Regulatory T Cells, Th17 Effector Cells and Cytokine Microenvironment in Inflammatory Bowel Disease and Coeliac Disease

NICOLA EASTAFF - LEUNG B.Sc. (Hons.)

Discipline of Pathology, School of Medical Sciences University of Adelaide; The Basil Hetzel Institute for Medical Research and the Department of Gastroenterology and Hepatology, The Queen Elizabeth Hospital

August 2009

A thesis submitted to the University of Adelaide as the requirement for the degree of Doctor of Philosophy

"Complete happiness is nothing else than exceptional harmony in the

digestive tract"

Lunatcharsky (1875 – 1933)

Dedication

This thesis is dedicated to my Great Aunt Krystyna Luzny, who taught me courage, strength, compassion and resilience. This thesis could not have been completed without her support.

Table of Contents

Abstract	vi
Declaration	ix
Publications, Presentations and Awards	x
Acknowledgements	xi
Abbreviations	xiv

CHAPTER 1 - LITERATURE REVIEW	1
1.1 Overview	. 2
1.2 Immunobiology of the Gastrointestinal Tract	. 2
1.2.1 Morphology of the Gastrointestinal Tract	. 2
1.2.2 Antigen Sampling	. 5
1.2.3 T cell activation	6
1.3 Inflammatory Bowel Disease	. 9
1.3.1 Crohn's Disease	10
1.3.2 Ulcerative Colitis	13
1.3.3 Pathogenesis of Inflammatory Bowel Disease: Environmental Factors	
1.3.4 Pathogenesis of IBD: Microbial Factors	17
1.3.5 Pathogenesis of IBD: Genetic Factors	
1.3.6 Pathogenesis of IBD: Immunological Factors	21
1.4 Coeliac Disease	23
1.4.1 Pathogenesis of Coeliac Disease: Environmental Factors	26
1.4.2 Pathogenesis of Coeliac Disease: Genetic Factors	27
1.4.3 Pathogenesis of Coeliac Disease: Immunological factors	28
1.5 Effector Cells	31
1.5.1 Th1 and Th2 Effector Cells	31
1.5.2 The Th17 Effector Cell – A Distinct Effector Cell Lineage	32
1.5.3 The IL-17 Cytokine Family	33
1.5.4 Biological Function of Th17 Effector Cells	33
1.5.5 IL-17 and Autoimmunity	34
1.6 Regulatory T cells	36
1.6.1 Tolerance	36
1.6.2 Regulatory T cells	37
1.6.3 CD4 ⁺ CD25 ⁺ Regulatory T Cell (Treg)	38
1.6.4 Foxp3	38
1.6.5 Suppressive Mechanisms of Tregs	40

1.6.6 Natural and Induced Regulatory T Cells	42
1.6.7 Human Tregs	43
1.6.8 Tregs in Autoimmunity	
1.7 Summary	46

2.1 Materials	49
2.1.1 Antibodies	49
2.1.2 Reagents	51
2.1.3 Buffers and Solutions	55
2.2 Methods	61
2.2.1 Sample collection	61
2.2.2 Isolation of PBMCs	
2.2.3 Cryogenic Storage of PBMCs	
2.2.4 Thawing of Cryogenically Frozen Samples	
2.2.5 Flow cytometry – General methods	
2.2.6 Intestinal Biopsy Collection	
2.2.7 RNA Extraction	
2.2.8 Nucleic Acid Quantification	
2.2.9 Experion Virtual Electrophoresis RNA Gel	
2.2.10 Conversion of mRNA to cDNA	
2.2.11 Real Time Reverse Transcription Polymerase Chain Reaction	67
2.2.12 Real Time RT-PCR Calculations	70
2.2.13 Agarose gel electrophoresis	70
2.2.14 Real time RT-PCR product purification	70
2.2.15 Sequencing	71
2.2.16 Statistics	71
2.3 Subject Information	72
2.3.1 Human Ethics Approval	
2.3.2 Clinical History of Enrolled Subjects	

CHAPTER 3 - FOXP3 REGULATORY T CELLS IN INFLAMMATORY BOWEL DISEASE AND COELIAC DISEASE 75

3.1 Introduction	
3.3 Methods	
3.3.1 Subjects	
3.3.2 Flow cytometry	
3.3.3 Real-time RT-PCR analysis for Foxp3	
3.3.4 Statistics	

