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Abstract

The central theme of this thesis is an investigation of the in-medium mod-
ifications to nucleon structure. We focus on the medium modifications to the
three twist-two quark lightcone momentum distributions and associated struc-
ture functions. To achieve this we utilize the Nambu—Jona-Lasinio model, with
the proper-time regularization scheme, in which confinement is simulated by
eliminating unphysical thresholds for nucleon decay into quarks. The nucleon
bound state is obtained by solving the relativistic Faddeev equation in the quark-
diquark approximation, where both scalar and axial-vector diquark channels are
included.

In this framework we obtain excellent results for the free spin-independent
and spin-dependent quark distributions. The transversity distributions satisfy
the Soffer inequality and are similar to the spin-dependent distributions. With
the introduction of mean scalar and vector fields that couple to the quarks in
the nucleon, we obtain a good description of many nuclear matter properties,
including saturation at the correct energy and density.

The medium modifications to the nucleon structure functions are investigated
in both infinite nuclear matter and for the nuclei "Li, 'B, 15N, 2"Al and the
closed shell neighbours 2C, 0 and ?8Si. In each case the in-medium quark
degrees of freedom are accessed via the convolution formalism. For finite nuclei
we use a relativistic shell model including mean scalar and vector fields. We
derive, for the first time, relativistic expressions for the nucleon distributions in
a nucleus, that retain the phenomenologically important lower components of
the nucleon wavefunction. We find that we are readily able to reproduce the
experimental Fys/Fyy ratio, that is, the EMC effect. However, the main focus
of this thesis is on a new ratio — the nuclear structure function, g4, divided by
the naive free result — which we refer to as the polarized EMC effect. We find
that the medium modifications of the spin structure functions are remarkably
large, up to twice the usual EMC effect. This result has important experimental
implications, and may provide the impetus for future polarized deep inelastic
experiments on nuclei.
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Introduction

Developing a vigorous and complete understanding of Quantum Chromodynam-
ics (QCD) is arguably the most exciting and potentially rewarding challenge
confronting the nuclear and particle physics community. The solution of QCD
strikes at the heart of our modern understanding of asymptotically free gauge
theories. It could either solve or shed light many unresolved problems in nuclear
physics, particle physics and even cosmology. For example a solution to QCD
would provide a far greater understanding of the Big Bang and the first few
seconds of the universe, the observed matter—anti-matter asymmetry and the
formation of stars and atomic nuclei. It may even provide answers to philosoph-
ical questions, akin to those offered by Quantum Mechanics.

The solution to QCD appears at the moment to be extremely difficult, cur-
rently the only known approach is to solve the path integral directly on a Eu-
clidean spacetime lattice. However this method has its own shortcomings, which
will probably prevent it from ever providing a complete solution to QCD. The
incredible complexity of QCD results from the simple fact that the gauge boson
of the theory, the gluon, carries the colour charge. This is in contrast to the
well understood theory of Quantum Electrodynamics (QED), where the photon
does not carry the electromagnetic charge. The consequences of the gluons pos-
sessing the colour degree of freedom are immense, for example the perturbative
techniques used so successfully in QED are now valid only at large momen-
tum transfer or equivalently at small distances scales. However, even at the
extremely high energies of modern particle accelerators the non-perturbative
nature of QCD cannot be avoided. For example, in deep inelastic scattering
experiments, the non-perturbative physics is encapsulated by the quark distri-
bution functions.

From its beginnings at SLAC in the late 60s deep inelastic scattering (DIS)
has played a fundamental role in developing our understanding of the quark-
gluon structure of hadrons and consequently of QCD. A paradigm shift in our
understanding came in 1982 when the European Muon Collaboration at CERN
measured the Fy(x) structure function of iron and compared it to that of the
deuteron. Nuclear effects in DIS were thought to be largely negligible, except
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at large z where Fermi motion becomes important. The nucleus was viewed as
a system of quasi-free nucleons where, because of the large differences in energy
scales, the quark structure of the nucleons was thought to be insensitive to the
nuclear environment. However, when the ratio of the iron F; structure function
and the F; deuteron structure function was taken, a large deviation from one was
observed in the valence quark region (0.2 < z < 0.8). This indicates that the
quark structure of the nucleon has substantial nuclear environment sensitively.

This result, which became known as the EMC effect, brought to the fore the
importance of quarks in traditional nuclear physics and has generated an enor-
mous amount of experimental and theoretical activity. The initial interest in
this result was propelled by the hope that it could help bridge the gap between
our knowledge of QCD at short distances and its completely unknown impli-
cations at the distance scales of traditional nuclear physics. This has indeed
happened, however the fundamental mechanism responsible for the EMC effect
remains unknown.

Another paradigm shift occurred when the European Muon Collaboration
made a precise measurement of the proton spin structure function g; (z). They
found that the fraction of the proton’s spin carried by the quarks is unexpectedly
small. At the time the estimate was consistent with zero, but modern results
find that about 20-40% of the nucleon’s spin comes from the spin of the quarks.
This result became known as the “proton spin crisis” and gave rise to many
new experiments and a large amount of theoretical activity. In particular the
important role played by the axial anomaly in the singlet sector of g;(z) was
highlighted. This anomaly produces a gluonic correction to the spin structure
function at all values at Q2. This implies that the measured singlet contribution
to the first moment of gy,(z), which we denote by AY., has a gluonic correction
given by

2
29 ng(@2), (1)
where AY} is the object normally associated with spin, as it satisfies the usual
SU(2) commutation relations. Although this gluonic correction does reduce the
spin sum, it is not large enough to resolve the spin crisis. Theoretical work from
many directions has made substantial process in understanding the proton spin
structure, however a full resolution of the proton spin crisis is still lacking.

In light of these two ground breaking experiments it is surprising that there
has been no polarized deep inelastic scattering experiments on nuclear targets,
where the potential for new and even fundamental discoveries appears quite
possible. The alleviation of this shortcoming, from a theoretical perspective, is



the main goal of this thesis. In each successive chapter of this thesis we build
the formalism necessary to determine the spin structure functions of atomic nu-
clei. In Chapter 6 we define a new ratio — the nuclear spin structure function
gi14 divided by the naive free result — which we call the polarized EMC ratio.
The deviation from unity of this ratio measures the degree of medium modifica-
tions of the spin-dependent quark distributions in an analogous fashion to the
usual EMC ratio for the spin-independent distributions. We find large medium
modifications to the spin structure function, and a substantial decrease in the
fraction of the spin carried by the quarks in a bound proton relative to that
of a free proton. We hope that these potentially exciting results may provide
the impetus needed to develop new experimental programs to perform polarized
deep inelastic scattering on nuclei.

The outline of this thesis is as follows: In Chapter 2 we give a brief overview
of the formalism of inclusive deep inelastic scattering (DIS), introducing the
three twist-two quark distribution functions, first in the parton model and then
more formally in the context of factorization theorems. Finally we touch on
the Drell-Yan and semi-inclusive DIS processes that can be used to measure the
transversity quark distribution functions.

As we have mentioned, a full solution to QCD is still some time away. There-
fore to study the in-medium modifications to the nucleon and determine nuclear
structure functions we must use a model of QCD. In Chapter 3 we introduce
such a model, the Nambu—Jona-Lasinio (NJL) model, which is interpreted as a
chiral effective quark theory of QCD. In this chapter we focus on the constraints
imposed by chiral symmetry and on the solution of the three-quark bound state
problem in the relativistic Faddeev framework. In Chapter 4 we present im-
portant results for the spin-independent, spin-dependent and transversity quark
distribution functions obtained using the NJL model and the proper-time regu-
larized scheme.

The results we present in Chapter 5 have produced a large amount of exper-
imental interest, particularly for the 12 GeV upgrade at Jefferson Lab. Here we
extend the NJL model to finite density and calculate the EMC, polarized EMC
and transversity EMC effects in nuclear matter. We find excellent agreement
with data for the EMC effect and large medium modification to the spin and
transversity structure functions.

Finally, in Chapter 6 we utilize a relativistic shell model to extend our in-
medium results to finite nuclei. Here we focus only on spin-independent and spin-
dependent distribution functions, as the QCD evolution of transversity quark
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distributions for targets with J > 1 is still not fully resolved. Then, in Chapter 7
we summarize and discuss possible future research directions that could utilize
the formalism developed in this thesis.

We also include a large amount of detail in the appendices that the reader
may consult if further details are required. In particular we give the full deriva-
tion of the transversity quark distribution functions in the NJL model (Ap-
pendix D) and the derivation of the relativistic nucleon distributions in the
nucleus (Appendix H).




Deep Inelastic Scattering

The archetypal process for probing hadronic structure is inclusive deep inelastic
scattering (DIS). Many important insights into nucleon structure and Quantum
Chromodynamics (QCD) have been obtained through DIS experiments. For
example, the measurements of the spin averaged structure functions, F;(, Q%)
and Fy(x, @?), which exhibit the predicted Bjorken scaling [1], was one of the first
confirmations of strong interaction physics. Later, small Q? scaling violations
were observed and these were found to be described perfectly by perturbative
QCD. This important result led to an almost universal acceptance of QCD as
the correct theory of strong interactions. Further polarized DIS experiments
measured the spin-dependent structure functions g;(z,@?) and go(z,Q?). A
precise measurement of g; (x, @?) by the European Muon Collaboration [2] found
that the fraction of the spin of the proton carried by the quarks seemed to be
very small and even consistent with zero [3]. This become known as the “proton
spin crisis”. Modern analysis finds a spin fraction of AY = 0.213 £ 0.138 [4],
however a resolution of this problem remains an open and intensely debated
question [5-8]. DIS experiments have also provided precision determinations of
the strong coupling constant a [9,10]. And importantly, as it is the focus of this
thesis, DIS experiments on nuclear targets (e.g. carbon, aluminium and iron)
have shown that the nuclear medium modifies the nucleon structure functions
[11].

In this chapter we review the formalism of DIS with a focus on spin—% tar-
gets, like the nucleon. Later, in Chapter 6, we will generalize this discussion
to include DIS on an arbitrary spin target. We begin this chapter by introduc-
ing the kinematic variables of the DIS process. We then discuss the differential
cross-section and the associated structure functions. A brief introduction and
motivation for Feynman’s parton model is also included. We examine the Fac-
torization theorems with a focus on the link these provide between the parton
model and QCD. Finally, we will finish with a brief discussion of the chiral-odd
transversity quark distributions and describe deep inelastic scattering processes
that are sensitive to these distribution functions.
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Figure 2.1: The lowest order graph for DIS. The quantities k, s and &, s are
the initial and final lepton momenta and spin, P, S is the target momentum and
spin, while ¢ is the momentum transfered to the target by the exchanged vector
boson. The angle § between the incoming and outgoing lepton is defined in the
target rest frame.

2.1 Reactions and Kinematics

Deep inelastic scattering is the process where a lepton, in practice an electron,
muon or neutrino is scattered from a target (usually a nucleus) transferring large
amounts of energy and four-momentum squared. The DIS process is depicted
diagrammatically in Fig. 2.1 in the one boson exchange approximation and can
be written in the form

U(k,s) + AP, S) — £(K,s') + X (Px), (2.1)

where £ is the initial lepton, A is the target, £ is the scattered lepton and X
represents the undetected final hadronic state. In brackets we label the four-
momentum and spin of each state. The only quantities measured experimentally
in inclusive DIS are the energy, E’, and the scattering angle, 8, of the final state
. lepton £

Each of the three electroweak gauge bosons can play a role in DIS (see
Fig. 2.1). These are usually referred to as the electromagnetic current (v),
neutral current (Z°) or charged current (W+*) exchange. For charged current
exchange the initial or final lepton must be either a neutrino or an anti-neutrino
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to conserve charge at the lepton-boson vertex. The four basic process are

v,2°
-

£+ A (+X
ZO

Electromagnetic and Neutral Current, (2.2)
w+A — @wv+X
A Y G x

Charged Current. (2.3)
@Gw+a X5 £i+X}

Reactions where the final state lepton is a neutrino represent a significant exper-
imental challenge because of the immense difficulty in detecting this neutrino.
Experiments have been proposed to measure cross-sections for these processes,
however they rely on determining the missing transverse momentum in the final
state X or on “likelihood” estimates [12].

Neutrino DIS has two significant shortcomings, one is the difficulty in ac-
curately determining the energy and momentum of the initial neutrino and the
another is that the target must be very large (e.g. several tonnes of iron) because
of the very small neutrino cross-sections. This makes polarized DIS extremely
difficult. The experimental benefit of charged current neutrino DIS is its quark
flavour sensitivity (a consequence of charge conservation) and this is the impetus
behind neutrino facilities such as Fermilab.

There are three independent kinematical variables in inclusive DIS. Working
in the target rest frame, where

PH = (My,0,0,0), (2.4)

and neglecting lepton masses, these are often chosen to be

Q*=—¢*= (K —k)>=4E F'sin® <g> , (2.5)

s=(k+P)?=2M4E+ M3,
W?= P = (P+a)’

where E (E') is the energy of the initial (final) lepton and 6 is the lepton scat-
tering angle with respect to the incoming lepton beam. The interpretation of
these quantities is: @? is the negative of the time-like four-momentum squared
transfered to the target, s is the centre-of-mass energy squared and W? is the
squared mass of the final hadronic state. The physical region for the DIS process
is

s>M;, Q20 W?>(Mat+m,), (2.8)
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where m, is the pion mass. Other important invariants are

Q° Q?
— = 2.
o 2P.-q 2Muv’ (29)
P-q v
P.q
=1 _F_F 2.11
v= , 2.11)

where y is the fractional energy loss of the lepton, v the energy transfered to the
target and x (Bjorken z) is interpreted as the fraction of the nucleon momentum
carried by the struck quark. We will discuss the significance of this variable in
Section 2.3.1

Noting that W? > M3 it is easy to show using Egs. (2.7) and (2.11) that the
Bjorken scaling variable z lies in the range 0 < z < 1 and that the fractional
energy loss is bound by 0 < y < 1. Further, using Eq. (2.7) we find

2 _
=1-——4 2.12
z 5P g (2.12)
Therefore = 1 implies W2 = M3 and hence the z = 1 limit corresponds to
elastic scattering. Rearranging Eq. (2.12) gives
ll
1+ (W2 — M3)/Q*

which implies that any state X with fixed mass, for example resonance produc-

z = (2.13)

tion, can only contribute very near x = 1 in the deep inelastic limit.

2.2 Cross-Sections and Structure Functions
Experimentally what is measured is the differential cross section. Using the
usual rules [13,14], the scattering cross-section for inclusive DIS is [15]

nx nx

1 &K B o i
== ’1J2E’ 2m) 321_[ (2 )'izE |M|” (27)%0 P+q—;}’h’ , (2.14)

where J = P -k is the [lux factor, which equals J = 4 M4 E in the target rest
frame. The sum is over all final hadronic states X, each consisting of nx particles

n this chapter we shall denote the target scaling variable simply by z, to avoid cluttering
the notation. However in Chapter 6 where we discuss nuclear targets, the target scaling
variable will be 4 and the variable z is reserved for the nucleon.



2.2 Cross-Sections and Structure Functions 9

which are not observed. Assuming that the Lorentz invariant squared-amplitude
only has a contribution from one photon exchange we have

[ iez v v 2
|M|2=Z‘ﬂ(k,s)7"u(k,s) qfﬂ (X]J°(0)| P, sn)| - (2.15)

Therefore the DIS differential cross-section can be written as the product of two
tensors

1 dk €
L, W 2.1
do = 1) 2E/(2n)° Q427r wWH, (2.16)

where L, is the leptonic tensor defined by

2

L = Z ‘ﬂ(k', vtu(k, s)| ,
=2 (kK" + K k" — g*k - K +ie" g ky) (2.17)

and the hadronic tensor, W, has the form

27(211/ St 0+ a=x) (X1 O)lp. 50
S / dg 9€ (P, S|7,(€) J.(0)|P, S),
— o [ TR SO, LOIPS). (2.18)

y,u

The full derivation of the leptonic and hadronic tensors is given in Appendix B.
Therefore in the target rest frame Eq. (2.14) reads
do = aly, F

€m

- L
dQdE ~ 2M Q' E ™

W (2.19)

where aem = €?/47m and (2 is the solid angle into which the lepton scatters.?

In Fig. 2.2 we give a diagrammatic representation of the leptonic and hadronic
tensors. We see that the lepton tensor is purely perturbative and can be de-
termined fully using Quantum Electrodynamics (QED), however the hadronic
tensor contains highly non-perturbative quark-gluon interactions and therefore
cannot be calculated using perturbative QCD.

As illustrated in Fig. 2.1, the exchange of Z° gauge bosons can play a role
in DIS processes. Therefore, if there exists both electromagnetic and neutral

2Tn deriving this expression the result k!, = E’(1,sin 6 cos ¢, sin § sin ¢, cos §) is useful.
u
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leptonic

hadronic

Figure 2.2: Diagrammatic representation of the perturbative leptonic tensor and
the non-perturbative hadronic tensor in the one boson exchange approximation.
The electroweak current, J,, is inserted at the origin and removed at position £.

current exchange, the squared amplitude has the form |M|* = M, + M z|2
Hence there are three terms; a purely electromagnetic term, |M7|2, a purely
weak term, |Myz|?, and an interference term of the form MMy + MgM,.
It is easy to show, following similar steps that led to Eq. (2.19), that the full
differential cross-section including both v and Z° exchange, is given by

dope 0%

= Lt LZ S i (2.20)
= 3
dQAdE"  2M4Q E .
where
GF M2 Q2 2
=1 = (2\/§7raz ) (QZ +MZ)’ n?=m?%)", (221
and
L’YZ (gV - )\gA)LZV’ qu - (gV - )‘gA)2LZ,V' (222)

The sign of the incoming lepton helicity is denoted by X, therefore A = +1.
The relations in Eq. (2.22) hold for negatively charged incoming leptons, for
positively charged leptons one simply replaces g4 by —ga, where [16] 3

1

1

The charged current cross-section is given by an analogous expression to that in
Eq. (2.20) except that the sum is over the appropriate W boson and

1 (Gp M2 Q2 +
w K W w 2 4
” e L — :*: 2 L’Y . 2

3The coupling constants gy and g4 discussed here should not be confused with the vector
and axial-vector coupling associated with the baryon number and Bjorken sum rules.
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The interesting physics in DIS is contained in the hadronic tensor, which
from a theoretical standpoint is extremely difficult to calculate. The most gen-
eral form of the hadronic tensor that is both Lorentz and CP invariant can be
expressed in terms of eight independent structure functions F?, F¥, Fi, g, gt,
g, g%, gt and has the form

QPHP . E ] .
v )34 uve P ﬁFz
P.g 2 T, g

(%P gt — 20 P8P gi] — 204

P.q

+ 2MA%PMPV gzll + 2MA%9NV gé) (2'25)
where i € 7, vZ, Z, W*. In deriving Eq. (2.25) we can ignore terms proportional
to ¢* and ¢, as these terms do not contribute to the cross-section, since the
lepton tensor is conserved, that is ¢*L,, = ¢”L,, = 0. The structure functions
F}, gt are functions of z and @* and are expected to scale in the Bjorken limit,
that is Fi(z,Q%) — Fj(z) and gi(z,Q%) — gi(z) as @ — oo. The weak
interaction is parity violating hence Eq. (2.25) contains both second rank tensors
and pseudo-tensors. However, in the case of purely electromagnetic interaction
(i.e. one photon exchange), which is parity conserving, we have

Wﬁ,, = —29u Fi+

.2MA5uuaﬂ
Z;
P-q

[PuSy + SuP.] g

Fl=gl=g]=g=0. (2.26)

Restricting ourselves to the purely electromagnetic case for simplicity we can
now obtain the differential cross-section in terms of the structure functions. If
we sum over the initial electron helicities in Eq. (2.19) we obtain the unpolarized
cross-section, which has the form

d e y ) i y?
drdydd  4n2Q? {gFl(x, Q%) + pr (1 —y— -1, Q2)> } :
(2.27)
4z2 M

o2 A Instead, if the difference between the positive and negative

where Kk = 1—
lepton helicity cross-sections is taken, access to the spin-dependent structure
functions is possible. The spin-dependent cross-section is given by

where we have assumed that the target is polarized parallel to the lepton beam.
In obtaining these expressions the following result is useful:
do Mav do
dedydg  E' dEdQ

(2.29)
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2.3 Quark-Parton Model and Bjorken Scaling

In 1968 (based on current algebra arguments) Bjorken predicted [1] that in the
limit
Q% v — 00 with z = fixed, (2.30)

the (spin-independent) structure functions would become independent of Q2
that is

Fi(z,Q*) — Fi(z), Fy(z, Q%) — Fy(z). (2.31)

This kinematical limit is now known as the Bjorken or scaling limit. Bjorken’s
prediction was almost immediately observed at SLAC [17-19] and was the im-
petus behind the famous parton model of Feynman [20, 21].

The parton model, which assumes that the nucleon is made of point-like
constituents called partons (which were later identified as the quarks and gluons)
still plays a fundamental role in our understanding of high energy scattering
within QCD. In particular, the parton picture provides a connection between
perturbative QCD and hadrons, a connection that has thus far not been derived
from QCD itself.

The principal assumption of the quark-parton model is that the quarks inside
the target can be treated as free massless particles. For historical reasons it
has therefore been conventional to formulate the parton model in the infinite
momentum frame*. Time dilation effects were then used to argue that the
interactions between the partons can be ignored, on the time scale relevant to
the parton probe interaction. However this is slightly erroneous, the true reason
partons can be treated as free is because of asymptotic freedom, not a particular
choice of reference frame.

The hadron tensor in the parton model is given by the handbag diagram
which is illustrated in Fig. 2.3. It is easy to show within the parton model that
all other diagrams are suppressed by at least 1/Q? and hence approach zero in
the Bjorken limit [22].5 When deriving the parton model it is assumed the target
is made of collinear moving partons each with a fraction &; of the total target
momentum (where 0 < § < 1and ), & = 1). The contribution to the hadronic

“In the infinite momentum frame the target is assumed to have momentum P* —
(P+ M%/(2P),0,0,—P) where P — oo.

5This is also true in full QCD, as a careful use of the operator product expansion (OPE)
can demonstrate.
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Figure 2.3: This diagram represents the hadronic tensor in the parton model
and is known as the handbag diagram (c.f. Fig. 2.2). It can be rigorously shown
in QCD, using the OPE, that in the Bjorken limit this is the only diagram that
contributes to the hadronic tensor, as all other diagrams are suppressed by at
least 1/Q2.

tensor from a single parton is therefore given by

v = =2 [ —LE_ (316t (6P + g — p) | (€P, sl O, o)
Hooome ) (2m)32E, . e %
11, d*p’

- AP (o)t (6P +q 1) [U(EP,5) el )|, (232

~ore ) (2m)P2E,

where eg is the charge of the parton and the factor 1/€ comes from converting
the parton flux factor in the cross-section to that of the nucleon, since E ~ {Ey.
Using the identity

d3pl d4pl d4pl 2 q2
—_— = d|(EP —p)?] = / — 1)
/ (27)32E, / (2m)" [(€P+a—7)] amizp-¢°\*T2p g )
(2.33)
and performing an analogous calculation to that of the lepton tensor given in

Appendix B we obtain

2

(&
Wy = 25};1 q (2§2PVPV - g,uugp g+ 2 éeuuaﬂqapﬁ) 6(& - :E), (234)

where we have used p' = £P + q and sg = A{Ps (here X is the parton helic-
ity). Therefore the parton model implies z = £ and hence the Bjorken scaling
variable, z, is interpreted as the fraction of the target momentum carried by
the struck parton. The final step in obtaining the full hadronic tensor in the
parton model is to integrate over £ weighted by the probability to find a parton
with momentum fraction £ and helicity A. To achieve this we define the quark
distribution functions ¢, (&) and ¢_(€) to be the probability to strike a quark
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with momentum fraction £ and helicity parallel (+) or anti-parallel (—) to the
target helicity. Therefore the full hadronic tensor is

W= [ d€ 04w+ o€l

=20 3 F ) +0- @)+ -0 Y Balas (@) +o (o)

q

'2611«'/043 a pf 62
+ Zﬁq P Eq: D) l9+(x) —q-(2)].  (2.35)
Comparing Eq. (2.35) with the electromagnetic part of the hadronic tensor given
in Eq. (2.25), we obtain the familiar parton model formulas for the structure
functions, namely

Fi(@) = 3 3¢ la(e) +7(x)], (2.36)
Fife) = Z (o) + ()], (2.37)
0(e) = 5 3" [Dale) + Ag()] (2.38)
g2(z) = 0. q (2.39)

In Egs. (2.36)-(2.39) we have defined the spin-independent quark distribution
as ¢(z) = ¢4 () + ¢_(z) and the spin-dependent quark distribution as Ag(z) =
q4+(z) — g—(z). We have also included the contributions from the anti-quarks in
Egs. (2.36)(2.39), which can be derived in an analogous manner to the quarks.
Analogous parton model expressions can also be derived for the neutral and
charged current structure functions, these results can be found in, for example,

Ref. [23].

An important feature of this result is that the structure functions have no
@Q? dependence and hence the parton model provides a very clear physical inter-
pretation of Bjorken scaling. Another feature of this result is the relation

Fy(z) = 2z Fi(x), (2.40)

which is known as the Callen-Gross relation [24].% This identity is only approx-

6The experimental confirmation of the Callan-Gross relation indicates that the quarks have
spin—é, because for example, if the quarks had zero spin we would have

(EP|Ju| EP + q) o 26, + g,

which would imply Fi(z) = 0.
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imately true in QCD, as it is broken by the perturbative gluon field.

The continuing importance of the parton model lies in the fact that it remains
valid in QCD, where it is viewed as a zeroth order result. The o corrections
can be determined using perturbative QCD, which we will discuss further in
Section 2.5 when we examine structure function factorization.

2.4 Lightcone dominance

Recall that the hadronic tensor is given by

W= 5= [ d€c¢ (PSIULE), LOIP,S), (2.41)

where £ is the distance between the two current insertions. To determine the
important distance scales in DIS we must examine the integral in Eq. (2.41).
The Riemann-Lebesgue lemma states

b
lim [ dée®?f(¢) =0, (2.42)

lgl—o0 /g

for any Riemann-integrable function in the domain a < £ < b. Therefore W,
will be dominated by the region where |q - £| is finite. The dot-product ¢ - £ is
Lorentz invariant, so we choose to work in the target rest frame with the incident
photon moving in the z-direction, therefore

a=(10,0,—V? + Q). (2.43)
In the Bjorken limit this becomes

q— (1,0,0,—v— Myzx). (2.44)
Introducing lightcone coordinates where

gt = % (®£4%), (2.45)

we see that in the Bjorken limit ¢~ — oo and ¢© — — My x/ V2. Therefore a
finite |q - €| requires &+ ~ 0 and |¢7| ~ v/2/(Ma z).”

To maintain causality the commutator in Eq. (2.41) must vanish for £2 < 0
[14] and hence, since £2 = 2£T¢~ — £7, this implies £, — 0. Therefore all

"The dot-product in lightcone coordinates is given by a-b=a+b~ +a~bT —a b, .
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components of £# vanish in the Bjorken limit except £~, and thus DIS is not
a short distance phenomenon (£# — 0), but is instead a lightcone dominated
(62 — 0) process. In fact the two constraints &+ — 0 and ¢~ ~ /2/(M4x)
imply €% ~ [€3| ~ 1/(Max). From this relation we can get a feel for how far
the struck quark propagates, for example with £ = 0.5 we have £3 ~ 0.4 fm,
similarly © ~ 0.05 implies £* ~ 4fm. Therefore as z becomes small the quark-
quark correlation length probed by DIS gets rather large, and when compared
to the size of the nucleon can definitely not be considered short distance.

2.5 Factorization and Quark Distributions

In general a hadronic cross-section includes contributions from both short and
long distance physics, contains mass singularities and is infrared divergent.
Therefore hadronic cross-sections cannot be computed using perturbative QCD.
Factorization theorems state that for certain processes, in particular kinemati-
cal regimes, the hadronic cross-section can be factorized as a convolution of a
renormalized soft non-perturbative piece and a hard scattering piece that is free
of long distance singularities. The idea of factorization is nicely illustrated by

the following identity
2 2
1+aln<'u—£>+... 1+aln q_2 + ...
VY Uy

e
1+aln<—2>+...=
D

where the factorization scale, ¢, is an appropriate scale at which this separation
is valid.

. (2.46)

For inclusive DIS cross-sections this implies that the structure functions can
be written as [25, 26]

1
F1($,Q2) - Z / %QA(ga :u’f’:u‘) qu <§1 %a %aas(u)> +e (247)
Fil, @) = / dEant i) Han (5 2 5 0)) ey (249)

gl<x,Q2)=Z |G s G (25 0) +.... (249

The ellipsis (. . .) represent higher twist contributions and terms of order O (p?/ ufc)
This factorization of the DIS cross-section has been proven to all orders in per-
turbation theory [27] and is the basis of all other cross-section factorizations, for
example the Drell-Yan reactions and semi-inclusive DIS.
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The hard scattering functions, Hj,, are infrared finite and calculable in per-
turbation theory. In general they depend on the type of exchanged electroweak
vector boson and the type of parton, but are completely independent of long
distance interactions. The functions g4, Aga are the parton distributions dis-
cussed in Section 2.3 and contain all the long distance non-perturbative effects
of the original cross-section. These functions depend on the type of target, A,
but have no dependence on the probe which is used to measure them. This
important result gives rise to the notion of the universality of the parton distri-
bution functions [28]. This means, for example, that each structure function in
Eq. (2.25), with i € v, Z°, ~+Z°, W=, can be expressed in terms of the same
quark distributions, with only the hard coefficient functions differing.

The universal nature of the quark distributions greatly increases the predic-
tive power and utility of QCD, since, for example, these functions can be mea-
sured in DIS experiments at Jefferson lab or Hermes and then used as inputs in
analysing the pp collisions at the Large Hadron Collider (LHC) at CERN.

At twist-two for a spin—% target like the nucleon, there are three indepen-
dent quark distribution functions for each quark flavour. These are the spin-
independent distribution, g(z), the helicity or spin-dependent distribution Ag(z)
and the transversity or traverse polarization distribution Arg(z) [29]. This can
be seen by inspecting the Dirac structure of the nucleon wavefunction in the
Bjorken limit [29] or by analysing the number of independent helicity ampli-
tudes [30].

All three distributions yield a probabilistic interpretation: ¢(x) is the prob-
ability of striking a quark with longitudinal momentum fraction z of the parent
hadron, Aq(z) measures the number density of quarks with spin parallel to the
target minus those with spin anti-parallel, each with momentum fraction z of a
longitudinally polarized target. If we define the quantities ¢+ (z) as the number
densities of quarks with helicity :I:%, as in Sections 2.3, then we have

q(z) = q4(z) + ¢-(2), (2.50)

Aq(z) = g+(z) — - (). (2.51)

The transversity distribution has an analogous interpretation to Ag(z) except
that the hadron is transversely polarized. In a transverse basis we have

Arq(z) = q1(2) — 01(a), (2.52)

where, T, denotes transverse polarization parallel to the target and, |, transverse
polarization anti-parallel to the target. In this basis we must also have

q(z) = ¢1(z) + q(z). (2.53)
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Nucleon quark distributions are defined field theoretically as lightcone Fourier
transforms of forward nucleon matrix elements and are given by [29,31]

o) = [ s [50) v e ), (2.54)
Bq(o) = [ S e (o, [F0) 7 G0, o), (2.55)
Brg(o) = [ T s 5O G ps), (256)

where for the transversity distribution we have assumed that the target hadron
is polarized along the z-axis. If the y-axis is chosen for the transverse polar-
ization then one simply replaces y* with 72 in Eq. (2.56). The factor G is the
path dependent link operator which joins the two quark fields, rendering the
definitions gauge invariant, and is given by

G="Pe il donare) (2.57)

where P is the path-ordering operator and A¥ the gluon field. By working in the
axial gauge, A™ = 0, and by choosing an appropriate path along the lightcone
we have G = 1 [26]. Therefore, from here on we simply assume G is unity. The
derivation of Eqgs. (2.54)—(2.56) is rather tedious and the interested reader should
consult Refs. [26,29]. The basic idea is that the operator 1}7+ 1 is the number
operator for the “good components” of the quark wavefunctibns, relevant to
physics near the lightcone. The other operators with a 75 or 75 simply project
out the desired spin components of the quark wavefunctions.

The anti-quark distributions are easily obtained from the following relations
[29]

3(x) = —q(—a), (2.58)
Ag(z) = Ag(—a), (2.59)
Ard(z) = —Arg(—z). (2.60)

It is important to note that Arq(z) is a chirally odd distribution, which is
easily seen from the operator structure in Eq. (2.56), and therefore cannot be
measured in inclusive DIS. This point will be discussed further in Section 2.7.

2.6 QCD Evolution of Quark Distributions

In the quark-parton model the quark distributions are independent of )2, how-
ever in QCD the quark distributions have a weak logarithmic Q? dependence.
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In a triumph for perturbative QCD these scaling violations can be described
by the DGLAP (Dokshitzer-Gribov-Lipatov, Altarelli-Parisi) evolution equa-
tions [32, 33].

The DGLAP equations can be obtained from the renormalization group equa-
tions, however this derivation is rather complicated and involves a careful use
of the operator product expansion [26]. A more intuitive approach [34, 35] is
simply to realize that as @? increases, so does the resolving power of the probe,
and therefore there is a finite probability that a single parton will be resolved
as two or more partons.

With this in mind there are three classes of parton distributions: the gluon
distributions, quark distributions that mix with the gluons and quark distribu-
tions that do not. The later are called non-singlet quark distributions® and are
of the form

¢">(z) = q(z) — q(=), (2.61)
with the valence quark distributions, g,(z) = ¢(z) — g(z), being the prime ex-
ample. The non-singlet evolution equation has the form

q"5(z, Q)
d1n(Q?)

where the convolution product is defined as

= Py(z, as(Q%) ® ¢ (z,Q%), (2.62)

P(x) ® q(z) = / 1 % P (%) ae), (2.63)

z z

and P, is the g-¢ splitting function. Physically a splitting function FPyp(z/2)
represents the probability for a parton of type p with momentum fraction 2 to
emit a quark or gluon, and become a parton of type p’ with momentum fraction
e

Because the number of valence quarks must remain independent of the res-
olution of the probe we must have
% ' NS 2
d Q) =0 2.64
0 In(Q?) /0 = (@ @) ’ ( )

therefore using Eq. (2.62) the g-¢ splitting function must satisfy

/ iz Py2) = 0. (2.65)

8The formal reason for the name is that differences of the type ¢ — g transform as the
adjoint representation of the SU(3) flavour group.
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Quark distributions that mix with the gluons are called singlet distributions
and are of the form

¢°(z) = q(z) + q(x). (2.66)
These distributions appear, for example, in the structure functions Fy, F, and

g1. Because we have mixing between the singlet and gluon distributions the
DGLAP equations are coupled and have the form

s (i) ~ (i) mmierion) * (o)

The QCD evolution equations for the helicity distributions are analogous
to Eqgs. (2.62) and (2.67), with just a change of notation. For the traverse
case however, there is no coupling between the quarks and gluons because of the
chiral-odd nature of this distribution. Hence the transversity evolution is simply
described by evolution equations of the non-singlet form, namely

( )ATQ (2,Q%) = ArPy— @ Arqg (z, Q%), (2.68)
0
1 (Q?) ————Arqt(z,Q%) = ArPyy 4+ ® Arg*(z,Q?), (2.69)

where Argt = ¢y +q) and Arg™ = ¢; — q;. The splitting functions Az P,, — and
AqP,, . are given in Ref. [36].

The reason there is no twist-2 transversity distribution for the gluon in the
nucleon, is easily seen if we consider the helicity amplitude. Transverse polariza-
tion distributions are related to helicity flip amplitudes. Gluons have helicity 41
and hence to conserve angular momentum the nucleon must undergo a helicity
change of +2, which is clearly not possible. However, for higher spin targets
like the deuteron or p, helicity conservation can be satisfied. Therefore, gluon
transversity distributions do exist for targets with J > 1 and hence transversity
singlet quark distributions will couple to the gluons.

The splitting functions are calculated in perturbative QCD, with an expan-
sion of the form

P(z,Q% = (27T) PO + (g‘—)2 PO) + ... (2.70)

v

where P is the leading order (LO) and P®M is the next-to-leading order (NLO)
result. Expressions up to NNLO for all three distributions can be found in
Ref. [37] and in Fig. (2.4) we give the diagrams that contribute at LO. For a
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I T T X
F a9 qu ng qu
Figure 2.4: These diagrams are the LO splitting functions that form the kernel
of the evolution equations. The function Py, is the probability for a parton

of type p with momentum fraction z to emit a particle (a quark or gluon) and
become a parton of type p’ with momentum fraction x.

consistent solution of the DGLAP equations we also require g up to the order
we are working. The NLO result is

(@)=L [} _Alln@) (m%)} , (2.71)

"~ Boln(Qn) Bo In(Qa) (Qn)
where
Q? 11 4 34 , 10
= =_—No—-T = —N:4t— —N, —2C 2.72
Qa AZQCD, Bo g Vo= g3in B 3¢ 3 cny Frg, (2.72)

and Ng is the number of colours, n; the number of active flavors and Cr =
4/3. The value of Agep depends on the number of active flavours and the
renormalization scheme, in the MS scheme typical values are [36]

ASERS = (0.248,0.200,0.131, 0.050) GeV. (2.73)

From a theoretical viewpoint determining the number of active flavours is non-
trivial. In the MS scheme the renormalization scale for a heavy quark is usually
chosen as p, = my, therefore as a rule of thumb n; is the number of quarks
with my < . For a discussion on the role of the charm quark and in particular
charm quark thresholds in the nucleon, see, for example Ref. [38].

