# Item Noise versus Context Noise: Using the List Length Effect to Investigate the Source of Interference in Recognition Memory

#### Angela Kinnell

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

**School of Psychology** 

The University of Adelaide

August, 2009

- Anderson, J.R., & Bower, G.H. (1972). Recognition and retrieval processes in free recall. *Psychological Review*, 79, 97-123.
- Atkinson, R.C., & Juola, J.F. (1973). Factors influencing speed and accuracy of word recognition. In S. Kornblum (Ed.) *Attention and performance IV* (pp. 583-612). New York: Academic Press.
- Atkinson, R.C., & Juola, J.F. (1974). Search and decision processes in recognition memory.
  In D.H. Krantz, R.C. Atkinson, R.D. Luce, & P. Suppes (Eds.) *Contemporary developments in mathematical psychology (Vol. 1): Learning, memory and thinking* (pp. 243-293). San Francisco: Freeman.
- Bahrick, H. P., Bahrick, P. O., & Wittlinger, R. P. (1975). Fifty years of memory for names and faces: A cross-sectional approach. *Journal of Experimental Psychology: General*, 104, 54-75.
- Banks, W. P. (1970). Signal detection theory and human memory. *Psychological Bulletin*, 74, 81-99.
- Bowles, N. L., & Glanzer, M. (1983). An analysis of interference in recognition memory. Memory & Cognition, 11, 307-315.
- Buratto, L. G., & Lamberts, K. (2008). List strength effect without list length effect in recognition memory. *The Quarterly Journal of Experimental Psychology*, 61, 218-226.
- Cary, M., & Reder, L. M. (2003). A dual-process account of the list-length and strength-based mirror effects in recognition. *Journal of Memory and Language*, 49, 231-248.

- Chalmers, K. (2005). Basis of recency and frequency judgements of novel faces: Generalised strength or episode-specific memories? *Memory*, *13*, 484-498.
- Chen, M. H., Shao, Q. M., & Ibrahim, J. G. (2000). *Monte carlo methods in bayesian computation*. New York: Springer.
- Clark, S. E. (1992). Word frequency effects in associative and item recognition. *Memory & Cognition*, 20, 231-243.
- Clark, S. E. (1999). Recalling to recognize and recognizing recall. In C. Izawa (Ed.), On human memory: Evolution, progress, and reflections on the 30<sup>th</sup> anniversary of the Atkinson-Shiffrin model (pp. 215-243). Mahwah, NJ: Lawrence Erlbaum Associates.
- Clark, S. E., & Burchett, R. E. R. (1994). Word frequency and list composition effects in associative recognition and recall. *Memory & Cognition, 22, 55-62.*
- Clark, S. E., & Gronlund, S. D. (1996). Global matching models of recognition memory: How the models match the data. *Psychonomic Bulletin & Review, 3*, 37-60.
- Clark, S. E., & Hori, A. (1995). List length and overlap effects in forced-choice associative recognition. *Memory & Cognition*, 23, 456-461.
- Clark, S.E., Hori, A., & Callan, D. E. (1993). Forced-choice associative recognition: Implications for global-memory models. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 19*, 871-881.
- Clark, S. E., & Shiffrin, R. M. (1992). Cuing effects and associative information in recognition memory. *Memory & Cognition*, 20, 580-598.
- Cohen, J. (1988). *Statistical power analysis for the behavioral sciences*. Hillsdale, NJ: Lawrence Erlbaum Associates.
- Criss, A. H. (2006). The consequences of differentiation in episodic memory: Similarity and the strength based mirror effect. *Journal of Memory and Language*, *55*, 461-478.