3.4 Results	85
3.4.1 Quantification of Peripheral Foxp3 ⁺ Cells	
3.4.2 Quantification of Peripheral $CD4^+$ $CD25^+$ Foxp3 ⁺ Cells	
3.4.3. CD4+ CD25 ^{high} gating strategy	
3.4.4 Quantification of Peripheral CD4+ CD25 ^{high} Foxp3+	
3.4.5 \tilde{E} valuation of $\tilde{CD127}^{low}$ as a marker of Tregs	
3.4.6 Relative Expression of Foxp3 in the Intestinal Mucosa	
3.4.7 Regulatory T cells and Disease Activity	
3.5.1 Summary	

4.1 Introduction	112
4.3 Methods	118
4.3.1 Subjects	118
4.3.2 In vitro PMA/Ionomycin stimulation of PBMCs	118
4.3.3 Flow Cytometry - Intracellular cytokine staining	119
4.3.4 RNA extraction and cDNA production	120
4.3.5 Real time RT-PCR	120
4.3.4 Statistics	121
4.4 Results	122
4.4.1 Production of IL-17 by stimulated PBMCs measured by flow cytomet	
4.4.2 Production of IL-17a by stimulated PBMCs measured by real time R	T-PCR
	124
4.4.3 Investigation of CD8 cells producing IL17a	127
4.4.4 IL-17a positive and negative controls	
4.4.5 Quantification of Peripheral Blood Th17 Cells	
4.4.6 Relative expression of IL-17 mRNA in the intestinal mucosa	
4.4.7 Disease activity and IL-17 expression in IBD and coeliac disease	137
4.4.8 Relative expression of IL-23 in the intestinal mucosa	
4.4.9 Relative Expression of Effector Cell Transcription Factors in the Inte	
Mucosa	
4.5 Discussion	146
4.5.1 Summary	

CHAPTER 5 - THE CYTOKINE MICROENVIRONMENT IN INFLAMMATORY BOWEL DIEASE AND COELIAC DISEASE 151

5.1 Introduction	152
5.3 Methods	160
5.3.1 Subjects	160
5.3.2 RNA extraction and cDNA production	
5.3.3 Real time RT-PCR	160
5.3.4 Statistics	
5.4 Results	162
5.4.1 Relative expression of IL-1 β in the intestinal mucosa	162
5.4.2 IL-1 β expression and disease activity in IBD and coeliac disease	164
5.4.3 Relative expression of IL-6 in the intestinal mucosa	167
5.4.4 Disease activity and IL-6 expression in IBD and coeliac disease	
5.4.6 Disease activity and TGF- β relative expression in IBD and coeliac d	
	174
5.4.8 Inter-relationship of IL-1 β , IL-6, TGF- β and IL-17a	179
5.5 Discussion	181
5.5.1 Summary	185

CHAPTER 6 - THE RELATIONSHIP BETWEEN REGULATORY T CELLS AND TH17 CELLS IN INFLAMMATORY BOWEL DISEASE AND COFLIAC DISEASE 187

DISLASE AND COLLIAC DISLASE	
6.1 Introduction	188
6.2 Aims and Hypothesis	192
6.3 Methods	
6.3.1 Subjects	193
6.3.2 Flow Cytometry	193
6.4 Results	
6.4.1 Peripheral Tregs and Th17 cells in control subjects	
6.4.2 Peripheral Treg and Th17 cells in Crohn's disease	
6.4.3 Peripheral Treg and Th17 in UC	
6.4.4 Peripheral Treg and Th17 Cells in Coeliac Disease	200
6.4.5 The Ratio of Treg and Th17 Cells Within Patient Samples	202
6.5 Discussion	
6.5.1 Summary	207

CHAPTER 7 - GENERAL DISCUSSION	
7.1 Discussion	210
7.1.1 Regulatory T cells	
7.1.2 Th17 Effector Cells	
7.1.3 Effector Cell Transcription Factors	
7.1.3 The Proinflammatory Cytokine Network in IBD	
7.1.4 Other Factors affecting Treg/Th17 homeostasis	227
7.1.5 Implications	
7.1.6 Summary	
REFERENCES	

Abstract

Inflammatory bowel disease (including Crohn's disease and ulcerative colitis) and coeliac disease are debilitating gastrointestinal diseases that seriously affect the quality of life of those affected. Under normal circumstances, the intestinal immune system is maintained in a state of controlled inflammation, whereby balance exists between protective immunity, mediated by effector cells, and tolerance mediated by cells with regulatory function. However, an aberrant immune response is believed to contribute to the intestinal inflammation present in individuals afflicted by these diseases.