Solving the DGLAP equations is non-trivial and must be done numerically,
except in the special case of LO non-singlet equation. There are severalxcomputer
codes available which solve these equations, with algorithms based on Mellin
moments [39], Laguerre expansions [40-42], recursion relations [36,37] or “brute
force” techniques [43-45]. In this work we utilize the latter approach.

2.7 Transversity Cross-sections

Despite its fundamental importance there is currently no experimental informa-
tion on Apg(z). The reason that the transversity distribution is not observable
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in inclusive DIS is that it is chirally odd and the electroweak and strong inter-
actions conserve chirality. Therefore Arg(z) must couple to another chiral-odd
function which is not possible in inclusive DIS. However Apq(z) appears in
certain semi-inclusive DIS reactions and also in hadronic reactions like Drell-
Yan [46].

The Drell-Yan process is the reaction
A+B — /{0 +0T+ X, (2.74)

where A and B are initial hadrons which collide producing a virtual photon
which decays into a lepton—anti-lepton pair and X is the unobserved hadronic
final states as in DIS. The Drell-Yan double spin asymmetry

do!l — doTd

T = Gt o (275)

for two transversely polarized protons, p'p! — ¢=¢+ + X, at leading order in
the parton model is given by [29]

>, €4 [Arq(z1, Q%) Arg(za, Q%) + Arq(xs, Q) Arg(my, Q)]
Zq eg [Q(xla Q2) 6(372, QZ) + Q($2, Q2) a(wh Q2)]
We see that Arg(x) appears with Arg(z) and hence the product is chirally

even. However Arg(z) is expected to be small for z = 0.2 and the size of this
asymmetry is expected to be only a few percent.

AP x (2.76)

A more promising reaction is Drell-Yan with protons and anti-protons. In
this case the double spin asymmetry is given by

> e [Arq(z1, Q%) Arq(za, Q) + Argq(zs, Q) Arg(z1, Q)]
>, e a(or, Q0 a(r, Q) + Qe D a(ar, @]
This reaction provides one of the few processes that give direct access to the

transversity distributions. Predictions for this asymmetry were calculated in
Refs. [47,48] where saturation of the Soffer inequality [49]

pp
Afr

(2.77)

2|Arq(z)] < g(z) + Aq(x), (2.78)
was assumed. An effect of the order 20-40% was found.

For semi-inclusive DIS there are broadly three different processes that give
access to the transversity distributions [29]. These are semi-inclusive DIS on a
transversely polarized target with lepton-production of
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e a transversely polarized hadron,
e an unpolarized hadron,
e two hadrons.

For semi-inclusive DIS the measured asymmetries involve the product of the
transversity distribution with a chiral-odd fragmentation function, which de-
scribes the probability for a quark with momentum fraction z to “fragment” in
a particular hadron. To do this topic justice would take us too far afield, so we
refer the interested reader to Ref. [29].

The major drawback of semi-inclusive DIS transversity experiments is that
they do not give direct access to the transversity distributions, only to their prod-
uct with the poorly known fragmentation functions. Hence the most promising
experimental process is Drell-Yan with transversely polarized protons and anti-
protons which gives a direct measurement of Arq (see Eq. 2.77), however these
experiments are still in the proposal stage [50].

2.8 Summary

In this chapter we have tried to give an brief overview of deep inelastic scattering
on a spin—% target, in particular the nucleon. We have seen that the structure
functions which parametrize the DIS cross-section can be factorized into a hard
part calculable in perturbative QCD (the coefficient functions) and a soft non-
perturbative piece — the quark distributions — that currently remains incalculable
in QCD. We have tried to emphasize the important role the parton model plays
in our modern QCD based understanding of the strong interaction. In particular,
how the model provides a physical connection between perturbative QCD, based
on the QCD Lagrangian, and the inherently non-perturbative bound states — the
mesons and baryons — which are detected in experiments.

Notable omissions from this chapter include a discussion of the operator
product expansion (OPE) (which gives rise to the twist expansion) and also the
renormalization group equations. Thorough treatments of these topics can be
found in many standard texts, for example Refs. [46,51-53].






Nambu—Jona-Lasinio Model

Quantum Chromodynamics (QCD) is almost universally accepted as the theory
that correctly describes the strong interaction. The utility of QCD has been
convincingly demonstrated for hard processes in the large momentum transfer
regime, where asymptotic freedom permits a meaningful perturbative expansion.
However, at low energies or large distances where the QCD coupling is large,
the theory remains poorly understood. In fact, there is currently no ab initio
calculation of a hadronic observable in the non-perturbative sector of QCD.

At the moment the most direct method with which to gain access to the long
distance behaviour of QCD is to evaluate the path integral on a 4-dimensional
space-time lattice, that is, lattice QCD. This method has its own problems how-
ever, the most pressing of which is its computational intensity. Nobody knows
exactly how much computing power is needed to perform a realistic calcula-
tion at physical quark masses, as the behaviour of QCD as a function of m,
is unknown. However, the minimum requirement is probably several hundred
tetraflops [54]. In addition, finite density lattice QCD calculations appear to
be formidable, if not an impossibility, even for the modest densities of nuclear
matter. This is because the introduction of a chemical potential into the QCD
Lagrangian results in a complex path integral measure, which renders standard
importance sampling techniques unusable.

With this in mind, the importance of models that have strong overlap with
the underlying theory and wide ranging applicability cannot be overstated.
These models should posses many of the same symmetries as the full theory,
exhibit relevant symmetry breaking mechanisms and also include important phe-
nomenological constraints. The candidate model that we consider here, which
meets all these requirements, is the Nambu—Jona-Lasinio (NJL) model [55, 56],
regularized using the Schwinger proper-time scheme [57,58].

The NJL model was first proposed by Y. Nambu and G. Jona-Lasinio in
the early sixties as an effective theory of strongly interacting particles, which at
the time were primarily the nucleon and pion. Motivation for the NJL model
was derived from the BCS theory of superconductivity [59,60], which today
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is interpreted as a low energy effective of QED, although this link has not be
proven.

With the advent of QCD the NJL model was initially criticized because of
its non-fundamental nature, but was soon re-expressed as an effective theory
of QCD in terms of quark degrees of freedom. Since then, the NJL model has
achieved considerable success in the study of a vast array of strong interaction
phenomena. For example, the vacuum structure of QCD [61], the meson and

baryon spectrum [62] and nuclear physics applications such as neutron and quark
stars [63,64].

In this chapter we will give a brief review of the NJL model with a focus
on the constraints imposed by chiral symmetry and the Faddeev description of
baryons.

3.1 NJL Lagrangian and Regularization

The non-renormalized QCD Lagrangian has the form [46]

LQC’D = E (llp - mq) ’Qb - %fs,,f#y, (31)

where I is the covariant derivative, myq is the quark mass maftrix and F;, the
gluon field strength tensor [46]. The known symmetries of QCD are

S=SU(Nf)L®SU(Nf)R®SU(NC)®U(1)V®O®P®T, (3.2)

where Ny is the number of flavors, N, the number of colours, SU(Ny)p ®
SU(Ny)r is the chiral symmetry (realized as m; — 0), SU(N,) the colour gauge
symmetry, U(1)y is the baryon number symmetry and CPT are the usual dis-
crete symmetries. Note, the QCD Lagrangian has an axial U(1) symmetry,
but this is broken by the QCD vacuum and hence is not a symmetry of the
theory [46].

The NJL model is the minimal chiral effective theory of QCD involving only
quark degrees of freedom (the gluon degrees of freedom have been absorbed into
the effective coupling). The general form of the NJL Lagrangian is

Ly Za(ia—’lnq)’lﬁ-l-ﬁ(lq-l-[,(;q—k... (33)

where L4,, Lgg, etc are the 4-, 6-quark interaction terms. The 6-quark term
is introduced to explicitly break the axial U(1) symmetry in the SU(3)r NJL
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model. It is usually taken to have the 't Hooft determinant form [65]

Log = K {det [¢ (1 +75) 9] +det [¢ (1 — ) 9]}, (3.4)

where K is the effective coupling. This term has been used extensively in NJL
model studies [62, 66, 67], especially in the meson sector where it provides a
mechanism to induce the 77—’ mass splitting [62]. However its use should be
treated with caution, as it has been argued in Ref. [68-70] that the consequences
of the dynamical breaking of the U(1)4 symmetry in QCD, cannot be modelled
by adding an explicit symmetry breaking term to any effective Lagrangian.

Further, and potentially more troublesome, is the fact that the inclusion of
the 't Hooft term gives rise to an effective potential that is unbounded from
below [71,72]. An immediate consequence of which is an unstable pion with
respect to the strong interactions. The authors in Refs. [71, 72] propose the
introduction of an 8-quark interaction term, Lg4, along with the usual 't Hooft
term. They find a stable vacuum, provided certain inequalities between the
effective couplings are satisfied. However the problem of explicitly breaking the
U(1) axial symmetry remains.

In this work we restrict ourselves to the 4-quark interaction only, and view
the dynamical breaking of the U(1) axial symmetry as a very interesting open
question within the NJL model. Moreover, the focus here is on baryons, in the
quark—diquark approximation, and the 't Hooft term does not directly influence
diquark structure, since there cannot be any flavour singlet diquarks. Conse-
quently, in the quark—diquark approximation to the baryon sector, the effects
of the ’t Hooft term can simply be incorporated via a renormalization of the
4-Fermi coupling constants.

There have been many 4-Fermi interaction Lagrangians utilized in the liter-
ature, in the original paper the form was

— N2 7 N2
Lig=GCG [(W) — (79 ] : (3.5)
Another popular choice is the so-called colour-current interaction Lagrangian

used in Refs. [62,73,74], which has the form

8

Lig=-GY [@niry)’, (3.6)

c=1

where ). are the SU(3) Gell-Mann matrices. In this work we do not choose a
particular form for the 4-quark interaction. Instead we use a Fierz symmetrized
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Lagrangian G./G Gs/G G,/G
G1(1,1) = (57, 1573)] L i o
G [(1)\& 3he) — (1)\c’757'i, %)\0’7577)] 5 = —%
GV ") _% % 1_12
G(3AeNu 3AN) -3 5 "1
G (s, 775) 5 § —%
G(3ATus> 3AY"5) 3 ~3 s

Table 3.1: This table is reproduced from Ref. [75]. The left column refers to
the different interaction Lagrangians where, (T';,T2) = (¢I'11)(¥I'9%) and the
remaining columns indicate the interaction strength in the pionic, scalar diquark
and axial-vector diquark channels.

form of the Lagrangian, where the interaction strength in a particular channel
can be read off directly (see Ref. [75] for further details) and exchange terms
are automatically included. Then different choices for the initial interaction La-
grangian simply result in differing coupling strengths in each particular channel.
In Table 3.1 we illustrate this by giving examples for the pionic gg and diquark
qq channel, where we include both scalar and axial-vector terms.

In this work we relax the constraints on the coupling G, G, G4, etc implied
by the Fierz transformation and simply treat these couplings as free parameters,
to be fixed phenomenologically. In this way we use the physics to determine £;.
It should always be possible work backward to find an interaction Lagrangian
that gives the desired coupling under Fierz transformation, if one is sufficiently
keen.

The NJL model is non-renormalizable, which is easily seen, for example, by
the fact that the effective coupling constants are dimensionful. Therefore to
fully define the model one must specify the regularization scheme. The most
important feature of the regularization scheme is that it must preserve as many
of the symmetries as possible. For the NJL model this means in particular that
it should be covariant and not break chiral symmetry.

There are in principle an infinite number of regularization schemes. Here
we quickly review some popular examples that have been utilized in NJL model
studies. In all cases discussed below the regularization is in momentum space,
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we denote the integration variable by p and the regularization scale by A:

e Three-momentum cutoff: In this scheme one integrates over pg, then
imposes the constraint 52 < A%2. The main drawback of this approach is
that it is non-covariant.

¢ Euclidean four-momentum cutoff: Here one Wick rotates and imposes
the constraint p% < A%

e Pauli-Villars: This method is implemented via the following modification
to a product of quark propagators [76]

N 1 n N 1
Hk?—MZ%ZCi{Hk?_MQ—A-z}, 0
=11 i=0 j=1"7 i

where ¢y = 1, Ag = 0 and an arbitrary number (n) of regulating masses A;
and constants ¢; have been introduced. To guarantee convergence of the
loop integrals the following conditions must be satisfied

Therefore n > 2 is required. Pauli-Villars is attractive because it preserves
gauge invariance, but in the NJL context it explicitly breaks chiral sym-
metry through the introduction of the regulating masses, which cannot be
taken to infinity.

e Proper-time: In the NJL context this method is implemented on a prod-
uct of propagators by first introducing Feynman parametrization, then
Wick rotating and finally using the result [57,58]

1 il & 1 1/A7p
— = ——'/ drr™ e ™ — —|/ drr™ e, (3.9)
X (n—l). 0 (n— 1). I/AZUV

Here X is the result after introducing the Feynman parametrization and
performing Wick rotation. To render divergent loop integrals finite it is
only necessary to introduce the UV cutoff, however we will also include the
infrared cutoff, Arg. The infrared cutoff removes the imaginary piece of the
loop integrals and hence eliminates the unphysical thresholds for hadron
decay into quarks, thereby simulating an important aspect of confinement.

Throughout this thesis we will utilize the Schwinger proper-time regulariza-
tion scheme. An important caveat in the regularization of the NJL model is
that it is usual to assume that the regularization scheme respects all symme-
tries. That is, one can freely shift integration variables, etc, and only at the end
is the regularization introduced.
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Figure 3.1: Diagrammatic representation of the gap equation. The bold line
represents the propagator of the dynamically generated massive (constituent)
quark, while the thin line is the current quark propagator.

=

3.2 Gap Equation and Dynamical Mass
Generation

The gap equation is a one-body equation that describes the interaction of a
particle with the vacuum. This equation is represented diagrammatically in
Fig. 3.1, for the NJL model. For a parity conserving and Lorentz invariant
vacuum, in the mean-field approximation, the only non-zero contribution to the
fermion loop in Fig. 3.1 is from the scalar 4-Fermi interaction, that is ()2 [62]".
Therefore, in the NJL. model the gap equation has the form

M =my + %Gy lim Tr[Sp(z —y)], (3.10)

Yoz

where M is the dynamically generated quark mass, m, the current quark mass
in the NJL Lagrangian and G, is the coupling in the scalar ggq channel. In the
mean-field approximation the gg condensate is given by [62]

(pop) = —i lim Tr[Sr(z —y)]. (3.11)

y—x

Hence the gap equation can be expressed as
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Evaluating Eq. (3.10) using proper-time regularization gives

J

3 ]. —TM2
M=mq—|—ﬁMG,r'/-dTﬁe 5 (313)

where the integral is appropriately regularized (Section A.12 presents a deriva-
tion of this result).2

!For additional arguments that also consider the 1/N expansion, see for example Ref. [77]

2Throughout this thesis we will regularly leave absent the integration limits on the proper-
time integration over 7. However, in each case the integration limits are implied in the sense
of Eq. (3.9).
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Figure 3.2: Dynamical quark mass generation as a function of Gr/Grerit-

It is clear that Eq. (3.13) permits a trivial solution when G, = 0, however if
G is large there also exists a non-perturbative solution. If m, = 0 this critical
coupling is given by

2
™ -1
G‘ITCI'it = ? (A?]V - A%R) . (314)

From Eq. (3.12) we see that if M # m, then (1) # 0, hence dynamical mass
generation is also associated with the generation of a non-zero chiral condensate.
In Fig. 3.2 we plot solutions of Eq. (3.13) as a function of G/Greris. In the
chiral limit with G, < Greit We see that both the quark mass and hence also the
chiral condensate are zero, this is the Wigner-Weyl phase. For G, > Gt the
chiral condensate becomes non-zero and we are in the Nambu-Goldstone phase
where chiral symmetry has been dynamically broken.

Chiral symmetry and its breaking play a pivotal role in low energy QCD.
In this section we have tried to demonstrate that the NJL model provides a
transparent mechanism for the breaking of chiral symmetry and is an excellent
tool with which to study this phenomenon.

3.3 The Pion and Chiral Symmetry

The usual method with which to study the pion and other mesons in the NJL
model, is to solve the relativistic two-body bound state equation, that is, the
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DO X0

Figure 3.3: Beth-Salpeter equation for a quark and an anti-quark. The shaded
line represents the meson ¢-matrix and the solid lines represent a dressed quark
propagator.

Bethe-Salpeter equation (BSE) [78]. The Bethe-Salpeter equation for mesons
in the NJL model is represented diagrammatically in Fig. (3.3) and is given
analytically by [75]

d4
7;,3,76(]5) - ’Caﬂ,'yé + / ﬁ Ka,@,)\e Sss’(k + Q) S)\X (q) Z’A’,’y&(k)- (315)

In Eq. (3.15) the two-body t-matrix is denoted by 7', S is the fermion propagtor,
K is the appropriate interaction kernel and the indices label Dirac, isospin and
colour degrees of freedom.

For the pion the interaction kernel has the form

Kops = =20 Gr (¥5Ti)ap (V57 )16 (3.16)

The solution to the Bethe-Salpeter equation is given by

Topys(k) = (¥5Ti)ap Tr (k) (¥5Ti) e, (3.17)
where 00
and the quark-anti-quark bubble graph has the form
(12\ _ @s 659 = @i S, (a1
Hﬂ-\k J = 6i W'Pl" 75 u((])')’5SF\}v En Q)J . \3.19)

The mass of the pion is then given by the pole in the t-matrix, that is

1+ 2G, (k> = m2) = 0. (3.20)
It is easy to show that
3 1 2 3
2y _ —M 2 2
O,(m:) = ~52 dTT2 — gz I(m3), (3.21)

where |
' 1
I(m?) =f do | dr— e T[ma(e?—a)tm?] (3.22)
0
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Y5 e

Figure 3.4: Diagram representing pion decay in the NJL model.

Therefore, using the gap equation result given in Eq. (3.13), we obtain the

following expression
9 My |

T M 25 Gy I(m2)
We have therefore derived the important result that the pion mass vanishes in
the correct chiral limit, that is my — 0, not M — 0.

m (3.23)

Another important pionic observable is the pion decay constant, f,, which
is defined via the matrix element

<0 'E7N75%Ta| 7rb(q)> =1 fr qM(Sab, (324)

where 7, is a pion with isospin b. For the NJL model, the diagrammatic rep-
resentation of this matrix element is given in Fig. 3.4. Analytically, Eq. (3.24)
can be expressed as

: d*k
1 frqu= 3\/97/ (2n) Tr [vs S(k) ’)%M’Ys S(k—q)], (3.25)
where g, is the effective pion—quark-quark coupling, defined by

got=—0 Hvr(q2)/8q2|qz:m12r
=2 1 da/dT [i —m2(a® — a)} e~T[mi(e?—a)+2%] (3.26)
472 Jo T2 &
With this result, the gap equation (Eq. (3.12)) and the pion mass condition
(Eq. (3.23)), it is easy to obtain the following expression

F2m2 ~ —m (Yy). (3.27)
This result is the first-order approximation to the Gell-Mann—Oakes—Renner
current algebra relation [79], given by

famy = —% (M + ma) (Gu + dd). (3.28)

In this section we have explicitly demonstrated that the key consequences
of chiral symmetry are not destroyed by the introduction of the proper-time
regularization scheme to the NJL model.
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3.4 Baryons

Any model framework for hadrons must include a description of baryons, how-
ever because of their minimal 3-quark nature they are notoriously difficult to
model. There have been many different approaches in the literature, ranging
from the MIT and cloudy bag models, to solitons and lattice QCD. Within the
NJL model, two approaches are popular, the soliton approach motivated by the
large N, expansion of QCD and the Faddeev framework, that is, solving the
relativistic 3-body bound state equation.

The solitonic approach originates from work by ’t Hooft that showed in the
limit of a large number of colours, N,, QCD can be regarded as an effective theory
of mesons and glueballs [80]. Subsequently, it was argued by Witten [81,82], but
not proven, that baryons emerge as solitonic solutions of this underlining mesonic
theory. For a review of this approach see for example Refs. [77,83].

The 3-body Faddeev approach for baryons, which is the focus of this section,
can be seen as the natural extension of the 2-body Bethe-Salpeter formalism used
successfully in the meson sector. In this section we will outline a derivation of the
relativistic three-body Faddeev equations [74,84,85], for a general introduction
to the 3-body problem see Refs. [86-89).

The complete solution to the relativistic 3-body problem is encapsulated by
the Dyson equation for the 3-body propagator. In operator form the Dyson
equation is given by

G=Go+GyKG, (3.29)

where Gy is the product of three quark-propagators and K is the interaction
kernel, which contains all 2- and 3-quark irreducible diagrams. The formal
solution of Eq. (3.29) is

T 1-GoK’
which makes sense mathematically, but it is difficult to interpret physically.
If we introduce the “Faddeev approximation”, which is to neglect all 3-quark

G (3.30)

irreducible diagrams, the interaction kernel can be written as
K=K + K, + K;. (3.31)

Here K; represents the kernel for the interaction of quarks j and k, where quark
1 18 a spectator. It is convenient to introduce the 2-body propagtor in the 3-body
Hilbert space, g;, which satisfies the equation

9i=Go+ Gy K, g;. (3.32)
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The general solution of this equation is

Go
| S——— 3.33
i 1—Go K, ( )
Using the identity
1 1 Go 1

= K, + Ky) ——— .34
—G K- 1-GK | 1-G & T X i—qgxr (3:34)

we can express Eq. (3.29) in the form

The 2-body t-matrix in the 3-body Hilbert space, #;, is obtained by amputating
all external quark legs from the connected part of g;, and satisfies

gi = (14 Goti) Go. (3.36)

It is easy to show using the above result and Eq. (3.35) that the 2-body t-matrix,
t;, also satisfies
t; = K; + K; Go ;. (3.37)

Using the Faddeev decomposition of GG, which is
G =Go+ Gi1+ Gy + Gs, Gi=GoK;G, i=1, 2,3, (3.38)
and Eq. (3.36) we obtain
Gi = Got; Go+ Got; (G + Gy) . (3.39)

The three-body ¢-matrix is given by T = ), T;, where G; = GoT; G and each
component satisfies

These coupled 4-dimensional equations are the familiar Faddeev equations, which
relate the Faddeev three-body components, T;, to the full 2-quark f-matrix in the
three-body Hilbert space, t;. Where ; are obtained as solutions of Eq. (3.37).

We can simplify this result slightly by noting that the Faddeev components
T; contain reducible three-body processes, and that these can be separated via
the introduction of quantities Y;; which satisfy

Ti=5+> & Yimtm. (3.41)
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Physically the term #; Y;,, t,, describes three-body irreducible processes where
the pair j interacts first and the pair 4 second. If we now introduce the quantities
Xy = S;; Yij Sii, the Faddeev equation can be expressed as [75]

Xji = 641 Spx + Z Sre Sre te Xji, (3.42)
o
Ti =185 + ) ti Ximtm, (3.43)

T=> T, (3.44)

where Sijk = 1if 4 # j # k or zero otherwise. The usual two-body t-matrix in
Eqs (3.42) and (3.43) is related to ¢; by, t; = t; Sp..

The Faddeev equations, expressed in Eqgs. (3.42)—(3.44), are in principle
far simpler to solve than the original 8-dimensional Dyson equation, given in
Eq. (3.29). However, solving these equations is still a formidable task and it is
necessary to make further approximations, in particular assumptions regarding
the form of the 2-quark t-matrix, #;, are usually made.

In the derivation so far we have not assumed a particular form for the interac-
tion kernel, K. However, the 4-Fermi interaction of the NJL model is separable,
and this facilitates a significant simplification of Eq. (3.42). For the general case
of a separable interaction the Faddeev equation has been reduced to an effec-
tive two-body equation, describing the scattering of a quark on a pair of quarks
(quasi-particle). The resulting simplification to Eq. (3.42) is a Fredholm integral
equation of the second kind, which in operator form is given by

X=Z+KX, (3.45)

4.1
+/ (2:)4 ZP1 (9, p") S}‘s (%P +p") T (%P — p") X% (p, p"). (3.46)
The full derivation of this result can be found in Ref. [75]. In Eq. (3.46), 7, is
the two-body t-matrix for the two-quark quasi-particle, and we associate this
particle with a diquark in the nucleon. In Fig. 3.5 we illustrate Eq. (3.46)
diagrammatically. All that remains is to specify the form of the interaction
kernel, from which we can determine the form of Z#® and the two-body ¢-matrix
P
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Figure 3.5: Diagrammatic representation of the Faddeev equation expressed in
Eq. (3.46). The single line is a quark and the double line represents a diquark.

Y

In this work the baryon two-body components are restricted to the scalar
and axial-vector diquarks. The NJL interaction Lagrangians in these channels
are respectively

s = G (@’YsCTQﬁA @T) <¢ 0_1757'2ﬂAET> ) (3.47)
a=Ga (E%CTiﬁﬂA ET) (U’ Clyhrry B4 ET> . (3.48)

Performing the colour and isospin projections the 7' = % quark exchange kernel
becomes [75]

Sp(® +p)ys V3V Sp(p' +Dp)7s
Zw,p)=-3( L°F 5) , 3.49
#.p) (\/375 Sr(p' +p)v* —*Sr(p' +p)¥* (349)

and the T = 2 quark exchange kernel is [75]

Z(p',p)=—6 (7“ Sr(p' +p) 'y“') : (3.50)

The kernel in Eq. (3.50) only contains the axial-vector two-body channel and
after spin projection it will correspond to the Delta baryon. The kernel given in
Eq. (3.49), which after spin-projection will correspond to the nucleon, contains
both scalar and axial-vector diquarks, where the off-diagonal terms represent
coupling between these two channels. For details of the spin-projection see
Ref. [75]. The full Faddeev kernel is therefore

K =Z(p,p)Sr (3P +p)7 (3P —p). (3.51)

Throughout this work we will employ the “static-approximation” [74] to the
quark exchange kernel. That is, we neglect the momentum dependence of the
exchanged quark, therefore Sp(p' + p) — —7; in Egs. (3.49) and (3.50). The
quark exchange kernel for the nucleon therefore becomes

3 1 V/3yH 75)
7= 5, 3.52
M (\/575 Ry oyt (8.52)
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while for the Delta we simply have

7 = % ( w*’) . (3.53)

We make this approximation because we wish to study the nucleon at finite
density. Therefore we require a good description of nuclear matter, in particular
we need nuclear matter saturation. It was demonstrated in Ref. [58], that in the
NJL model this seems to be achievable only by using proper-time regularization.
This scheme has the added advantage that it simulates some important aspects
of confinement. However it obscures the pole structure of the Faddeev equation,
making a full numerical solution very difficult.

In the static approximation to the NJL model, the nucleon T-matrix satisfies

the equation
T=Z4+KT=Z+ZIIyT, (3.54)

or equivalently
T=Z+TK=Z+TIyZ, (3.55)

where Z is given in Eq. (3.52) and Il y represents the nucleon quark-diquark bub-
ble graph. Including both scalar and axial-vector diquarks the nucleon bubble
graph is given by

m5te) = [ (373 r¥4(q) S(p — ), (3.56)

Tcd(q):(n(()q) 0 ) (3.57)

4 (q)

The quantities 7,(q) and 7/(q) in Eq. (3.57) are solutions of the Bethe-Salpeter
equation in the scalar and axial-vector diquark channels, respectively. These
diquark t-matrices have the form [75]

where

m(9) = 105, éﬁ;(q2), (3.58)
S A

where the quark-quark bubble graphs are given by
@) =6 [ TEnfsnsk-a), @6
(@) (- 45 ) =61 [ (jT’j Ty sk sk-g]. (@61



3.4 Baryons 39

P—-k

Figure 3.6: The diagrammatic representation of the homogeneous Faddeev equa-
tion expressed in Eq. (3.65). The shaded area represents the nucleon vertex, the
single line represents a quark and the double line a diquark.

Explicit expressions for these bubble graphs are given in Section A.8.

In the lightcone normalization, the three-body T-matrix near a three-body
bound state of mass My, behaves as

I'yT
T NN (3.62)
P+ —&p

where €, = %—’2:’. This defines the three-body vertex function I'y. Therefore near
this T-matrix pole Egs. (3.54) and (3.55) become
FNFN= (p_|_—€p) Z—FZHNI‘NTN, (363)
FNFN = (p+ - Ep) 7 + FNfN HN Z.
Taking the limit p; — €,, we obtain the homogeneous Faddeev equations for

the nucleon vertex and conjugate vertex functions (in the static approximation),
that is

I'y=ZIyTy= KTy, :
I'y=[ylyZ=TyNK. (3.66)

A diagrammatic representation of the homogeneous Faddeev equation for the
nucleon vertex function, I'y, is given in Fig. 3.6.

In Ref. [90] the form of the nucleon vertex function in the static approxima-
tion was obtained. In the lightcone normalization this result becomes

Tn(p,s) =/ ~Znp™ [I?ﬂ] ,

03]
= o f—ZMN un(p, s), 3.67
Np- [az —]&: Y5 + o ’Y“’YJ w(p, ) ( )
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where Zy is the nucleon vertex normalization (see Section C.3 for its definition
and its explicit form). To solve for the conjugate spinor we note

KE=U(wK')U, (3.68)

U = ((1) _01) | (3.69)

Taking the hermitian conjugate of the Faddeev equation for the nucleon spinor

where

we obtain
rl, =T K. (3.70)

Multiplying from the right by v, U and inserting ~, U U 75 = 1, we obtain

I 2% U =Th 7% U (U K19 0) = (Th 3 U) K. (3.71)

Therefore the conjugate vertex function must have the form

Tn(p,s) = (F}f\,%) U. (3.72)
We obtain
Tn(p,s) = —ZN% T T,
=un(p, s) —ZN% o (ozz 1\%,75 + ag 757“)] . (3.73)

3.5 Summary

In this chapter we have given a brief introduction to the NJL model, its initial
motivation and its utility in the description of both mesons and baryons. In
particular we have demonstrated that the NJL model encapsulates much of the
phenomenology demanded by chiral symmetry. For example, quark masses are
dynamically generated in the NJL model, with this mass generation explicitly
linked to the formation of a non-zero chiral condensate. We have also shown
that the Gell-Mann-Oakes—Renner relation is satisfied and that in the limit of
vanishing current quark mass we have m2 — 0.

A large section of the chapter was focused on baryons, where we utilized
the Faddeev framework to solve the three-body bound state problem. This
method is superior to the mean-field methods of Refs. [91,92] and complements
the bosonization approach of Ref. [83]. The advantage of solving the Faddeev
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equation is that the nucleon bound state is obtained in terms of the quark
degrees of freedom. This maintains a strong connection to the Bethe-Salpeter
framework, which has proven to be very successful in NJL model studies of the
meson sector.






Quark Distributions from the
Nambu—Jona-Lasinio model

The discovery in the late 1980’s by the European Muon Collaboration (EMC)
that the fraction of the spin of the proton carried by the quarks is unexpectedly
small [2], caused much excitement in the nuclear and particle physics commu-
nities. The “proton spin crisis” prompted many new experiments, leading to
major new insights into the spin structure of the proton. Recent experiments
at Hermes [93], using semi-inclusive DIS, have also made some headway in de-
termining the transverse spin structure of the nucleon. Future experiments,
possibly at Jefferson Lab [94], promise further exciting results, enabling for the
first time a thorough experimental determination of the entire triplet of the
twist-two quark distributions. However, a thorough theoretical understanding
of these non-perturbative parton distributions is lacking, and remains a very
important and exciting challenge.

In this chapter we aim to alleviate this shortcoming by calculating the spin-
independent, spin-dependent (helicity) and transverse (transversity) quark dis-
tributions in the Nambu—Jona-Lasinio (NJL) model [56] framework. While not
QCD, the NJL model possesses many important attributes of QCD, such as co-
variance and a transparent description of spontaneous chiral symmetry breaking,
as detailed in Chapter 3. In particular, the proper-time regularization is applied
to the NJL model in order to simulate the effects of confinement [95]. We will
utilize the formalism presented in Section 3.4 and construct the nucleon as a
bound state solution of the relativistic Faddeev equation [75,85,96,97] in the
quark-diquark approximation [58], where both scalar and axial-vector diquark
channels are included. This quark-diquark description of the single nucleon has
the further advantage that it can be extended to finite baryon density [98], which
is the focus of the next chapter. We will pay special attention to the helicity
and transversity structure of the nucleon, the related axial and tensor charges
and also their QCD evolution. Where available we will compare our results for
the quark distributions and charges with the empirical data.
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4.1 Quark distributions

The triplet of leading twist nucleon quark lightcone momentum distributions are
defined via lightcone Fourier transforms of particular nucleon-nucleon matrix
elements. Explicitly, the definitions are

- [ B 07 b (4.1
Ag(z) = p. / B ar e S (0) Y usal€pr Vs (42)
Arq(z / L gorte (0, 819, (0) YTy 154 (€7) D,y 8D (4.3)

where 1), is the quark field of flavour ¢ and z is the Bjorken scaling variable.!
The subscript ¢ reminds us that only connected matrix elements are included,
that is, vacuum transitions of the form (0|J,J,|0)(p|p) do not contribute to the
quark distributions. The 4! in Eq. (4.3) implies that the transverse axis is chosen
in the z-direction, similarly a 42 in Eq. (4.3) would imply that the transverse
axis is in the y-direction. Clearly, the choice of the transverse axis cannot change
the final result, but does influence how the Dirac spinors are constructed, as we
will illustrate in Sections A.13 and A.14. We normalize the nucleon state vector
according to non-covariant lightcone normalization: (p, s|tb, v+ ty|p, s). = 3.

To determine the quark distributions in this model, it is convenient to express
Egs. (4.1)—(4.3) in the form [22, 29]

o(z) = —i / (;’W’; 6(x -
[ d*% s

=—/ 27r 6km )
Arq(z) = —i / PGS E e TARE) YD

T

)T M, (0, B)] (4.4)

'7 Vs M, ( 7k")_|’ (4'5)

*sla.—

! Throughout this thesis we will denote the spin-independent distributions by g(z), or when
a particular flavour is discussed by u(z), for example. Similarly we label the helicity distribu-
tion by Aq(x) and the transversity by Apg(x). For the moments of these distributions, we will
drop the function variable z, for example the moment of the transverse up quark distribution
will be denoted by Aru. We mention this explicitly as there is potential confusion in the
literature, because for example, in the Jaffe-Ji convention the helicity quark distributions are
labeled as g;(x), which should not be confused with the universally accepted name for the
spin-dependent structure function g;(z). For further discussion see Ref. [29].
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Figure 4.1: Feynman diagrams representing the quark distributions in the nu-
cleon, needed in the evaluation of Eqgs. (4.1)—(4.3). The single line represents
the quark propagator and the double line the diquark ¢-matrix. The shaded
oval denotes the quark-diquark vertex function. The operator insertion has the

form ~* 5(x — S—:) % (1 &+ 7,) for the spin-independent distribution, for the spin-
dependent case we have ¥t — ~T~5 and similarly for transversity the operator
is yt — vy,

where M, (p, k) is the quark two-point function in the nucleon, defined by

M, B) =i [ dwet o BT [F,O0@IIND. @D

Hence, within any model that describes the nucleon as a bound state of quarks,
the distribution functions can be associated with a straightforward Feynman
diagram calculation.

The Feynman diagrams considered here are given in Fig. 4.1, where in our
model the resulting distributions have no support for negative . Therefore this
is essentially a valence quark picture. The diagram on the left in Fig. 4.1 we
call a “quark diagram” because the operator insertion is on a quark, similarly
the diagram on the right is a “diquark diagram” as the operator insertion is on

u- and d-quark dlstrlbutlons in the proton can be expressed as
1 ]
Auy(z) = Afyn(z )+§Af (D)/N( )+ A q/N( z)
1 m
o + = Af a0y (T) + 2—\/§qu(D)/N(m)’ (4.8)
Ady(z) = Af 20yN(T) + 5 A]@N

+ = Af D)/N( 2\[ Jid;)/N (4.9)

The superscripts s, a and m refer to the scalar, axial-vector or mixing terms, re-
spectively, the subscript /N implies a quark diagram and similarly ¢(D)/N a di-
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quark diagram. Similar expressions hold for the spin-independent and transver-
sity distributions, however for the spin-independent case there is no mixing con-
tribution (i.e. fatoyn (@) = 0) [90]. Further, since the scalar diquark has spin
zero, we have Af7 ) /N( z) =0 and Azpf? 2D) /N( z) = 0, hence the polarization of
the d-quark arises exclusively from the axial-vector and the mixing terms.