- Criss, A. H. (2009). The distribution of subjective memory strength: List strength and response bias. *Cognitive Psychology*, *59*, 297-319.
- Criss, A. H., & Malmberg, K. J. (2008). Evidence in favor of the early-phase elevatedattention hypothesis: The effects of letter frequency and object frequency. *Journal of Memory and Language, 59*, 331-345.
- Criss, A. H., & McClelland, J.L. (2006). Differentiating the differentiation models: A comparison of the retrieving effectively from memory model (REM) and the subjective likelihood model (SLiM). *Journal of Memory and Language*, 55, 447-460.
- Criss, A. H., & Shiffrin, R. M. (2004a). Context noise and item noise jointly determine recognition memory: A comment on Dennis and Humphreys (2001). *Psychological Review*, 111, 800-807.
- Criss, A. H., & Shiffrin, R. M. (2004b). Interactions between study task, study time, and the low-frequency hit rate advantage in recognition memory. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 30,* 778-786.
- Criss, A.H., & Shiffrin, R.M. (2004c). Pairs do not suffer interference from other types of pairs or single items in associative recognition. *Memory & Cognition, 32*, 1284-1297.
- Curran, T., Schacter, D. L., Norman, K. A., & Galluccio, L. (1997). False recognition after a right frontal lobe infarction: Memory for general and specific information. *Neuropsychologia*, 35, 1035-1049.
- de Zubicaray, G. I., McMahon, K. L., Eastburn, M. M., Finnigan, S., & Humphreys, M. S. (2005). fMRI evidence of word frequency and strength effects during episodic memory encoding. *Cognitive Brain Research*, 22, 439-450.
- Dennis, S. (1995). *The Sydney Morning Herald word database*. Available: http://psy.uq.edu.au/CogPsych/Noetica.

- Dennis, S., & Humphreys, M. S. (2001). A context noise model of episodic word recognition. *Psychological Review*, 108, 452-478.
- Dennis, S., Lee, M. D., & Kinnell, A. (2008). Bayesian analysis of recognition memory: The case of the list-length effect. *Journal of Memory and Language*, *59*, 361-376.
- Diana, R. A., & Reder, L. M. (2005). The list strength effect: A contextual competition account. *Memory & Cognition*, 33, 1289-1302.
- Diana, R. A., Reder, L. M., Arndt, J. & Park, H. (2006). Models of recognition: A review of arguments in favor of a dual-process account. *Psychonomic Bulletin & Review*, 13, 1-21.
- Dunn, J. C. (2004). Remember-know: A matter of confidence. *Psychological Review*, 111, 524-542.
- Estes, W. K. (1955). Statistical theory of distributional phenomena in learning. *Psychological Review*, 62, 369-377.
- Farah, M.J., Wilson, K.D., Drain, M., & Tanaka, J.N. (1998). What is "special" about face perception? *Psychological Review*, 105, 482-498.
- Gardiner, J. M. (1988). Functional aspects of recollective experience. *Memory & Cognition*, *16*, 309-313.
- Gardiner, J. M., & Java, R. I. (1990). Recollective experience in word and nonword recognition. *Memory & Cognition*, 18, 23-30.
- Gardiner, J. M., & Richardson-Klavehn, A. (2000). Remembering and knowing. In E. Tulving
  & F. I. M. Craik (Eds.), *The Oxford handbook of memory* (pp. 229-244). Oxford:
  Oxford University Press.
- Gillund, G., & Shiffrin, R. M. (1984). A retrieval model for both recognition and recall. *Psychological Review*, *91*, 1-67.

- Glanc, G. A., & Greene, R. L. (2007). Orthographic neighborhood size effects in recognition memory. *Memory & Cognition*, 35, 365-371.
- Glanzer, M., & Adams, J. K. (1990). The mirror effect in recognition memory: Data and theory. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 16*, 5-16.
- Glanzer, M., Adams, J. K., Iverson, G. J., & Kim, K. (1993). The regularities of recognition memory. *Psychological Review*, 100, 546-567.
- Gravetter, F. J., & Wallnau, L. B. (1985). *Statistics for the behavioral sciences*. Minnesota: West Publishing Co.
- Greene, R. (2004). Recognition memory for pseudowords. *Journal of Memory and Language*, 50, 259-267.
- Gronlund, S. D., & Elam, L. E. (1994). List-length effect: Recognition accuracy and variance of underlying distributions. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 20*, 1355-1369.
- Hintzman, D. L. (1984). MINERVA 2: A simulation model of human memory. *Behavior Research Methods, Instruments, & Computers, 16*, 96-101.
- Hirshman, E., & Arndt, J. (1997). Discriminating alternative conceptions of false recognition:
  The cases of word concreteness and word frequency. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 23*, 1306-1323.
- Hockley, W. E. (1991). Recognition memory for item and associative information: A comparison of forgetting rates. In W. E. Hockley & S. Lewandowsky (Eds.), *Relating theory and data: Essays on human memory in honor of Bennet B. Murdock* (pp. 227-248). Hillsdale, NJ: Lawrence Erlbaum Associates.
- Hockley, W. E. (1992). Item versus associative information: Further comparisons of

forgetting rates. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 18,* 1321-1330.