This thesis investigated the involvement of CD4⁺ CD25^{high} Foxp3⁺ Regulatory T cells (Treg) and Th17 Effector cells in both inflammatory bowel disease (IBD) and coeliac disease. The reciprocal relationship between Treg and Th17 cells under certain cytokine conditions, has prompted the exploration of these two cell types in IBD and coeliac disease. Previous studies have examined these factors individually in a range of diseases, however, to our knowledge the study of both Treg and Th17 in IBD and coeliac disease subjects represents a novel area of research.

Crohn's disease (CD), ulcerative colitis (UC) and coeliac disease subjects were recruited through the Department of Gastroenterology and Hepatology at The Queen Elizabeth Hospital (QEH) in Adelaide, South Australia. In total, one-hundred and seventeen subjects were enlisted in this study to donate blood samples. In addition, intestinal biopsy samples were collected from fifty-six subjects undergoing colonoscopy at the QEH Department of Gastroenterology and Hepatology. All subjects participated, with informed consent and ethics approval. Treg and Th17 cell numbers were investigated in the peripheral blood of Crohn's disease, ulcerative colitis, coeliac disease and control subjects using multi-colour, intracellular flow cytometry. A decrease in Treg cell numbers and an increase in Th17 cell numbers was observed in IBD, but not in coeliac disease. Closer investigation into the ratio of Treg and Th17 cells within patients identified a near 1:1 Treg/Th17 ratio in control subjects, but a lower Treg/Th17 ratio in IBD patients. This suggested a disturbance in regulatory and effector cell equilibrium. Furthermore, the excess of Th17 cells and deficiency of Tregs could contribute to the pathologies observed in IBD.

The discovery of an imbalance in Treg and Th17 cell numbers in IBD prompted further investigation of these cells in intestinal biopsies collected from IBD, coeliac and control subjects. Real time RT-PCR of intestinal biopsy samples demonstrated increased expression of the Th17 cytokine, IL-17a, in both IBD and coeliac disease. Elevated levels of the Treg transcription factor Foxp3 were also identified in intestinal biopsies from IBD subjects. It was therefore hypothesised that Treg cells may have been actively recruited from the periphery in an attempt to control inflammation in the gut; however, the intestinal cytokine microenvironment may have restricted the regulatory function of these cells.

Cytokines known to promote human Th17 differentiation, namely IL-1 β , IL-6, TGF- β , IL-21 and IL-23, were explored in intestinal biopsy samples from IBD, coeliac and control subjects. High levels of IL-1 β and IL-6 were detected in IBD patient samples, however, no change in levels of IL-21 or IL-23 were observed in IBD or coeliac disease subjects. Elevated levels of TGF- β were only identified in UC. No changes in cytokine

expression were observed between control and coeliac subjects, except a significant decrease in IL-6 levels was identified in coeliac disease sufferers.

The pro-inflammatory microenvironment identified in intestinal biopsies from IBD subjects may have promoted the continual differentiation and development of Th17 cells, whilst restricting Treg activity. Moreover, the observed deficiency of Treg in IBD patients may have impaired the ability of the immune system to limit excessive pathogenic Th17 driven immune responses in the intestinal mucosa. Therefore, therapeutic approaches that aim to re-establish regulatory and effector cell homeostasis by increasing Treg numbers in IBD patients, and specifically targeting Th17 cells, may prove effective in the treatment of IBD. Approaches such as these could provide greater focus to treatment strategies for IBD management compared to current broad-spectrum immunosuppressive therapies that could increase susceptibility to cancer or infection in IBD patients. In addition, the imbalance of regulatory and effector cells demonstrated in the peripheral blood of IBD patients may potentially provide new options for a non-invasive diagnostic tool.

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Nicola Eastaff-Leung and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Date:

Nicola Eastaff-Leung

Publications, Presentations and Awards

PUBLICATIONS:

Eastaff-Leung N, Mabarrack N, Barbour A, Cummins A and Barry S. (2009) Regulatory T Cells, Th17 Effector Cells and Cytokine Microenvironment in Inflammatory Bowel Disease. Accepted for publication. Journal of Clinical Immunology.