Importantly, in this covariant framework, the Ward identities corresponding
to number and momentum conservation are satisfied from the outset, guarantee-
ing the validity of the baryon number and momentum sum rules [95,99]. That
is

/l dvuy () = 2/1 de dy(z) = 2, (4.10)
/0 022 [y () + do ()] = 1. (4.11)

4.2 The nucleon in the NJL model

The NJL model is a chiral effective quark theory that is characterized by a
4-Fermi contact interaction of the form, £; = ), G; (@ I; w)z, where the T';
represent matrices in Dirac, colour and flavour space and G; are coupling con-
stants [56]. Applying Fierz transformations, the interaction Lagrangian can be
decomposed into various interacting ¢g and ¢q channels. Writing only those
terms relevant to this discussion, we have

L= (i —mg) Y+ Lix+ Lis+ L, (4.12)

where my is the current quark mass. The interaction terms are given by

1 gl il 419

[-' I,w — 5 G’rr ( 2 (t/J V5T "‘//)2) ) (&'l‘))
o= Gy( 5CTzﬂA 9) (¥" CmaBty), (4.19)

o = Go(# Lm0 97 ) (47 C it ), (4.15)

where 4 = \/g M (A = 2,5,7) are the colour 3 matrices and C' = iv97.
The familiar term L;, generates the constituent quark mass, M, via the gap
equation and the pion as a gq bound state. The terms £, and L, represent
the interactions in the scalar (J™ = 0%, T = 0, colour 3) and axial-vector (J™ =
17, T = 1, colour 3) diquark channels and are used to construct the nucleon as
a quark-diquark bound state. The couplings G, G5 and G, are related to the
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original couplings, G;, via the Fierz transformation, but we use them here as free
parameters which will be fixed by the properties of the pion and the nucleon.

Solving the appropriate Bethe-Salpeter equations, the standard NJL results
for the diquark t-matrices are obtained [75,90]. As explained in Ref. [58], these
can be accurately approximated by the forms

. igs
To(q) = 4i G, — Ry (4.16)
. 19q q*q”
M () = 4Gy g — —2 | g — , 4.1
T4 (q) = 4iG,. g - M2 (g M3> (4.17)

which we also use here. The masses of the diquarks M, M, and their couplings
to the quarks g, g, are defined as the poles and residues of the appropriate full
diquark t-matrices (see Section A.9).

The nucleon (quark-diquark) t-matrix satisfies the Faddeev equation
T=Z+ZUNT=Z+TIyZ, (4.18)

where Z is the quark exchange kernel and Ily the product of a quark propaga-
tor and a diquark t-matrix. In the non-covariant lightcone normalization used
already in Eqgs. (4.1)—(4.3), the quark-diquark vertex function, I'y, is defined by
the behaviour of T near the pole

T D4+—€p FN FN
g )
Py —&p

(4.19)

M2 . g o g .
2’% is the lightcone energy. Substituting this result into Eq. (4.18)

gives the homogeneous Faddeev equations for the vertex functions

where ¢, =

FN = ZHN FN, and FN = FN HN Z. (420)

For this investigation we restrict ourselves to the static approximation, where
we neglect the momentum dependence of the quark exchange kernel, Z. Includ-
ing both scalar and axial-vector diquark channels, Z takes the following form in
the colour singlet and isospin—% channel

3 1 3y %)
7.3 WY 4.21
M (\/5’75’7“ — Yy (4.21)

The quantity Il effectively becomes the quark-diquark bubble graph

y(p) = [ % r(p— k) S(K), (4.22)
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where

The eigenfunction of the kernel K = ZIly, in Eq. (4.20), has the following form,
up to normalization:

641

Olo AI,’[—: Y5 + aszyHys

[(p,s) = [ ] un(p, 8), (4.24)

where the upper and lower component refer to the scalar and axial-vector diquark
channels, respectively and uy is a free Dirac spinor with mass My. We choose
the normalization uyuy = 1 = I'T.2 Inserting this form into Eq. (4.20) gives
three homogeneous equations for the a’s and the nucleon mass My is determined
by the requirement that the eigenvalue of K, in Eq. (4.20), equal 1.

The normalization of the vertex function follows from the definition given in

Eq. (4.19), we obtain
/ M
FN(p, S) = _ZNp_N F(pa S), (425)

(4.26)

where

Ty = - .

MQ’ I'(p) #ﬁm I'(p)
In Appendix C we explicitly solve the Faddeev Equation, Eq.(4.20), and show
our result for the normalization Zy.

As with any non-renormalizable theory a regularization prescription must be
specified to fully define the model. We choose the proper-time regularization
scheme [57, 58, 100, 101], where loop integrals of products of propagators are
evaluated by introducing Feynman parameters, Wick rotating and making the
denominator replacement

1 1 /1/(AIR)2 ) X
— — — dr™ e ™7, (4.27
Xt (=D gy )

where Arr and Ayy are, respectively, ultraviolet and infrared cutoffs. The former

has the effect of eliminating unphysical thresholds for hadron decay into quarks,
hence simulating an important aspect of confinement [101].

2The conjugate vertex function, ', which is a left eigenfunction of K = [y Z , is obtained by
taking the ordinary hermitian conjugate of I and introducing a minus sign for the axial-vector
components.
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4.3 Results

The parameters of the model are Arg, Ayyv, m, G, G5 and G,. The infrared
scale is expected to be of order Agep and we set it to Ajgp = 240 MeV. This is
slightly larger than our previous work [95], because our studies of the saturation
properties of nuclear matter favour this [98]. The parameters my, Ayy and G,
are determined by requiring M = 400 MeV via the gap equation, f, = 93 MeV
from the familiar one loop pion decay diagram and m, = 140 MeV from the
pole of the ¢q t-matrix in the pion channel. This gives m, = 16.4MeV, Ayy =
645 MeV and G, = 19.04 GeV~2. The couplings G, and G, are determined
by reproducing the nucleon mass My = 940 MeV as the solution of Eq. (4.20)
and satisfying the Bjorken sum rule within our model, where g4 = 1.267. We
obtain Gy = 7.49GeV~2 and G, = 2.80 GeV~2. With these model parameters
the diquark masses are M, = 687 MeV and M, = 1027 MeV and the coefficients
in the nucleon vertex function, Eq.(4.24), are (o, o, as) = (0.43, 0.02, —0.45).

To compare the predictions of the model with experimental data as well as
the empirical parameterizations, it is necessary to determine the model scale,
Q2. We do this by optimizing QF such that the spin-independent distribution,
uy(z), best reproduces the empirical parameterization after Q? evolution. We
find a model scale of Q2 = 0.16 GeV?, which is typical of valence dominated
models [90,99,102].

Results for all three valence u- and d-quark distributions are presented in
Figs. 4.2 and 4.3, respectively. We sce that the helicity and transversity distri-
butions are quite similar in magnitude, although Ard(z) is rather suppressed at
small z relative to Ad(x). Note, that the difference between Ag(z) and Apq(z)
is a purely relativistic effect, and therefore in any non-relativistic model, like the
constituent quark model, these distributions are identical.

There are a few positivity constraints that should be satisfied by any model
calculation of the quark distributions. The simplest follows directly from the
probability interpretation of the quark distributions, expressed in Eqgs. (2.50)—
(2.53), which states

|Aq(z)] < q(z), and |Arg(z)| < (). (4.28)

The other inequality, which relates all three twist-two quark distributions, was
derived relatively recently by Soffer [49], and has the form

q(z) + Aq(x) > 2|Arg(z)|. (4.29)
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Figure 4.2: NJL results for the twist-two valence u-quark distributions multiplied
by Bjorken z, at the NJL model scale of Q2 = 0.16 GeV?
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Figure 4.3: NJL results for the twist-two valence d-quark distributions multiplied
by Bjorken z, at the NJL model scale of Q2% = 0.16 GeV?
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u d Au Ad Aru  Apd ga gr
NJL 2 1 0.967 -0.300 1.044 -0.236 1.267  1.280
Experiment | 2 1 0.926(14) -0.343(18) 7 7 1.267(8) 7

Table 4.1: Moments of the quark distributions and the nucleon axial and tensor
charges. The experimental values for Au, Ad and g4 are take from Ref. [103],
however the experimental results given in Refs. [104,105] agree to within two
significant figures. Note we have used g4 as a constraint.

It is clear from Figs. 4.2 and 4.3 that the calculated quark distributions satisfy
these three inequalities. These quark distribution inequalities clearly constrain
the moments as well, in particular the Soffer inequality implies

|Aru,| < 1+ 5 Auy, (4.30)
|Ard,| € 1+ 3 Ad,. (4.31)

Empirically the u-quark moment, Awu,, is of order one which implies |Agu,| S %
However since Ad, < 0 a stronger constraint on Ard, is possible. If |Ad,| > %,
which current empirical results imply [103], we must have |Ard,| < % and hence
the d-quark contribution to the axial charge must be greater than its contribution
to the tensor charge.

The nucleon vector, axial and tensor charges are related to the moments of
the twist-two quark distributions. In the absence of anti-quark distributions
these relations are

/0 dz [u(z) — d(z)] = gv, (4.32)
/01 dz [Au(z) — Ad(z)] = ga, (4.33)

/0 (Aru(z) — Ard(z)] = gr, (4.34)

where the vector charge, gy, is simply the baryon number. In Table 4.1 we give
our results for the moments of the quark distributions and the related nucleon
charges. We find Aru > Au and Ard < Ad with g4 ~ gr, which is potentially
an interesting result. Relativistic effects cause significant differences between
the helicity and transversity quark distributions, however these largely cancel
for the nucleon axial and tensor charges. It is widely believed that it should be
possible to derive a relation between Ag(z) and Arg(z) , since

94 (z) + q-(2) = ¢1(2) + q,(x), (4.35)



52 4. Quark Distributions from the Nambu—Jona-Lasinio model

however such a relation is yet to be obtained. Further investigation of our results
is necessary to see if there is an underlying reason for the similarity between g4
and gp, or if it is mere coincidence.

Our model results for the first polarized moments are Awu, = 0.967 and
Ad, = —0.300 which agree quite well with the values Aw, = 0.926 + 0.014
and Ad, = —0.341 + 0.018 determined from the axial coupling constants of
octet baryons discussed in Ref. [103]. This emphasizes the importance of in-
cluding axial-vector diquark correlations, since the pure scalar model would give
a vanishing Ad, and a somewhat smaller Aw,. The spin sum in our model is
AY = 0.667, which is smaller than the result of the pure scalar model, but still
somewhat larger than the accepted value of AY = 0.213 +0.138 [4]. Although a
re-evaluation of the data may result in a somewhat larger value [106]. The dis-
crepancy between our result and experiment may primarily reflect the absence
of the U(1) axial anomaly [5,107] in our calculation. For the transversity mo-
ments there are no experimental numbers, however there have been a number of
theoretical calculations, for example the MIT bag model [108], Chiral quark soli-
ton model [109,110], chiral constituent quark model [111] and some exploratory
lattice studies [112,113]. Between them they find 0.80 < Apu < 1.12 and
—0.15 < Apd < —0.42, therefore our values of Aru = 1.04 and Ard = —0.24
are consistent with previous work.

In Figs. 4.4 and 4.5 we show the results for all three u- and d-quark distri-
butions after QCD evolution® to Q? = 5.00 GeV2. Empirical parameterizations
exist for the spin-independent and helicity distributions and we illustrate these
in Figs. 4.4 and 4.5, however it will be sometime before empirical parameteriza-
tions for the transversity distributions are available. We find excellent agreement
between the model results and the parameterizations. Although the helicity d-
quark distribution presented in Fig. 4.5 is a little small. This could be a result
of the static approximation, because the quark exchange diagram, absent in this
calculation, would contribute to this distribution. For the scalar diquark case
in particular, this contribution may be rather large. This result illustrates the
importance of going beyond the static approximation in future work. However,
we should note that in comparison with the pure scalar model (95, 115], the
agreement has improved substantially, especially for the spin-dependent case,
illustrating the important role axial-vector diquarks play in nucleon spin struc-
ture.

3We utilize the computer program of Ref. [43] for the spin-independent case, of Ref. [44]
for the spin-dependent case and of Ref. [45] for the transversity case. We choose DGLAP
evolution with Ny = 3, Aqcp = 250 MeV in the MS renormalization scheme up to NLO.
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Figure 4.4: NJL results for the twist-two valence u-quark distributions multi-
plied by Bjorken z, evolved to the scale of Q2 = 5.00 GeV2. The empirical
parameterizations are denoted by the dotted lines, where the spin-independent
parameterization taken from Ref. [114] and helicity parameterization of Ref. [4].
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Figure 4.5: Caption as in Fig. 4.4 except here we show the valence d-quark
distributions.
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The behaviour of structure function and hence quark distribution ratios at
large z has been an area of considerable debate [116,117] and is one of the regions
where perturbative QCD (pQCD) offers firm predictions [118]. Experimentally,
the ratio d(z)/u(x) is surprisingly poorly known [119]. In the limit  — 1 it
is thought to lie somewhere between 0, the prediction based on scalar diquark
dominance [120] and , the pQCD result [118]. Analysis in Ref. [116] favours
the pQCD prediction. The same predictions also hold for the spin-dependent
ratio, Ad(z)/Au(z), as z approaches 1, however to our knowledge there remains
no pQCD prediction for the transverse ratio.

In Fig. 4.6 we plot our results for the ratios d,(z)/u,(z), Ady(z)/Auy,(z)
and Ardy(z)/Aru,(z), together with the ratios of the empirical distributions.
The z — 1 limit of the spin-independent ratio of ~ i is slightly larger than
the pQCD prediction. The spin-dependent ratio is less than or equal to zero
and therefore has the opposite sign to the pQCD result. Although the empirical
parameterizations are constrained to give 0 for these ratios as £ — 1, we note

that the systematic errors in both empirical ratios are very large in the region
z 2 0.5 [4,10,104,114].

It is important to note that the pQCD predictions for the mixed flavour ra-
tios are somewhat model dependent, as assumptions have to be made about the
relative strengths of the u- and d-quark contributions to the nucleon wavefunc-
tion. A more rigorous pQCD prediction, relying only on helicity conservation, is
possible for the single flavour ratios Au(z)/u(z) and Ad(z)/d(z). Perturbative
QCD predicts that both these ratios should approach 1 for large z, which would
require a change of sign in the Ad distribution. In Fig. 4.7 we plot our results
of the single flavour ratios, we find in the larger z limit that the Aq(z)/q(z)
and Arq(z)/q(x) ratios approach zero, while the Arg(z)/Aq(z

remains finite.

8

N == w2 emes
) ratio at large «

In Fig. 4.8 we plot our results for the ratios (Aq + Ag) /(g +q) where q €
(u,d). Since we wish to compare these ratios directly to recent experimental
data, we include sea quark distributions generated through the Q? evolution. In
the £ — 1 limit our model ratios approach = 0.8 for the u-quark and ~ —0.25
for the d-quark. This seeming contradiction to pQCD has also been suggested by
recent experiments by the Jefferson Lab Hall A collaboration [117,124], with our
predictions consistent with their experimental results. This data is also shown
in Fig. 4.8.
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Figure 4.6: Mixed flavour ratios for the three twist-two quark distributions.
Empirical results are shown as the dotted line for the spin-independent (upper
line) [121] and helicity distributions (lower line) [4], respectively
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Figure 4.7: Single flavour ratios for the three twist-two quark distributions.
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Figure 4.8: Single flavour ratios (Ag+ Ag) /(¢ +q) where ¢ € (u,d), at the
scale Q% = 5.0 GeV2 The experimental results are from Hall A at Jefferson
Lab [117] (solid squares) and Hermes [122] (solid stars).
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Figure 4.9: Structure function ratios A;, and Ay, at Q% = 5GeV?. The Jeffer-
son Lab data is from Ref. [117] and the Hermes data is taken from Ref. [123].
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The nucleon asymmetry A; is defined as
01/2 — 03/2

Al = B
01/2 + 032

(4.36)
where o3/ is the photon cross-section where the photon and nucleon spin-
components along the direction of photon momentum are aligned and o/, is
the case where the nucleon spin is anti-aligned. Expressed in terms of structure
functions the asymmetry becomes [117]

A = g1(x) — 7 ga() ~ 91() .

Fi(z) Fy(z)

In Fig. 4.9 we show results for the asymmetries A;,(z) and A;,(z). We find
excellent agreement with the Jefferson Lab data [117] in the valence quark region.
However, for small z, A;,(z) is slightly too large, which reflects an enhancement
of g1,(z) in the same region. This is most likely associated with the omission
of the effects of the axial anomaly in the present work. It is also clear from

(4.37)

the experimental data that the uncertainties in these ratios at large x, are still
significant.

In Fig. 4.10 we give our results for the spin-dependent structure functions
g1p(z) and gi1,(x). The parameterizations of Ref. [104] are also included as the
shaded areas, which indicate the empirical uncertainties. Our results compare
well with the empirical parameterizations, lying within uncertainties for the
region z 2> 0.3. Comparison with experiment is also favorable, although the
experimental determination for g, (z) is less certain.

4.4 Conclusion

Using a covariant quark-diquark model for the nucleon, including both scalar and
axial-vector diquark channels, we calculated the complete triplet of twist-two qu-
ark distributions, that is, the spin-independent, spin-dependent and transversity
distribution functions. A key feature of the framework is that it produces quark
distributions that have the correct support and obey the number and momen-
tum sum rules. The model also incorporates important aspects of confinement
by eliminating unphysical thresholds for nucleon decay into quarks.

Highlights of our results are obtaining values for the polarized first moments
of the quark distributions Au, = 0.967 and Ad, = —0.300, in good agreement
with those obtained from axial couplings of octet baryons. We also obtain excel-
lent agreement with empirical parameterizations of the valence quark distribu-
tions. We paid special attention to the single flavour ratios (Ag + A7) / (¢ +7)
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Figure 4.10: Polarized structure functions g, and g1, at Q* = 5GeV2 The
solid line is the model prediction, with the lower curve corresponding to gip.
The shaded areas represent the empirical parameterizations with uncertainties
of Ref. [104], at the same scale. The experimental data, with 1 < Q% < 10 GeV?,
is from SMC [125] (open stars), SLAC E143 [126] (open circles) and JLab [117]
(solid squares).

and the asymmetries Ay, and A,,, finding good agreement with recent experi-
mental results from JLab.

These results indicate that diquark correlations are an essential feature of the
non-perturbative structure of the nucleon. In particular, the admixture of axial-
vector diquarks, though small, is essential to obtain the observed agreement with
empirical data.

Finally, we would like to mention that a very important advantage of this
covariant quark-diquark model is that it can be readily extended to the case of
finite nucleon density. The results presented in this chapter strongly suggest that
this model should provide a reliable basis from which to begin investigation of the
medium modifications of both spin-independent and spin-dependent structure
functions. We investigate this in the following chapter.




Quark Distributions in Nuclear
Matter

The discovery in the early 1980s by the European Muon Collaboration (EMC)
that nuclear structure functions differ substantially from those of free nucle-
ons [11,127,128] caused a shock in the nuclear physics community. Despite
many attempts to understand this effect in terms of binding corrections it has
become clear that one cannot understand it without a change in the structure
of the nucleon-like quark clusters in matter [129-131]. Mean-field models of
nuclear structure built at the quark level, which have been developed over the
past 15 years, are yielding a quantitative description of the EMC effect. Most
recently it has been demonstrated that at least one of these models leads nat-
urally to a Skyrme-type force, with parameters in agreement with those found
phenomenologically to describe a vast amount of nuclear data [132].

A second major discovery by the EMC concerned the so-called “spin crisis”
[2], which corresponds to the discovery that the fraction of the spin of the proton
carried by its quarks is unexpectedly small. This has led to major new insights
into the famous U(1) axial anomaly, prompting many new experiments. With
this background, it is astonishing that, in the 19 years since the discovery of the
spin crisis, there has been no experimental investigation of the spin-dependent
structure functions of atomic nuclei. Of course, such experiments are more
difficult because the nuclear spin is usually carried by just a single nucleon and
hence the spin dependence is an O(1/A) effect. Nevertheless, as we shall see,
such measurements promise another major surprise, with at least one model —
which reproduces the EMC effect in nuclear matter — suggesting a modification
of the spin structure function of a bound proton in nuclear matter roughly twice
as large as the change in the spin-independent structure function.

Models of nuclear structure like the quark meson coupling (QMC) model,
achieve saturation through the self-consistent change in the quark structure of
the colorless, nucleon-like constituents — in particular, through its scalar polar-
izability [132,133]. Physically the idea is extremely simple, light quarks respond
rapidly to oppose an applied scalar field. Specifically, the lower components of
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the valence quark wave functions are enhanced and this in turn reduces the effec-
tive o N coupling. The fact that changes in the structure of bound nucleons are
so difficult to find appears to be a result of this mechanism being extremely effi-
cient and hence yielding only a small change in the dominant upper components
of the valence quark wave functions.

On the other hand, the spin structure functions are particularly sensitive to
the lower components and this is why measurement of the spin-dependent EMC
effect is so promising. In this chapter we extend the NJL model discussed so far
to enable finite density calculations, by introducing mean scalar and vector fields
to the NJL Lagrangian. We find that with this finite density NJL model, coupled
with the proper-time regularization [57,100,101], and the inclusion of both scalar
and axial-vector diquarks, we readily obtain nuclear matter saturation at the
correct energy and density. This model exhibits similar properties to the QMC
model, with the advantage that it is covariant. We extend the work of the
previous chapter by determining the medium modifications to the entire triplet
of the twist-two quark distributions. We determine the medium modifications
to the nucleon axial and tensor charges and calculate the EMC, polarized EMC
and transversity EMC effects.

5.1 Finite Density Quark Distributions

The spin-dependent lightcone quark distribution per nucleon in a nucleus of
mass number A, momentum P* and helicity H is defined as

P dw™ . _ _ B
A (z4) = I/ﬁem‘““’ I (A, PyH[,(0) vtys (w4, P, H),

where ’lf//’q igs the an

VAL ANS Wy A vday \1LA.£QAIL-I.\ LA
multiplied by A, with suppor
lightcone normalization where

(A, P, 7" 4] A, P) = 3A. (5.2)

The definitions for the finite density spin-independent and transversity quark
distributions are obtained in the usual way via the respective operator substitu-
tions, v 5 — 7" and ytv5 — 4415, in Eq. (5.1).

The matrix element in Eq. (5.1) is extremely difficult to evaluate directly.
Therefore we utilize the convolution formalism [22] and express Eq. (5.1) in the
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form
H) T ()
8 @)= [ dua [ do S(on—yav) Balo) AAWA),  (63)
0 0

where Ag(z) is the medium modified spin-dependent quark lightcone momen-
tum distribution in the nucleon and A fl(vlﬁ (ya) is the spin-dependent lightcone

momentum distribution of a nucleon in the nucleus. These distributions are
defined by

Aq(z) = p- / G P (N pf,(0) Y s a(w )V, B), (5.4)

2m
D) = [ e (A, Play(0) 7 s o)A P, (55)

27

with the normalizations

<N’p|Eq7+¢Q|N’p> =3,
(A)P|EN7+¢N|A7 P> = A.

Analogous expressions to those in Egs. (5.3)—(5.5) hold for the spin-independent
and transversity finite density quark distributions.

The convolution formalism is depicted diagrammatically in Fig. 5.1a, where
all final state interactions between the nucleon and the remaining fragment of
the nucleus are ignored. Examples of diagrams not included in the convolution
formalism are illustrated in Figs. 5.1b and 5.1c. Unlike the discussion for the
nucleon, the operator product expansion cannot be used to show that these
non-handbag diagrams for the quark distributions in a nucleus are O (1/Q?),
and hence vanish in the Bjorken limit. Nevertheless we shall proceed and look
for any deviations from the convolution model.!

To calculate the in-medium quark distributions within our model we once
again express them in the form [22,29]

(@) = =i [ it (o= =) T o) 5.9
Ba(a) = —i | (g;:’;a(x - I’j{) Tr [y M(p, k)] (5.9)
Arq(z) = —i / (3;5;45 (w = 1’:—:) Tr [v*y'vs M(p, k)], (5.10)

1Some experimental results that would indicate a breakdown of the convolution approach
are discussed in the next chapter.
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(b) ()

Figure 5.1: Figure (a) is a diagrammatic representation of the convolution for-
malism. Figures (b) and (c) are diagrams that are ignored in this approach.

where M(p, k) is now the quark two-point function for a quark in a bound
nucleon. Therefore, as in the previous chapter the quark distributions can be
related to a straightforward Feynman diagram calculation (see Fig. 4.1), except
here the propagators include the self consistent scalar and vector mean-fields in
the nucleus. The quark propagator therefore becomes

| 1
W ===V F—m -7V

where ® and V* = (V,,0) are the constant scalar and vector fields respectively.?

(5.11)

It is clear from Eq. (5.11) that the effect of the scalar field can simply be
incorporated by replacing the free masses with the effective masses in the nu-
clear medium. In Ref. [95] it is demonstrated that the vector field dependence
of the quark distributions in the nucleon can be expressed via a simple scale
transformation on Bjorken z of the nucleon. That is

+ + v+
Aq(z) = p-FfW Ago(2) (p+ f3v+:IC Tt — 3V+> ’ (5.12)
where the subscript 0 denotes a nucleon quark distribution uninfluenced by the
vector potential, but includes the effects of the scalar field. Identical shifts to
that of Eq. (5.12) also hold for the spin-independent and transversity distribu-
tions.

To derive Eq. (5.12) we note that the quark Hamiltonian for nuclear matter
at rest has the form
H, = hy+ V@, (5.13)
where fAzq is the quark Hamiltonian in the absence of the vector field and Q is
the quark number operator, defined by

= / ! () (). (5.14)

2Note, in infinite nuclear matter at rest there is no preferred direction, therefore the 3-vector
part of V# must vanish.
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Translational invariance of the quark field implies
(&) = et (o) 4, (5.15)
which leads to [95]

0y(£)
Vo

— i6 [, 9(8)] = —i&o ¥ (©). (5.16)
The solution of this equation is

P(€) = eV o (€), (5.17)

where 1o(€) is the quark field uninfluenced by the vector field. Therefore the
dependence of the quark field on the vector potential is simply given by a local
gauge transformation.

The second observation concerns the vector field dependence of the nucleon
states. We denote the bound nucleon momentum, influenced only by the scalar
field as pfy, which is related to the nucleon momentum, p#, where both scalar
and vector fields are present by

oy = pt — 3V~ (5.18)

If the nucleon state vector |N,p) is an ecigenstate of ﬁq and Q with eigenvalues
po and 3 respectively, then

hg|N,p) = (po — 3V0) [N, p) = pX|N, p). (5.19)

The nucleon state in the absence of the vector potential is denoted by |N, pw)o
and we have

ﬁq|N7pN>0=ﬁq|Nap>a Qq'N,pN>0:Qq|Nap>a ]Alq|NapN>0:iLq|Nap>a
(5.20)

therefore
|N,p) = [N, pn)o. (5.21)

Substituting the results of Egs. (5.21) and (5.17) into the definition of the quark
distributions (Eq. (5.4) for example), it is easy to derive the scale transformation
of Eq. (5.12).

As discussed earlier, the effects of Fermi motion are included via convolu-
tion (see Eq. (5.3)), where we defined the spin-dependent smearing function in
Eq. (5.5). The primary focus of this chapter is the change in ¢(z), Ag(z) and
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Arq(z) in-medium. We therefore incorporate the Fermi motion effects on the
bound proton quark distributions by replacing A f](\,Ifjl(yA) and Ar f N/ A(y 4), in
Eq. (5.3) (or the transversity equivalent), with the spin-independent distribu-
tion fN/A(yA), calculated in infinite nuclear matter [95]. This is an excellent
approximation for a nucleus with maximal spin projection, as we demonstrate
in the following chapter.

It is convenient to express the spin-independent version of Eq. (5.5) as [29,
95,130]

n/a(ya) A/ G ( %) Tr [v" Gn(p)], (5.22)

N

where G (p) is the nucleon two-point function in medium, defined by

Gn(p) =1 / d*w eP“(A, P|T [¢n(0)¢n(w)]|4, P). (5.23)
This two-point function is related to the in-medium Feynman propagtor by [134]

Gn(p) = V2V Sn(p), (5.24)

where V' is the volume of the system and the Feynman propagtor is given by [95]

Sn(p) = Snr(p) + Swp (D),
1 . PN+ My

+am

~ pv — My +ie E, 8 (po— Ep)O (pr —|7]).  (5:25)

The second term, Syp(p), accounts for the fact that the maximum nucleon
momentum is pg, the Fermi momentum. In the mean-field approximation one
replaces Sy(p) with Syp(p) in all loop integrals [95] and therefore Eq. (5.22)
becomes

o) == [ 15 x

\/_ 5<yA — @) Tr [’)’+ SND(p)] y (526)

This equation is represented diagrammatically in Fig. 5.2 and evaluates to the
simple expression

frnalya) = Z <;—i)3 {(%)2 —(1- CUA)Z] , (5.27)

1-PF <1428,
EF EF

with support
(5.28)
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EF
p

Figure 5.2: Feynman diagram representing the Fermi smearing function
fnja(ya), given in Eq. (5.26). The solid line denotes the nucleon propagator,

Syp(p), and the operator insertion has the form vyt 4 (p_ — %)

The Fermi energy, £r, and the vector potential are related via®
€F = \/sz+M,%,+3Vo = Ep +3Vh. (5.29)

It is easily demonstrated that the vector field dependence of fy/a(ya) is given
by

frnya(ya) = %% In/a0 (;_iyA — BE—‘?) , (5.30)
where \ ,
., _3(Ep Ep 2
fryao(ia) = 1 (p_F> (p—F) — (1 —4a) ] : (5.31)

with support 1 — I’;—i <ga<l+ g—?.

Substituting Egs. (5.12) and (5.30) into Eq. (5.3), we obtain the full vector
field dependence of the in-medium quark distribution as [95]

€ € Vi
Aga(za) = E—FF Aqao (E—I;mA - E—;) , (5.32)

where Aqo(Z4) is the quark distribution including both Fermi motion and the
scalar field and is defined by

A 1
Adaolia) = A dfia /0 0z 6 (Ea — Ga7) Dgole) fapao(@a),  (5.39)

where Ago(z) is the quark distribution where the free masses have been replaced
by the effective masses in the nuclear medium. In obtaining Eq. (5.32) we have

used pt = %6 7, which is valid for nuclear matter at saturation density.

3In deriving Eq. (5.27) we have used the fact that at the saturation density of nuclear
matter, My = €p.
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The various distributions have support

q(z) : 0<z<l, (5.34)
wp(r): O0<z<l, (5.35)
froao@a): 1 <ga<14 28 (5.36)
EF EF
qaoEa):  0<Za<l+Z (5.37)
Ep

Ve Er+pr+V

qa(Ta) D ocgyc IO (5.38)
EF ER

and Fermi smearing functions satisfy the sum rules

/dyA Injalya) = fdyA ya fn/a(ya) =1, (5.39)

/dﬂA frjao(Ga) = /dﬂA Ga fnjao(Ga) = 1. (5.40)

With this machinery it is now a relatively simple task to obtain results for
the in-medium quark distributions. One simply takes the results of the previous
chapter (see Section D.2 for explicit expressions), replace the free masses with
the effective ones, perform the convolution with the Fermi smearing function
and then shift the Bjorken scaling variable via Eq. 5.32. The remaining task is
to determine the effective masses, Er, pr and V; in our NJL model for nuclear
matter. This in the subject of the next section.

5.2 Finite Density NJL Model

The NJL model is a chiral effective quark theory that is characterized by a 4-
Fermi contact interaction. Using Fierz transformations any 4-Fermi interaction
can be expressed in the form )", G; (@I‘ﬂ/})z, where the I'; are matrices in Dirac,
colour and flavour space. The coupling constants G; are functions of the original
coupling appearing in the initial interaction Lagrangian.

We consider SU(2) r NJL Lagrangians; writing explicitly those terms relevant
to this discussion

L= (i —mg) ¥+ G (B¥)" — (@3 79)") — Go @r)* +..., (5.41)

where we include the scalar, pseudoscalar and vector terms and m, is the current
quark mass. Separating the nuclear matter ground state expectation values of
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Figure 5.3: This figure shows the scalar diquark, axial-vector diquark and nu-
cleon masses as a function of the scalar field, where the nucleon mass is obtained
by solving the Faddeev equation using a modified static approximation. We show
the exact Faddeev result of Ref. [75] and the vertical dotted line represents the
strength of the scalar field at nuclear matter saturation.

the quark bilinears as, ¥ Y9 = (p|yTep|p)+ :9T:, where T = 1, v*, the
Lagrangian can be expressed as
(M —m)®  V,VH

L= -M-V)y— T

+ Ly, (542)

where we have defined M = m — 2 G {p[t|p), V* = 2 G, {p|Yy*|p) and L; is
the normal ordered interaction Lagrangian.

In Fig. 5.3 we illustrate the dependence of the scalar diquark, axial-vector
diquark and nucleon masses as a function of the scalar potential, ® = My — M,
where M, is the quark mass at zero density and M is the effective mass. In
Ref. [58] it was found that in the static approximation the nucleon mass decreases
far too rapidly, forcing a modification to the usual static approximation.? We
introduce a parameter ¢ which modifies the mass of the exchange quark, such

4Ref. [58] is a scalar diquark only model, however the inclusion of axial-vector diquarks
does little to alleviate this problem.
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that
1 1 Mo +c

M My M+c’
in the Faddeev kernel. This variation effectively interpolates between the usual
static approximation (¢ = 0) and the case where the mass of the exchange
quark is fixed at the free mass (¢ = co0). Our calculations tend to favour a
value of ¢ ~ 1GeV, where in Fig. 5.3 we have ¢ = 1.2GeV. From Fig. 5.3 we
see that the difference between our modified static results and the full Faddeev
calculation of Ref. [75], is very small up to the saturation density of nuclear
matter. The regularization used in Ref. [75] is the euclidean sharp cutoff and
therefore caution should be taken when making a comparison with our results,
which utilize the proper-time regularization scheme. We also find the potentially
interesting result that our nucleon mass starts to increase for large values of the
scalar field, however this effect has little impact on our results at saturation
density.

(5.43)

To calculate the mean scalar and vector fields as a function of density, we
need the equation of state for nuclear matter. The effective potential for nuclear
matter can be rigorously derived for any NJL Lagrangian using hadronization
techniques. This results in a complicated nonlocal effective Lagrangian, that in
principle can be applied to nuclear matter. Using the mean-field approximation
and ignoring diquark and baryon “trace log terms” in the effective Lagrangian
we obtain the following effective potential from Eq. (5.42)

_ Vs d°p :
5—8V_E+/W@(pF_lp|)€pa (5.44)

where €, = 1/p? + M3 + 3 V. The vacuum contribution has the familiar “Mex-
ican hat” shape, and is given by

[ d*k k* — M? +ie (M —m)? (My—m)?
=12 = . 4
e 7’/ ()t (k2 — M2+ ?Ie) TeR 4G, (5.45)

In this work we only consider nuclear matter at rest.

The zeroth component of the vector field can be eliminated in favour of the
baryon density, p, via the condition

o6

a7 =0 (5.46)

which implies
Vo =6Gyp. (5.47)
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Figure 5.4: Effective quark, diquark and nucleon masses as a function of the
density. The vertical dotted line is the density at nuclear matter saturation.

The constituent quark mass M, for a fixed density, then follows from the condi-
tion

g
oM
For a fully self-consistent calculation the constituent quark mass must satisfy

0. (5.48)

the in-medium gap equation

M = m — 2G(pldlp), (5.49)

which is the case here, since

o0& _M—m
oM  2G,

+ (plYpylp) = 0. (5.50)

In Fig. 5.4 we illustrate the density dependence of the quark, scalar diquark,
axial-vector diquark and nucleon masses. Note, we discuss the values of the
parameters of the model in the following section. We see in Fig. 5.4 that the
nucleon mass does not approach zero with increasing density, consistent with
expectations based on confinement. However, if the infrared cutoff, Arg, is set to
zero, thereby retaining the unphysical thresholds for nucleon decay into quarks,
the nucleon mass is found to approach zero far more rapidly [58]. This provides
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Figure 5.5: Binding energy per nucleon as a function of the density.

further evidence that the introduction of the infrared cutoff encapsulates many
of the important aspects of confinement.

An important feature of any model of nuclear matter is that it obtain the
correct values for nuclear matter saturation. This is not the case for the NJL
model with scalar diquarks only [58], where saturation occurs at too large a
density. However, with the inclusion of the axial-vector diquark channel in the
nucleon wavefunction, we are able to obtain saturation of nuclear matter at the
correct density and binding energy. We illustrate this in Fig. (5.5), where

Eg €&

and My is the physical nucleon mass at zero density.