- Howard, M. W., & Kahana, M. J., (2002). A distributed representation of temporal context. Journal of Mathematical Psychology, 46, 269-299.
- Humphreys, M. S., Bain, J. D., & Burt, J. S. (1989). Episodically unique and generalized memories: Applications to human and animal amnesics. In S. Lewandowsky, J. C. Dunn, & Kirsner, K. (Eds.), *Implicit memory: Theoretical issues* (pp. 139-156).
  Hillsdale, NJ: Lawrence Erlbaum Associates.
- Humphreys, M. S., Wiles, J., & Dennis, S. (1994). Towards a theory of human memory: Data structures and access processes. *Behavioral and Brain Sciences*, *17*, 655-692.
- Jacoby, L. L., & Dallas, M. (1981). On the relationship between autobiographical memory and perceptual learning. *Journal of Experimental Psychology: General, 110*, 306-340.
- Jang, Y., & Huber, D. E. (2008). Context retrieval and context change in free recall: Recalling from long-term memory drives list isolation. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 34*, 112-127.
- Joordens, S., & Hockley, W. E. (2000). Recollection and familiarity through the looking glass: When old does not mirror new. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 26*, 1534-1555.
- Juola, J.F., Fischler, I., Wood, C.T., & Atkinson, R.C. (1971). Recognition time for information stored in long-term memory. *Perception and Psychophysics*, 10, 8-14.
- Knowlton, B. J., & Squire, L. R. (1995). Remembering and knowing: Two different expressions of declarative memory. *Journal of Experimental Psychology: General, 21*, 699-710.

Lauwerier, H. (1991). Fractals: Images of chaos (S. Gill-Hoffstadt, Trans.). New Jersey:

Princeton University Press. (Original work published 1987).

- Lockhart, R. S., & Murdock, B. B., Jr. (1970). Memory and the theory of signal detection. *Psychological Bulletin*, 74, 100-109.
- Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS A Bayesian modelling framework: Concepts, structure, and extensibility. *Statistics and Computing*, 10, 325-337.
- Malmberg, K. J., Steyvers, M., Stephens, J.D., & Shiffrin, R. M. (2002). Feature frequency effects in recognition memory. *Memory & Cognition, 30*, 607-613.
- Mandler, G. (1980). Recognizing: The judgment of previous occurrence. *Psychological Review*, 87, 252-271.
- Martinez, A.M., & Benavente, R. (1998). *The AR Face Database*. CVC Technical Report #24.
- Martelli, M., Majaj, N.J., & Pelli, D.G. (2005). Are faces processed like words? A diagnostic test for recognition by parts. *Journal of Vision*, *5*, 58-70.
- McClelland, J.L., & Chappell, M. (1998). Familiarity breeds differentiation: A subjective likelihood approach to the effects of experience in recognition memory. *Psychological Review*, 105, 724-760.
- McKenzie, W. A., & Tiberghien, G. (2004). Context effects in recognition memory: The role of familiarity and recollection. *Consciousness and Cognition*, *13*, 20-38.
- Mensink, G.M., & Raaijmakers, J.G.W. (1988). A model for interference and forgetting. *Psychological Review*, 95, 434-455.
- Mensink, G.M., & Raaijmakers, J.G.W. (1989). A model for contextual fluctuation. *Journal* of Mathematical Psychology, 33, 172-186.

Mickes, L., Wixted, J. T., & Wais, P. E. (2007). A direct test of the unequal-variance signal

detection model of recognition memory. *Psychonomic Bulletin & Review, 14,* 858-865.