AWARDS RECEIVED:

- Australian Crohn's and Colitis Young Researcher Award (2007)
- Queen Elizabeth Hospital Research Day Award for Best Presentation for Higher Degree Research (2007)
- Health Science Research Committee Postgraduate Travelling Fellowship (2007)
- Queen Elizabeth Hospital Research Foundation Postgraduate Research Scholarship (2005-2008)

ABSTRACTS PUBLISHED:

Leung N, Cummins A and Barry S. Regulatory T Cells, Th17 Effector Cells and the Cytokine Microenvironment in Inflammatory Bowel Disease. Australian Society for Medical Research, Adelaide, 2008.

Leung N, Cummins A, Barbour A, and Barry S. Th17 Effector Cells and Th17 Effector Cells in Inflammatory Bowel Disease. Keystone Autoimmunity and Tolerance Conference, Colorado, 2008.

Leung N, Cummins A and Barry S. Regulatory T Cells in Inflammatory Bowel Disease. Australian Society of Immunology Conference, Sydney, 2007.

Acknowledgements

Firstly, I have to thank Dr Adrian Cummins for allowing me to undertake this PhD. Adrian took a huge risk in accepting a Psychology and Chinese Medicine student with an interest in gastroenterology as a PhD student. However his patience allowed me to develop into a confident and independent research scientist. Without him, this study would not have been possible. To Angela Barbour, I thank you for your detailed editing and reviewing of my thesis. I also greatly appreciate your organization and mediation of our supervisor meetings. I realise this study has not been in your field of expertise, but I thank you for your continued interest in my work. To Simon Barry, I thank you for demonstrating to me a true enthusiasm for science. You have been an inspirational figure throughout my candidature and someone whom I will miss discussing my future research with. I am eternally grateful for your supervision and the technical support of your lab. Allowing me to join your regular lab meetings at the Women and Children's Hospital introduced me to a whole new world of research that provided high standards by which I will always compare myself.

I am indebted to the QEH Research Foundation and the Adelaide University Department of Pathology for my PhD scholarship and for funding my travel to present this work. I am also grateful to the Australian Crohn's and Colitis Association who recognised the importance of this study and provided additional funding for extra experiments that proved crucial to this thesis. This study would also not be possible without the QEH Department of Gastroenterology and the participation of those patients with Crohn's disease, ulcerative colitis and coeliac disease. The donation of blood and biopsy samples by these individuals has provided not only data for my thesis, but also a greater understanding into these diseases. This project has always been about improving the lives of these individuals, and their generosity has helped me to develop the knowledge by which I hope to use to improve the treatment of these diseases.

To my friends and colleagues at the QEH, WCH and Adelaide University. You have made this difficult time of PhD research enjoyable and memorable. Thank you to the IMVS blood collection staff, Isa, Grace and Allan who helped me overcome my fear of needles. To Adrian and George who entertained me while I worked at the QEH. A big thank you to past and present members of the Department of Gastroenterology at the Basil Hetzel Institute; including Jane Fauser, Josh Woenig, Krishna Jeyaraman, Rino Donato, Andrew Trotta, Wendy Uylaki and Rachel Gibson. A special thank you to Gordon Howarth for his exceptional editing assistance. To the Transplantation Immunology Laboratory at the Basil Hetzel Institue; especially Emma Leedham, Svjetlana Kireta, Julie Johnston, Clyde Milner, Chris Drogemuller, Boris Fedoric, Darling Rojas, Natasha Rogers and Ravi Krishnan. I am eternally grateful for your technical support and your friendship. Thank you to the ENT lab including Lor Wai Tan, Leonie Baker and Pru Cowled. To the Barry lab at the WCH, especially Tessa Garget, Suzanne Bresatz, Cheryl Brown, Tim Sadlon, Liz Melville and Steve Pederson. Thank you for having me in your lab, and for all the help you have given me. Your support and kindness was crucial to the completion of this thesis. I would also like to acknowledge and thank my fellow PhD students, including Nick Mabarrack (my unofficial supervisor), Randall Grose, Erin McCartney and Jane Fauser. Each of you taught me critical skills in the lab in addition to life lessons during the length of this PhD. I wish you all the best with the paths you chose from here on.