5.3 Results for in-medium Quark Distributions

The parameters of the model are Ayg, Ayy, My, ¢, Gy, G,, G, and G,,, where
Arr and Ayy are the infrared and ultraviolet cutoffs used in the proper-time
regularization. The infrared scale is expected to be of the order Agep and
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we set it to Ayg = 240 MeV. We also choose the free constituent quark mass
to be My, = 400MeV ° and use this constraint to fix the static parameter,
c. The remaining six parameters are fixed by requiring fr = 93 MeV, m, =
140 MeV, My = 940 MeV, the saturation point of nuclear matter (pg, Ep) =
(0.16 fm™® 15.7 MeV) and lastly the Bjorken sum rule at zero density to be
satisfied, with g4 = 1.267. We obtain Ayy = 645MeV, ¢ = 1027 MeV, G, =
19.04GeV™2 G, = 7.49GeV~2, G, = 2.80GeV~2 and G, = 6.03 GeV 2,

With these model parameters the diquark masses at zero density are M, =
687 MeV and M, = 1027 MeV. At saturation density the effective masses become
M* = 320MeV, M} = 565 MeV, M} = 940 MeV and My, = 746 MeV and vector
field strength is V = 44.5 MeV. The free effective diquark—quark-quark couplings
are g, = 3.82 and g, = 14.5, in medium these become g} = 3.52 and g = 13.4.
Finally the free and in-medium nucleon vertex normalizations are Zy = 29.9
and Zx = 36.0, respectively.

The Fermi momentum can be determined from the nuclear matter formula

32

3
br 9

which gives pr = 263 MeV and therefore we have a Fermi energy of Ep =
790 MeV. A good test of our NJL model for nuclear matter is to determine the
compressibility at saturation density, which is given by

, 0% Ep
K =9 A (5.53)
Physically plausible values for K are generally thought to lie in the range 200-
400 MeV [135], with K = 270—300 MeV being the preferred experimental range.
Our value of K = 368 MeV is therefore approximately 20% too large, but not
unreasonable, and represents a significant improvement on Quantum Hadro-
dynamics, where values of K > 450 MeV are routinely obtained [136]. The
introduction of a pion cloud to the nucleon and the inclusion of the p-meson in

the nuclear medium may help reduce our value for K.

Using the parameters given at the beginning of this section in Eqgs. (5.32) and
(5.33) (and spin-independent and transversity equivalents) we obtain results for
the in-medium v and d spin-independent, spin-dependent and transversity quark
distributions. These results are presented in Figs. 5.6-5.8, at the model scale of

50ur results do not depend strongly on this choice, remaining almost unchanged with My
is between 350 and 450 MeV. This is also true for Ajg, where a change of £50 MeV results in
not qualitative differences.
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Figure 5.6: Spin-independent quark distributions, u, and d,, at the model scale,
Q% = 0.16 GeV?. There are four curves for each quark flavour, with the up-
per curves representing the u-quark distributions. The dotted line is the free
nucleon distribution, the dot-dashed line illustrates the effect of replacing the
free masses with the effective ones. This distribution convoluted with the Fermi
smearing function, Eq. (5.33), is presented as the dashed line, and the final result
where the vector field is also included via the scale transformation, Eq. (5.32),
is represented by the solid line.

Q2% = 0.16 GeV2. For each quark flavour and distribution there are four curves,
representing the different stages leading to the full nuclear matter result. The
dotted curve in each figure are the free results of Chapter 4, the dot-dashed line
illustrates the effect of the scalar field only, that is, the free masses have been
replaced by the effective masses at saturation density. The dashed line includes
Fermi motion effects on the bound nucleon and is obtained by convoluting the
dot-dashed line with the Fermi smearing function of Eq. (5.31), as expressed
in Eq. (5.33). Finally the solid line also incorporates the effects of the vector
potential, and is obtained by shifting the dashed curve using Eq. (5.32).

From Figs. 5.6-5.8 we see that the scalar field tends to suppress the distri-
butions for 4 < 0.6 and enhance them for larger z4. For the spin-independent
distributions the baryon and momentum sum rules must remain satisfied in-
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Figure 5.7: As in Fig. 5.6 except here we show the spin-dependent quark distri-
butions Awu, and Ad,.
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Figure 5.8: As in Fig. 5.6 except here we show the transversity quark distribu-
tions Aru, and Apd,.
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u d Au Ad Aru Ard ga gr
Free 2 1 0967 -0.300 1.044 -0.236 1.267 1.280
1 0790 -0.259 0.934 -0.227 1.049 1.161

In-medium | 2

Table 5.1: Moments of the free and in-medium quark distributions and the
nucleon axial and tensor charges.

medium. For the helicity and transversity distributions there exists no such
constraint and the introduction of the scalar field results in a quenching of the
first moments of these distributions, thereby yielding a reduction of the nucleon
axial and tensor charges in-medium. We will discuss this point further shortly.
The effect of Fermi motion results in a broadening of the distributions toward
larger x4, where the distributions now extend beyond x4 equals one. The first
moment of fy/40 is one, hence normalizations are maintained after Fermi smear-
ing. However, if the correct smearing functions were used for the helicity and
transversity distributions, their normalizations would differ slightly from one —
this will be discussed in the following chapter.

The effect of the vector field on the distributions is a little more subtle, but
basically the vector field results in a squeezing of the distributions either side of
24 = 3. To illustrate this we note from Eq. (5.32) that

. EF Vo 3o Vo
— (1420 D 54
LA Eyp ra Er TA ( EF) Er (5 2 )

Therefore if T4 < % this implies x4 > Z 4, similarly if Z4 > % we have £4 < T4
and clearly 4 = % = z,. The overall factor %‘;; in Eq. (5.32) guarantees the

vector field preserves the quark distribution normalizations.

tions enable us, via Eq. (4.34),
to determine the in-medium values of the nucleon axial and tensor charges. We
summarize our results in Table 5.1. We find that all in-medium moments are
quenched, except those of the spin-independent distributions. In particular, the
in-medium axial charge is reduced by approximately 17% and the in-medium
tensor charge by 10%, relative to their free values. This quenching of g, is
consistent with nuclear beta decay studies which require a similar reduction of
ga to achieve agreement with empirical data. Currently there is no experimental

information for either the free or in-medium values of the nucleon tensor charge.

Using the quark distributions of Figs. 5.6-5.8 we are able to construct the
structure functions, Fon(z) = 1 [Fop + Fan), 91p(%), h1p(z) and the in-medium
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Figure 5.9: Ratios of in-medium over free structure functions at nuclear matter
saturation density. The EMC data for nuclear matter are taken from Ref. [137].

equivalents Fys(Za), gaip(Ta), hap(za).? Evolving these distributions to a
scale of 10 GeV? using the NLO DGLAP evolution equations [43-45], we give
in Fig. 5.9 our results for the ratios Fya/Fon, ga1p/g1p and haip/hip, that is,
the EMC, the polarized EMC and the transverse EMC effects in infinite nuclear
matter. In the valence quark region, the model is able to reproduce the spin-
independent EMC data [137] extremely well. For the polarized and transverse
ratios we find a significant effect, where the polarized effect is approximately
twice that of the unpolarized EMC result. To plot the structure function ratios
in Fig. 5.9 we have used the relation
Mo

Tp= o (5.55)
EF

to express the in-medium quark distributions as a function of the Bjorken scaling
variable for the nucleon.

The nuclear quenching effects on the individual quark flavours are presented
in Fig. 5.10. We find that the effect on both the u- and d- quark distributions is

8Obviously infinite nuclear matter does not have a ga1,(z4) or haip(z ) structure function.
Our results are therefore to be interpreted physically as the change in internal structure of a
proton immersed in a background of constant scalar and vector fields.
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Figure 5.10: Ratio of the quark distributions in nuclear matter to the correspond-
ing free distributions, at a scale of Q% = 10 GeV2. Note, these distributions are
the full quark distributions and hence include anti-quarks generated through Q?
evolution.

large over the valence quark region. For the spin-independent and transversity
ratios the modifications to the u and d distributions are approximately equal,
however for the helicity ratio we find that the d-quark is modified much more
than the u-quark distribution. The resemblance of the u-quark ratios in Fig. 5.10
to the corresponding EMC ratios arises from the up quark distribution being
enhanced by a factor four relative to the down and strange quark distributions in
proton structure functions. Absent from our model is the U/(1) axial anomaly and
sea quarks (at the model scale), this prevents a reliable description of structure
functions at small z. For this reason in Figs. 5.9 and 5.10 we do not plot our
results in this region.

5.4 Conclusion

In this chapter we have studied the nuclear medium modifications to all three
twist-two nucleon quark distributions, and their associated structure functions.
We also investigated the properties of infinite nuclear matter using the proper-
time regularized NJL model with both scalar and axial-vector diquarks in the
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nucleon wavefunction. We find that we are readily able to reproduce nuclear
matter saturation at the correct energy and density, a feature of the model that
is only possible with the inclusion of axial-vector diquarks.

It as been well reported that models using scalar and vector fields coupling
to point nucleons, including Fermi motion, are unable to reproduce the EMC
effect [138]. However, if these mean scalar and vector fields couple to the quarks
in the nucleon — an idea first introduced by Guichon in Ref. [139] — thereby
inducing a change in the internal structure of the nucleon, we find an EMC
effect in almost perfect agreement with empirical data.

We made predictions for the polarized and transverse EMC effects and found
remarkably large signatures. This suggests, at least for the polarized case, that
an experimental measurement is feasible. Such a measurement would help pro-
vide an understanding of how nuclear medium effects arise from the fundamental
degrees of freedom — the quarks and gluons — and represents an important chal-
lenge for the nuclear physics community.






Finite Nuclei Quark Distributions
and the Polarized EMC effect

One of the greatest challenges confronting nuclear physics is to understand how
the fundamental degrees of freedom — the quarks and gluons — give rise to the
nucleons and to inter-nucleon forces that bind nuclei. Quark models such as
the quark-meson coupling model (QMC) [139-141] in which the structure of the
nucleon is self-consistently modified by the nuclear medium, can be re-expressed
in terms of local effective forces which closely resemble the widely used and
successful Skyrme forces [132,142]. While this opens the possibility to describe
the low energy nuclear structure in terms of quark degrees of freedom, it is also
important to identify phenomena which provide explicit windows into quark-
gluon effects in nuclei. Probably the most famous candidate is the EMC effect
(11,129, 143), which refers to the substantial depletion of the in-medium spin-
independent nucleon structure functions in the valence quark region, relative to
the free structure functions.

Considerable experimental and theoretical effort has been invested to try to
understand the dynamical mechanisms responsible for the EMC effect. It is now
widely accepted that binding corrections at the nucleon level cannot account for
the observed depletion and a change in the internal structure of the nucleon-like
quark clusters in nuclei is required [98,138,144]. Although the EMC effect has
received the most attention, there are a number of other phenomena which may
require a resolution at the quark level, such as the quenching of spin matrix
elements in nuclei [145] and the quenching of the Coulomb sum-rule [146, 147].
Important hints for medium modification also come from recent electromagnetic
form factor measurements on “He [148,149], which suggest a reduction of the
proton’s electric to magnetic form factor ratio in-medium. Sophisticated nu-
clear structure calculations fail to fully account for the observed effect [150] and
agreement with the data is only achieved by also including a small change in the
internal structure of the nucleon [149], predicted a number of years before the
experiment [151].

The focus of this chapter is on the medium modifications to the nucleon
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structure functions in nuclei. We calculate the nuclear quark distributions ex-
plicitly from the quark level using the convolution formalism [22]. The quark
distributions in the bound nucleon are obtained using a confining Nambu-Jona-
Lasinio (NJL) model, where the nucleon is described as a quark-diquark bound
state in the relativistic Faddeev formalism. The nucleon distributions in the
nucleus are determined using a relativistic single particle shell model, including
scalar and vector mean-fields that couple to the quarks in the nucleon. This
model, which is very similar in spirit to the QMC model, has the advantage
that it is completely covariant, so that one can apply standard field theoretic
methods to the calculation of the structure functions. Using this approach we
are readily able to reproduce the EMC effect in nuclei. It will be some time
before the transverse quark distributions of nuclei are measured experimentally.
Therefore, the main focus of this chapter is on the nuclear spin structure func-
tion, gi14, and in particular a new EMC ratio — g14 divided by the naive free
result — which we refer to as the “polarized EMC effect”.

6.1 Deep inelastic scattering from nuclear
targets

The formalism to describe deep inelastic scattering (DIS) from a target of arbi-
trary spin was developed in Refs. [152,153]. We focus on results specific to the
Bjorken limit, expanding on those points necessary for the following discussion.

When parameterized in terms of structure functions, the hadronic tensor in
the Bjorken limit has the form

P.q P,P  Eune@ P
WJH—_— ,— utv FJH ~“pvrcd - JH 6.1
= (gt 4 P2 B+ 225 e, (o)

for a target of 4-momentum P¥#, total angular momentum J and helicity H
along the direction of the incoming electron momentum. In obtaining Eq. (6.1)
we have used a generalization of the Callen-Gross relation, Fy'ff = 22, F/H,
and ignore terms proportional to qu or g, as the lepton tensor is conserved, that
is

qu L = q, " = 0. (6.2)
We define the Bjorken scaling variable as
. Q?
= A — A .
Ta=Aby=Agp—, (6.3)

so that the structure functions have support in the domain 0 < z4 < A.
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In the Bjorken limit the nuclear structure functions can be expressed as

FJH Ze za g (za) + T4 (za)], (6.4)

974 (z4) Ze [Agi (x4) + AgsT (z4)] (6.5)

where g represents the flavour and

a1 (za) = @At (w4) + a4 (za),
AQjH(wA) = qﬁ{(u) - Q,ﬁi(mA),

are generalizations of the usual spin-% quark distributions. The quark distribu-
tions, ¢ (z4), are interpreted as: the probability to find a quark (of flavour q)
with lightcone momentum fraction x4/A and spin-component s in a target with

helicity H. Parity 1nvarlance of the strong interaction requires ¢42 = qfl _f , SO
that FyH = FJ and g/¥ = —g; ;7 and hence in the Bjorken limit there are

2J + 1 independent structure functions for a spin-J target.

For DIS on targets with J > 1 it is more convenient to work with multipole
structure functions or quark distributions [153] rather than the helicity depen-
dent quantities discussed above. The helicity and multipole representations are
related by the following transformations

F0= N AJKEE, K=02,...,2] (6.8)
H=—J,..,d
gi0= 3 AFGE K=13..2) (6.9)
H=—J,..,J
where
JK J-H J J K
= (— 2K .
Ayt = (-1) +1(H g {J) (6.10)
and (---) is a Wigner 3j-symbol. The inverse relations are
Y AFELS, (6.11)
k=0,2,...,2j
gii = Y Al (6.12)
k=1,3,....2j

Identical multipole expansions can also be defined for the spin-independent and
spin-dependent quark distributions. Comparing Egs. (6.11) and (6.12) with the
familiar Wigner-Eckart theorem, it is clear that qj(é1 K) and Aq(J ) are reduced



82 6. Finite Nuclei Quark Distributions and the Polarized EMC effect

matrix elements of multipole operators of rank K. Some examples of the mul-
tipole transformations are given in Appendix G.

For nuclear targets the multipole formalism has several advantages, these
include

° Féjo) = V/2J +1Fy4, where F,,4 is the familiar spin-averaged structure
function.

e The number and spin sum-rules are completely saturated by the lowest
multipoles, K = 0 and K = 1 respectively.

e In a single particle (shell) model for the nucleus, the spin saturated core
contributes only to the K = 0 multipole and all K > 0 contributions come
from the valence nucleons.

e In all cases investigated in this paper, we find that the lowest multipoles,
K = 0 for spin-independent and K = 1 for spin-dependent, are by far the

dominant distributions.

e The multipole quark distributions satisfy the sum rules [153]

S
/ dz "1 gV () = 0, K, neven, 2<n<2K, (6.13)
0

|
/ dz ™! AV (z) = 0, K, nodd, 1< n<2K. (6.14)
0

6.2 Nuclear distribution functions

The twist-2, spin-dependent quark distribution in a nucleus of mass number A,
momentum P* and helicity H is defined as

P [dw . =
AJH :_/_zP_:l:Aw /A
s (l’A) A m €
(A, P, H|p (0) v s v (w™)|A, P, H), (6.15)
where 1), is the quark field. To evaluate Eq. (6.15) we express it as the convolu-

tion of a quark distribution in a bound nucleon, with the nucleon distribution in
the nucleus [22]. If a shell model is used to determine the nucleon distribution,
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protons

neutrons

...................................

Figure 6.1: In this figure we illustrate the shell model structure of various nuclei.
For example, the ground state of Silicon-28 has all single particle states filled
up to and including the ds/o shell. The focus of this chapter is on spin-structure
and in particular we are interested in “Li, B, N and ?7Al, where the last
three nuclei each have a proton hole in their outer shell level for ground state
configurations. The left hand side of the figure gives the correspondence between
the shell energy level and its « value.

then in the convolution formalism Eq. (6.15) has the form

A 1
AF (za) = Y C2 /0 dya / do5(1a — ya %) Adan(@) Afem(ya),

= 3 Gl At (), (6.16)
o,km

where a € (p, n) label the nucleons and the sum over the Dirac quantum number
k and j, = m (that is, the occupied single particle states) is such that the
coefficients Cy%  guarantee the correct quantum numbers J, H, T' and T, for
the nucleus. Note, in Eq. (6.16) a sum over the principle quantum number n
is implicit. The correspondence between x and the familiar shell model energy
levels is illustrated in Fig. 6.1.

The function, A fem(ya), in Eq. (6.16) is the spin-dependent nucleon distri-
bution (in the state km) in the nucleus and is defined by

Afnm(yA) = \/5/ % 6(:9/1 - pﬁ SN) Wmn(ﬁ) 'Y+'Y5 \Ilnm(ﬁ) y (617)

!The conventions we use for k are summarized in Egs. (F.11) and (F.12).
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where ¢, is the single particle energy, U,,,(9’) are the single particle Dirac wave-
functions in momentum space and My = M4/A is the mass per nucleon. Im-
plicit in our definition of the convolution formalism used in Eq. (6.16) is that
the quark distributions in the bound nucleon, Ag, «(24), respond to the nuclear
environment. Expressions for the spin-independent distributions are obtained
by simply replacing y™5 with 4" in Eq. (6.17).

First we obtain expressions for the nucleon distributions in the nucleus. The
central potential Dirac eigenfunctions have the general form

B e | Fe(P) Qem(0, ¢)
W, = —H{ : rmAT , 6.18
)= V| 6 ) 0 (6, 9) (618)
where Fy, and G, are the radial wavefunctions in momentum space and 2., are
the spherical two-spinors, given by
Qum (0, ¢) = Z (€ me sms|jm) Yem, (0, ) Xsm,, (6.19)
My, My
where Xsm, are the usual Pauli spin vectors. The radial wavefunctions are nor-
malized such that

/Ooo d3p3 P’ [Felp)® + Gi(p)?] = 1. (6.20)

Substituting Eq. (6.18) into Eq. (6.17) and also the spin-independent eq-
uivalent we obtain the following expressions for the single nucleon k-multipole
distributions in the nucleus

Fer(ya) = (1772 (2 + 1) (20 + 1) V2k + 1

L k ¢ £ k 7 MN/ood P H.NyA_EN
000/ 5 s jfi6n3 ), PP P

[FE(W + G.(p)* + % (ex — Mnya) F,{_(p)GK__(p)} , (6.21)

My /°°d
167!'3 A 24

zp(m—%’;‘—) Fiu(p)Grlp) (1)~

Afr(ya) = (25 + 1) V2k + 1

[SIE

\/(2g+1)(2l7+1) (g ]g g) {f ’; f}

~VB(-1)f Y (@L+1) PL(_M—N?JA_EN) (’5 (1) ’g)

L=k—1,k+1 p
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£ s j
F(p)?(2¢+1) ELATL 1k
0 00 ;
L s
~ ~ 7 s J
—G.(p)?(20+ 1) ELAL Lk ., (6.22)
0 00 ~ .
£ s j
where P, are Legendre polynomials of degree k£ and A = |MN Ya —s,.;|. In

deriving Eq. (6.21) it is convenient to use the identity Q_zm = — (6" - D) Qem.

The single nucleon wavefunctions (Eq. (6.18)) are solutions of the Dirac equa-
tion

[~ G-V + B My () + Vi (0)] $ulr) = e tclr), (6.23)

with scalar, Sy(r), and vector, Vy(r), mean-fields. In principle these fields
should be calculated self-consistently in our (NJL) model framework by min-
imizing the total energy of the system, as was done in the Chapter 5 and in

Refs. [95,98] for nuclear matter. Instead we choose Woods-Saxon potentials for
Sn(r) and Vy(r), which have the form

Vo

S
Sn(r) = 0 _ o (%>

1+ exp ()

, V() , (6.24)

where: Sy, Vp are the depth; a,, a, are the thickness or diffuseness; and Ry,
R, the range of each potential. The depth parameters are set to the strength
of the scalar or vector field obtained from our self-consistent nuclear matter
calculation in Chapter 5, that is Sp = —194 MeV and Vp = 133 MeV [98].
We choose standard values for the range Rs = R, = R = 1.2 A3 fm and
diffuseness a; = a, = a = 0.65 fm. The mass per nucleon My, which would
automatically be determined by a self-consistent calculation, is chosen such that
the momentum sum rule for each nucleus is satisfied (see Appendix H.2.2).

Given the radial wavefunctions, we can determine the mean values of the
scalar and vector fields experienced by the nucleon in the state k, that is

Myx = / 8 L (r) My (r) u(r), (6.25)
Ve = / &r 1 (r) Vie(r) e(r), (6.26)

where My (r) = My+Sn(r). Using a local density approximation in our effective
quark theory, the scalar field felt by the quarks in the nucleon can be evaluated
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by determining the quark mass, M,, that gives the appropriate nucleon mass,
My, as the solution of the quark-diquark equation. The vector field felt by the
quarks is simply one-third of that felt by the nucleon (i.e. V; = Viy,/3). These
fields are used in the calculation of the quark distributions in the bound nucleon.

In Table 6.1 we list some results for My, Myy, Vi, and &, for various nu-
clei. Using these results in Eqgs. (6.21) and (6.22), and the appropriate radial
wavefunctions, we plot in Figs. 6.2 and 6.3 examples of the nucleon distributions
in 2"Al. Here we have chosen to present the results in the familiar J, H repre-
sentation of the quark distributions, that is fem(ya) and Afen(ya), rather than
fex(ya) and Afex(ya) of Egs. (6.21) and (6.22). This way a more direct com-
parison can be made with the infinite nucleon matter smearing function used in
Chapter 5.

Fig. 6.2 illustrates all spin-independent, fim(ya), distributions and Fig. 6.3
presents all relevant (k = —3) spin-dependent, A fi;,(ya), distributions. The
full nucleon distribution in the nucleus can be obtained by simply summing over
the appropriate single nucleon results presented in Figs. 6.2-6.3. For the spin-
independent quark distributions all nucleons in the nucleus contribute, however
for spin-dependent quark distributions only the valence nucleons play a role.
This is easily seen because Afm(ya) = —Afc—m(ya), and hence the spin zero
closed core cannot contribute to the spin-dependent quark distributions. If we
ignore configuration mixing, the spin of Aluminium-27 is carried solely by the
five valence protons, see Fig. 6.1, or equivalently by a single proton hole in the
ds 2 shell. Therefore in this approximation the curves in Fig. 6.3 represent the
full spin-dependent nucleon distributions, for each spin state of 27Al.

We find that these nucleon distributions have considerably more structure
than the usual infinite nuclear matter result, this increased structure is clearly
illustrated in Fig. 6.2. The reason the distributions are no longer symmetric
about y4 = 1 is because there remains some angular dependence in the results,
which is easily seen by the presence of the Legendre polynomials in Egs. (6.21)
and (6.22). inally we point out that Egs. (6.21) and (6.22) obey the sum rules
given in Egs. (6.13) and (6.14). In fact they satisfy a more tightly constrained
set of sum rules where the restriction of n = even and n = odd in Eq. (6.13)
and Eq. (6.14), respectively, no longer applies. This increased restriction results
from using spherically symmetric potentials in the Dirac equation.
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Figure 6.2: All spin-independent nucleon multipole distributions, fem(ya), in
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Figure 6.3: All relevant spin-dependent nucleon multipole distributions,
Afm(ya), in Z7AL



88 6. Finite Nuclei Quark Distributions and the Polarized EMC effect

6.3 Medium modified quark distributions in the
nucleon

To complete our description of quark distributions in nuclei we require the
medium modified quark distributions in the bound nucleon. The infinite nu-
clear matter example was discussed in Chapter 5 and Refs. [95,98,154]. For
finite nuclei the formalism is much the same, except the strength of the scalar
and vector fields now depends on the energy level s that the nucleon in the
nucleus occupies. Also instead of solving for the in-medium constituent quark
mass self-consistently, we determine M} by requiring that the Faddeev equation
yield a nucleon of mass My,.

For the sake of clarity we give a short summary of our formalism: The nucleon
is described by solving the relativistic Faddeev equation including both scalar
and axial-vector diquark correlations in a confining Nambu—Jona-Lasinio model
framework. For this calculation we utilize the static approximation for the quark
exchange kernel [74]. The quark distributions in the nucleon are obtained from
a Feynman diagram calculation, where we give the relevant diagrams in Fig. 6.4.
Medium effects are included by introducing the scalar and vector mean-fields,
obtained from Egs. (6.25) and (6.26), into the quark propagators. Inclusion of
the vector field leads to a density dependent shift in the Bjorken scaling variable.
Fermi motion effects are included via convolution with the smearing functions
(Eq. (6.21) or (6.22)) after introducing the scalar field, but before the shift
required by the vector field.

We now derive the shift induced by the vector field for the case of finite
nuclei. Recall from Chapter 5 that the dependence of the in-medium quark
distribution on the vector field can be expressed as (see Eq. (5.12))

A pt A ot v+
Kk = L0 . G o,k €T — = ’ 2
e Rl e e v )

where we have included a label kK on Agqxo(z) and VI to illustrate that the
scalar and vector field strengths depend on the energy level. The subscript «
indicates either a proton or neutron and is used in Eq. (6.16). Recall that p#
is the in-medium nucleon momentum, V.} is the plus component of the vector
field, V¥ = (Vog, 0 ), acting on a quark® and Agu, is the quark distribution in
the absence of the vector field [95, 155].

2For the lightcone coordinates we use ay = %(ag + asz).
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Figure 6.4: Feynman diagrams representing the quark distributions in the nu-
cleon. The single line represents the quark propagator and the double line the
diquark f-matrix. The shaded oval denotes the quark-diquark vertex function

and the operator insertion has the form vt~y ¢ (x — f}—:) + (1 £ 7,) for the spin-
dependent distribution, while y*v5 — 4T for the spin-independent case.

If we now define the auxiliary quantities
EN =&k — VNm MNH = MN - VNm (628)

it is easy to rewrite the é-function in Eq. (6.17) to show

M <J\7N vNH>
A Km = ,\—A Kkm = - = 3 629
Frn(ya) = S Bfowm \ v~ (6.29)

where the function Afom has the same form as Eq. (6.17), except for the
replacements e, — E, and My — My Substituting Egs. (6.27) and (6.29) into
Eq. (6.16) and performing an analogous calculation to that found in Appendix C
of Ref. [95] we obtain

i 7 .
Aqt:znn(xA) - "—NAqg})n < ~ v ra— }/ ) y (630)
il MN}C ’ MNI{ MNK

where the distribution, Agpy ., is given by the convolution of Agaox and A fo, sm.
The full nuclear quark distribution can then be obtained from Eq. (6.16). An
identical shift to that expressed in Eq. (6.30) is valid for the spin-independent
distribution also.

An important feature of this approach is that the number and momentum
sum rules are satisfied from the outset. For a nucleus of atomic number Z and
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mass number A = N + Z this means

A
/ d:cAuA(xA)=2Z—|—N, (631)
/ ! g da(en) = 742N, (6.32)
/0 04 T4 [un(@4) + da(wa)] = A. (6.33)

6.4 Results

The parameters for the quark-diquark model for the bound nucleon were dis-
cussed in Chapter 5 and Refs. [98,154], so we will not repeat them. The new
features presented in this chapter are those associated with finite nuclei. In
Table 6.1 we give values for My, My., Ve and €, obtained from the single
particle shell model. These values are then used in Eq. (6.16) to calculate the
nuclear quark distributions.

The unpolarized EMC effect is defined as the ratio of the spin-averaged struc-
ture function, Fyy4, of a particular nucleus A divided by the naive expectation.

That is
Fou Fou

R 7R+ (A-2)Fy’
where Fy, is the free proton structure function and F5, the free neutron structure
function®. In the limit of no Fermi motion and no medium effects of any kind,
this ratio is unity. An equivalent EMC ratio can also be defined for the K = 0
multipole.

Ra (6.34)

The polarized EMC effect is defined by an analogous ratio, which is the spin-
dependent structure function for a particular nucleus with helicity H, divided
by the naive expectation, that is

JH 91{? gix
RIH = = . (6.35)
s gig{naive PI;’TH 9ip + P'r'L]H 91in

Here g1, and g1, are the free nucleon structure functions and PpJ(fL{) is the polar-
ization of the protons (neutrons) in the nucleus with helicity H, defined by

P = (J H|28%|J, H), o€ (p,n), (6.36)

3Experimental EMC ratios for N ~ Z nuclei are usually determined with the deuteron
structure function Fpp in the denominator. In our mean field model we assume Fop ~
Fy, + F,. We therefore anticipate deuteron binding corrections of a few percent to our EMC
ratios for z 2 0.5, when comparing with experimental data.
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My My, Vink &
-1 -2 1 3 -1 -2 1 -3|-1 -2 1 -3
"Li | 933 [ 811 856 - = 89 58 ~ - 1914 932 - -
HB | 931|793 829 - - (101 76 - — [908 925 - -
15N 1929 | 785 815 815 -— |106 86 86 — [904 921 923 -~
27TA11930 | 771 794 793 820|115 101 101 82| 898 913 914 927

Table 6.1: All quantities are in MeV. The labels —1, —2, 1, —3 refer to the Dirac
quantum number &, where |k| = j + %

where S’;" is the total spin operator for protons or neutrons. From an experi-
mental standpoint one should simply use the best estimates of the polarization
factors available in the literature. In this work we use the polarization factors
obtained from the non-relativistic limit of Eq. (6.36), which differ from the rel-
ativistic values calculated within our model by less than 2%. If only a single
valence nucleon or nucleon-hole contributes to the nuclear polarization, then in
the non-relativistic limit the polarization factor is simply given by

2H
P =4 —— :
o 2041’ (6.57)

where /£ is the orbital angular momentum and the =+ refers to the cases J = £+ %

The polarized EMC ratio can also be defined for the K = 1 multipole struc-
ture function and has the form

(J1)

914
RYY = : (6.38)
PISJl) glp + P?Eln) Jin

where Pyl) is the reduced matrix element

N 2 1)(2J+2
P = (28wl = RLEDRIED) puy (6.39)

o

Because the spin structure function g;, is smaller than g;, and remains poorly
known, especially at large z, it is clear from Eqgs. (6.35) and (6.38) that to
determine the polarized EMC effect it is necessary to choose nuclei where |P,| <
| Py|. There is also an upper limit on the mass number of nuclei that can be
readily used to measure the polarized EMC effect, because for spin cross-sections
the valence nucleons dominate and hence g, 4 is suppressed by approximately 1/A
relative to Fh4, where all nucleons contribute.
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The best candidates are nuclei with a single valence proton or proton-hole, for
example the stable nuclei !B, N and 2”Al. Another good choice is "Li, where
the nuclear polarization is largely dominated by the valence proton. Extensive
studies of "Li, beginning in the 60s with the shell model [156], to modern state of
the art Quantum Monte Carlo calculations [157], consistently find P, ~ 0.86 —
0.88. The Quantum Monte Carlo result for the neutron polarization is P, ~
—0.04.

First we discuss the nuclear quark distributions, focusing on “Li as its treat-
ment is a little more involved compared with the other nuclei, because there
are three valence nucleons coupled to J = 3/2 and T' = 1/2. We utilize the
shell model wavefunction found in Refs. [158,159] for the valence nucleons of “Li
carrying z-component of angular momentum J, = g, which is

3 _ 2 B
U3/ — = [p3/2n3/2n 3/2} _ = [ 3/2),1/2,, 1/2]
| 1

ot [p1/2n3/2n—1/2] 4+

V15 V15

Using the angular momentum lowering operator J_ and the results

[p“1/2n3/2n1/2} . (6.40)

j_ ¢3/2 _ \/gwl/Z, j_ ¢1/2 = 2,¢—1/2,
J_yp V2 =3y732  J_y72 =0, (6.41)

it is easy to obtain the "Li wavefunction with J, = 1. Using Eq. (6.40) when
evaluating the spin-independent analogue of Eq. (6.16) for the u-quark distribu-
tion in "Li we obtain

() =2 [/, o) + 2,0

1
s {13 ud?y(w4) + 20455 (24) + 2us 2 (24) + 1042, (x A)J , (6.42)

+15

where we have used charge symmetry to relate u, < d,. For clarification on the
notation see Eq. (6.16). The spin-dependent distribution has the form

3/2 1 2 3
AP ) = o [13 A (z4) +2 Adp(EQ(mA)] . (6.43)
Similar expressions hold for the H = 1/2 and d-quark distributions. With this
wavefunction the "Li polarization factors are B/# = 2£38 and pP/H = 2L.2 For

the other nuclei the situation is simpler as we make the approximation that the
nuclear spin is carried solely by the valence proton-hole.
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In Figs. 6.5-6.8 we show the leading multipole quark distributions for B,
together with the next-to-leading K = 3 multipole for the spin-dependent case,
at the model scale of @2 = 0.16 GeV? [154]. The other nuclear quark distribu-
tions are similar, so we will not show them here, but these results can be found
in Appendix I. The dotted line is the result without Fermi motion and medium
effects, and is obtained from expressions like Eq. (6.16) by replacing each smear-
ing function with a delta function (multiplied by the polarization factor for the
spin-dependent case) and using the free results for the u- and d-quark distribu-
tions in the nucleon. The dot-dashed line includes the effect of the scalar field,
and the dashed curve also incorporates Fermi motion, which is the result after
convolution with the appropriate nucleon distribution (Egs. (6.21) and (6.22)).
The complete in-medium distribution is given by the solid line and is the result
obtained after also shifting the scaling variable using Eq. (6.30).

For the spin-independent distributions all nucleons contribute. Therefore,
in Figs. 6.5 and 6.6 we see that the u- and d-quark distributions are very sim-
ilar. For the spin-dependent case (see Fig. 6.7) only the valence proton-hole
contributes. Hence the distributions resemble those of the proton. We find that
higher multipole distributions are greatly suppressed relative to the leading re-
sults, see for example the K = 3 distribution in Fig. 6.8 and results contained
in Appendix I. The spin-independent K = 2 multipole is an order of magnitude
smaller again and reflects the very weak helicity dependence of the Fy/ struc-
ture functions. This weak helicity dependence arises because the spin-zero core
is the dominant contribution to Fy#, and changes in H simply reflect different
spin orientations of the valence nucleon(s). In Appendix I we give results for
all multipole quark distributions for the nuclei “Li, 1B, 2C, 15N, 160, 2"Al and
#gi.

The main features of the medium effects displayed in Figs. 6.5—6.7 are sim-
ilar to those found in the nuclear matter calculation of Chapter 5. The spin-
independent distributions are quenched at large x and enhanced for small z,
whereas the spin-dependent distributions are quenched for all . The discussion
on the effect of the vector potential presented in section 5.3 remains valid here.

The nuclear spin sum, ¥, and axial coupling, gqu), contain information on

both nuclear and quark effects and are simply given by

Y = Aug+Ady =% (B, + By, (6.44)
g = Aug— Ada=g4 (B,— F,), (6.45)

where Aqy represents the first moment of Agj’ and ¥, g4 are the medium
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Figure 6.5: The first spin-independent multipole (K=0) u-quark distribution in
UB (at @ = Q3).
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Figure 6.6: The first spin-independent multipole (K=0) d-quark distribution in
UB (a Q = Q3).
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Figure 6.7: The first spin-dependent multipole (K=1) u- and d-quark distribu-
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Figure 6.8: The second spin-dependent multipole (K=3) u- and d-quark distri-
butions in !B (at Q? = Q3).
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Au Ad ) ga
P 0.97 -0.30 0.67 1.267
"Li 0.91 -0.29 0.62 1.19
1B 0.88 -0.28 0.60 1.16
15N 0.87 -0.28 0.59 1.15
ZTAl 0.87 -0.28 0.59 1.15
Nuclear Matter 0.79 -0.26 0.53 1.05

Table 6.2: Results for the first moment of the in-medium quark distributions
in the bound proton and the resulting spin sum and nucleon axial charge. It is
clear that the moments tend to decrease with increasing A.

modified nucleon quantities, defined by dividing out the non-relativistic isoscalar
and isovector polarization factors for H = J. We find that ¥ and g4 are both
suppressed in-medium relative to the free values, as summarized Table 6.2. This
decrease of g4 in-medium is in agreement with the well known nuclear (-decay
studies which, after taking into account the nuclear structure effects, require a
quenching of g4 to achieve agreement with empirical data.?