- Monsell, S. (1978). Recency, immediate recognition memory, and reaction time. *Cognitive Psychology*, *10*, 465-501.
- Mulligan, N., & Hirshman, E. (1995). Speed-accuracy trade-offs and the dual process model of recognition memory. *Journal of Memory and Language*, *34*, 1-18.
- Murdock, B. B., Jr. (1982). A theory for the storage and retrieval of item and associative information. *Psychological Review*, *89*, 609-626.
- Murdock, B. B., & Kahana, M. J. (1993a). Analysis of the list-strength effect. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 19*, 689-697.
- Murdock, B. B., & Kahana, M. J. (1993b). List-strength and list-length effects: Reply to Shiffrin, Ratcliff, Murnane, and Nobel (1993). *Journal of Experimental Psychology: Learning, Memory, and Cognition, 19*, 1450-1453.
- Murnane, K., & Shiffrin, R. M. (1991). Interference and the representation of events in memory. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 17*, 855-874.
- Nobel, P. A., & Huber, D. E. (1993, August). *Modeling forced-choice associative recognition through a hybrid of global recognition and cued-recall.* Paper presented at the 15<sup>th</sup> annual meeting of the Cognitive Science Society, Boulder, CO.
- Nobel, P. A., & Shiffrin, R. M. (2001). Retrieval processes in recognition and cued recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 384-413.
- Norman, K. A., Tepe, K., Nyhus, E., & Curran, T. (2008). Event-related potential correlates of interference effects on recognition memory. *Psychonomic Bulletin & Review*, 15, 36-43.

- Ohrt, D. D. & Gronlund, S. D. (1999). List-length effect and continuous memory: Confounds and solutions. In C. Izawa (Ed.), *On human memory: Evolution, progress, and reflections on the 30<sup>th</sup> anniversary of the Atkinson-Shiffrin model* (pp. 105-126).
  Mahwah, NJ: Lawrence Erlbaum Associates.
- Pike, R. (1984). A comparison of convolution and matrix distributed memory systems. *Psychological Review, 91,* 281-294.
- Raaijmakers, J. G. W., & Shiffrin, R. M. (1981). Search of associative memory. *Psychological Review*, 88, 93-134.
- Ratcliff, R., Clark, S. E., & Shiffrin, R. M. (1990). List-strength effect: I. Data and discussion. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 163-178.
- Ratcliff, R., & Murdock, B. B. (1976). Retrieval processes in recognition memory. *Psychological Review*, 83, 190-214.
- Ratcliff, R., Sheu, C. F., & Gronlund, S. (1992). Testing global memory using ROC curves. *Psychological Review*, 99, 518-535.
- Reder, L. M., Nhouyvanisvong, A., Schunn, C. D., Ayers, M. S., Angstadt, P., & Hiraki, K. (2000). A mechanistic account of the mirror effect for word frequency: A computational model of remember-know judgements in a continuous recognition paradigm. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 26*, 294-320.
- Reed, A.V. (1973). Speed-accuracy trade-off in recognition memory. Science, 181, 574-576.
- Reed, A.V. (1976). List length and the time course of recognition in immediate memory. *Memory & Cognition, 4,* 16-30.
- Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests

for accepting and rejecting the null hypothesis. *Psychonomic Bulletin & Review, 16*, 225-237.

- Schulman, A. I. (1974). The declining course of recognition memory. *Memory & Cognition*, 2, 14-18.
- Shepard, R. N. (1967). Recognition memory for words, sentences and pictures. *Journal of Verbal Learning and Verbal Behavior*, *6*, 156-163.
- Shiffrin, R. M. (1970). Forgetting: Trace erosion or retrieval failure? *Science*, *168*, 1601-1603.
- Shiffrin, R., Ratcliff, R., Murnane, K., & Nobel, P. (1993). TODAM and the list-strength and list-length effects: Comment on Murdock and Kahana (1993a). *Journal of Experimental Psychology: Learning, Memory, and Cognition, 19*, 1445-1449.
- Shiffrin, R. M., & Steyvers, M. (1997). A model for recognition memory: REM retrieving effectively from memory. *Psychonomic Bulletin & Review*, *4*, 145-166.
- Snodgrass, J.G., & Corwin, J. (1988). Pragmatics of measuring recognition memory: Applications to dementia and amnesia. *Journal of Experimental Psychology: General*, 117, 34-50.
- Sternberg, S. (1966). High-speed scanning in human memory. Science, 153, 652-654.
- Strong, E. K., Jr. (1912). The effect of length of series upon recognition memory. *Psychological Review*, *19*, 447-462.
- Tulving, E. (1985). How many memory systems are there? *American Psychologist, 40*, 385-398.
- Underwood, B. J. (1978). Recognition memory as a function of length of study list. *Bulletin of the Psychonomic Society, 12*, 89-91.