I would also like to extend my gratitude to my family and friends who have supported me throughout this PhD. To my parents who somehow lead me down this path of science. Thank you for your support and encouragement in all the things I have done. To my Ciocia Krysia, you are such a wonderful woman whom I love so much. Thank you for all the Polish dinners filled with love that helped me through these lean student days. You are truly the most inspirational woman, and this PhD is nothing compared to what you have achieved in your life. To my sister, Jojo, I'm not sure I could have survived without your pep talks and encouragement. You always know exactly what to say to get me through. Thank you from the bottom of my heart. To Michael, the best friend and husband I could have ever asked for. The continued support and strength I received from you throughout this PhD has been incredible. I hope I can return the favour to you one day and I look forward to all our adventures to come. To the Eastaff Family, thank you for accepting me as a part of your family and helping me through this difficult time. Finally, to my friends, Annabelle Harry, Stephanie Munn, Jess Gilding, Kathy Gruber, Emma Leedham, Kristel Petrou, Marcia Burnett and everyone else who has supported my endless studies. I genuinely appreciate your patience, and acceptance of my unpredictable work schedule. Thank you for standing by me although I may have been absent a lot of the time and thank you for feigning interest while I talked about intestinal disorders.

Abbreviations

α	Alpha
β	Beta
γ	Gamma
Δ	Delta
±	Plus or minus
μg	Microgram
μl	Microlitre
ACCA	Australian Crohn's and Colitis Association
AGA	Anti-gliadin antibody
APC	Antigen presenting cell
BSA	Bovine serum albumin
CD	Cluster defined antigen
cDNA	Complimentary DNA
CBE	Complete Blood Exam
CIA	Collagen induced arthritis
Ct	Cycle threshold
DC	Dendritic cell
dH ₂ 0	Distilled water
DMSO	Dimethly sulfoxide
DNA	Deoxyribonucleic acid
dNTP	Dinucleotide triphosphate
EAE	Experimental autoimmune encephalitis

EATL	Enteropathy associated T cell lymphoma
EDTA	Ethylene diamine tetra-acetic acid
FACS	Fluorescence activated cell sorter
FCS	Foetal calf serum
FITC	Fluorescein isothiocyanate
Foxp3	Forkhead box p3
G	Gram
g	Gravitation force
GALT	Gut associated lymphoid tissue
GATA3	GATA binding protein 3
Н	Hours
HLA	Human leukocyte antigen
IBD	Inflammatory bowel disease
IEL	Intraepithelial lymphocyte
IFN	Interferon
Ig	Immunoglobulin
IL	Interleukin
IL-R	Interleukin receptor
IPEX	Immune Dysregulation Polyendocrinopathy Enteropathy X-linked.
L	Litre
LPS	Lipopolysaccharide
Μ	Molar
Mg	Milligram
MHC	Major histocompatability complex
Ml	millilitre

mRNA	Messenger ribonucleic acid
MW	Molecular weight
Ν	Sample size
NaCl	Sodium Chloride
ΝΓκβ	nuclear factor kappa-light-chain-enhancer of activated B cells
NK	Natural Killer
NLR	NOD-like receptors
NOD2	nucleotide-binding oligomerization domain containing 2
ns	not significant
NSAID	Non-steroidal anti-inflammatory
o/n	Overnight
°C	Degrees Celsius
PBMC	Peripheral blood mononuclear cells
PBS	Phosphate buffered saline
PCR	Polymerase chain reaction
PE	Phycoerythrin
PE-Cy5	Phycoerythrin-cyanin-5
PMA	Phorbol 12-myristate 13-acetate
QEH	Queen Elizabeth Hospital
RA	Rheumatoid arthritis
RORγ	Retinod related orphan receptor gamma
RORC	Retinoic acid related receptor C
Rpm	Revolutions per minute
RPMI	Roswell Park Memorial Institute
RT	Room temperature

RT-PCR	Reverse transcription real time polymerase chain reaction
SCFA	Short chain fatty acid
SD	Standard deviation
SEM	Standard error of the mean
STAT	Signal transducer and activator of transcription
TBE	Tris borate EDTA
T-bet	T box expressed in T cells
TCR	T cell receptor
TGF-β	Transforming growth factor beta
Th	T helper
TLR	Toll-like receptor
TNF	Tumour necrosis factor
TGA	Tissue transglutaminase
tTGA	anti-tissue transglutaminase
Treg	Regulatory T cell
UC	Ulcerative Colitis
UV	Ultra violet
V	Volts
v/v	volume per volume
w/v	weight per volume
Y	years