In Figs. 6.9-6.12 we give results for the EMC and polarized EMC effect in
"Li, !B, ®N and ?"Al at ?> = 5 GeV?. The dashed line is the unpolarized EMC
effect, the solid line is the K = 1 polarized EMC effect and the dotted line is the
M = J polarized EMC result (c.f. Egs. (6.38) and (6.35), respectively). For the
unpolarized EMC effect the results agree very well with the experimental data
taken from Ref. [160], where importantly we obtain the correct A-dependence.

Consistent with previous nuclear matter studies, we find that the polarized
EMC eftect is larger than the unpolarized case, with the exception of the multi-
pole result for “Li at z > 0.6. Based on the wavefunction given in Eq. (6.40) the
neutrons give a small contribution to the polarization. To test the dependence on
the neutron polarization we also coupled the two neutrons to spin-zero, so that
P/*3% — 0, which is closer to the Quantum Monte Carlo result of —0.04 [157].
We find that these results are very similar to those in Fig. 6.9.

The unusual shape for the '°N polarized EMC result is because our full

result for gi{f 1/ changes sign at z ~ 0.8 (see Fig. 1.21), and hence the ratio

“The required quenching factors can be seen, for example, by comparing the experimental
and calculated Gamow-Teller matrix elements given in Refs. [161,162].
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Figure 6.9: The EMC and polarized EMC effect in “Li. The empirical data is
from Ref. [160].
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Figure 6.10: The EMC and polarized EMC effect in "'B. The empirical data is
from Ref. [160].
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must go to zero at this point. The origin of this sign change is the nucleon
p1/2 smearing function, which becomes positive for large y4 (see Fig. 1.23). This
result suggests 5N may not be a good candidate with which to study nucleon
medium modifications. The B and 27Al results resemble those obtained for
nuclear matter in Chapter 5 and Ref. [98], where we find a polarized EMC effect
roughly twice that of the unpolarized case. In Appendix I we give results for
the EMC effect in '2C, %0 and 28Si.

6.5 Conclusion

Using a relativistic formalism, where the quarks in the bound nucleons respond
to the nuclear environment, we calculated the quark distributions and structure
functions of “Li, !B, N and 2"Al. For a spin-J target there are 2J + 1 in-
dependent quark distributions or structure functions in the Bjorken limit. For
example, 2"Al therefore has six structure functions, however we find that the
higher multipoles are suppressed relative to the leading result by at least an
order of magnitude (see Appendix I).

We were readily able to describe the EMC effect in these nuclei, and impor-
tantly obtained the correct A-dependence. We also determined the EMC ratio
for 12C, 80 and %Si and found ratios very similar to their A — 1 neighbours,
these results can be found in Appendix I. In Eq. (6.35) we define the polar-
ized EMC ratio in nuclei. This ratio is such that in the extreme non-relativistic
limit, with no medium modifications, it is unity. The results for the polarized
EMC effect in nuclei corroborate our results in Chapter 5 and those in refer-
ences [98,163] for nuclear matter, the results for light nuclei of Ref. [164] and
small = studies in Ref. [159] that find large medium modifications to the spin
structure function relative to the unpolarized case. In particular, we find that
the fraction of the spin of the nucleon carried by the quarks is decreased in nuclei
(see Table 6.2). Experimental confirmation of this result would help test some
quantitative differences with recent soliton model predictions for nuclear matter.
Thereby giving important insights into in-medium quark dynamics, helping to
quantify the role of quark degrees of freedom in the nuclear environment.






Summary and Outlook

QCD presents an immense, but incredibly rewarding challenge to the experimen-
tal and theoretical nuclear and particle physics communities. There are many
different avenues one can pursue to gain insight into the quark-gluon structure
of matter and the nature of QCD. It has been the goal of this thesis to bring
to the fore the potential of nuclei as ideal laboratories with which to investigate
quark-gluon dynamics and thereby extend our knowledge of QCD.

To achieve this we began with a chiral effective quark theory of QCD, the
Nambu—Jona-Lasinio model, regularized using the proper-time scheme. This
regularization method has many important attributes, most relevant to this
discussion being that it simulates some important aspects of confinement and
enables the saturation of nuclear matter. The nucleon as a bound state of three
quarks was modelled using the relativistic Faddeev formalism. The use of proper-
time regularization forced us to make a “modified static approximation” to the
quark exchange kernel. Using this machinery we calculated the entire triplet
of twist-two quark distribution functions. We obtained excellent results, which
satisfied all known positivity constraints and agreed very well with available
empirical parameterizations and experimental first moment data. A highlight of
this study was the prediction that the nucleon tensor charge is very similar in
magnitude to the nucleon axial charge.

Our successful description of the free quark distributions and our ability to
model nuclear matter within the same framework, provided the motivation to
study the in-medium modifications to the quark distributions. We determined
the EMC, polarized EMC and transversity EMC effects in nuclear matter. Ex-
cellent agreement with nuclear matter data was achieved for the EMC effect
and we predicted large deviations from unity for the other two EMC ratios. An
immediate consequence of this result is that the spin structure of the nucleon
undergoes significant modification in the nuclear medium. We find that the he-
licity spin sum is reduced by 20% and the transversity spin sum by 13%. Similar
reductions in the nucleon axial and tensor charges were also found.

Infinite nuclear matter results are mainly of theoretical interest as all experi-
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ments are performed on finite nuclei. The lower components of quark wavefunc-
tions play a pivotal role in nucleon spin structure. Therefore in any study of the
spin structure of nuclei it is imperative to retain the lower components of the
nucleon wavefunctions. To achieve this we used a relativistic shell model and
derived expressions for the nucleon distributions in the nucleus, which are valid
in any model using spherically symmetric potentials. The convolution formalism
then provides access to the quark degrees of freedom in nuclei.

We calculated the EMC and polarized EMC ratios in the following nuclei:
"Li, 1B, 12C, 1®N, 180, ?"Al and %SI. For the EMC effect we found excellent
agreement with experimental data. The medium modifications for the polarized
EMC effect were up to twice that of the familiar EMC ratio, in agreement with
our nuclear matter studies. In-medium, we again found a quenching of the spin
sum and the nucleon axial charge. The amount of quenching increased with A
and appeared to converge to our nuclear matter result in each case.

The large signature for the polarized EMC effect has caught the attention
of a number of experimentalist at Jefferson Lab. Experimentally the polarized
EMC effect is suppressed by 1/A relative to that EMC ratio, because only the
valence nucleons carry the spin of the nucleus. This almost definitely rules
out a measurement of the g;4 structure function for nuclei with atomic mass
larger than that of Aluminium. The best candidates for such a measurement
are likely to be “Li and 'B, with "Li receiving the most attention because of
Jefferson Lab’s proven ability to achieve target polarizations of at least 60%. The
measurement of the polarized EMC effect has been earmarked as a potentially
important experiment at Jefferson Lab after the 12 GeV upgrade. This interest
has been spurred by the potential for such a measurement to shed new light on
the role of quark-gluon dynamics in nuclei and the long range phenomenology

of QCD.

The formalism developed in this thesis can be applied to a large array of
interesting and important areas of nuclear physics. Possible future directions
include the calculation of the generalized parton distributions of the nucleon
and their modification in nuclei. The strange quark can easily be incorporated
into the model, giving access to the hyperon spectrum. The hyperons could
then be included in nuclear matter, having potentially important implications
for neutron and quark stars. The inclusion of the p-meson would result in a
quark flavour dependence to the scale transformation that incorporates the ef-
fect of the vector potential on the in-medium quark distributions. This would
facilitate a very interesting investigation of charge symmetry violation in nuclei.
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Incorporating the pion into the model is probably the most pressing improve-
ment, as for example its introduction would enable the calculation of anti-quark
distributions in the nucleon and in nuclei. Nuclear anti-quark distributions are
largely unexplored, both experimentally and theoretically. From a theoretical
perspective there are many interesting questions that remain unresolved. For
example, to obtain the correct support for nuclear anti-quark distributions it ap-
pears that the anti-nucleons must play an important role. To my knowledge, this
particularly interesting area of physics remains almost completely unexplored.

In this thesis we have presented some potentially important results for our
understanding of the spin structure of nuclei. We have endeavored to highlight
the incredible opportunities the nucleus provides as a laboratory for the study of
QCD. There are many interesting and important theoretical and experimental
investigations possible with nuclei, that may give new insights into QCD and
in particular its long range structure. This would help us answer one of the
most important questions confronting nuclear physics, which is: how do the
fundamental degrees of freedom — the quarks and gluons — give rise to nucleons
and the inter-nucleon forces that bind nuclei?
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Notations, Conventions and Useful

Results

A.1 Regularization and 4-D Polar Coordinates

1 1 &
e d n—-1_—-71X
Xr~ (n—1) /0 T

d*ks. 1 [®
/(27r)4>167r2/0 dkig k-

A.2 Useful Integrals

/ igt (@A) — <
0

)
T2

o0 —TA
2 4 —r(q?+4) _ 2€
/dqqu(q )—T

0
00 —TA
/queT(q ) = et

0

A.3 Lightcone Vectors

The lightcone contravariant four-vector is given by

a* = (a*, a', a®, a7) = (a¥, @1, a7),

where, in the Kogut-Soper representation

+=

a (aO + as) , a® =

a = (ao—a3), a® =

S-Sl

(A1)

(A.2)

(A7)



106 A. Notations, Conventions and Useful Results

The Kogut-Soper y-matrix structure is defined similarly, and the Dirac algebra
{v*,4"} = 2¢g* is of course satisfied. The covariant four-vectors are obtained
via z, = g,,x” and the metric is given by

0001
0-1 00
= =
1000
With this convention the Lorentz scalar product is
a-b=ab=0a bt +a b — @b =ayb_+ a_by —a.b,. (A.9)
Some useful relations are
{™"r=0  {y"r}=2 {K, 7"} =2k 1,
Yyt =7v =0  ATyat=24" 4Tty =247 (A10)
A.4 Useful Relations
(%y_l =a" '+ (n— 1)a"‘2k—‘ + l(n —1)(n— 2)0/“3@ +
q- q- 2 ¢
k_ d 1 k2 42
="'+ = "+ o a4 A.ll
q_ do 2 ¢ da2” + ( )

A.5 Feynman Parametrization

Using

L—floﬁfze :
AB  Jo  [aA+(1—a)B

= - /l do— " A—o)"~ (A.12)
AB"  Jo @A+ (1—a)B]" '

Therefore

1
(k2 — M5 +ie) (kK2 +p? — 2k -p— ME + ie)

k_’k=+ap/1da .
0 (k%2 — (a? —a)p? — aM3 — (1 — o) M3 +ic

i (A.13)
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1
(k? — M3 +ie)* (k2 + p? — 2k - p — M} +ic)
k—>k=+ap/ e 2(1 — (,1{) 5 (A14)
o [k2—(a2—a)p?—aM} — (1 —a) M3 + ]
A.6 Integral Relations
d*k %
/ (2m)t (k2 — X +ie)” 0, (A.15)
d*k Ktk i dk 2
— g
/ d*k  kPkUKPKC
(2m)t (k? — X +ie)”
1 14 lod vo oV d4k k4
== (9" 9" + g"*g”° + g*g P)/ e (Z— St (A.17)
d4]{} k2 2 d4k 1
Cm* (2 —S+ie)" n / 2m)% (k2 — % + )"’ (A.18)

where n > 1 and the function ¥ has no k& dependence. These relations are easily
proved using integration by parts.

A.7 Wick Rotation

d'k [ d'ke ; o
/ @t Z./ o (@9 — (dd), @ — g
(A.19)

In an O(4) invariant regularization we have

1
99y — —7 (A.20)
1
q-9+9-9+ — By Qst- (A.21)
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A.8 Simple Bubble Graphs :- I1,(¢?), II,(¢?)
and I1,(g?)

2 pl
— dr {i ™M 4 %/ do 1e_T[‘12("‘2_0‘)“\42]} . (A.22)
0

I(¢°) (g“”— q;/_,%u) = 61 / (;1:;411r[7“ S(k)~” S(k—q)]- (A.23)
=——2q / do /dT all—a)e” rle*(a?—a)+m?] (A.24)

A.9 Effective Couplings :- g, gs and g,

3

o = S TATE e (A.25)
- 432 da/dT [__m (a2 _a)} “r[mi(or-a)ta?] (4 gg)
2
9s = a1, (%) /0 | » - (A.27)
gt = 83;2 i da/ dr [——Mz (a? —a)} e T[M3 (o —a) +07] (A.28)
—2
o= W » ’ (A.29)

T

gl = 27r2/ da/dTal ) F—MZ (o’ —a)} (e (A.30)
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A.10 Propagators

1 F+ M
S(k) = = )
(k) F—M+ic k2—M2?2+ic’ (Aot
—2iGr . ' gn
(q) = — —24Gp + —F——, A.
() 1+2G,11(q?) iG +q2—m,2r+ze (A.32)
4iG . 1 gs
L(q) = 4iGy— ——F—, .
75(q) 1+2G,L,(¢?) 1G ¢ — M2 +ie (A.33)
, 2G,11,(¢?) g q”
iy . 4 By Jv
T (a) =48Ge lg 1+ 2G,IL(¢?) \7 e /|
g il + QGaHu 2) g
_4iq, |? (@) | (A.34)
1+ 2G,114(¢?)
. 9a q“q”
— [4iG g" — 5 (g™ - .
[ZGGQ q® — M +ie (g M >] (A.35)
, 1 9a
4iGy ——————| ¢ :
—>< 1G qz—Mg-i-i&‘)g (A36)

In this analysis we use Eq. (A.36) as the axial-vector diquark propagator, since

the term q;/[q; only changes our results by less than 1%.

A.11 Pion Decay Constant f;

The pion decay constant is defined by the matrix element

a

(02(0)vuys —2—1&(0) 1m6(q)) = % fr Qu Gab- (A.37)
Therefore
) d*k
7 f7r qu 6ab = 3\/9_11' 5a.b WT‘I‘ ['75 S(k)'YM’YS S(k - q)] . (A38)
This implies
d*k M

fe= 1205 (@) (k2 — M2 +ie) [(k — q)° — M? +ie]

3 ! 1 2 (2 2
fr= 13 MVax /0 do / dr — g~T[m (a4 17| (A.39)

By defining m, = 140MeV, M = 400 MeV A;p = 240 MeV and f, = 93 MeV,
Eq. (A.39) enables us to determine Ayy = 645 MeV.
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A.12 The Gap Equation

The gap equation has the form

M = my+ 2 Gy / Tk 115, (A.40)

where M is the constituent quark mass, m, the current quark mass, and the
trace is over Dirac, colour and isospin indices. Therefore

d%,ﬁ F+ M
(27r)4 k2— M2+’
d*k 4M
e 21 N
mq+ ZGch f/ (27‘_)4 k2—M2+7;8,

2Gr N, N; AM
=mq+W/0 dk)EkEk2+M2,

MG, N.N .
:mq+%/dT/0 dks k3e "(k?ﬂJFMZ),

M=mq—|—2iG,,NcNf/

MG, N,N e~ M
=mq 2—7_‘_2f/d7 7_2 . (A41)
Therefore
N,N e M
g = M( G 5 b ) 7 dr & : (A.42)

For M = 400 MeV and G, = 19.04 GeV~2 we [1nd mq.— 16.4 MeV.

A.13 Dirac Spinors

Throughout this work we us the Dirac spinors of Kogut and Soper given in
Ref. [165], which have the form

V2pt 0
1 L+ ip? 1 m
u(p)= =P T |, u_(p) = — o], (A4
21y/pt | ™ 21y/pT | P +p
0 V2p*
1
Uy (p) = = (m 0 V2p* P —ips),
21+/pT
1 .
u_(p) = (—=p1—ip> V2p* 0 m). (A.44)
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It is important to note that these spinors are defined with respect to the Kogut
and Soper chiral representation of the Dirac matrices, which has the form

01 . 0 —ot 1 0
0 _ i_ — in0 A28
v —(1 0>, 7‘(& 0>, Y5 =y Y (0 _1)- (A.45)

It is easy to demonstrate that these spinors are solutions to the Dirac equation
using the result

+m 0 Do—P3 —p1+ips
ptm= 0 im —PL—w2 Potps | (A.46)
Po+ps P1—1D2 +m 0
1+ip2 Po— P3 0 +m

A.14 Matrix Elements

Throughout this work we normalize the nucleon spinor such that

an(p)un(p) = 1. (A.47)

A.14.1 Helicity matrix elements

The following results are matrix elements between the spinors u and v, needed
for the spin-independent and spin-dependent quark distribution calculations in
Chapter 4. The abbreviated notation used here is such that (Q) = 7, Qu,:

<’)’+> _ i () = Mzzv +p%+p§ _ Y2
MN, 2MNp+ MN,
o P 2y _ P A48
(’Y>—M—N, (’Y)—M—N, (”75>— ( )
+ +.1 +.2 + p*
Yvy)=1, {(v)=0 () =0 <775>——N. (A.49)
2
P
(vt =1, (v ) =i o
1 2 2 2
_ . P _ My +pi+p
(Y ) =—i el V5) = gMN;+ 2. (A.50)
Yty iy = -1, vty = 0, (v*v*) = 0. (A51)

e ! . _pl o p? -
(v 75>——M—N, (v 7%)—51 (y 775)——1;- (A.52)
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A.14.2 Transverse matrix elements

Throughout this thesis the transverse polarization axis is always chosen in the
z-direction. Therefore, transverse nucleon spinor are given by [29]

(z) 1 (z) 1
Uy = Uy +u_), and uy = Uy — U_), A.53
T ( + ) 1 \/5 ( + ) ( )

V2

where u,. and u_ are the positive and negative helicity spinors given in Eq. (A.43).

The following results are matrix elements between the spinors ﬂ%m) and u%w),

needed for the transversity quark distribution calculation in Chapter 4. The
abbreviated notation used here is such that () — H%m)Q u%m):

p+ _ M2 +p2 +p2
<’y+> = M ? (fy >= ]\;M : + 2)
N ND

<71>=M—N, (72)=A€,—1, (vs) = 0. (A.54)

. My+ip?
(vTv) = NMN , (=0,
+
(v %) =i]@—, (v ) = 0. (A.55)
N
~ My — i p? - . plp?
+y PN y - _ £
-2 . N 1 2 -
_ P2 =2 (A
(") Z< oMyt ) (v"s) o (A.56)
1
D
(V') =i My () =1, (¥*ys) = 0. (A.57)
ol mt
(Yry ) = JQ—N (Yt ys) = f\j/_,—N (7t7y*s) =0.  (A.58)
1 2 2 2
S iy My —pi+p;
(") My (™ ) Myt
1,2
e\ DP'p
(VY s) = Mup+ (A.59)
(Y7 ys) = P (A.60)
My
i

(Yt y?) = T (p* — iMy) . (A.61)
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A.15 3j-symbols

The definition of the 3j-symbols is

g 3) G o,
(ml My m>_ 27 +1 lemljz'rTLz’ (A.62)

where C’ﬂ"m L jamg 158 Clebsch-Gordon coefficient. If a 3j-symbol does not satisfy

the following constraints it is zero:

1. jla j2a .7 2 Oa
2.m € (_|j1|?""|j1|)) ma € (_|j2|" : '7|j2l)a me (_|.7|a’|.7|)a

3. m1+m2—|—m=0,
4. |j1 — jo| <7 <1+ Jo,

5. j1+ jo + 7 is an integer.

Symmetries of the 3j-symbols:

JvoJe N _(J g J2)_
mp Mo M m my Mo

cyclic per‘;_nutations
— (—1)frHiat hvod d2\ _ _ (_qyhtits o J2
mi m My —mp —MmMy —M
column ir;,e_rchange
(A.63)
Orthogonality relations
- i J2 J 1 J2 7
Z(2J+1) (ml Mo m) (m'l M m) =(5m1m/15m2m,2’ (A.64)
im
: g1 J2 J i g g
2 1 = 01 0mmt- A.
DRI G | G (A.65)
m1,ma
Useful identities
(A.66)

Jv J2 T\ _ e
([] 0 O>_O if 1+ 72+ 7 is odd.
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A.16 Spherical Harmonics
The spherical harmonic orthogonality relation is
21 s
/ f d¢ dB sinf V3, (6, 8)Yim(6, &)
Jo Jo

27 1
= A /1 d¢ d(COS 0) Y'e’fm,(e, ¢)nm(0, ¢) = 6€’£6m’m- (A67)



B

Derivation of Lepton and Hadronic
Tensors

The differential cross-section for inclusive scattering (e P — ¢’ X) is given by

1 a3k d3p; -
— B.1
7= S5y 2 L1 [ g P8P + S @Y

i=1

where J = P - k is a flux factor, which equals J = 4 M E in the nucleon rest
frame. The sum runs over all hadronic final states X which are not observed,
where each hadronic final state consists of nx particles with momenta p;, where
> X pi = px. The squared-amplitude |.A|?, given by

i€® g y 2
AP = Z] ulk,s) <= (XIPOIPS)|, (B
can be separated into a leptonic (L*) and a hadronic (W),,) tensor, such that

2
A2 = (4m)> =

gi U W (B.3)

where o = e%/47 ~ 1/137 is the electromagnetic fine structure constant.

B.1 The Lepton Tensor

The lepton tensor is given by

= " lak, o yrutk, s)|2 =3 [k, o' )ruth, )" (@K, )7 ulk, )]

EY
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Now [a(K', s')y*u(k, s)] is just a complex number, therefore its complex conjugate
is the same as the hermitian conjugate, therefore

[a(k', )y uk, s)I", = [a(k', ’)W“U(k DI

[w
= [ul(¥’ 7 7““(’“ 9],
= [ 8 )09 0Pl ),
= [ () Pulk, ]
= [ul(%, s)fy ’y"u (K, )],
= la(k, )y u(k', s')]. (B.5)

Where we have used the result v#74® = %v#. Therefore

= E a(k, s)y*u(k',s") u(k', s") v u(k, s). (B.6)
To evaluate this expression we write the matrix indices explicitly, giving
L¥ = ta(k, 8) (7 )agu(k', ') (K, ') (7" )ysus(k, 5). (B.7)
Using
Z ’U/I@(k’,s’) ﬁpy(k’,sf) = (Iél_'_m)ﬂ')” (B8)
we obtain
LM = 14 (k, $)(v*)as (k’ + m)ﬂ,y (" )ysus(k, s),
= us(k, 8)talk, $)(1")ap (K +m) 5 (1")ns. (B.9)
Now using
1
us(k, 8) Ta(k, 8) = 5[(;é+m) (1 +75¢)]6a, (B.10)
Therefor
L = 2| +m) 14958 (P)ap (F +m) g, (1),

[\JI!—‘[\DI&-—‘[\DI!—A ®

(B4 m) (L4 358) 7 (€ +m) 7],

(£ + mby o + Esf B + mb s 7+ 7

A

+ mysgE Y+ mE sy + mAPE Y mE e 7”] :
= ko ki Tr [7‘”7‘”7‘3 7”] +mkg se Tt [7“75’7"7“7”]

+m s,k Tr [m"v“vﬂ 7"] +m? Tr [7“7”] :
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In the last step we used the fact that the trace of an odd number of gamma
matrices is zero. Using the trace theorems and recalling {+*,v5} = 0, we obtain

L* = 2ky kg [g* g™ — g*Pg™ + g* g"°] +
2 M e* ™M ko 5, — 28m e s, ki +m® g*. (B.11)
Therefore, the (summed over final spins) lepton tensor is given by

L =2 (k* kY + k" k") +2g" (m* — k- k) + 2im e gy s,. (B.12)

B.2 The Hadronic Tensor

The Hadronic tensor is given by

dpz 2
QWZH/ 2m) 32E (P +q—px) [(Xil L (0)|P,s)|

ZH [/ B8 (P4 4= ) (RSO XL, ).
(B.13)

The hadronic tensor can be significantly simplified; first one rewrites the delta
function as

(o) (P +a—px) = [ digeTraeoe, (B14)
then translational invariance implies
PP (P 5], (0)|X) = (P, s|J,(6)|X), (B.15)

finally multi-particle completeness [14] gives

ZH/ 27‘5 féE Xi|=1, (B.16)

hence
WH — 217T d4§61q§ <P S|J ( ) V(O)IP, s},
= / d*€ &7 (P, s|[J,(€) J,(0)]| P, s). (B.17)

We obtain the current commutator in the last line of Eq. (B.17), because the term
J(0) J,(£), gives a vanishing matrix element since it produces the delta function
8 (¢ — P + px), which cannot be satisfied because of energy conservation. As
the nucleon is the ground state baryon and there is no intermediate state with
E' = M — gy < M. Note, for physical lepton scattering from a stable target
qo > 0.






Solution to the NJL Faddeev
Equation in the Static
Approximation

C.1 The Nucleon Quark-Diquark Bubble Graphs

126) = [ s o~ K S,

= / (;i:’; (Ts(po— k) rj;”(z?— k)) S(k),

HNs(p) 0 )
= ,, . C.1
( 0 Iy, (©1)
Where
d*k P
u(p) = [ im0 =B S() = as + 17 on (©2)
1
a; = /AIR) ot M _TMz—i—gsM/ dozle‘”.1 , (C.3)
1672 0 7
Ayy)?
1 1
(g = 9, M / da /'mm) dr ge'TA, (C.4)
1672 J, N T
(Apv)?

and A is given by A = (o — a)p? + a M2 + (1 — a)M?. Also

o) = [ e e-Bs® =g (nr Bn),  ©)
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il
1 )2 4G, M L |
by = 67 /(Alm) dr { - e ™M +gaM/ do ;e_TB}, (C.6)
)2 0
MY @
by = ?16 5 / da [ dr ge_TB, (C.7)
™ Jo (AUlv)2 T

where B is given by B = (a? — a)p? + a M2 + (1 — a)M?.

C.2 The Faddeev Equation

The Faddeev equation for the nucleon vertex function I'"*(p) in operator form is
given by

I“(p) = Z% N4 Ty(p) = K*(p) Ty(p), (C.8)
where
3 ‘ 1 \/gf)’ /’ys)
Za ¢ = — # y Cg
YT M (x/g%v" — Y (G:9)

and I1%° contains the nucleon quark-diquark bubble graphs. Therefore the Fad-
deev kernel has the form

= 3 a; + % ag V37 s (b1 + % b2)
K*®(p) = i ’ § ’ : (C.10)
V3y57* (al + az) WG (bl + bz)
The RHS of Eq. (C.8) becomes
. B i FX'I
KP@T() = 37 [y | v (®:9), (C.11)
where
M M M,
X = <a1 + WNaz) + V3 (bl - WN b2> — a32V/3 <2b1 + VN bz) )
. M M
Ve pM—f {—OQ 2 (b1 et bz) — 4%@}

M, M
+ yHyy l:—al \/g <a1 + WN az) — Qlp (bl — WN bg) + ag 2b1] :

(C.12)
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Therefore to satisfy the Faddeev equation, which can now be expressed as

3 | X o7
Y ) = y9), C.13
M {Y] un(P:s) [azx’}%% +a37“75} un(p, ) (C.13)

we must have

a—ia +%a
1—M1a1 VA

+ V3 (bl _ My bz) — 32V/3 (2b1 + My bzﬂ, (C.14)

M M
3 M, M
Qg = M |:—(l’2 2 (bl . —JWN b2> — Q3 4WNb2:| y (C15)
3 M M
Qg3 = M |:—041 \/§ (al + WN ag) — Oy (bl — WN bz) + g 2b1} . (016)
These three equations can be written homogeneously as
My My Mg an o1
My My My | {as| =M®?) [z ] =0, (C.17)
M3z, Mz My a3 Q3
where
M, M M
M11=a1—|-—.Mﬂa2——3—, M12=\/§<b1—ﬁbz>,
My
Mz = —2v/3 { 2by + STRIE (C.18)
M M M
M21 = 0, M22 — —2 (b] - WN bz) - E‘ M23 = —4WN b2, (019)

M M M
Ms, = —\/g (m “ HN ﬂg) , Mz =—b + VN ba, Mas = 2b, — 3’
(C.20)

The nucleon mass then follows from the condition det M (p? = M%) = 0.

C.3 Normalization of the Nucleon Vertex
Function

The T-matrix for the nucleon is defined as

T=Z+KT=2+ZIyT. (C.21)
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In the lightcone normalization, the three-body 7T-matrix near a three-body
bound state of of mass My, behaves as

CyT
Teg— " (C.22)
P+ —¢&p
where ¢, = g;f%zf. Therefore near the T-matrix pole Eq. (C.21) becomes

FNFN =S (p.,_ - Ep) VA + ZHN PNfN. (023)

Taking % of the above equation, noting that I'% f?v and Z have no p, depen-
dence, then taking the limit p, — ¢,, we obtain

11 —
0=27+2° SAe Ry (C.24)
Op+
Removing the factor Z and multiplying by 'y, we obtain
. — oIl _
0=Tn+ (I‘N i I‘N> Dz (C.25)
Op+
This implies
= Olly
r 'y =-1. 2
N op+ N (0.26)

Using I'y = /—Z. N% I', we obtain for the nucleon vertex normalization

-
LN = —=7—0i, C.27
n MyT —ﬂaa”Jr r ( )

where we define I'T"' = fz:f + a% — 209003 + 4(23 = 1.

Now

9] El; -+ jlag %+ P &2 0
—Iy = oM M P ~ ], C.28
(931_;_ N ( 0 by + %bg + -1% bo ( )

where 7 = g%:r. Therefore the denominator, D, is given by

1 I i
—— D =1up(p, s) I_QI (052 ',f;—N Y5 + O3 ’Ys’Y")]

My
i+ Loz + Ly 0
0 by + Lby+ L by
- un(p, 5)
78’
021\1:1—’;\,’)’5 + a3 Vs eh

= Il + IQ. (029)
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Using Uy uy = 1 and uy vy  uy = ]&—:V, we find

—o? (a4 P- My .
Il—al(a1+MMNaz+ Ma2>)

. 8 M » .
I, = (a% — 200003 — 2a§) <b1 — MpMN by — lev bg) + 602 by. (C.30)

Therefore

R _ Mn ~ 171
+ (03 — 20503 — 203) (bl P _p, =N b2> + 602 bl} , (C.31)

M My M
where
1
—g. M A2 1
G = 9 - p_/mm) dT/ da (o — a) e ™4 (C.32)
8T 1 0
(Agy)?
—g. M T 1
g = g p_ /(AIR) dr / doa (@ —a)e ™4, (C.33)
87T2 1 0
(Agv)?
L g M Gr? 1
by Ja 22 gy / do (@® —a) e P, (C.34)
87r2 1 0
(Agv)2
1
N —ga M Sy 1
by = Lp_ /(Am) dr / dao(a®—a)e 8. (C.35)
87T2 1 0
(Agy)?
Recall
A= (a?—a)p* +aM?+ (1 —a)M? (C.36)
B=(a?—a)p®*+aM?+(1—a)M>. (C.37)

In order to reproduce the normalization for the case with scalar diquarks
only, that is
-1
= Olly(p)/op p:MN,

we require I'T' = 1. Therefore the following condition for the coefficients of the
nucleon vertex

Fi (C.38)

a? + ol — 2a03 + 403 = 1, (C.39)

must be satisfied.






Explicit Calculation of the
Transversity Distributions

D.1 Transverse Feynman Diagrams

D.1.1 Transverse Scalar Quark Diagram

We have
= d'k E_\ . , .
Badiyn(®) =T [ o5 6(s = ) is(8) i 18k o — B T,
_ ZNMy_ [ d'k k_ o
N _TUN/ (2 ‘5(”1C - E) S(k) vy s S(k)Ts(p — k) un,

(D.1)

where I'y are the scalar transverse vertex function in the z direction. We eval-
uate the distribution using the moments where

A= /01 de 2™ f(z). (D.2)

Therefore
- dk (k" L
A, =Ty @i \po S(k) v v vs S(k)Ts(p — k) T,

- [ () e

. s
4G, — Ty,
{7’ K2 yp?—2k-p—M2tie| ©

=A%+ AB. (D.3)
Using the result
B+ My vk + M) =282 v~ 7'y + (k3 — b + M?) vyl
7 — 2k ko ’Y+’YZ75 —2k_ky 71’7275
+2k k1 (v =77 ) +2M (k' s+ kiytas), (DA4)
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and the matrix elements in Section A.14 we have

M, _
ay (F+ MYy s (- M)y = 5 K2 o+ (8 — ki + M) F=+2Mk-. (D5)
- N

Therefore the numerator of A% is given by

E_\""' [ My p_
NA=(—) [—kﬁ+ ki —ki+ M%) -——+2Mk_|. D.6
n P P ( 2 1 ) MN ( )
Ignoring terms odd in £ and using g__ = g_; = g_5 = 0, the only non-zero term
is
NA= (K- 12+ M) 2= (D.7)
My
Therefore

dik k2 — k2 + M?
2m)4 (k2 — M2 + ig)?’

Al = —4iG, Zy [ (D.8)
Wick rotating where k2 = k3 = 1k%, introducing 4-d polars and the proper-time
regularization gives

GSZNMQ o0 _ 2 2
Al = =T / drr /0 dk% k2 e Tke+MY) (D.9)

Integrating over k% and using the fact that only the first moment is non-zero we

have
Gs ZN M2 1 —7 M?

Arg?(z) = §(x) o dr -e (D.10)
Evaluating A2, we have
Tnr M 41 3 n—1
.AE:z'ga NMA’/ d k4 (k_)
P (2m)* \p-
M -
SNk 4 (K — kY + M) g +2 Mk D.11)

(k2 — M2 +ie)? (k2 +q? — 2k -q— M2 +ie)’
Using Eq. (A.14) and the fact that the k? and k2 terms will cancel, we obtain

. ZnMy [ &k (k- +ap \""
AB =g, /dozZl—a/
o o @ [ e T

My (k- +op )+ M?Z= +2M (k- +ap_)
(k2 — (0 — a)p? — aM2 — (1 — o) M? +ig]®

(D.12)
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n
Ignoring terms odd in k£ and hence noting that terms like (’%) — o™,

gives
Zn M L
AB = g, ZN TN / daa"12(1 — o)
= 0
/- d*k %a2p2_+M2ﬁ—;v+2Map_ (D.13)
(2m)4 [k2—(a2—a)p2—aMs2—(1—a)M2+i€]3‘ '
Therefore from the definition of the moments we have
Arq®(z) = ig, Zn 2(1 — )
/' d*k M%2? +2 M My z + M? (D.14)
(2m)* (k2 — (22 —2)p? — M2 — (1 — 1) M2+i6]3. '

Wick rotating, introducing 4-d polar coordinates and the proper-time regular-
ization gives

Ga ZN
Arg”(2) = Tor

(1—2z) (z My + M)*

[ et [k gy
0

Therefore

GZ - 2__ 2 _ 2
Arq®(z) = 9167T12V (1—z)(z My + M)Z]dT e~Tl(s"—o)p* +ai+(1—a)M?] (D.16)

Hence the full transverse scalar quark diagram result is
s GS ZN M2 1 —r M2
Adyn(z) = b(z) / irte

+ "lﬁi{j (1-z)(z My + M)? / dr e~l(?—2)p*taMiH (e () 1)
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D.1.2 Transverse Axial-vector Quark Diagram

We have
a — d*k k_\ . 1
Argyn(T) =iTy W(S T — o iS(k) iy v vs S (k)T (p — k) Ty,
_ZN My

— o ™ / % ) (x - I]j__) Sk) vty 'ys S(k) T (p — k) T,
(D.18)

where I'V is the axial-vector transverse vertex function in the x direction. We
evaluate the distribution using the moments, where

1
A, =/ dxz"! f(z). (D.19)
0
Therefore
= dk (k_\"!
_T7* . __ +.,1 _ v
A=Th [ 55 () SWr skt -0 TS,
__ZnMy f d (k- \"T (B + M)yt sk + M)
P @)t \p- (R — M2 +ic)?
' 1Ja
{%G“ k2 +p2 —2k-p— M2 +ic P
= A7+ Ay (D.20)
Therefore we need
T (K + M)yt ' ys(k + M)T,, (D.21)

where from the scalar quark diagram we have
B+ M)y ' vs(k+ M) =282 v ys + (kF — k2 + M?) vH s

— 2k koY s — 2k kY'Y ys + 2k- k1 (s — 7Ty )
+2M (k—~v' v+ kivTys) . (D.22)

Recall that
Tu(p,s) = (az AZ—”% + o3 “ms) un(p, s), (D.23)
N
- - ph
I"(p,s) =un(p,s) | o2 M—’)’5 +azys7t ), (D.24)
N

and hence it is easy to show

fuﬂf‘“ =Ty [(a% — 2a2a3) v5Qys + o 757“9%75] Uy. (D.25)
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Using the following results which are easily proven using the matrix elements in
Section A.14

_ M = _
FH’Y—’YI%I‘;A = (03 — 2a013) 2—N, Tyt sl = (03 — 2an03) p_,
- My
Ty Tyl =0, Myl = 0,
Fu7+7_751—‘u =0, FM7175FM Sl (ag — 2003 + 26“%) )
[ytyel, =0, "5, = 0. (D.26)
Hence
T +.1 2 My,
L (k + M)'Y o ')’5(}6 + M)-Fu = (az - 20420«’3) —k*
+ (k3 — ki + M?) ]@—‘ —2M k_} —4Mok_. (D.27)
N

Therefore the numerator of A2 is given by
ko \" M
Nf:(_) {mj—mw@{—ﬂﬁ
p- p-
+ (k3 — ki + M?) JZ—‘ —2M k_J —4M o} k_}. (D.28)
N

Ignoring terms odd in k£ and using g__ = g_; = g_o = 0, the only non-zero term
is
N = (02 — 2ap0) [K2 — K2 + M%) 2=, (D.29)
My
Therefore

dk k2 — k2 + M?