Underwood, B. J., & Freund, J. S. (1970). Word frequency and short-term recognition

memory. American Journal of Psychology, 83, 343-351.

- Wagenmakers, E. J., & Grunwald, P. (2006). A Bayesian perspective on hypothesis testing: A comment on Killeen (2005). *Psychological Science*, 17, 641-642.
- Waugh, N. C., & Norman, D. A. (1965). Primary Memory. *Psychological Review*, 72, 89-104.
- Weeks, C. S., Humphreys, M. S., & Hockley, W. E. (2007). Buffered forgetting: When targets and distractors are both forgotten. *Memory & Cognition*, *35*, 1267-1282.
- Whittlesea, B. W. A., & Williams, L. D. (2000). The source of feelings of familiarity: The discrepancy-attribution hypothesis. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 26,* 547-565.
- Wixted, J.T. (2007). Dual-process theory and signal detection theory of recognition memory. *Psychological Review, 114,* 152-176.
- Xu, J., & Malmberg, K.J. (2007). Modelling the effects of verbal and nonverbal pair strength on associative recognition. *Memory & Cognition, 35,* 526-544.

## Appendix A

Word stimuli from Experiment 1.

| High      | force  | speed     | calmly | lager  |
|-----------|--------|-----------|--------|--------|
| Frequency | grand  | spent     | carer  | latent |
| above     | heard  | stage     | catchy | lilac  |
| added     | highly | stand     | cheat  | magnet |
| advice    | hotel  | stock     | cigar  | mammal |
| agreed    | inside | study     | cloudy | manor  |
| allow     | itself | survey    | coarse | mince  |
| appeal    | joint  | tried     | cobra  | nought |
| attack    | latest | visit     | corpse | patio  |
| basis     | legal  | impact    | covert | pesto  |
| became    | listed | wants     | daisy  | raider |
| bought    | living | worth     | dampen | riddle |
| bring     | lower  |           | demon  | rodeo  |
| built     | member | Low       | diver  | salsa  |
| cannot    | modern | Frequency | dreamt | screw  |
| cause     | mother | ablaze    | elope  | shrunk |
| charge    | moved  | addict    | encore | skate  |
| claim     | needed | amber     | enlist | snail  |
| comes     | person | apron     | excite | stalk  |
| common    | phone  | armour    | exert  | syrup  |
| cover     | player | aspire    | fable  | tanker |
| debate    | press  | atrium    | finite | trait  |
| double    | raised | bingo     | fright | uphold |
| drive     | remain | blurb     | fussy  | vanish |
| effect    | royal  | boiler    | gladly | witch  |
| ensure    | safety | breezy    | glove  |        |
| event     | seemed | broom     | greasy |        |
| expect    | single | bunny     | heater |        |
| extra     | social | burrow    | hinge  |        |
| figure    | sound  | cadet     | hourly |        |

Word stimuli from Experiment 2

| High      | beyond | death  | green  | longer |
|-----------|--------|--------|--------|--------|
| Frequency | break  | demand | ground | middle |
| across    | career | design | happy  | moment |
| agent     | chance | dollar | heart  | nearly |
| ahead     | child  | doubt  | horse  | option |
| annual    | choice | eight  | human  | order  |
| answer    | class  | either | indeed | paper  |
| anyone    | coast  | estate | island | period |
| award     | couple | father | letter | pretty |
| began     | cross  | field  | light  | radio  |

| reason | woman     | delete | lucid  | sewer  |
|--------|-----------|--------|--------|--------|
| region | wrong     | dispel | manure | shave  |
| review |           | dough  | memoir | socket |
| river  | Low       | edible | module | spike  |
| round  | Frequency | evoke  | motif  | swarm  |
| sector | abyss     | fathom | mulch  | teapot |
| sense  | acacia    | fickle | navel  | tempt  |
| simple | alcove    | flank  | nylon  | torso  |
| space  | aural     | fluffy | oblige | unison |
| sport  | banjo     | fungi  | odour  | vacate |
| style  | barley    | giggle | opaque | verve  |
| summer | barren    | gypsy  | parrot | vomit  |
| table  | beige     | hassle | pillow | waltz  |
| title  | bikini    | haste  | poise  | worsen |
| track  | blight    | hiccup | quail  | yearn  |
| travel | burger    | humid  | ranch  |        |
| united | cameo     | idiom  | redeem |        |
| video  | candle    | ignite | rhyme  |        |
| whole  | chisel    | joyful | savvy  |        |
| winner | craze     | lizard | scrape |        |
|        |           |        |        |        |

