE 

cattle, and c) 2-dimensional fluorescent gel electrophoresis (DIGE) proteomics 

analysis of mitochondrial proteins. 

For the caUle OTL mapping, the results from a previous trial were utilized. In the trial, 

a double back-cross design was employed using two extremely divergent Bos taurus 

breeds [Jersey (J) dairy breed and Limousin (L) beef breed]. These breeds 

known to differ in many traits including carcass composition, fat colour, 

body size, and meat tenderness. Three first cross (F1=X) sires were mated to pure 

Jersey or pure Limousin cows, creating in total 366 XJ and XL backcross progeny 

(range 120-156 progeny per sire). The amount of feed consumed each day during 

the 70-100 day test was recorded electronically for each animal. Feed intake data 

were processed by calculating the least-square means for each animal over the test 

period. The data for net feed intake were analysed using a OTL half-sib interval­

mapping model. The interval linkage analysis of whole genome detected six 

suggestive OTL (BTA 1, 6, 8, 9, 16, and 20) segregating for NFE. Of these 6 OTL, 4 

NFE OTL (BTA 1, 6,16, and 20) were homeologous to OTL for NFE observed in full­

sib F2 families of mouse selection lines (Fenton 2004). After the NFE data were re­

analysed for outliers, a OTL on BTA 11 was re-ranked and placed in the top 4 NFE 

OTL in terms of size of effect and statistical support, whereas the OTL on BTA 6 and 

BTA 16 had less support. Since the OTL on BTA 9 was not independent of growth, 

only 4 OTL (BTA 1, 8, 11 and 20) were targeted for further study herein. These NFE 

OTL were cross-validated in Angus NFE selection line animals in collaboration with 
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Department of Primary Industries (DPI), Victoria by microsatellite linkage mapping. 

Two of the OTL on BTA 8 and 20 were confirmed and three other minor OTL on BTA 

1, 11, and 20 were detected in the Angus animals. 

Based on this background information, a comparative genome mapping study was 

undertaken to identify candidate genes. Using the human and bovine genome 

Ensembl databases, 205 NFE candidate genes underlying the 4 major OTL regions 

(BTA 1, 8, 11, and 20) were identified and 61 were sequenced in the mapping F1 

Limousin x Jersey mapping sires. In these 61 genes, 308 SNPs were discovered, of 

which 27 were potentially functional SNPs changing the amino acids. 84 SNPs were 

selected for genotyping and used for fine mapping the 4 OTL and for SNP 

association studies with NFE. From the positions of the analyses, the 4 NFE OTL 

were refined and 27 candidate SNPs in 20 genes showed strong association with 

NFE in the Limousin x Jersey animals. 

A ParAliele whole genome scan with a bovine 10K SNP chip was also performed on 

a subset of the Angus NFE selection line animals by DPI Victoria. 100 ParAliele 

SNPs had significant association with NFE in the Angus selection line animals. 

These ParAliele SNPs were tested in the Limousin x Jersey animals and 16 ParAliele 

SNPs were significantly associated with NFE. Four of these SNPs were located in 

the NFE OTL on BTA 1, 11 and 20. 

Based on the candidate genes underlying the 4 NFE OTL, 8 potential metabolic 

pathways contributing to NFE were identified. These metabolic pathways included 

mitochondrial oxidative phosphorylation and glucose turnover. Therefore, to 

determine if these specific pathways are indeed involved in net feed efficiency, 

oxidative phosphorylation enzyme assays and mitochondrial protein profiling were 

conducted on progeny from the Angus Trangie NFE selection line animals. Liver and 

skeletal muscle samples were obtained from extreme high and low NFE animals with 

an average phenotypic difference of 3 kg net feed intake per day. 

Using these liver and muscle samples, mitochondria were prepared and assessed. 

The mitochondrial preparations were assayed for enzyme activity of 3 complexes 

(Complex I, II and IV) involved in oxidative phosphorylation. The enzyme activities 

were measured spectrophotometrically and analysed by regression analysis. The 
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activity of the liver mitochondrial Complex I was found to be significantly decreased in 

the high NFE animals compared to the low NFE animals (p<O.0001). The Complex II 

and IV activities were increased in the high NFE cattle, but the differences were not 

statistically significant. 

Using the mitochondrial preparations, 2-D polyacrylamide gel electrophoresis 

differential gel electrophoresis (2-D PAGE OIGE) was used to generate a 

mitochondrial protein profile for the high and low NFE Angus cattle. An ontological 

analysis based on the differentially expressed proteins (>1.5 fold difference) in the 

high VS. low NFE cattle unambiguously identified a total of 27 proteins in 6 

physiologically different groups. The mitochondria proteomics results also confirmed 

the involvement of oxidative phosphorylation in net feed intake regulation. Eleven 

oxidative phosphorylation complex subunit proteins were found to be differentially 

expressed between the high and low NFE animals. Other differentially expressed 

proteins included six stress-related proteins, seven energy production and glucose 

turnover proteins, two protein turnover and nitrogen balance enzymes, and two 

proteins involved in mitochondrial DNA and protein biosynthesis. Four of the 

differentially expressed proteins were found in the NFE OTL regions. 

The results of these experiments provide a better understanding of the relationship 

between variation in feed efficiency and cellular energy production mechanisms in 

beef cattle. The proteomics and mitochondrial enzyme assay results suggest that 

energy metabolism and homeostasis may not be an efficient process in low NFE 

cattle. Lastly, a set of candidate SNPs are now available for the further validation as 

markers for selection of NFE in cattle breeding programs. 