2m) (B — M2+ i) (D-30)

Af = —4s Ga ZN (a% - 20[20[3) / (

Wick rotating where k2 = k% = k%, introducing 4-d polars and the proper-time
regularization gives

Go Zn M? o0 (k2 M2
A = == (a3 — 200053) /dTT/O dk% k% e~ ke +M5) (D.31)
Integrating out k% and using the fact that only the first moment is non-zero, we
have

G, Zn M>
472

Arg?(z) = §(2) (03 — 20003) /dT E e ™M, (D.32)

T
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Evaluating A2, we have

4 n—1
.Af =g, Zy MN/ d k4 (k__)
p- (2m)* \p-

(02 — 2a503) [%kz + (k2 — k2 + M2) 2= —2M k_] —AM 2k
(k2 — M2 +ie)? (k? 4+ ¢ — 2k - ¢ — M2 + i€)
Using Eq. (A.14) and the fact that the k? and k2 terms will cancel, the numerator
of AZ becomes

n—1 2
NnB — (%) {(ag — 20(20[3) !]Z'N (k_ + Otp_) p2_

y D—

+ MQJ%V _oM (%) p_:| _4M a2 (’“‘;&) p_}. (D.34)

(D.33)

n
Noting that terms like (k";#) — o, gives

NB =gt
{(ag — 2a2a3) [MN o’p_ + M2%— — 2Map_} — 4Ma§ap_} ,
N
= a”‘lj\i[—;v (a% — 2az03) [@” MZ + M? —2a M My]| — 4MMyaad3}.
(D.35)
Therefore, from the definition of the moments we have
Arq®(z) = igs Zn 2(1 — x)
/' d*k (02 — 20p03) [t My — M]> —403 M My x (D.36)
(2m)* (k2 — (22 — 2) p? — zM2 — (1 — ) M2 +ie]* '

Wick rotating and introducing 4-d polar coordinates and the proper-time regu-
larization gives

A
Arg®(z) = 9167r]2v (1-x) {(a3 — 2a203) [z My — M) — 40?2 M My z}
/ drr? / dK3, K e~ it (et ramira-an’] - (p g7)
Therefore
B 9o 4N 2 2
Arq©(z) 1672 (1—1x) (a2 — 2a2a3) [z My — M]

— 402 M My x} /dT e~7[(a*~a)r*raME+(—a) 7] (D.38)
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Hence the full transverse axial-vector quark diagram result is

G. Zy M? 1 _ .2
ATq;’/N(a:) = §(z) 4—71:2 (ag — 2a2a3) /d’r;e e

9o 4N

* 1672

(1-— w){ (03 — 20903) [z My — M
— 402 M My m} / dr e[ -m)p*+aMi+(1-n)M%] -y 39
Note also that

(Otg — 2042@3) [.’EMN - M]2 - 40&%MMN$
= (a2 — a3)? [z My — M])* — &2 [z My + M]*. (D.40)
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D.1.3 Transverse Axial-Vector Diquark Diagram
We have

Arfap (@) =iTy / (;i;q)4 / (;i:; & (w - z’j_:> iS(p — @) Tau(q)

(—iC_I’Y“TiTQ,BA)IB,a, (’&S(k) i’y+’yl’Y5 % (1 + Tz) is(k))a’a
(i’yVCTQTjﬂAI)aﬁ 1S(q — k),@’ﬁ Tvo (@) TN

— iy / (3;134 / (3:;4 6<x - f}—:) S(p— q) mu(a)

iTr |:(C_1’YuT¢T2,6A) (S(k)Y ' vs3 (1 £7,) S(k))

(fy”C’TszﬂA') ST(q— k)] (@) T%.  (D.41)

We leave the isospin calculation until the end, but include a factor of 2 here that
we will divide out later. Also using CST(—¢)C~! = S(q) and Tr{T°T*} = 264

where T* = ’\—;, gA = \/g)\A and hence Tr{ﬁAﬂA'} = gTr{)\A)\A'} = % X
4Te{TAT*} = 3644. Therefore we obtain

— d ik ke
8 faipy v (@) = sz‘V / (27:;4 / @) 5(m — p__) S(p—q)
Tau(@) oo (@)T% 68 Tt [7#S(k)y 7 vsS(k)y'S(k — )] . (D.42)

Inserting the identity in the form

1 1 00 q ]C
1= / dy/ dz/ dqg? 5(y——_>5(z——_)6(q2—q§), (D.43)
v JO J —00 \ D \ q— )

which implies § (w — 1’3—:) — &0(z — y2), gives

1 1 oo
N . =A
Arfipy () =1 / dy / dzd(z — yz) / dg? Ty
0 0

—0o0

[ 1251 L) (6~ 2) 56 iyt

6i [ 02— 52 T LS s 07506 - ).
(D.44)
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We define
ATH“V(Z, q) — ATHA(z, q2)€u+1u + ATHB(Z, q2) (q1q050u+u + q_qagoulu)

=61 [ is(z- 5 T s syt —al, @49

and
Arfapyn (@) = Arfi(z) + ArfP (). (D.46)
We have

"1, (q) T (g) = e*FY {M G

9+ 2Galla(g%) L2
1+ 2G,11,(¢?)

Gye + 2G,11,(¢%) 1=
4G, Gua (q ) P ’
1+ 2Gaﬂa(q2)

4G, 2
- (1 + 2G, 11, (qf*)) 5“+1V{g>\ugw X e

+ X Gooqrqu + X? Q)\quyqG}a

= 72(0)* {9-2920 — 9229-0 + X [a2 (9-28 — 9—o @) + &= (92007 — g2240)]}
(D.47)

where X = 2G,11,(¢%)/q? e " =1 and we have defined

rd) = 4iG,
A = 1 26, (g%

(D.48)

The term proportional to X are discussed in section D.1.3 From the spin-
dependent axial-vector diquark diagram we also have the results

o™ () Tuo (0) = Ta(a)® {q- (922910 — 917920]
+ q1[9-2920 — g2rg—o] + @2 (91090 — g_>\g1a]}, (D-49)
qas"“lyT)\u(Q) Tve(q) = Ta(Q)2 {Q— [Q+,\920 - 92)\9+0:l

+q4 [92Ag—a - 9—A92a] + Q2 [g—)\g+a - g+>\g_a]}- (D-50)

Using the identity

7a(9)? = _qi_ <8H5q(32)>_ y Ta(q) = g iTa(q), (D.51)
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we have

1 1 00
Arfl(z) = /0 /0 o(z — yz) /_ g’ ga(q2)AIL(z, q2)

—1 / d*q ( q_) 2 9 ora(@®)
T §ly— ) 6(q%— ) Stp— G ()T%, (D.52
2yp_ N (271')4 ) p (q qo) (p q) aq+ AU(Q) N ( )

where I € (A, B). Defining

Arfyp,(2,62) = iga(43) ATIL (2, ¢2), (D.53)

Y d'q q-
Arfp, vy, 40) = 2up_ FN/W 5(’9’ - p_) 6(® — @)

S0-0 2L L@z, (D5)

where we have introduced one in the form —i i = 1. We now simplify A f2/ D/N (v, q2).
Integrating by parts in ¢, gives

al 2y _ i =2 d4 __9-
@ {f?(q2 =) S0~ 9)G,(0)} ral0) T,
_ip(,0 1 9
“y ¥ \Yag 2p Oy
/ (2m)* ( p-
R Y / d*q ( q- )
7 I 0
2yp_ i (2m)4 P

Therefore the spin-dependent axial-vector diquark diagram is given by

)5 7 —q2) S(p — Q)1alq) Gio (@) T
5

(@~ &) S — 9malq) %Gﬁa(q) I3,
(D.55)

A fopyn () Z/ / (x —yz / dg? Ar q/Da(Z a2 ATfDa/N(y @),
(D.56)
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where
Arfip, (2 65) = i9a(a7) ArTly(2, 65), (D.57)
 ZnMpy = 0 1 0
Al 2y _YANMN F
TfDa/N(yaqo) v Y B2 -Zp_ —8p+

% 5 (y _ ;_> 5(¢> — 42) S(p — 0)7al) Gl (@) T°

i ZNMN—/\[ d'q ( 9‘—)
+ r 0|l y——
2up- D J (@r)t p-
0 1

§(¢* —42) S(p — )7a(0) @GAU(Q) r’, (D.58)

and
G35 = 9-2920 — 92200 (D.59)
Gfo = ((J— [92)\910 = 91)\920] +q [g—/\QQU - ngg—a] + g2 [91,\9—0 - Q—Agla])

+q- (q— [9:7920 — 92nG+o] + @+ [9229—0 — 9-2920) + G2 [9—2G40 — g+xg_o])-
(D.60)

If we make the on-shell approximation, the transverse axial-vector diquark dia-
gram reduces to

1 1
Arfypym(@) = / / 8(z — y2) Arflp, (2) Arfh w(),  (D.61)
7 Jo Jo

where

Arfin,(2) = iga(@) Arlly (2, 43)

@2=M2’
1 IvM
Afé“/N(y):_Zyp_ Z_N
- 0 dlq ( Q—) 1
g 5(y— 1) Sp - @)rale) GL (@) T°
e ] @i’V o (r — @)7a(q) G (9)

i Zn My _A/ d*q ( q_) o 1
INTN T 2 §ly— =) S(p—q)ma(q) =— G (9) T7,
T e\ (p—q)7a(q) ag. (9)
(D.62)

and I € [A, B].
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Determining A ff /D, ().
Recall

Arfyn, (2) = iga(5) Arlli(z, ¢3) , (D.63)
ai=M2

where I € (A, B) and

ATHA(Z, q2)su+lu + ATHB(z, q2) (Q1Qo€(w+u + q_qaeoulu)

=61 [ 5:0(s-52) s s oSt —a) . (o)

Using the moments and the result
Tr [y*(k + M)y oy s (B + M)y (F — ¢ + M)
N —4z'M[(k2 — M) MY 4 2k_ eV 4 2k, q,,s‘w+"] , (D.65)

we have

d'k (k-\""
wo__
AP = 24M / e (—)

ghtlv
{(k2—M2-|—i5) (k2 +q%—2k-q— M2+ ic)
N 2% qagcmlu + le qasau+u
(k% — M2 +ie)* (k% + 2 — 2k - ¢ — M? + i)

Using the Feynman parametrization results of section A.5 we obtain

A n—1
A‘“’=24M/ /dk k_ —|—aq
(2m)4

€N+1V
{ k2 — (a? — a) ¢% — M? +i6]2

}. (D.66)

L A=) [(k +0g-) goe™ + (ks + agy) gre™ ] } (D.67)
[k2 — (02 — @) 2 — M2 +i¢]® S
Using
k- +aq_ \"" k_
(_q__) =ao" '+ (n— 1)a"‘2q— +... (D.68)
and that g__ = g_; = 0 and ignoring terms odd in k we have
1 4
A = 24M / daa™! / i
0 (2m)*
(k2 — (a2 — ) g2 — M? + i€ k2 —(a® —a)g? — M2 +ic)® |

(D.69)
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From the definition of the moments we have
d*k 1
ArITA(z,¢%) = 24M / ; D.70
rll%(z ¢°) J @mAk2 — (22— 2) ¢ — M2 +ig)’ ( )
AgTI? (2, g?) = 96M 2(1 — 2) / d'k L . (D7)
’ J (2m)* [k2—(z2—z)q2—M2—|—ie]3
Wick rotating and introducing polar coordinates we obtain
M [* . 2.
ATl (2, ¢%) = 13—2 i — a2 , 5 (D.72)
21 Jo (k%4 + (22 — 2) ¢ + M?]
M k2,
ArIB(z, ) = —i M (1 - 2) / dk2 (D.73)
™ o ERE+ (2 -2+ M
Introducing the proper-time regularization gives
ArITA(z, ¢%) = z—— / drr / k2 k2, e~Tlkbt (2 -7)a M2 (D.74)
ArTI8 (2, ¢%) = —i 37r_]\2/[ 2(1— z)/dTT / dk% k% ¢ Tleb+(*~2)a+ 7]
0
(D.75)
Integrating over k% gives
M 1 2 2 2
ArlTA(z,¢%) = 13—— dr = e~Tl(F-2)a M ], (D.76)
272 T
M 2 2 2
ArTTE(z,¢%) = —7,3— z(1— 2) /d’l’ eTl(#-z)a ] (D.77)
w2
Therefore
3M 1 2 2, s2
Aly) = —g, o2 2 e rl(-2)Mi+7]
ATf (Z) Ga ) dr r e ’ (D78)
M 2 2
ArfP(2) = ga ?;—2 2(1-2) / dr el ME, (D.79)
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Determining Anga/N(y).

Recall
i IZnM
Afga/N(y) = s ]\1’9— N
=X\ 8 d4q q_ . i
! 5p_+/ (2_7r)4 ’ (y B E) 5(p — )7a(9) Goal@) T
B 0 S 2 G
2yp-  p- (27r)4 — ) 5= O(9) 5 -G (@) T7

Since G, = (9-1920 — 92rg—o), We have %Gfo = 0 and hence

—t ZnMpy = O d*
Mhm) = g P [ 2 a(y- L) - gl 641

2yp- p- Op+
(D.80)
Let
0 d*q q-
= _— / ) (u ) S(p — q)1.(q),
ops | @) = U
o) d* L
— / %g(y _ q_)
Oy ) (2m) p-
—q¢+M ]
P g . 4q Ga - "5 _2(};’1—
@P+p>—2p-q— M2 +ie 2 — M2 +i¢
Mg, (D.81)
Using the moments to evaluate 74! we have
4 n—1 _ M
A= giq, 2 [ 4 (4 ol as -,
ops J (2m)* \p_ @ +p?—2p-q— M?+ie
o, (27T)4 p- g2 — M2 +ie’
=0, (D.82)
because there is no p, dependence. Hence
' =0. (D.83)
Taking the moments of I4% and using Eq. (A.13) gives
n—1
A2 _ g+ ap_
An *% Bps Opy / ./ (2m)* ( )
1 —a)p—g+M
( - (D.84)

[¢> — (& — ) p* — (1 — @) M2 — aM? + ie]*’
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Ignoring terms odd in k and using g=~ = g~ = ¢?>~ = 0 gives

1
AR = g, — & / da
Op+

/' dq o1 -a)p+M] - g T Lo
(2m) [q —(a2—a)p2—(1—a)M3—aM2+i€]2'

(D.85)

Integrating by parts in da and noting that the surface term is zero as it has no
p+ dependence and using the definition of the moments we have

A2 0 d*q [(1_04)P+M]+q Q+p da
I = /( Yigt— (a2 . (D.86)

_Z a
% Bp, 0)p? — (1 — o) M2 — aM? + ic]’

Using the result for the spin-dependent axial-vector diquark diagram

M= T / dT{'V* [% — (v —v) [y — 1)p* = M2 + M?)]

—2p_ (v* — ) [ —y)p + M] }e_T[(yz_y)p2+(1_y)M“2+yM2]- (D.87)

Now
A ) = —5o e T HAGE T,
. —2:;0_ ZIZJ_WN T/\IA (g—)\g2a - ngg_g) re,
_ _2y;_ ZJ; J_WN {T_I4T, — T, IAT_}. (D.88)

Therefore we need to determine I'_T'y —T'oI'_, T_~*t Ty —TyyT I'_ and f_p [y—
sz I'_. In general we have

T_Qr,—T,Qr'_ = {azaa []@—75 (2 — %) ¥
+ AZ—275 (-2 — Q) 75] + o275 (- Q72 — 7282y-) '75}uzv. (D.89)
Therefore

[Ty — Dol =ay {0 (772 — %2v-) } un

— _2a§ﬁN'y+'72uN = -2l
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T_ ATy —TyyT'_ = 02053]@.—;[@N (’Y+’)’2 - ’)’2’)’+) UN

g +nt
= 20!201311\)4—EN’7+’)’2UN = —27;0{20531)]\4—1)2, (Dg].)
N N

T_ply — Tapl- = —ofuy (v-pr2—mpr-)un = —2iazp*. (D.92)

Therefore the final result is

9o Z agag |1
Afhn®) = —Te 3 / df{ i [; +(1—y) [(2y — 1)p* — M + M7

+203 (1 —9) [(1 - y) My + M] }e"[(”z‘y)”2+ a-pMZ+uMe] () g3)
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Determining ATf‘g;/N(y).

The diquark in the nucleon part of the diagram has the general form

1 InM
ATfLI)a/N(y) = _2yp_ ];_ N
=X 8 d4q , q_ . .
g @/ (2m)4 5(y - ;f) S = )7a(@) Gro (@) T
i Zn My —'A] d*q ( q_) o
| 520ly—— ) Sp—a)mele) 5 G () 7,
2yp-  p- @mio\Y ~p- ) S~ 2)7ale) 5, -Ghn(0)

(D.94)

where in this part we have

Gre = X (22 (9-220 — 9—0\) + ¢ (9200r — 92280 )]

2G, I, (¢?
= % [92 (9-290 — 9-002) + q— (9209r — g2a4o)] - (D.95)

If we make the pole approximation to the diquark #-matrix from the beginning
this term does not contribute. However if we keep the full t-matrix until the end,
which is the normal practice, then these term will contribute. In the on-shell
approximation the X (¢*) term moves outside the integral and becomes X (M?),
where 2G, II,(M?) = —1, hence we have

_ 1 IyMy —1
2yp- p- M
—A 8 / d4q ( q_) Al

U — [ —Lsly—L) 8- q)rlq) GL()T°
o | i’V (P — 9)7a(0) G35 (9)
) ZNMN —1 —)\/ d4q ( q_> 0 A
T §{y— ) Sp— q)ralq) —G& () T°,
2yp_ p_ Mg (27r)4 P (p q) (q) 8q+ A (q)
(D.96)

ATféal/N(y) =

where
G = (22 (9-380 — 9-0@) + 4— (G209r — g224s)] - (D.97)

If we just consider the matrix element part we have

=A ! o A o
I"GLT =T"0 {[Qz (-2 — 9-0a0) + 4 (G2vq) — ng(Ia)]}F , (D.98)
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where () is some Dirac structure. Summing over the indices gives
T G 17 = {q2 [/T_ar* + ¢ T_0r + T_ar* + T _or?
—+ —— a g, =2
_ g, TTOr_ — ¢ T Qr_ — T Or_ — gT Qr_] }
+ {(J— [Q+f+QF2 +q_T Oy + T Q3 + ¢, T O,

— ¢ ToQIt — ¢_THQI'™ — T, QI! — q2F29F2] }
(D.99)

Cancelling and grouping terms gives
e = {q2 o (C-or, —T,0r.)
+q (BQF- —T_QI) + ¢ (90 —T_aI) | }
+ {q_ |/ (T_0r; - T0r)
+q- (T408, —T0r) + 1 (o0 — T0r) | } (D.100)

Therefore A fga' N (y) has seven terms. Letting

1= [ &1 5(v- &) st arata (D.101)
r= (3.34 a‘(y - ff:) S(p — a)7a(a), {2107}

these are
ArfA N (y) = _Zyip_ ZJ;]_V‘[N ]\_4; {T-Iq¢Ty-TiIg gl }, (D.103)
ArfA(y) = _zy;_ ZJ;JYIN ;/112 {TiIqgT- —T_Iq gI4}, (D.104)
ArfA%(y) = _Zy;— ijvflv 17412 {T-Igvg-T2~Talquq I},  (D.106)
AcfSy)= ———Z8My L par, Trer,d, (D.107)

2yup- p- M2
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: it ZnMy —1 o —
Arfroy) = —g === p T lae- T -Tilag Ih}, (D108)
1 ZnMy —1

Arf Al?(y)

A2 {T_I'q_Ty—TyI'q-T_}. (D.109)

We now evaluate each of these terms.
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Determining Arf g‘:}N (v)

1 ZnMy —1

Af‘f}w(y)=—2yp_ o

2 / (d4) Y ( ;_) S(p— Q)7a(q) 4-22 [9-29+0 — 9+r9—0] T°.

8p+ 27'('

From the §-function we have q_ — yp_, therefore

i ZyMy oo 8 / d'q
(

Al _t
Afon(¥) = =3 p—  OpsJ) (2m)*

4 (’y - %) S(p — )7a(q) @2 [9-29+0 — 9+29—0) T°.

From the Aff}%(y) calculation we have

1 ZNMN il Ga

AfDa/N( ) = 2 p_ M2 167!'2 y(l y)p_ ,72
/d’l’ 1 e—f[(yz—y)p2+(1—y)M§+yM2]’
u
where
T_T, —T,7T_ =2iasz(az — a3).
Therefore
! Ga ZN MN
Afpn(y) = 16m2 M2 y(1—y) oz (a3 — az)
a

/ ir L ol v} +a-namzym?]

T

Determining Arf ﬁ;?N(y)

Mgt = - oMy L 0 [ 4
) (

2yp_ p- M2 9py ) (2m)*

) (i‘/ B ;_—) S(p — @)7a(q) 4-92 (91090 — 9-2910] 7.

From the A fgf/N (y) calculation we have

Af ,,/N( )=0.

Determining Arf7 5y (y)

(D.110)

(D.111)

(D.112)

(D.113)

(D.114)

(D.115)

(D.116)
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B ) ZNMN —1f)\i/ d4q
2yp— p- M7 OpyJ (2m)

) (y — %‘) S(p — 9)7a(9) 45 [9229—0 — 92925 T7. (D.117)

AfA:;N(’!/) =

From the A fgf/N(y) calculation we have

! ga ZN 1 _r 2_ 2 . 2 2
Aan?N(y) = W /d,rﬁ e [(y U)P +(1 y)Ma+yM]

{i\iff [1+7(1-y) [y — 1p* — M2+ M?]]

+2703 (1 —9)[(1 —y)My + M]}. (D.118)

Determining Az f7 1y (y)

Af A:/lN (y) =

7 ZNMN —1F)\ 0 / d4q

C2yp. po M2 Opy ) (2m)*

o (y — ;—_) S — @)7a(q) 9-+ [9-2920 — g229-0] T?. (D.119)

From the §-function we have q_ — yp_, therefore

, i InMy —1—x 8 [ d
AffaN(y) = —5 2 - / 1

2 p. M2 9pyJ (27m)t
) (y - ;—‘-) S(p — @)7a(q) ¢+ [9-2920 — gorg—o] T7. (D.120)

From the Aff?(y) calculation we have

ATfA;;lN(y) = Arfi™(y) + Arfint(y) + Arfs *(y), (D.121)
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where

Brfi) = oo [ar

812 M2 72

2 1y @03 i - o
[2Ma36(y 1) M dy&(y 1)]6

(D.122)

2
, o032 M2 _r
Arff) =~ | o 75 (= De + )] (D123)

7—2
’ gaZN 1
Arfin'(y) = T 16m2 M? /dTF

{a§ 1-y) [I—Ty [(y — 1)p2—M§+M2]] [(1—y)My + M|

Y . 1 1[ 2 2
- Z(By—2)MZ —=—2[1-2 -
e {2(?; WMy~~~ 3 y+7y(y y)p]

[(2y—1)p® — M2 + M2]] e ™A (D.124)

where A = (y* —y) M3 + (1 —y) M2 + yM>.

Determining Arf 3,:?N (v)

) . ZnMy -1\ 0 dq
AfAS oy b ZnMy —lo 8 /
fou®) 2yp- p- M2 OpyJ (2m)*

6 (y — ;—_) S(p — q)7a(q) € [942920 — gorgao] T (D.125)

From the §-function we have ¢ — yp_, therefore

' -1 0 d4
A = =520y 3T 5 | G

) (y — ;—:) S0 — ¢)7a(q) [9+2920 — g2rg+0] 7. (D.126)
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From the Af} /N(y) calculation we have

’ gaZ M e - .
Al = B o [ are Tt ]

Lo [ (-0 [y — 1) 21}~ 32+ 217
~ a2 (=) [+ M)° - 7] . (Da2)

Determining Ar ff on(Y)

, i ZnMy —1=x 8 dq
A& (y) = — M8 T / (

2p_  p_ Mf @ 2”)4
q_ a
5(9 - p—) S(p — 9)7a(@) 119 (922915 — 917920] I,
(2m)*

=— yp- I —
2yp_  p- Op+

4 (y — f}—") S — 9)1a(q) @1 (922916 — 912920) T7.
(D.128)

From the §-function we have ¢ — yp_, therefore

, . ZNM, —1-x 0
f a,/N(y) 2yp_ p_ yp Mg aer
[ 28 5(y— %) 50~ @) lomsio — 900 1%, (D120
(2m)’ Y o P —q)Ta\q) G1 (9220910 — J12920 . .
From the AfS! /n(y) calculation we have
A'6 9o ZN
Afpon(y) = —p} 16m2 M2 My azazy (1 —y)

de 1 e[V —v)p*+ -y Mi+ars’]
-
—0. (D.130)

Determining Arf7 7\ (y)

1 InvMy —1=» d4q
AFE N (y) = Sl F/

Qyp_ p_ M? (2m)

5(y — fi) S(p — @)7a(q) 4= [9-2920 — 92r9-o] ['7. (D.131)
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From the d-function we have q_ — yp_, therefore

Afpyn(y) = 2 p. 2 [ n)
q-

6 ('y - p—) S(p — q)7a(q) [9-2920 — g2rg9—0] T7. (D.132)

’iZNMN —1F)\/ d4q

From the Aff7(y) calculation we have

G.Z 1
AE W) = —g7rs [ 4

8n2 M? T2
Qo3 d

= 5y — —r M2
TMN dy (y 1):| ¢

[2Ma§5(y—1)—

_ G 2N 1 —r[(v2—y)p?+(1-y) M2 +yM?]
1672 M2 / i
{O‘g [(1— y)My + M) + 2222

2My

[(2y —1)p* — M2 + M2] } . (D.133)

Summary of Results for Arff ()

We have

Arfh n(y) = ApfA" + ApfA? 4+ ApfA°
+ ApfAt + ApfA + A2+ Ap fAT,
= Ap fA'l + Ap fA'z + Ap fA’3 + Ag fA’4
+ Arf0 + Arfih® + Arfa® + Apf2C + A fi7 + Arf7

(D.134)
where
A1 90 4N My
Af*(y) = W y(1 —y) oz (a2 — as)
/d’l’ g e (v —v)p*+(-nMi+ym?] (D.135)
p
Af*2(y) =0, (D.136)

' gaZN 1 —r[ (42— 2 - 2 2
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{j}‘j‘j (147 (y* —y) [y — V)p* — M2+ M?]]

+ 2102 (1 —y)[(1 —y)MN—I—M]}, (D.137)

p G, Z 1
Arfi 4(y) . ad /dT—

8m2 M? T2

(851843 d o
Zsy—1)|eT D.13
2 Lsy-n|en, asy

[2Ma§5(y—1)—

2
’ o & 7 1 M2 _r M2
Arfi' ) = 35 51 1pe J\342174N / dTﬁ[(s(y—l)e M4 6(y) e Ma], (D.139)

/ gaZ 1 (2~ 9 B 5 2
Arfi*y) = Toa /dr; (V) MR+ (-y) ME+ya?]

{a§(1 —y)[1 =7y [y — 1) — M2+ M7 | [(1 - y) My + M]

1

1
7 (3y —2)M3 - . —[1 —2y+7y(y2—y)p2}

* 2 2

(8518 %
My

[y —1)p* — M7 + Mﬂ } (D.140)

] gaZ M —r|{y%— 2 _ 2 2
Af“(y) - ngz /d'r e [(y y)MN+(1 y)Ma+yM]

{azas E +(1—y) [y — 1) M} — M] +M2]]

—a3(1—y) [y + 07 -7}, (D14

AFw) =0, (D.142)
/ Gy, 72 1
7 _ a &N L
AfiT' () =23 e / dr —

2 (610 %] d M2
)= —0y—1 D.143
[2Ma36(y s v mAC )}e . (D.143)
4 aZ 1 i _ _ 2 5

(0510 %}
2My

{a§ [(1—y)My + M] + [(2y —1)p?— M2+ M2] } (D.144)

Note ArfA(y) and AfA7(y) cancel.



150 D. Explicit Calculation of the Transversity Distributions

Determining Anga/N(y)
Recall

3 InMy =\ O d4
ASE () = —o ' ZNMN & /(q

2yp- p- opy J (2m)*
6 (y = Z—_) S(p — q)7alq) GR, (@) T°

q- G5
Wp_  p_ ) 5( p_>5(p Q)Ta(q) Aa(q)l“, (D.145)

where

Gy = (q- (920910 — 912926] + @1 [9-2920 — 9229—o] + @2 [g109—0 — g—)\gla]>

+q_ (q- (912920 — 9279+0) + @+ [9209—0 — 9-2920] + @2 [9-2G o — 9+Ag—a]),

=G5, +Gy +...+ G, (D.146)
and hence 5
50O = 4= 9290 — 9-a020] = G5 (D.147)
q+
Therefore

. ZnMy -\ 0O dq
AfBL.BS(y b ANMN & /
o™ W) = =g U apy | )
ﬁ(y—ff) S(p — q)ralq) GarB0T
) ZNMN —)\/ ddf} ( q—) B7
I My—— | Sp—q@)l(e) G T
o enio\Y 5 (p — 9)7a(q) Gx
(D.148)

AfRIn(y) =

Determining Ay fg:/N(y)

i ZyMy 0 / d*q

S yp_ p_ opy J (2m)*
6<y B ;__> S(p — 9)7a(q) ©19- (922910 — g12g20] I7,

__ i IyMy, 9 [ d'q

2yp_  p- -~ OpyJ (2m)

5(y o ;__> S(p — q)Ta(q) q1 [nggla - 91A92a] Ire.

i (D.149)

9 /N (y)
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Let
s, d*q q-
LIy A S | S — )T

o | ©n) <y I}_)S(p 7)7a(q) a1,

:i[ﬂ(gy_q; p—g+M

Opy J (2m)* p-) @*+p*—2p-q— M?+ic
. 1 9a
4iGo — 55 | @
[’G @ — M2 +ie) !

=IP' + 2L (D.150)

The p, dependence of I! can be removed via the shift ¢ — ¢ + p hence
I =o. (D.151)

Taking the moments of I2! and introducing Feynman parametrization gives

o [ dq (q-+ap_\""
ABI=~ia—/da/ ( )
= oy o ent\ o

[(1-a)p— g+ M]|aq
42— (a2 — ) p? — (1 — &) M2 — aM? + ie]”’

1
=—igai/ daa™ !
O+ Jo

f d* —qi
(2m)4 [¢2 — (a? — @) p? — (1 — &) M2 — aM? +ie]*
(D.152)

Using the definition of the moments, Wick rotating (noting ¢f — 1¢%), intro-

ducing 4-d polars and the proper-time regularization gives

e e N 1—y)M2+aM?
i = 162 8p+/d’r’7’/ quqE( 4qE)fy o~ T+ (V2 —v)p* +(1-y) MZ+ ]
Ja 0 /dTi’y e~ [(y —y)p +(1—y)M2+aM2]’
3972 8p+ 72
9a R R
= e W TW)P- /dT gt e Tl OME ], (D.153)

Therefore we need the matrix element
2

Ty’ T —Tiy' Ty = 2041azp—1 aNyY' Yun = —2’i012043p—1

; D.154
My ag (D15

Hence
i ZnMN g _ p?
A ) =~ 22 8o (gicuas ) (17~ ) -

2 p— 1672
/ dr L el v ra-umzeas] - q55)

T
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which simplifies to

2 ga ZN ]. —r 2 __ 2+(1_ )Mg_i_aMz
Af a/N( ) =n mazasy(l ~y) /df; el(v*-v)p Y )
(D.156)

Determining Arfj?y(y)

B i INnMpy =x O / d*q
Afon(y) = C2yp- po 5 Ops+ J (2m)
) (y — Z—_) S®— 0)7a(q) ¢} [9-2920 — gorg—o] T°. (D.157)
Let

] d*q —
= [ (v 5 st

-2 [y, e pd+M
o) e\ o) e —2pg- M tie

. i 9a 2
4Gy — 5— 71—\ qi,
[" qLM&H‘J “

=17 + I}2 (D.158)

~

The p; dependence of If? can be removed via the shift ¢ — g + p hence
B2 =. (D.159)

Taking the moments of I2? and introducing Feynman parametrization gives

n—1
A2 = 'Lgaa / / (q +ap)

[(1—a)p—g+M] q
[42 = (@2 — @) p? — (1 — @) M2 — aM? + €]

0
=—igo 57— | do
) Opy /0
/‘ dig " [(1—a)p+M] g — et gyt Lam!
(2m)* g2 — (a® — @) p? — (1 — o) M2 — aM? + e
(D.160)

Integrating by parts in da, noting the surface term has no p, dependence and
using the definition of the moments we obtain

172 = _ig, 2 / dtq  [O-yp+ MG+ tdean g §
Op+ J (2m)* (2 — (% — y)p? — (1 — y) M2 — y M2 + ie]
(D.161)
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Wick rotating, noting ¢? — %qiﬂ and ¢?q_q; — —2—14qf},3, introducing 4-d polars
and the proper-time regularization gives

B2 g 0 )
P=2___ [4 g
2 6472 Op, / o /0 s

{00 o) g e

6p_ " dy

- g / ir {7"' [y =7 (s — ) [(2y — 1)p* — M2+ M?]]

— 27p- (yz —y) [(1— y)p + M| }e_T[(yz—y)P2+(1—y)M3+yM2].

(D.162)
The required matrix elements are the same as Ar fp, /n(y) and are
[ Ty —Tol'_ = —2ia2 - (D.163)
N
N . ptpt
P ATy =Ty T'_ = —21042013W, (D.164)
N
T_ply —Topl_ = —2io3p*. (D.165)
Therefore
AfB2 ) = 9a ZN d i —7[(v?—y)p?+(1-y) MZ+yM?]
W) = g [T e

{“2“3 b7 (1—5) [y — g — M2 4 M|

+2703 (1 —y) [(1 — y) My + M]}. (D.166)

Determining Ar ff; 3/ ~(Y)

Afgf/w(y) .