Word stimuli from Experiment 3 (note these words are a selection from the previous two experiments and were randomly paired at study).

| High      | child  | expect | middle | sense  |
|-----------|--------|--------|--------|--------|
| Frequency | choice | father | modern | simple |
| above     | claim  | field  | moment | single |
| across    | class  | figure | mother | social |
| annual    | cover  | force  | option | sound  |
| answer    | cross  | grand  | order  | space  |
| basis     | dollar | green  | paper  | speed  |
| became    | double | ground | period | sport  |
| bring     | either | happy  | person | stand  |
| career    | ensure | heard  | phone  | stock  |
| advice    | coast  | heart  | player | study  |
| agent     | exert  | horse  | press  | style  |
| ahead     | common | hotel  | pretty | summer |
| allow     | couple | human  | radio  | survey |
| anyone    | death  | impact | reason | table  |
| appeal    | debate | inside | region | title  |
| attack    | demand | island | remain | track  |
| award     | design | joint  | review | travel |
| began     | doubt  | legal  | river  | united |
| beyond    | drive  | letter | round  | video  |
| bought    | effect | light  | royal  | visit  |
| break     | eight  | listed | safety | whole  |
| chance    | estate | longer | sector | winner |
| charge    | event  | member | seemed | woman  |

| worth     | burger | excite | manure | scrape |
|-----------|--------|--------|--------|--------|
| wrong     | burrow | fable  | memoir | screw  |
|           | cadet  | fathom | module | sewer  |
| Low       | cameo  | fickle | motif  | shave  |
| Frequency | candle | finite | mulch  | shrunk |
| ablaze    | catchy | fluffy | navel  | skate  |
| abyss     | cobra  | fright | nought | snail  |
| armour    | corpse | fungi  | nylon  | spike  |
| aspire    | demon  | giggle | oblige | stalk  |
| bikini    | dispel | glove  | odour  | swarm  |
| bingo     | encore | gypsy  | opaque | syrup  |
| broom     | enlist | hassle | parrot | tanker |
| bunny     | cheat  | haste  | patio  | teapot |
| acacia    | chisel | heater | pesto  | tempt  |
| addict    | cigar  | hiccup | pillow | torso  |
| alcove    | coarse | hinge  | poise  | trait  |
| apron     | covert | humid  | quail  | unison |
| atrium    | craze  | idiom  | raider | uphold |
| banjo     | daisy  | ignite | ranch  | vacate |
| barley    | delete | latent | redeem | vanish |
| barren    | diver  | lilac  | rhyme  | verve  |
| blight    | dough  | lizard | riddle | vomit  |
| blurb     | edible | lucid  | rodeo  | waltz  |
| boiler    | elope  | magnet | salsa  | witch  |
| breezy    | evoke  | mammal | savvy  | yearn  |
|           |        |        |        |        |

### Appendix B

Face stimuli from Experiment 4.

NOTE: Appendix B is included in the print copy of the thesis held in the University of Adelaide Library.

# Appendix C

Fractal stimuli from Experiment 5.









# Appendix D

Photograph stimuli from Experiment 6.























































































































#### NOTE:

Some photos have been omitted due to privacy issues they are available in the print copy of the thesis held in the University of Adelaide Library.

#### Appendix E

Table 1

ANOVA results revealing the effect of list length on the hit rate for all experiments using both the within subjects and between subjects (first list only) analysis. Results that are statistically significant are marked with an asterisk(\*). Grey shading is used to indicate the results about which the conclusions drawn changed depending on the analysis.