. ) ZNMN TA 0 d"q 5(?} - &)
2yp-  p- Opy J (2m)t \" p_
S — 0)7a(9) 192 [9109-—0 — g-2915] T, (D.167)
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154
Let
o [ d4 q-
IBS (5 = _ 1
= ( L) 60~ Ol0)
/ q- p—¢+M
~ Oy (27r)4 p-) ¢*+p*—2p-q— M?+ic
: L 9a
[41 Ehr= m q192,
=IP® + 12 (D.168)

The p, dependence of I3 can be removed via the shift ¢ — ¢ + p hence

P =0 (D.169)

Taking the moments of I2? and introducing Feynman parametrization gives

s =inagy [ f g ()

(A-op—g+Mae g
[¢2 — (a2 —a)p? — (1 — o) M2 — aM? + ig]

Since g'?2 = g7 = g=? = 0 we have

B =0, (D.171)

and hence
Af a/N( )=0. (D.172)

Determining ArfjY (y)

i ZyMy - O / dq ( q_)
A = r oly— —
fouw () = “ap p ope ) rit\VT b

S(p— 0)7a(a) @ (942920 —

garg+o] 7. (D.173)

From the §-function we have ¢_ — yp_, therefore

o [ dt 3

S(p — )7a(q) (942920 — g229+0) T°. (D.174)
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Let

0 dq
B4 _ ¥ o
= o, / (2m)* 5<y

_ 0 [l
~opy S (2m) ’

) S(p— @)7a(a),
p—d+M
> +p*—2p-q— M>+ic
, i 9a
4 a” o  aro0 . |
{ZG ¢* — M +ie
= I3 + 1P (D.175)

'B|»-a
o

'U‘Q
| I

The p, dependence of IP* can be removed via the shift ¢ — ¢ + p hence

Il =0 (D.176)

Taking the moments of I2*

n—1
) + o
A2B4 i gy — / / (q D >

[(1—a)zf>—¢+M}
(@ — (@®—a)p? — (1— a) M2 — aM? 1 ie]”

and introducing Feynman parametrization gives

(D.177)

From the same calculation in Arff /n(y) we have

B4 _ Ya 1 " B - ) .
L _167r2/dTT{7 [?/JFT?J(l y)[(2y—1)p Ma+M]]

+2-ry (1 —) [ g)p M] Je [P g7y
Therefore we need the matrix elements

T, Ty — Dol = ay {ag (v472 — 7274) fuw
s M — v+ p3 FL=0 _ s My
= 20[3’U,N’)/ ")" Uy = ZO!3 —W 103 p_+ (D179)
_ — 2
L ytTy — Ty Ty = M—a2a3 un (p+72’y+) Uy
N
+ 2057y (¥ — Y7 y) un,
= jag (203 — ag) . (D.180)

— — M?
T gl — Dopl'y = i3 p—f. (D.181)
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Therefore
7Bt — ; 9a¥ /dT —7[(v?~y)p?+(1-y) M2 +yM?]
2 = Y62
{ [ ) [(2y — 1) p? —M2+M2+(1—y)M,2\,—|—MMN]]
1
— apas [; +(1—y) [(Qy—1)p*— M2+ Mz]] } (D.182)
Therefore

_ 9aZn My 2/ —7[(y?~y)p?*+(1-y) M2 +yM?]
1
2a§[— + (=) [yp* + M My + M* — M2
-

— (03 [% +(1-y)[2y—1)p>— M2+ M2]] } (D.183)
Determining Arf7 /N( )

i ZINMpy - O / dq ( q_)
A = — T 5ly—
fouiw (@) oyp- p- opr ) @rit\Y T p

S(P — 9)7a(a) 4-¢+ [9229-0 — 9-2925] T7. (D.184)

From the é-function we have ¢ — yp_, therefore

_ _GZyMy 2 8 [ dYq q-
Afain() = =3 P 8p+/(27r)45(y_p—-

S(p — @)7a(q) 4+ [9229-0 — 9-292s] T7. (D.185)

Let

155 = % / %6(11 - ;—:) S(p — @)7a(9),

_i/ d4q5(. q-) p—4+tM
oy ) e\’ o) PP —2pq— M2 tie

. i 9a
4iGy— 0 g

=I5 + 175, (D.186)
Performing the shift ¢ — ¢ + p and taking the moments of If® gives

A = 4Gy /(d4‘1 (q—ﬂ’—)"_l (M~ ¢) (a+ +p4)

“op, J (2m)t p_ g% — M? + e

_4ZG/ gy (q +P- )n_l (M) (D.187)

g2 — M? +ie

’
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Using
g +p-\"" q-
e =1+(n-1)—+..., (D.188)
P- p—
and ignoring terms odd in k and using g7~ =g~ ! = gz“ = 0 we obtain
(n—1)Lq g4
=4G, : D.189
/ 27r)4 q? — M? +ie ( )

Wick rotating, introducing 4-d polars and the proper-time regularization gives

Ga = 'y+ S 2
ABS = —F/dT/ dq? q% {M—f— (n — I)Kq%] o Tl M ],

G 7+ —r M?
= dr — [M +(n—1) 27'p_} e : (D.190)
The distribution can be obtained from the moments via the formula
| ) .
f(@) = 5 lim (o —ie) - F(z+ie)], (D.191)
where -
Fa) =32, (D.192)
mn
n=1

wi_ 1 and in—l_ il (D.193)
_ﬂ.‘n——:l,‘—], ™ '—(x_l)ga g
n=lI n=1
we have
G 1 [ M 1 At ,
Fib(y) = - a/d— S D.194
) a2 | 77 L/—1+(y—1)2 2Tp—}e ( )
Now
1 1 1
ot A T gyl D00 (D.195)

1 ! [ 1 | ]
2mi e—ot Ly —1—ie)?2  (y—1+ie)?

1 d 1 1 d
=5 g dm | = =——94 . (D1
211 dy 5—1>I(I)1+ y—l_ig y—1+’i6] dy ( ) ( 96)

If we also use the matrix element results from Agfp’ /N( ), that is

o +
T, —T [p=2a22 (D.197)
My
prpt
FQ’Y+F - F_’7+F2 =S 27,0120!3 (D198)
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we obtain

G, p_
Bs _ _.Ua 2
I = ~ia MN/dT = {2Ma35(y— 1) —

a2a3 d —r M2
— oy —1 L
T My dy (v )} ’

(D.199)
We now consider I2%, taking the moments and introducing Feynman parametriza-

tion gives

n—1
AZS = zgaap+/ da/ (q-“‘p )

[(1 —a)p — ¢+ M] g+ + ap,]
[42 — (0 — a)p? — (1 — @) M2 — aM? + ie]”

(D.200)

The numerator of IZ® becomes
Naw = a”‘l{q+ [—¢-77] +apy [(1 — a)p+ M] }

+§—_{q+ [(1—04)3&+M]-|—ap+[ ]} =

1q @
+——(7(I+Q+)— ,

= a"_l{ap+ [(1 — a);é—l— M] — q+q_’y_} + o1 qpq+ {]b + p+y }

. an—l q;q+{(1 . a)p +M— apyry } NBS surface:1
n1ld d
+ lip_z_ (—’Y+Q+Q+)

NBE') —surface: 2

(D.201)

We first evaluate the surface term, which is
AB5 —surface:1

1

.y / tg 5[0 -a)pt M —apyt|en
= —%9a
(

Opy J (21)*[q? — (@ — @) p? — (1 — @) M2 — aM? + ie]? _
ig, .l / d'q g | M-pyyt . (prM)e!
“Ope) @)t oo \[@-MPtie] bt M2 1)
+
_ 9« 7 B Y R T G ¥
= 3003 oo /dT = [e +£1_1{(I)£_ " e . (D.202)

Using earlier results we have

il 1 1 2 1 2
[ B5—surface:1l _ Ya 7_ /d N R § Ze ™M D.2
eg 39,2 . T ol o 1e + ye (D.203)




D.1 Transverse Feynman Diagrams 159

Therefore

—surface: Ga Q23 D 1 —r M2 _r M2
Igls v h ’L 1671'2 M2 /dT ) [5(y - 1)6 al +5(y)e Ma] N (D204)

We now evaluate the second surface term, we have

ABS —surface:2 = —4 G0 —— ’7+ 0
2p? Opy
1
/ d'q q4-q-g+g+ "' L . (D.205)
(2m)* (g2 — (a2 — @) p? — (1 — a) M2 — aM? + ig]” 0

Using

1 14
#¢'eP¢° — 914 (g™ 9" + gM* ¥ + g7 g*P)

1 1
= @0-qq — 50 (07T HeTT e+ ) = 5t (D.206)
we have
AB5 surface:2 — —ig ’7+ i
*24p% Op,

/ d*q q¢*2[(20: — 1)p* — M7 + M?| o™
( )[q2—(a2—a)p2—(1—a)M2—aM2+i€]3

) ,7—0— / d4q { q4 q En 1 }
= —ig, + lim . (D.207
v 6p_ (2m)4 [q2 — M2 + 7;5]3 aﬂ0+ [¢2 — M2 + zs] ( )

Wicking rotating and introducing the proper-time regularization gives

—surface: ’Y+ 1 —r M? 1 n—1,—1 M?

From .Af,?_s“rf“eﬂ we have

Ip5suriee — g ik o /dT — [5(?/ —1)e ™M 4 (y) e_TM‘?] ;

1672 My, M2
(D.209)
and hence the two surface terms cancel. We now evaluate the second last term
of Eq. (D.201), we have

7B5 _ vyt 9 / d*q Q—Q—Q+q+a'f,fz
e o opr ) @) — (12— ) p®— (L—y) M2 — M2+ il

(D.210)
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Using
1
9-9-9+q+ — 12 7" (D.211)
Therefore, Wick rotating and introducing the proper—time regularization gives
e L ? el (s ]
2n 3847!'2 2 ap_'_ TT QEqE dy
__Ya ’y_i/dTid_g —r[(v2~y)p? +(1—y)M§+yM2],
64m2 p? O 73 dy?
9o 71F 1 2 2 2 2
= — Jdr— |- —-2QR2y—-1)|y—1)p*—M;+ M

~ () [2* - 7 [(2y = )P — M2+ M7 }e—”‘.
(D.212)

Using the matrix element result

B B ptpt
Loy T — T_4"Ty = 2iasas

— D.213
. (D.213)

we obtain

c_ ;. 9aP- 1)(2
5 =zma2a3/d7';{[;—2(2y—1) [(2y—1)p2—M3+M2]]

—(*—v) [2p2 —7[(2y— 1) p* — M} + M?] 2] }e—”‘. (D.214)

We now continue with the evaluation of the remainder of I2?, from the definition
of the moments we have

.0 dq
1515 = —Z!]aﬂ / W{ym [(1 - y)}é-i— M]

+qp£ [p+pivt —p_v] — qpq+ [(1—y)zé+M—yp+7+]d%}

.72
[q2 - (y2 . y) P’ —(1-y) Mf —yM? + 7,5] . (D.215)
Wick rotating and introducing 4-d polars gives
8 oo
IB5 — Jo O / da? a2
2n 167r2 8p+ 0 qE QE'
yps (1= p)p+ M] — =abp vt + a3 [ —v)p+ M —ypiy*] &
0% + (v* — v) P> + (1 — y) M2 + yM?)"

(D.216)
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Introducing the proper-time regularization gives

Bs _ _Ya Y ® 9 2 —rld(y- 24 (1—y) M2 +yM?
L) = 16”2@/d7"r/0 dqz gne [a3+(v*-v)r v yM?]

{yp+ (1 —y)p+ M] - %qiﬂpw*

B 4%_(1% (1 —9)p+M —ypr*] [(2y — 1)p* — Mg + M?] } (D.217)

Integrating over g% gives

Bs _ Ya ﬁ dr N oL (v? )P +(1—y) MZ +yM?]
" 16m2 Op, T
1
{yp+ (A —y)p+M] — —py*
Tp_
-

~ g (A= u)p+ M —ypey] [(2y — 15" — Mo+ M7] } (D.218)

Performing the partial derivative gives

1 2 2 2 2
785 _ Ya / gr Lo [Pt (- M2 +ym?]
n 1672 T 7'6

{(l—y)[l—Ty[(y—l)pQ—M3+M2]] (1= y)p+ M]

1 1
+~F {yp+(3y —2)— — — [1 —2y+Ty(y’ — y)pz]

[(2y — 1)p* — M2 + Mz]] }

(D.219)
Using the matrix element results
[l —T_Ty =202+ —, (D.220)
My
= = ppt
Loyt T —T_4'Ty = 2iagos (D.221)

M3’
Topl'_ —T_pl'y = 2i 0 p*, (D.222)
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we obtain

Bs _; 9a P L 62?0y M2 ym2
I2n - 87T2M—N/dTFe [y yp 4 4 ]

{a';’ (=91 -7y [w—1)p* - M2+ M]] [(1 - y) My + M]

(X3 |: 1 1

3—2M2————[1—2 - ]
+ ( ) ~~3 y+ 7y’ —y)p

[(2y — 1) p* — M +M2]] }
(D.223)

Therefore the full result for Aqfh° v (y) is a sum of five terms, a contact term
(x 4iG,), two surface term which cancel and two regular terms, that is

Aﬁl'fgnaﬂ\? (y) = A'I'-fl“:is( ) + AI f231( ) 2 AT f232 U) =+ A'pfﬁis(y) + ATfQBbs(y):

(D.224)
where
P25 G Z” / dr
[T 21 - M2
2Mazd(y —1 — .22
[ odly 1)~ 290 o) e, (D229
B5(,\ _ Ja 203 2N 3 ETE ey M2
Ar foly) = 3907 My /d’r = [5(y 1)e +d(y)e ], (D.226)

Ga Cp0t3 Z 1 ., B
Arff3ly) = - S [ dr 5 [6y— e +a) e ], (D.227)

Z 1 -7 = .
Arfy a+b)( ) = gl%—wg/d'r e [(s2-9)p*+(1—y) M2+yM?|

{045 1-y) [1 —7y[ly—1)p° —M3+M2]] [(1 —y) My + M]

QasQ
o2 v’ M3z — [2y—1+Ty(1—y) [(y—l)p2—Mf+M2]]
2Mp

[(2y —1)p* — M2 + Mz]) }
(D.228)

Determining Arf5%y (y)
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] ZNMN =X 0 / d4q ( q_>
A = T §ly— =
f a/N( ) 2yp_ p_ 8p+ (27_[_)4 y p_
S0 — 9)7a(q) -2 [9-29+0 — 9129-0] T7. (D.229)

From the é-function we have q_ — yp_, therefore

1 ZyMpy =x 0 dtq q-
Afon®) = =3 raa 6’10+/(27r)4(S YT

S(p — 0)7a(q) @2 [9-2940 — 9429-0) 7. (D.230)

Let

( ') S(p— 9)a(q) @2,

q- p—¢+M
27r @P+p2—2p-q— M?+ice
. Lo
4iGe— 5| %,
{z qﬂ—Mg—HE] Qo
= IP® + 1. (D.231)

The p,. dependence of I can be removed via the shift ¢ — ¢ + p hence
d° =30 (D.232)

Taking the moments of IP® and introducing Feynman parametrization gives

ABS — Zgaa / / (q_+ap ) n—1

[(1—a)p—g+M]q
(2 — (a® — a)p? — (1 — @) M2 — aM? +ie]>

(D.233)

Ignoring terms odd in ¢ and noting g~ = g~! = g~ = 0 we obtain

o 1
ASC = —ig, 6p+/ doao™ !

d'q — B
./ 2m) g2 — (02 — ) p? — (1 — o) M2 — aM? + ie]zl (D.234)




164 D. Explicit Calculation of the Transversity Distributions

Using the definition of the moments, Wick rotating, introducing 4-d polar coor-
dinates and the proper—time regularization gives

- 20 Vo2 (1— o) M2 2
i ap+ / drr / dqi g5 ( 4‘1E) 72 ¢ Tl (o)AMY

/dT —~e —7[(v2-y)p?+(1— y)M2+yM2]

327r2 Bp
= 16 Yo (1 —y)p_ / d'r%e‘T[(yz‘y)p”“*y)Mf?*yMz]. (D.235)

The matrix element we need is T'_v?T'y — [';¥?TI'_ and has the value

_ = _ [ 2asce
F_’)’2F+ — F+72F_ = UN{ 1\42N3 [p+7 'Y —Pb- ’7 i ]

— o5 [Y" T =] }uN = 2ias (@ —a3). (D.236)

Therefore

9o ZNn M
Afpon(y) = as (as — as) # y(1-y)

/d’l‘ % e_T[(yz_y)p2+(1—y)M£+yM2]_ (D.237)

Determining Arf57(y)

) ZNMN —)\/ d4q ( q__)
I ) 3=
Afnw(®) = 2yp_ p_ (2m)* -
S(p— a)7a(a) 9- (9229 — 9-2g2s] T°. (D.238)
From the §-function we have q_ — yp_, therefore
i ZyMyn — [ d%q q_
A = ' | —=60ly——
f a/N( ) 2 p_ (27‘_)4 Yy D_
S — )7a(@) [9229-0 — 9-2g25) T, (D.239)

Let

IBS:/(Z;) 6( 2 )S(p q)7a(9),

P-
=/ d'y o q_ p—d+M
(2m)* @?+p?—2p-q— M2 +ic

. i 9a
[T S—
[Z - M2 +tie

=17+ 17" (D.240)
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Performing the shift ¢ — ¢ + p and taking the moments of I{° gives

. d'qg (¢ +p-\"" (M—g)
AlBJ:4’LGa/ (271’)4 ( D ) m (D24].)

From a similar calculation in Ar leBf/N we have

G p— 1 (D18 % d _ 2
BT _ _;Ya P— S o Ma2sy—1) — @ sy —1 TM?
I Va2 My /dT 2 [2 o8y —1) T My dy oy )} ¢
(D.242)

We now determine 127, we have

IB7:/ 05y - o= pogr ¥ i
2 (2m)* p_) @?+p2—2p-q—M?2+ic | ¢?— M2+ig|’

(D.243)

From Ar fga /N We obtain

a | N
L = 12 2 /dT 2 el v)rP+ - M)
s T

{(1 —y)p+ M+ % [(2y _1)p? - M2+ M2] } . (D.244)

Using the matrix elements from Ar fgf/zv gives

BT __ - Ga P- 1 —r|(y2—y)p?+(1— )M§+ M2
e - vl et
Qgxg

2My

{ag (1 — )My + M)+ 22222y = 1)p* — M + M2] } . (D.245)

However we must also include the a surface term, which did not contribute to
Arp fga /v because of p, derivative. This term has the form

+
ATB;7—surface =4 Ja :;IT

1

/ d'q q_gio"!
2m)* @2 — (a2 — a) p? — (1 — o) M2 — aM? +ie]*|
+ d4 . g n—1
:igal/ q4{ - qi' — — lim 2qq+£ - 2}.
p-J @m)t | [¢2 — M2 +ie]® -0t [¢2 — M2 + ig]
(D.246)

B7—surface

m we obtain

Using the results from .4

. §a Q203 P_ il _r —r
IB7—surface =34 916;23 % /dT ﬁ [5(y - 1)@ Mm? + (5(y) e M‘f] i (D247)
N
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Therefore
G, 7 1 g0y d
B7 a 4N 2 203 _r M2
= —— — |12Moaz6(y —1) — — oy — T
Afpayn(y) = —5 3 /dT = { 0y —1) = 7, 0 1)} e
_ 92N /dT 1e—T[(y2—y)p2+(1—y)M3+yM2]
1672 T

Qa3
2My

/dT % [5(y —1D)e™ ™ 4+ §(y) e‘TMg] . (D.248)

{ag (1= )M + M)+ 222 |2y — 1)p? — M2 + M?] }

9o 0203 I
3272 My
Summary of Results for Arf gx /N(y)

The full result for Apff /v(y) contains seven terms, that is

Arfh n(y) = ApfP + ApfP2 4 ApfP
+ ArfPt + Arf? + ArfP® + ArfB7. (D.249)

Both Arf5(y) and AfB7(y) contain one contact term, however these terms
cancel, AfP7(y) also contains a surface term which we give below as AfZ7(y).
The full result is

AfPi(y) =0, (D.250)

9o Z 12— \p2e(ie 2
AfPy) =~ L [ dr 1 el eo- e

{(j\ff [1+71~y)[(2y - 1)p’ — M + M”]]

+ 2103 (1 —y) [(1 —y) My + M]}, (D.251)

AfP(y) =0, (D.252)
Ba,y _ JaZnMn —r[(v2-v)p*+(1—y) M2+yM?]
Afy) = 2Ny [ar e
1
{2a§ [; +(1—y) [yp" + MMy + M* - Mj]]
1
— Q203 [; +(1-y) [(2?/ —1)p® — M + Mz]] }, (D.253)

0wz IR e .
Bag?(s) = Yt [ L o

{a§ Q=91 -ry [y —1)p" - M2+ M?)] [(1 - ) My + M]




D.1 Transverse Feynman Diagrams 167

[aD]0 %}
2My

+ [szfv—(2y—1+Ty(1—y)[(y—l)P2—Mf+M2])

[(2y —1)p* — M. + M2]] } (D.254)

9o Zn My
a—.l&r—z—y(l )

/ - % Tl -0)pHa-ME+u] () o55)

AfBG(y) = a3 (a3 — @)

w2 | —y)M?
AfF(y) = _9167r12v / dr —e [(*—v)p*+(-u)MZ+um?]

Qali3
2My

go Q203 Z 1 . .
AP W) = e | 4 = [Bu=De r s e ] (D28

{a§ [(1 —y)My + M]+ [(2y —1p? — M2 + MZ] } ,  (D.256)
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D.1.4 Transverse Mixed Diquark Diagram

In the calculation below we calculate the two diquark mixing diagrams together.
That is, the diagram where we have an axial-vector diquark — operator insertion
— scalar diquark and the opposite diagram scalar diquark — operator insertion
— axial-vector diquark. We have

Aqu(Dm)/N(x) — Z'FN / (3734 (57:;4 5<$ — I]j__) S(p - Q) Tau(q)Ts(q) F?V

iTr [(0_1’7572ﬁA) (Sk)Y* 7' 5 (1 £ 72) S(k)) (W“CTszﬁA/) (g - k‘)]

+4iTy / (‘2134 / (Z:; 5(:0 — z]j__> S(p— @) 7s(@)Tue (@) Ty

iTr [(O—lyumﬂA) (S(R)yTy sd (1 4 7,) S(k)) (%CTQﬁA’) ST(q — k)] .
(D.258)

Using CST(—¢)C~! = S(qg) and Tr{T°T"*} = 304y where T% = 2, pA= \/g)\A
and hence Tr{#484'} = 3Tr{MA\4} = $ X ATr{TATA} = 3644. Also the
isospin trace for each diagram gives, respectively

%Tr [72 (1 £ 7)) 7yma] = %Tr [ToTiTo] £ %Tr [T T, T;72] = % + Tr [r,73] = 64,
(D.259)

%Tr [rori (1 £ 7,) 1] = %Tr [ToTiTse] £ %Tr [ToTi T2 2] = :I:%Tr [1:72] = £6is.
(D.260)
Therefore we obtain
= dq [ d'k k_ N
Ardawn/n (@) = i / @)t | (2m)e 5(”3 T ) S =) 7ould)

6iTr [1S(k)v* ' S(K)¥*S(k — q)] 7a(9) TS,

= I =g d*k [ k>
T _ = _
+il'y / ) / o) 5(37 p_) S(p—a)7s(9)
6:Tr [7“S(k)'y+'yl'y55(k)’y58(k — q)} Tuo (@) T
(D.261)
We have dropped the isospin part, as this coefficient will be evaluated later and
inserted an extra factor of 2 which will be cancelled via the final isospin factor.
Using
Tr [v5S(k)vt s S(k)Y*S(k — q)]
= —Tr [¥*S(k)v 7' 165 (k)5S (k — )] + 2 (R — ¢*) Tr [vsS (k)7 v S (k)]
= ~Tr [ S(k)vty 1S (k) S(k — q)] (D.262)
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since g™! = 0, we obtain

Ar fopayn(T) = —i f (;i;q)4 [ &'k ( )Tw (9)7s(q)

{T%¥S(p—a)Tw —TwS(p— g F}’V}GZTY [755(797 75 S(k)yS(k —q)]
(D.263)

where in the last line we used 7, = 7., and 7,,7; = Ts75,. Inserting the identity
in the form 1 = fol dy fol dz&(y — g—:) (5(z — ’;—:), which implies 5<x — ;f-:) —
d(z — yz), we obtain

Aqu(D,n)/N = —Z/ dy/ dz 5 x—yz
dq q_
/(27r)5 A Tou(@)7s(@) {Tn S(0 — @) Tw —TwS(p — ¢) T }

[ k- o ,
6i [ W&(z_ q—) Te [sS(k)r 7135 S(B)17#S(k — 0)].
(D.264)

We define

4
Arfopa.(2,¢%) [a'9"" —qtg"] =6i f (d ]; 5<z — ];—:
Tr [755 Y5 S(k)v*S(k —q)], (D.265)
Ap fp, v (Y, p?) = —’i/ (or ( )
{TvS(p—q) FN - FNS(;D q P”} [ gt —qtg"].  (D.266)
Therefore
Arfymmn (@ / dy / dz 8z — y2) Arf @ 5?) Arfyn.(zd).

(D.267)
If we make the on-shell approximation for the diquark we have

At oDy (T) f dy/ dz 8(z — yz) Arfp,N(y,p?) Arfyp.(z, Mp).
(D.268)
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Determining the quark in the diquark: Arf,/p,. (2, M%)
We have

[ d*%
Aqfonn(2,4") [a'9*" — a9 = 62/ (2n)s
k_
55— ) e oSk S - )] (D269
Using the result
Tr [y5(K + M)v" o'y (F + M)y"(k — ¢ + M)]
= 8[(k g — k" ") k- g+ (k' — k') K]
+4 (K — M?) [(kT +q) ¢*' — (K" +4¢")g""], (D.270)
where we have used g1 = 0 in the last line. Letting

Aqu/Dm (Z, qZ) = ATfA(zv q2) + ATfB(za q2)a (D271)

where
e ) '] = [ 2
T Z,q q4g q g - 7 (271')4
5(z - k—‘) (k' gt =kt g ) k-q+ (k*q' —k'gh) k*
q-) (k2 — M2 +ie)® (k2 4+ ¢ — 2k - ¢ — M2 4 ig)’
(D.272)

4
ArfB(z,¢?) [a'g"t — gt o] = 24i / %
a(Z - k_—> (K — M?) [(k* + %) g — (' +4")g""]
q-) (k2 — M2 +ie)* (k2 + ¢ — 2k -q— M2 +ig)
(D.273)

Using the Feynman parametrization results of section A.5 and taking the mo-
ments gives

1 &k [k +ag \"'
Al 1“+—+“1=96i/ dal—a/ ( )
[¢'g"t — gt g"] i ( ) 2y =

([0 +aq) ¢ (* +aa) o) [k-a+ o]

[ o) o~ (g o]+ o}

[k — (o® — @) ¢® — M? +ie] . (D.274)
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Considering just the numerator, ignoring terms odd in k and using g™~ = g~ =
g2 = 0 we have

NA [q1gu+ _ q—l-gul] —(1— a)an—l{ [klqul " q1(aq)2] gt
— [k*kq + ¢ (0g)?] g** + ErkAgt + olqlqtqT — Krkrgt — aquq“(f}

k_ d
+(1- a)q—{a g krq g"" —aqt kg g" +ogld R — aq1q+k“}d—a”‘1-
. 84

(D.275)
Cancelling terms and integrating by parts in do gives
N2 g 9" —qtg"] = (1 - a)a”‘l{klqul g“t — k'ktgt
+ kTR — kTR g_g" + (aq)? [¢'g" — g g"'] }
= 04”‘1%(1 —a)akik- [ql ¢t —q* g’”]

1

. (D.276)

+(1—-a)" 'akik- [ql gt — gt g“l]
0

where the surface term is zero. Using the relation

d*k kHEY 1 dik k2
=49 D.2
f (2m)4 (k2 — A+ i) 4 ) f (2m)t (k2 — A + i)™’ (D.277)

and ¢g'' = —1 and g~+ = 1, we obtain
k2 k2 k? k2 d k2
A n—1 2 n—1
=(1- — 4 — _— —a—— —. (D.2
N&=(1-oa)a {4+4+(q) 1 a4da]+a 1 (D.278)
Therefore from the definition of the moments we have
k2 k2 d k2
J (1—z)[z2q2+——z——z]+z—
ApfA(z,q?) — 96i [ 2F £ TAE]T1 (pa)

(2m)* [k2—(22—-2)g?— M2+ ie]®
Wick rotating, introducing 4d-polars, then the proper-time regularization gives

@i] _ Lk

k2
i By B 2 n (1—z)[z2q2——f+z 4 dz 4
Arf (ZaQ):_g dkg k% 3
™ Jo [k + (2% — 2) > + M?]

- % /dT {(1 —2) [zqu - % - %z (22 — 1)q2] - 2—‘1} e~(# =)+
(D.280)
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Therefore
1
ArfA(z¢%) T on2 /dT [ 1—2z)¢® — —] ], (D.281)
We now evaluate Arf5(z,¢?), taking the moments we have

n—1
AB [¢'g" — gt g"] = 24 / / d*k (k‘ +aq_ )

[m++u+amn¢d—wuwr+®¢mw]

5 (D.282)
(k2 — (a? — @) ¢ — M2 + i€]
Ignoring terms odd in ¢ and noting g7~ = g~ = g=2 = 0 we obtain
1
AL [¢'g" — ¢t o] = —24z'/ daa™t
0
d*k (1+a) 1t o+ ot
— . (D.283
/(27r)4[lc2—(ozz—a)q2—M2+i6]2 l7's 79" )
Therefore from the definition of the moments we have
d*k 1
ArfB(z,¢?) = —24i/ 1 (1+2) —5. (D.284)
GV [ — (22— ) ¢ — M® +ie]

Wick rotating, introducing 4d-polars and the proper-time regularization gives

ArfB(z,q%) = -2 (14 2) / drr / k% k2, e TIREH(F—R) M (p ogr)
Therefore
3 1
ArfP(z,q%) = 55 (1+2) / dr — Tl =)atar] (D.286)

Therefore the final result is

Arfyn.(2,4°) = 2i7r2Z /d’l’ [(1 —2)¢* + %J e~Tl(#==)at M) (D.287)
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Determining the diquark in the nucleon: Arfp /v (y,p%)
We have

ATfD,n/N(y?pQ) — —z‘/ (;L:Tqy 6 <y - Iq)—_) Tou(@)7s(q)

{ftlfv Sp— ¢)Tn — fNS(p —q) I‘;fv} [qlg/H- _ q+g“1] ,
— Zn My d*q _E)
- / @’ <"J » ) a(9)7s(a)

p_
{ql [T+S(p —q)T —TS(p—q) F*] —q* [TIS(p —q)T—TS(p—q) Fl} } :
D.2

88)
We define
= / (erq)4 5 (y — Z—:) 7a(9)75(0)S( — @) &', (D.289)
B __ d4q = +
1% = f ) 5 (y ~ p—_) (@) 7s(0)S(p — @) a7, (D.290)
therefore

. In M,
ATfDm/N(y7p2):7'a1 A;) ol

{ [f+IAF _TrA F+] - [TlIB r-T15 Fl] } = Arf4— ArfP. (D.291)

Using the result

; i Ya : t ga
N = 4 Fog o —— 4 s : 3
7a(@)7:(q) [ G = T M, = 716] [ e 7 - za]

3 1
=—16GGGS+[4Gags+ lats ]q

M2 — M?| ¢? — M2 +ie
9a 9s 1
4G,9, — ——,  (D.292
+[G9 Mg—Mf}q?-hMj—i-ze (D-292)
we have
IA — IAl +IA2 +IA3, IB . IBl +IB2 +IB3, (D293)
and hence

ApfA = ApfA + Apf2% + Arf®, ApfP = ArfB + ApfP? + ArfP2.
(D.294)
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Determining Az f4(y, M32):

We first determine the individual parts of I4, we have

‘q _ 9 p—g+M 1
A 1GGG/ 6( p>q+p T 9q p_ Mi1ic g. (D.295)

Taking the moments and performing the shift ¢ — g + p, we obtain

d'q (¢-+p \"" a(M—4g)
Al — 166G, Gs/ —_— D.29
An ¢ (2m)4 p_ q? — M2 + e (RE50)
Ignoring terms odd in ¢ and noting g=! = g~ = 0 we obtain
d4q _q2 ,},1
Al _ 1
A =16G, G, / eri = M2t ie (D.297)

Wick rotating, introducing 4d-polars and the proper-time regularization gives

A = G G /dT/quqE (143) ‘T[q§+M2]

a ] 1 —_
=i%71 /dT = e TM? (D.298)
T

Using the following method to obtain the distribution from the moments

1 : .
f(z) = ord ehlggr [F(z —1ie) — F(z + i€)], (D.299)
where .
= D 2 (D.300)
0
we obtain o X
"(y) =id(y 77 /d'r = e ™M, (D.301)

Therefore we need the matrix element f+'yl [ — Ty'Tt, where in general we
have

. _ 1
FMQF —I'Qr* = Un o ]Z—N (’)’59 - Q’Y5) + a3 (’)/5’)’“9 = Q’)/”’)’5):| UN. (D302)

Therefore
w1 Tl P+ — 1 . +41 p+
D'y T ~Ty I = 200-— Unvsy un + 203 Unysy yluy = 22— (a3 — ag).
My My
(D.303)
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Hence
G.G, 7 1
Arfi(y) = 8y - 1)a1—7r2—N (az—a’3)/d7' 5 oe M? - (D.304)
Evaluating I4?, we have

9a Js
IA2(Z/) = l‘l Gags + m}

/ﬂ(; (y_ ‘?_—) L s g'. (D.305)

(2m)4 p_) @*— M2+ie ¢>+p?—2q-p— M?+ie

Taking the moments and introducing Feynman parametrization we obtain

AA? — |:4G g _|__g&_] /1da
" M~ Mz Jo

/d"‘q <q—+ap—)"_1[ ( [(A—a)p—g+Md
g? — («a

(2m)4 o 2 —a)p?— (1 —a)M2—aM? + ie]®
(D.306)
Ignoring terms odd in ¢ and using g~' = g~ = 0 we obtain
A2 9a 9s ' n—1
Al =[4Gags+m]/o daa /
d'q (il (D.307)

(2m)t [¢2 — (2 — a)p? — (1 — a)M2 — aM? + ie]®

Using the definition of the moments, then Wick rotating, introducing 4d-polar
coordinates and the proper-time regularization gives

Pt
IA2(y)=[4Gags+ Jut ]” /dw

M2 — M2 1672
/ e G;qi) ¢lab+ W —wp MM 308)
0

Therefore integrating over ¢ we obtain

IAZ(,y) _ I:4Ga,gs+ 9a Js :|

M2 — M?

|
i / dr L el -vr -] 309)

3272 T
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Therefore using the previous matrix element results we have

AﬁW@=P%% %%]

M2 — M?2
.7 (ko — (X; ) —7' - .
o /N ];‘T) 3 / [@2-v)r*+(1 WM +yM?| (D.310)

Therefore clearly

AMWM=P&%— %%}

M2 — M?
Zn ((12 — ad) 1 —T[(yz—y)p2+(1—y)M2+yM2]
al—W dr ﬁ e @ r (D311)

Ignoring contact terms gives

Ga gs
ATfA( ) M2

a1 1627; a3) / ir L —Ta—-y)Mf_e—T(l—y)Mz] e +um?] (D.312)
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Determining ArfB(y, M2):

We first determine the individual parts of I®, we have

I31=—16GQGS/(d4) 5( q—> p—g+ M q,

2 p_) ¢2+p?—2¢-p— M?+ic

= _16GaGsyp_/,d4ig<y_q_‘> p—g+M —. (D.313)

(2m)4 p_) @2+p*—2q-p— M?+ic

Taking the moments, where we temporarily drop the factor y to avoid confusion
with the sum over moments, and performing the shift ¢ — ¢ + p, gives

dq (q-+p-\""' M—¢

Bl = —16G, G, ] Lt D.314

A b= (2m)4 D q® — M? +ie ( )
Ignoring terms odd in q and noting g~ = g~~ = 0 we obtain

dtq M—(n—1)g-q4+ Z,—f
o) @ MPtie

ABl — 116G, Gsp- / ( (D.315)

Wick rotating, introducing 4d-polars and the proper-time regularization gives

.Afl . G G /d’l’/ qu qE [M + (n _ 1) 2 2}; :| e—'r[q%;—i-Mz]’
. Ga G ’Y+ —7 M?
=— — |M -1 i :
i =5 P- /dT [ + (n )2T _} e (D.316)
Using the following method to obtain the distribution from the moments
f(z) = [F(x —ie) — F(z + ic)] where  F(z) = i An (D.317)
27m ’ = "’
we obtain
G, G ’Y+ d 2
Bl _ s Ta S - . el _ —TM
=i [ar sy-n - 72 Saw-n| e

(D.318)
where we have reinserted the factor of 4. Therefore we need the matrix elements
T'T—TT! and flfy*' I' — Ty* I'!, where in general we have

n
T'QT —TQT* = uy [az 1@

(15 — Q5) + a3 (7772 — Qy* ’)’5)] . (D.319)

Therefore

T'T—TT! = —20s, (D.320)
+

DAt T —Ty* Tl = 203 2, (D.321)
My
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and hence

G,Gs Z
ATfBl (y) = O410‘3TN Y

1[1d o
/dT;[;@5(y—1)—2MMN5(y—1) e M. (D.322)
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We now evaluate 52
‘We have
IP2(y) = |4Gaga — 28| yp_ /ﬂé g o=
e M2 — M2 2r)r \" po

1 p—d+M

. (D.323
Q2 — M2+ie ¢>+p>—2q-p— M2 +ie ( )

Taking the moments (again temporarily removing the factor y) and introducing
Feynman parametrization we obtain

B2 __ ga Js g— +ap_
A |:4GagS ] / da/ 27T)4 ( )

¢+M]
4% — (« 3—&) —(1—a)Ms2—aM2+ie]2'

n—1

(D.324)

Ignoring term odd in ¢ and using g~ = g~ = 0 we obtain

AB2 [4 Ga gs ga s ] P / dai

/ g ant[(L-a)p+ M)~ T g g o
@r) [ — (a2 — o) — (1 — @) M2 — al® +ie]”

b

90 9 ! 1
= aYs n—
- s g o [ e

/ dtq L—a)p+M+Tq g i
2m)* g2 — (o — a)p? — (1 — @) M2 — aM? +ig]?