|                             | Within Subjects Analysis                 | Between Subjects Analysis                |
|-----------------------------|------------------------------------------|------------------------------------------|
| Experiment 1 – Attention    |                                          |                                          |
| Retroactive Pleasantness    | <i>F</i> (1, 39) = 1.55, <i>p</i> = .22  | <i>F</i> (1,38) = 1.01, <i>p</i> = .32   |
| Retroactive Read            | <i>F</i> (1,39) = 9.95, <i>p</i> = .003* | <i>F</i> (1,38) = 2.57, <i>p</i> = .12   |
| Proactive Pleasantness      | <i>F</i> (1,39) = 2.42, <i>p</i> = .13   | <i>F</i> (1,38) = 6.14, <i>p</i> = .02*  |
| Proactive Read              | <i>F</i> (1,39) =2.40, <i>p</i> = .13    | <i>F</i> (1,38) = 7.97, <i>p</i> = .008* |
| Experiment 2 – The Remember | Know Task                                |                                          |
| Yes/No Instructions         | $F(1,39) = 4.30e^{-30}, p = 1$           | <i>F</i> (1,38) = .31, <i>p</i> = .58    |
| RK Instructions             | <i>F</i> (1,39) = .03, <i>p</i> = .86    | <i>F</i> (1,38) = .09, <i>p</i> = .76    |
| Experiment 3 – Word Pairs   |                                          |                                          |
|                             | <i>F</i> (1,39) = 1.84, <i>p</i> = .18   | <i>F</i> (1,38) = .74, <i>p</i> = .39    |
| Experiment 4 – Faces        |                                          |                                          |
|                             | <i>F</i> (1,39) = .06, <i>p</i> = .81    | <i>F</i> (1,38) = .35, <i>p</i> = .56    |
| Experiment 5 – Fractals     |                                          |                                          |
|                             | <i>F</i> (1,39) = 2.61, <i>p</i> = .11   | <i>F</i> (1,38) = 1.48, <i>p</i> = .23   |
| Experiment 6 - Photographs  |                                          |                                          |
|                             | <i>F</i> (1,39) = 2.09, <i>p</i> = .16   | <i>F</i> (1,38) = .10, <i>p</i> = .75    |

Table 2

ANOVA results revealing the effect of list length on the false alarm rate for all experiments using both the within subjects and between subjects (first list only) analysis. Results that are statistically significant are marked with an asterisk(\*). Grey shading is used to indicate the results about which the conclusions drawn changed depending on the analysis.

|                            | Within Subjects Analysis                  | Between Subjects Analysis                  |
|----------------------------|-------------------------------------------|--------------------------------------------|
| Experiment 1 – Attention   |                                           |                                            |
| Retroactive Pleasantness   | <i>F</i> (1, 39) = 3.95, <i>p</i> = .054  | <i>F</i> (1,38) = 13.51, <i>p</i> = .0007* |
| Retroactive Read           | <i>F</i> (1,39) = .60, <i>p</i> = .44     | <i>F</i> (1,38) = 1.90, <i>p</i> = .18     |
| Proactive Pleasantness     | $F(1,39) = 6.72, p = .01^*$               | $F(1,38) = 11.73, p = .001^*$              |
| Proactive Read             | F(1,39) = 3.65, p = .06                   | $F(1,38) = 12.67, p = .001^*$              |
| Experiment 2 – The Remembe | er Know Task                              |                                            |
| Yes/No Instructions        | F(1.39) = 15 $p = 70$                     | F(1.38) = 31 $n = 58$                      |
| RK Instructions            | F(1,30) = 1.24 n = 27                     | F(1,38) = 1.02 $p = .32$                   |
| Experiment 2 Word Daire    | T(1,33) = 1.24, p = .27                   | T(1,50) = 1.02, p = .52                    |
| Experiment 5 – word Pairs  |                                           |                                            |
|                            | F(1,39) = .74, p = .40                    | <i>F</i> (1,38) = 2.37, <i>p</i> = .13     |
| Experiment 4 – Faces       |                                           |                                            |
|                            | <i>F</i> (1,39) = 12.16, <i>p</i> = .001* | <i>F</i> (1,38) = 4.56, <i>p</i> = .04*    |
| Experiment 5 – Fractals    |                                           |                                            |
|                            | <i>F</i> (1,39) = 10.86, <i>p</i> = .002* | <i>F</i> (1,38) = 4.84, <i>p</i> = .03*    |
| Experiment 6 – Photographs |                                           |                                            |
|                            | <i>F</i> (1,39) = .01, <i>p</i> = .91     | <i>F</i> (1,38) = .03, <i>p</i> = .86      |

Table 3

ANOVA results revealing the effect of list length on the mean of the median response latencies for all experiments using both the within subjects and between subjects (first list only) analysis. Results that are statistically significant are marked with an asterisk(\*).

|                           | Within Subjects Analysis                          | Between Subjects Analysis                         |
|---------------------------|---------------------------------------------------|---------------------------------------------------|
| Experiment 1 – Attention  |                                                   |                                                   |
| Retroactive Pleasantness  | Correct - <i>F</i> (1, 39) = .35, <i>p</i> = .56  | Correct - <i>F</i> (1,38) = 1.39, <i>p</i> = .25  |
|                           | Incorrect – $F(1,37) = .05, p = .82$              | Incorrect – $F(1,36) = .22, p = .64$              |
| Detresstive Deed          | Correct - <i>F</i> (1,39) = .62, <i>p</i> = .44   | Correct - <i>F</i> (1,38) = .02, <i>p</i> = .88   |
| Retroactive Read          | Incorrect – $F(1,38) = .23$ , $p = .64$           | Incorrect – $F(1,38) = .03$ , $p = .86$           |
|                           | Correct - <i>F</i> (1,39) = 3.76, <i>p</i> = .06  | Correct - <i>F</i> (1,38) = 1.62, <i>p</i> = .21  |
| Proactive Pleasantness    | Incorrect – $F(1,37) = 1.56$ , $p = .22$          | Incorrect – $F(1,36) = 1.95$ , $p = .17$          |
| Descetive Decel           | Correct - <i>F</i> (1,39) = 3.52, <i>p</i> = .07  | Correct - <i>F</i> (1,38) = 2.41, <i>p</i> = .13  |
| Proactive Read            | Incorrect – $F(1,37) = .90, p = .35$              | Incorrect – $F(1,36) = 3.45$ , $p = .07$          |
| Experiment 2 – The Reme   | mber Know Task                                    |                                                   |
| Vac (Nachastan            | Correct - <i>F</i> (1,39) = .14, <i>p</i> = .71   | Correct - <i>F</i> (1,39) = .08, <i>p</i> = .79   |
| res/no instructions       | Incorrect – $F(1,36) = .37$ , $p = .55$           | Incorrect – $F(1,36) = 1.17$ , $p = .29$          |
|                           | Correct - <i>F</i> (1,39) = 4.71, <i>p</i> = .04* | Correct - <i>F</i> (1,39) = .19, <i>p</i> = .66   |
| RK Instructions           | Incorrect – $F(1,35) = 1.97$ , $p = .17$          | Incorrect – $F(1,36) = 1.39$ , $p = .25$          |
| Experiment 3 – Word Pairs | 5                                                 |                                                   |
|                           | Correct - <i>F</i> (1,39) = .68, <i>p</i> = .42   | Correct - <i>F</i> (1,38) = 3.10, <i>p</i> = .09  |
|                           | Incorrect – $F(1,26) = .37$ , $p = .55$           | Incorrect – $F(1,30) = 1.96$ , $p = .17$          |
| Experiment 4 – Faces      |                                                   |                                                   |
|                           | Correct - $F(1,39) = 2.45, p = .13$               | Correct – $F(1,38) = .37$ , $p = .54$             |
|                           | Incorrect – $F(1,38) = .05, p = .83$              | Incorrect – $F(1,38) = .07, p = .79$              |
| Experiment 5 – Fractals   |                                                   |                                                   |
|                           | Correct - <i>F</i> (1,39) = 17.85, <i>p</i> =     | Correct - <i>F</i> (1,38) = 7.31, <i>p</i> = .01* |
|                           | .0001*                                            |                                                   |
|                           | Incorrect – <i>F</i> (1,39) = 24.29, <i>p</i> =   | Incorrect - <i>F</i> (1,38) = 5.06, <i>p</i> =    |
|                           | .00002*                                           | .03*                                              |
| Experiment 6 – Photograp  | hs                                                |                                                   |
|                           | Correct - <i>F</i> (1,39) = 2.20, <i>p</i> = .15  | Correct - <i>F</i> (1,38) = .39, <i>p</i> = .54   |
|                           | Incorrect – $F(1,35) = 2.56$ , $p = .12$          | Incorrect - <i>F</i> (1,35) = .23, <i>p</i> = .64 |