Ga Gs
+ [4Gags+ W——]Mszjl p-—

/ d4 —_— q g+
(2m)* [¢2 — (a2 — a)p? — (1 — @) M2 — aM? + ze]
(D.325)

We first determine the surface term, we have

A713’2:surfa,ce — [4 Ga s + Méga_g‘zwzjl ,7+
a s

/ il { ! e } (D.326)
(2m)4 ik [q2 — M2 +ie]®  [q2 — M2+ )’ '




180 D. Explicit Calculation of the Transversity Distributions

Wick rotating, introducing 4d-polars and the proper-time regularization gives

+
B2:surface __ Ga Gs Y il —7 M? n—1_—7 M2
A _W[4G“%_%AP——AP}32#h/dTF5{e e }'

(D.327)

Summing over the moments and reinserting the factor y gives the result

+
IBZ:surface =i l4 Ga 3 Ga 9s yy
i Ry vy v Eepwe

/ dT% {5(y —1)e ™M _ 6(y)e_TM82} . (D.328)

Noting lim, o yd(y) = 0 and using the earlier matrix element results, we obtain

B2:surface _ Ga s N ZN i —r M2
Arf (y) = {4 Gogs + M2 - M2 Mf] oy —1) nasTe /dT e .
(D.329)

We now continue with the regular part of I®2. Using the definition of the
moments Wick rotating and introducing 4d-polars gives

B2 =4 |4 0 Js 9o 9s yp-
I@){G9+w—w1w

+
/‘fqz L-yp+M-L-ad
E 1F
a7 + (% — y)p? — (1 — y)M2 — yM?]

Introducing the proper-time regularization, then integrating over ¢Z gives

5. (D.330)

IB2()) = 4 4G, g, Ga 9s ?JP—‘
@)4 9 32— 12| 1672

+
/dT1 [(1 —y)p+ M — Jiw e Tl a-nmum?] p 331
ST 27 p- dy| |

Using earlier matrix element results and

fl;y)I‘ - Tﬁ Fl = 20!3 MN ﬁN’)’s’YluN = —20.’3 MN, (D332)

we obtain

L ) 90 9s Yyp-

2
/mgmml—wa+mw+11%%—1ﬂéﬂWWWHPW%WMﬂ
T MN
(D.333)
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Therefore

IP2(y) — —icg | 4Gy g, + — 292 }yp—

M2 — M2 | 1672
/d’r 1e—T[(y2—y)p2+(1—y)M3+yM2]' (D.334)
T

[My + 2M]

Hence, the full ArfB(y) result is

G.GsZ
ArfPi(y) = 041053—7& Y
1[1d M2
dr — |- —d6(y—1)—2MM -1 . )
[ [Tdy (y—1) e )] (D.335)
B2 Ga Gs ZN MN
Baf7() = [1Gag+ 320 | anea D02 bty 201
/dT 1e (W -y)p?+(1—y)M2+yM?|
-
ga g-‘i ZN 1 _TMZ
+|:4G“93+M3_M3:| 5(y_1)a’la3i@/d7'§e .
(D.336)
Therefore
B3(,\ _ 9a 9s Zn My
Arf>(y) = [4 Gs 9o — W—Mz_] 0410«’3—16—2 [My +2M] y
/ dr 1e—T[(yz—y)p2+(1—y)M2+yM2]
-

a Ys Z 1 _ 2
+ [4nga— _g__g_] 5(y—1)a1a3—:/drﬁe M,
(D.337)

Ignoring contact terms we find

Ga 9s ZN MN
M2 — M2 16

/d’l’ - |:e—'r(1—y)M32 _ e—T(l—y)Mf] e (s (D.338)

ATfB (y)

[My +2M] y
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Summary of Arfn. /~(y, M3)

We have

Arfp, /v (Y, M%) = ATfA(?J) ~ Arf? (v)
= ApfA + Arf2 + A f2 — ApfB' — ArfB2 — ArfB3. (D.339)

where
G.GsZ 1.
ArfH(y) = by —1) TN o1 (a2 — as) /dr e L (D.340)
Zn on (g — ag)
A2\ — |4 9a 9s N O Qo 3
Bef ) = [4Gog,+ gt ] Fvenles
/ dr %e—f[<y2—wp2+(1—wM3+yM2], (D.341)
L Zyoq (ag — a3)
A FA3 () = 4G, g, — 9o 9 N3
rf ) [ 9= Mz = 12 1672

/ dr %e—f[@z—y>p2+(1—v>M3+yM2], (D.342)

G.GsZ
ATfBl(y) = 13— 7r; N Y
111d 2
I -1 = _ - M
/d’l’ = [7’ dy&(y )—2M My é(y 1)} e ,
(D.343)
Baf™(y) = [4Gug + 2ol ]
Zn \ .
Q03— AZN [My + 2M] y/d’r le_'r[(yz_’/)”2+(1_y)]"fa%y]"[ ]
167 T
Z a g8 1 i
+ oy 8(y — 1)%/(17 Se TM?(D.344)
ArfP(y) = {4 Gaga — Mgfgw]
Zn M,
010‘3% [My + 2M] ?//dT %e_T[(yz_y)p2+(1_y)M§+yM2]

ZnGs g, 1 e
+ ara3 0y — l)NTﬁi/d‘r ¢ MY (D.345)

where we have canceled terms between Arf5%(y) and ArfP3(y).
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D.2 Summary of All Feynman Diagram Results
D.2.1 Scalar Quark Diagrams

Spin-Independent

. a?Zng
() = W (1-2)

/ dr {% +a [(My + M)* — M] } e (=) MiraMEi+(-2)M7] () 346)

Spin-Dependent

8 OA2GSZ | —7 M? azgsZN
Afn(z) = 6(z) 116W2N/dT;e M™ 4 1167T2 (1-1z)

/ dr [(z My + M)* — ﬂ o7l M+ a M+ a-2M?] () 347)

Transversity

OéZGSZ ]\4-2 1 —r M2
Arfi(e) = @) LI [ar e

Oé% Ja ZN
1672

(1—z)(z My + M)* / dr e~ Tl(#?-2) ME+eMI+(1-2)M?] (D.348)

D.2.2 Axial-Vector Quark Diagrams

Spin-Independent

(@) = 28 (1) [ar eIt et
T

1
{(Ol% — 2042053 — 20&%) [; +x [(MN — M)2 — Mf] - 120[%.’1,'MMN} .
(D.349)
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Spin-Dependent

a GsZ 1 e
Afpn(z) = _5(m)T7rév (03 — 2003 + 203) /d’r;e M

gs ZN —‘r[(:z;z—ar:)M2 +:1:M2+(1—:1:)M2]
1- frtaM;
+ T2 ( a:)/d’re

|
{(ag — 20503 + 202) {; — (zMy — M)ZJ —4MMy ag} . (D.350)

Transversity

Go Zy M? 1 - pa
Arfine) = 5) 5 (0 ~20s0s) [ar ke

L ga Sy (1-2) {(a% —2012013) [z My —J\/I]2 —4a§MMN:c}

1672
[ i elepraniom) g5

D.2.3 Scalar Diquark Diagrams

Spin-Independent

1 1
fooyn (@) = /0 dy/o dzé(z —yz) fayp()fyn(l — ), (D.352)
where
1
; 3 TR 1 —7|(z%2—z) M2+ M?
q/D(Z) = mQS(Ms) / lIR dr {; - (:B2 — w)Msz} ¢ @-a)MZ+ M ],
(Ayy)?
(D.353)

and qS/N(l — g) is just the spin-independent scalar quark diagram.

Spin-Dependent
Af;(D)/N(.’B) =0. (D354)

Transversity
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D.2.4 Axial-Vector Diquark Diagrams

Spin-Independent

: 1 1
foyn (@) = /0 dy /0 dz6(x — yz) forp(2) fyn (1 — ), (D.356)
where

o) = 22 (22— 2) [ ar a2 - ) - 7| T, (o)

and f;/N(l —y) is just the spin-independent axial-vector quark diagram.

Spin-Dependent

N e ] dy [ d26(x - y2) A () AfSn(y),  (D.358)
where

Afep(z) = _3% / dr {@ —2(1- z)Mf] e~Tl(#-2)Mi+1] (D 350)

272

o 039.Z
AfD/N(?J) = 3167r2N y/dT
{140y o+ My 2] oo,

(D.360)

Transversity

Arfipyn@) = 3 / / 5(s — y2) Arfln () Arfh (), (D361)

IeA,B

where

M 2 2
Arfhn (2) = —ga on [ dr L erl(-2iear] (D.362)

272 T

Arfyn, (2 )—gaﬁj\—lz 1—z)/dTe o) MM (D.363)
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1672

{sz\if(;f [%+(1—y) [(2y-1)p2_M2+M2]]

Anga/N(y) = el /dT ¢TI —v)p*+ (1) MZ +y ]

+205 (1 —y)[(1 —y) My + M]}, (D.364)

gaZ 1 —r[ (2 =) p2+(1— 2 2
Ang,/N(y) =1— 167r]2v /d’l’; el (v —v)r+ - ME+y ]

1
D 4 2y(1 — y)ME + [(2y — 1))MZ — M2+ M?]
2Mpy | T

[1 +y+7y(l—y) [y — )My — M7 + MQ]H
— oy {(2:!/ ~1)My — M +7y(1 —y)
[2y2M§, —[(2y — 1)My — M] (M2 + M2 — M?)” } (D.365)
The function AfF /n(¥) also has a surface term of the form
Aq fBsutace(y) 9o Q203 ZN

3272 My
1 -7 —T
/dT 2 [5(y— De™™ 4 §(y)e Mg] . (D.366)

D.2.5 Mixed Diquark Diagrams

Spin-Independent

a(py/n () = 0. (D.367)

Spin-Dependent

D)/N Z / / é(z —yz qu/Dm( )AfD,n/N() (D.368)

IcA,B
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where
4 (5 0?) = S (1 - 2) / dr eTl(P-2)a407], (D.369)
1 2 2 2
fq/nﬂ(z q’) = [T +22(1 — z)q } e~ Tl(#-2)a+2r?] (D.370)
The diquark term has the form
Afh () = A7 (y) + AFP(y) + AfP(y) + AfEERe(y), (D.371)
where
G, GsZ 1
Af(y) = o 2—7T2Ny/dTﬁ [2 [y My — a3 (My + M)]
2 dl|d 2
S(y—1)e ™ (D.
~ar 2] sy - ner s
Z
A FA2 — 4G, Ga gs Q14N
{2 . (M2 + M? — M?] — o [MN+M]}
(2y — M2 — M2 + M?] / dr L lt-or st g7g)
A3 . . 9a s o Zn
Af (y) - |:4 GS Gda Mg _ Msz] 1671'2 Yy

{O‘ [M% + M? — M2]—a3[MN+M]}

[N}

(2y — )M} — M7 + M”] / dr %e-f (W= +0-oME] (D 374)
suriace o Z
AfA0(y) = (y — 1) (Gaga + Gata) 4 3

1
/d’r—2 [ag M + (a3 - O[z)MN -+
T
ZN 1 gags —T M2
+ 5(:1/) 967{'2 [a518%) /d’l’ﬁ{ |:4 Ga Js + M—g——Mf} e 8

+ [4 Gsga — —Mzga—gi\/[?} e_TMg}.

(D.375)

—7 M?

)¢
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a1 Zn Gy G
A.fBl(y):_ - 1\;_2
1 d —TM2
dTﬁ 20 M é(y — 1) — dy(s( 1)l e ,

(D.376)

B2 _ 90 9s a4y
Af [4 Cagot 3 M2} 82

{as 1—y) 2M [(2y—1)M§,—M3+M2]}
/ dr %e_f[(yz—y)szr(l—y)Mf +M°] - (D.377)
. _ 9a9s | uZn
Af [4 Gs 9o M2 — M2:| {72

/ dr %e_T[(yz—y)p2+(1—y)M3+yM2], (D.378)

N ajo 1 2
A Bsurface =&(u—1)[4 s 4 0 s N (12 / . —j'M

Zn i1n 1 Ga s Y
+0(0) pog? /dTﬁ{ [4Gags 7 =ik

_ Ga s —'ng
+[4nga —Mg_Msz]e }

(D.379)
Transversity
1 1
ATf;(lD)/N(x) = /0 /0 8(x — yz) Arfo/p. (2) Arfo,.n(Y), (D.380)

where

Arfo/pa(2,47) = ;’?z / dr [(1 — )¢ + %J el(#==) %] (p 381)
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and Az fp,/n(y) has the form

Arfo.n() = Arfh n@) — Al n ()
= ArfA(y) + Arf*2(y) + ArfA(y)

o ATfBl(y) _ ATfBZ(y) o ATfB3(y) _ Asturface(y)’
(D.382)

where

G. 6.5 1 e
ArfA(y) =d(y — 1) TN a1 (ag — 3) /dT e M (D.383)

ATfAZ(y) _ |i4Gags+ Ga gs j|

M2 — M?
Zn o (g — as) /dT 1 T[(yz—y)p2+(1—y)M3+yM2], (D.384)

162 2°

(ﬂ_fg
ArfPB(y) = [4 Gs 9o — ﬁg}
a ]

Zy o (a2 — ) / 1 - [@2—y)p?+(1—y) M2 +yM?]
e T a D'
1672 o 72 ° - (eis)

G.Gs Z
ArfP(y) = OllO!3TN Y

1 1 d _,’_M2
/dTﬁ {; d—yé(y—l)—2MMN5(y—1) e , (D.386)

ArfP(y) = [4 Gags +

Zn My
1672

ga gs
M2 — M2

(My +2M] y / ir Ll -vp+a-pmzrm?]
T
(D.387)

Q103

N R R

—— [My+2M]y / dr 1e-f[(yz—y>P2+<1—y>M3+yM2],
T
(D.388)

— i 9 (Ga gs + Gs ga) / dr %e_TMz. (D389)
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Ignoring contact terms we find

A Ga 9s Zy (ag — a3)
Arfp.n(y) = M2 — P 16
/ dr % [e—f(l—y)ME = e—T(l—y)Mf] 6—T[(y2—y)p2+yM2],
(D.390)
9a 9 Zn My
Angm/N(i‘/) . M2 - ;Wszalas 1672 [My +2M] y

/ dr & [e—'f(l—y)Mf — e—T(l—y)ME] Tl +uM?]
N

(D.391)




Derivation of the Infinite Nuclear
Matter Distribution Function

We begin with Eq. (5.26) which has the form
V2 _V2p-
fnia(ya) / o )4 P [v* Svo(®)] (E.1)

EF

where

3V + My
Snol) = ir P T sy 3V~ E)O (o~ 7). (B)
p
Evaluating the trace gives
p+ — 3Vt
E, '
Using the delta function to remove the pg integration in Eq. (E.1) we obtain

2 [ &% E, +3Vp +p? o Ep+p°
Irnalya) = ;/W(S( A= T—) O (pr — |P) B (E.4)

Making the change of variables

Tr [v* Swp(p)] = 4im 8 (po — 3Vo — E,) © (pr — |P]) (E.3)

E 3
=B 41, = d=2TP g (E:5)
P
Therefore Eq. (E.4) becomes
d*pL £+3W
d — — 7). :
puntun) = 2 [ T o(ua— 0V 0 e 7). (B6)
The constraint imposed by the ©-function can be re-expressed as
Or—7)) — ©r-7f-(—Er)]. (E.7)
Therefore, using the remaining delta function to remove the & integration, Eq. (E.6)
becomes
d*p1 2 _ =2 2
fN/A(yA) p (27T) EF @ I:pF — Pl — (EF Ya — 3‘/0 - EF) :| )
1 o _,
- / #5 er O [ph — P2 — (erya—er)].  (ES)
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Using

1
/dzﬁl — 27r/dp — ﬂfdp2 and p? — Epz, (E.9)

we obtain

Fralya) = 15 :
1
~om2p

1 i
p/dpzsp@{p%——ﬁ—efm(l—y/a)z ,

er [py—er(1—ya)?]. (E.10)

The density is related to the Fermi momentum via

2

2
P= 32 PF (E.11)
Therefore we obtain the final result
3 (er\’ | [pr\’ 2
== — ) —(1 - . 12
Fnya(ya) = 7 (pF) !(EF) (1 —ya) (E.12)

25 |

2.0 }

fnya(ya)

0 02 04 06 08 10 12 14 16 18 20

Figure E.1: Plot of Eq. (E.12) with values for the Fermi energy and Fermi
momentum taken from chapter 5, namely er = 924.3 MeV and pr = 263 MeV.




Dirac Equation with Scalar and
Vector Potentials

F.1 Coordinate Space Derivation

The Dirac equation with spherically symmetric scalar, V;(r) and vector, V* =
(Vo(r), 6), potentials has the form

(i ¥+ BIME) = V()] + Valr) | ¥(r) = B(r), (F.1)

@:(03 g) ﬁ:(ﬁ _‘i) (F.2)

It is easy to show that the operators J2, J, and P = 7P commute with the
Hamiltonian, and hence their eigenvalues are constants of the motion. Simulta-
neous eigenfunctions of these operators can be written as

™) = () = (6. 3)

where the spherical two-spinor has the form

Qesjm(e, ¢) = Z <£ my s ms'j m) }/Zme (07 ¢) Xsmyg - (F4)

me,Ms

where

The spin vectors are given by x11 = (§) and x1 1 = (9). Recall that the
272

22
parity operator acting on the spherical harmonics gives
P Y'Zm (9a ¢) = Yvém (7'(' - 9, ¢ + ﬂ') = (_1)Z YZm (97 ¢) 5 (F5)

hence

(F.6)

Pan() = ( (1) F(r) Qesjm(0 ) ) |

- (-1)" iG(r) Qi (05 8)
Therefore if 1;,,(r) is to be an eigenstate of parity we must have {=/¢+1. Now
if £ and s couple such that j = £+ %, in order for £ and s to couple to give the
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same j we must have £ = £+ 1. Similarly if £ and s couple such that j = ¢ — 1
we must have ¢ = ¢ — 1. Therefore in summary

- J4+1 for j=0+1,
éz{ + or j =+ (F.7)

£—1 for jzf—%.

In relativistic systems it is convenient to introduce another operator that also
commutes with the Hamiltonian, K = (o - L+ 1), which satisfies the eigen-
value equation K%jp, = —K1jm, and is sometimes called the eccentricity or
Runge-Lenz operator. Evaluating the eigenvalue equation we have

o-L+1 0 A
o ) (k)
7€ 0 —[o - L+1] ”
(TP -L*-5%+1 0 -
a 0 _[J2_L2_Sz+1:| wjfm )

JU+D) — L+ 1) +5 g (ﬁzm)
- 0 -G+ -+ +1] ) g,
(F.8)
Ifj=£—|—%, Whichimplies£=j—%andgzj—l—%wehave
Kjom = (5 + 1) Yjem = ~6%jom, (F.9)

hence if k < 0, 7, £ and E must satisfy the above conditions. Similarly if j = /—
which implies £ = j + 3 land /=4—1 We have

Kthjom = — (7 + 1) Yiom = ~k1jom, (F.10)

which implies & > 0. Therefore the sign and magnitude of x determines both 3,
¢ and hence 4. In summary we have

K<0 = Kk=—(j+3), j=C0+i=—k-1,
— L=—(k+1), =4+4+1=—k, (F.11)

— U=k, L=L-1=k-1, (F.12)

note in both cases we have j = || — 7. We can therefore label our states with
the more compact notation Q. = 4,. Therefore the complete states can be

labeled - ( )Q (0 ¢)
tan?) = (g o @9, 13
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where we have also included the radial quantum number, n, for completeness.
Note the spherical two-spinors satisfy the orthogonality relation

T 2n
46 sin / dp O, (6, )Qen(6, )
J0O 0

— / 1 d (cos #) / - dp QL. (6, )6, 3) = SxrwOmim. (F.14)

1 )

The states are normalized such that
[ vt bem() = 1, (F.15)

which using Eq. (F.14) reduces to

/0 " drr? [Fu(r)? + Gu(r)?] = 1. (F.16)

Assuming the complete solution of the Dirac equation is of the form ¢(x) =
VYrwm (T) €2, we obtain

M-V, +V, —40 - 6 ( an("") Qnm(ea ¢) >
—40 - 6 Vo —M+V, iGnn("') Q—nm(ea ¢)

_ o Fan(r) Quem(0, ¢)
—F (iGm(r) Qe (6, ¢)> . (F.17)

To simplify this equation we note

7.v="7(3-75-9). (F.18)
Using the identity
a-aa-5=a.6+w‘.(a‘x5’), (F.19)
we have
e 0T o u e\ O T( O _ o P
U'V=72_(T'V+ZJ‘(TXV))—7 TE;_G.L i (20)
To simplify further we need the following results
0 Ly = (J? = L* = 8%) Qum = — (K + 1) Qum, (F.21)

o7 Qem = =i, (F.22)
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the first of which is easily derived using previous results (see Eq. (F.8)). The
second is obtained by noting that the quantity o - # Qy,, has the same quantum
numbers j and m, but opposite parity to Q,,, then an explicit calculation shows
that the proportionality constant is —1. Using these results we obtain

- 0 1+ &
7V Qy = — | — Q.- F.2
c-V (87" + . ) ( 3)

Substituting the above result into Eq. (F.17), we find that the Dirac equation
reduces to two coupled first order partial differential equations given by

(% + 1—?) an(r) = (M +FE— V) Grrs (F'24)
(% + - ; KD) Gnn(r) = (M - b - A) Fro, (F‘25)

where we have defined V = V; + V,, and A =V, — V,,. These equations can be
rearranged to give

1 !
:M—E—A(r)(G'“(T)+

6ulr) = 357 (P + B0 (F.27)

Fo(r) 1—k

Gn(r)) , (F.26)

It is then trivial to decouple Egs. (F.24) and (F.25), giving

2 1— K2 A 1—k
1 - ! /
Fx TF” r FK+M—E—A<F"+ r Fn)

~(M—E—-A)(M+E—-V)F,=0, (F.28)

T H+M—E—A
- (M-E-A)(M+E-V)G.,=0. (F.29)

_ 2 1 _
G’,;+§G;+1 ualye! A (G;+—1T&GH)

From Eqgs. (F.26) and (F.27) it is easy to derive the relation

2 2 (P[F(r)?+Gu(r)?) k7
r2F(r) - Gu(r) = 2 I ~

[Fe(r)® — Gu(r)?], (F.30)

where M* = M — V,(r), which is useful if one wishes to take the non-relativistic
limit.
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F.2 Momentum space solutions

For the present application, that is nuclear structure functions, we require mo-
mentum space solutions to the Dirac equation, ¢.m(7), which can be obtained
from 9).m(7) via Fourier transform, therefore

brm() = / Br P (7). (F.31)

If we consider the upper component first we have

A7) = [ &1 e F (1) m (6, ). (F.32)

Using

e TP = 4rr Z Z (=8)"5L (o) YEar () Yinr ()
47 Z Z ]L pT' YLM(QP) YLM(QT) ) (F-33)

L=0m=-L

where (), are the angles (6, ¢) for 7 and (2. the angles for 7, we obtain

A (5) = dn / Er 3 (=), () Ying () Yiae (D) Felr) Qs (0,6)

LM

= 47r/d7" Z JL (pr) Fu(r)
( [ A0V (0) Qo (61,80 ) Vi ().
=47r/d'r7°2§4 L1 (pr) Fi(r)

’

> (emesmalim) ( [ d0¥iin() Yin, () You(5).

=47 / dr r? Z (—i)LjL (pr) Fe(r)
D (emysmglim) (Orednm,) Yo (D),

My, Mg

—47r/drr Y4 (pr) Fx(r) Z (Emg sms|jm) Yom, (),

mg,Ms
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= (=) (471'/d7" 2 5y (pr) Fn('r)) Qem ()
= (_i)eF(p) Qmm(aa ¢) . (F34)
Similarly, for the lower component we find
@) = i) (47 [ 4r12530m) Gu0)) ent). (B39
Now

i(—)f = i(—i) ! = {

i(—) = (i) for I=l+1 < k<0,
-1

(=)= —(=4)* for I=4—-1 <= k>0,
(F.36)
hence i
i(—1)* = —sign(k) (—i)"%. (F.37)
Therefore, the lower component of ¢ (7) becomes
20) = —sign(s) (<) (47 [ dr556m) Gulr)) Oamiy),
= i G(p) Qum(6, 8) . (F.38)
Hence the momentum space solutions to the Dirac equation have the general
o 4 (8) Qeim(6,9)
X - e [ F(P) Qusjm (0, ¢
¢-mp=(””)=—z‘< g ) F.39
m ) =\g#) = V6o 26, 9) (F-39)
where
F(p) = 4r / dr? ji (pr) Fu(r), (F.40)
0
G(p) = —4~w sign(n)/ drr? 5z (pr) Gu(r). (F.41)
0
The inverse relations are
1 [ p.
Fo)=4 [ %o ) (F.42)
1 . o .
G(r) = e s1gn(f-c)/ dpg Ji (pr) Gi(p), (F.43)
7 0 T
which are easily proven using the identities
00 ) ) 5 ol
| i inrn = 2222, (F.44)
0
o0 ) , o(r — 1!
[ aopietor) e o) = 20210 (F 45
0
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In momentum space the normalization condition for the Dirac wavefunctions is

d3
/ (—27%¢Lm¢m =], (F.46)
which becomes
® d’p 2 2 2
/0 2y p? [Fulp)® + Gi(p)?] = 1. (F.47)






Multipole Formulas

The multipole expansions have the form

P = Y CyVaERL (L ) e k=02

M=—7F,00f
(G.1)
. i—m ' ‘ k im 1
2190 = 3 (1Y VIRFT(Y T8 apm), k=182
(G.2)

where fi™(y) is the spin-independent result and Afj,(y) the spin-dependent
expression. The inverse relations are

fjf”(w:<—1>J'—'"k:0,;_,2jﬂk+1(f,; i ’S) f®),  (G3)

Afm(y) = (-1 S \/2k+1<ib _jm g) AfPy). (G4

k=1,3,...,2j

Examples of the multipole transformations are given in the following sections.

Gl J=0

FO) = %), (G.5)
G.6

G2 J=3

GO () = V2 fii(y), (G.7)
ArGY(y) = V2 Afid(y). (G-8)
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G3 J=1
i
V3

£19) =2 (1) - %)
AfD(y) = V2 A (y).

FOOy) = — [2f* () + F°(y)] ,

(y)+ f

wjw Nl
N [N

N
<
e
l
S~

)
A0 = o [AfH0) - 3artiE)]
G5 J=2

£680) =2 133060+ P + £EE)

1690) = == [5 £ - £H3) - 4744y

69w = 2 [Fiw -3 rtiw+2rii),
A ) =/ [partie) +3artin) + arthe),
AFE)w) = - [5arEE0) - TArE ) — aariiE)]
A = o [artie) - 5 At ) + 10 A58 ()

(G.9)

(G.10)
(G.11)

(G.12)
(G.13)

(G.14)

(G.15)

(G.16)
(G.17)

(G.18)

(G.19)
(G.20)

(G.21)




H
Explicit Calculation of the Nucleon
Distribution Functions in the
Nucleus.

H.1 Spin-Dependent Nucleon Distribution

In the convolution formalism the spin-dependent quark distribution in a nucleus
is given by

A 1
Aqi (z4) = Z C’O{ﬂm/o dyA/O dzd(za — yax) Ao x(z) Afem(ya), (H.I)

a,Km

where J and H are the angular quantum numbers of the nucleus and

Btumun) = VI [ L2557 552 60~ B ) Wal7) 70025
(H.2)

For the spin-dependent case we consider only A-odd nuclei, with only one particle
or hole outside and a closed spin zero core. In this case J and H are simply the
quantum number j and m of the valence level and the sum over X includes just
this single energy level, where A\ = (£sjm).

In momentum space the Dirac wavefunction for a central potential has the

form 0| >
- ) F\(p) |€sjm; 2
\I]nm :_'Le()‘ ”.,p>, H.3
) = 0 (G o o (B3)
where
|€sjm; Q) = E (£sl,5,|7m) Yoo, () |882)- (H.4)
£,82

We have also introduced the quantum number k, which is defined by

(H.5)

1 —(¢+1) for j=£+3, where {=0+1,
mz:i:( 2>=

J+ = 5
12 for jzﬁ—%, where £=1/{—1,
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We now wish to evaluate Eq. (H.2). Consider

- 1 1 o 1
Tyfys 0=Vl s O = — 0T (149%9%) 9 & = 0! 5] 9,
V2 V2 1 o
(H.6)

where we are using the Dirac representation for the gamma matrices. Using the
expression for the Dirac wavefunction given in Eq. (H.3), and noting (ie)* it=1
we have

Tyt ¥ = % ((fsjm|F(p), (ZsjmlG(p)) <013 013> (gg; Iﬁijg;) ’
%{F(p)G(p) ((ﬁsjm|l73jm) + (Zsjmlﬂsjm»

) esjmlo’lsjm) + G {sjmlo* i) | (17

To evaluate the above matrix elements it is advantageous to use the Wigner-

Echart theorem, which states

(_1)2K

V2J+1
!

- (BT e, @

(rIM|TE\| T M) = (J'EM'q| M7 J|| TS| Ty

-M q M

where T is a component of the irreducible tensor operator T!) and (rJ|| T ")
is called the reduced matrix element.

To utilize this theorem we introduce unity in the form

1= Z Yy Z(QP)YLLZ(QP): (H.9)
L,L,
and obtain
M d3p .
Afﬁ,m(yA) = TN/ (27!')3 5(p3 +ex— MN yA) Z YLLZ(QP)
L,L,

{F(p)G(p) ((fsjm|YLLz|Zsjm> + (Zsjm|YLLZ]€sjm))

+ F(p)g(ﬂsjm|YLLza3|€sjm) + G(p)z(fsjm|YLLza3IEsjm)}. (H.10)

We can now evaluate the matrix elements using the Wigner-Echart theorem and
various reduced matrix element identities. Consider

. o imf{ J L 3 : ~
(sgmiYis, fojm) = (<17~ (11 ) ey dg). )
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Using C.89 of Ref. [166], which states

(12 o J | TW|| T 73 J1 T3 T') = BryrsOay (—1)7 I

J k J
\/(2J +1)(2J"+1) {Ji 7, Jl} <T1T2J1||T(k)|lT{T£J1>. (H.12)

Therefore

(Esjm|YLLz|l78jm> . (_1)j—m(_1)j+£+s+L (2] + 1)

(J 2 j){li . f} ey ). (1.13)

-m L, m/ |J
Now
Oy — 1y, [ Ca+DRL+1)(26+1) (4 L b
@YD) = (-1) \/ L LB )
Therefore

. - o DL+1, \iiors
(bsjm|Vip Jsjm) = (=177 (25 + 1)\ = — (=14 (1)

\/(2£+1)(2é+1) (_Jm I]:“ 77n> (f; g g) {f i 5} (H.15)

Now (g 5 g ) = 0if £+ L+ 7 is odd, therefore since ¢ =¢+1, only terms where

L is odd contribute, hence

2L +1 -
DD

\/(2€+1)(2£7+1) <_jm LLZ Zn) (f; é’ g) {ﬁ ]; j} (H.16)

Since s = %, we have

(esjm|Yip,|lsjm) = (=1) "™ (25 + 1)

2L+ 1
47

\/(2é+1)(21?+1) (_jm I’? 731) (é g f)) {f f j} (H.17)

The above equation is symmetric in £ — 57, hence

(bsim|Ypp |lsgm) = (=1) ™ (25 + 1) (—1)3

(Lsjm|Yyr,|esjm) = (Esjm|Yrr,|lsjm). (H.18)
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To evaluate the third matrix element in Eq. (H.7) we first couple Y and ¢ to an
irreducible tensor of rank K = L, L & 1, giving

YLLZO' = (L) Z \/— )L—1+Kz

K.K,

L 1 K (%)
(Lz i _K) [Y® oW 7. (H19)

Using C.88 of Ref. [166], which states

(LRI [V B Ty Ty = /(20 +1) 2K + 1) (2J' + 1)
JJ T
ki ke K o (i |[T® i J) (ra Jo|[U®2)||75.05),  (H.20)
JoJ J

where V&) = [T(’“) & U(’“Z)] ) and the Wigner-Echart theorem, we obtain

(€SjleLLza3|€sjm) = (_1)j—m Z m(_l)L—HKZ

K,K,

(Lz 0 —Kz> (—m K. m) i | [Y® © O] 255,

= (=125 +1) Y (-D)FTE (2K + 1),

KK,
L1 K\/j K §\|¢° 7
(Lz 0 _K) <_m K, m) L1 K @[v®)e)(s]o®]s).
£ s j
(H.21)
Using Eq. (H.14) and (s ||c®]| s) = v/6 we haw
j 2L+1
(Esjm|YLLza3|€sjm) = (=1)7"™ (25 + 1) 4_;:
VB Y (-1)F T (-1 (2K +1) (2 +1)
KK,
: . L s j
(0 0 0) (Lz 0 —Kz) (_m K. m) L1 Ky. (H22)

{ s 3

Now because of the ® integration in A f,,(y4) only the L, = 0 terms are non-
zero, hence we must also have K, = 0. Further, in analogy with a similar earlier
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argument, L must be even for (§% §) to be non-zero and hence K must be odd
because of (5§ & ). Therefore

| | o oL +1
(€sjm|Yir,0%esjm) = (1) (2] +1) (-1) \/5 (-1)*

47
e L N[L 1K/ K j\|]{ ¢/
(2K+1)(2£+1)<0 0 0) (0 0 0) (_m 0 L 1K
£ s j
(H.

Therefore clearly

23)

(Esjm|Yyp,0%|lsjm)

:(_nfm(%+4vaZ:1(—DV%E:(—QH2K+¢)@@+U

K

¢ L IN(L1K\(3j K j
0 0 0 0 0 0/J\—-m 0 m

2L+1

~—
N
S SN IS N
w =
ST
——

V6 (-1 (2K +1) (20 +1)

K

GEDE DT

= (-1 ™ (25 +1) \/

(H.24)

Therefore

Afnm(yA) = (_1)j—m (2] + ].) \/?A / (;ij:;f; 5(]93 + Ex — MN yA)

S VEEFT V(@) { 2B (p)GAR) (-1 Hy (20 + 1)(2E +1)

i 4 L\[¢ L 0\ (¢ L £
m —m 0/\0 0 0/ |7 s 7

aperaen(E L8020

K
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£ s j
[Fx(p)z(%—i-l) <§ g g) {L 1 K}

£ s j

~ ? s 7
— GA(p)2(28 + 1) (g ’5 f;) {I: 1 KH . (H.25)
L s 3

A significant simplification can be made if we expand Af,, (m=—j,...,7) in
terms of the multipole distributions Afy, (k= —1,3,...,2§), defined by

Affcm = Z Air’f Afnk = (_1)j—m Z V2k+1 (’I’iL ]7‘7?, I(;:) Afnk

k=1,3,...,2] k=1,3,...,2j - : )
H.26

The inverse relationship is

Afa= Y AFAfum= Y (—1)"‘"‘\/2k+1(g% _in ’8) A frm,

m=—Fu...,J m=—j,...,J

(H.27)
which is easily proven using the orthogonality relation

: miy mg m) \mj; my, m
J,m

Another orthogonality relation is given by

. v g2 J\(Hh 2 JN\_ .
Z (2'7+1) (ml mo m) (ml mo m') _6”, el (H29)

mi,mz

with a special case being

g3 IN(3 I T\ _ s
Z(m ~m 0) (m —m 0>_2J+1' (H.30)

m
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Using Eq. (H.30) we obtain for the multipole distributions

Vi 3
Afur(ya) = (2 +1) jg ~ / (;’ﬁga(pusn—my@

2Y3o(2) Fa ()G (p) (—17 34/ (22 + 1) (20 + 1) (5 ) ﬁ) {f ; f}

—V6v2k +1(-1)* Z V2L + 1 Yio(Qp) (g é g)

L=k—1,k+1
£ s 3
Fy(p)2(2¢ + 1) (e = E) {L 1k
000 .
{ s
" - (L s j
— GA(p)*(20 + 1) LL eyl gk . (H.31)
0 0 0 7 s §

Note the sum over L in the second term includes only the ¥ — 1 and k£ + 1
components, because (% § %) is zero otherwise. To evaluate Eq. (H.31) we note

that

2L +1
47

YL()(Qp) =5 PL (COS 0) y (H32)

where Pp, are Legendre polynomials of degree L. We also introduce polar coor-

dinates, where
/ d3p 5(p3 +ex— Myya) T (p,cosb)

0

1 o] 1 M’ — &y
=2’JT/ dcosG/ dp p* 55(0039—M> ' (p,cosb),
-1 0

2 1 o]
=/ d¢/ dcose/ dpp® 8(pcos +ée, — Myya)T (p,cosf),
0 -1

p

(0.0} M _
= 27 / dppF(p, Ly;—s”> : (H.33)
b ‘I\

Where in order to satisfy the delta function we must have p > |My ya — &4/,
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hence A = |My ya — £x|. Therefore

. MN ”
Afa(ya) = (25 +1) mwwf‘* A /A PP

2P, (%) F\(p)Ga(p) (~1)7

J@e+1)@i+1) (g ’g f;) {f ’; f}

VB S ey (Mtass) (B 06

L=k—1,k+1
|
k
J
H . (H.34)

SN s

[Fx(p)2(2€+1) (ﬁ {; g){
sorann(( &)

The first few Legendre polynomials are

s
1
s

5 S B NY
n = »
(S S

Py(z) =1, Pi(z) =z,

Py(z) = % (3% — 1), Py(z) = % (52° — 3z),

Py(z) = % (352* — 30z° + 3) Ps(z) = é (63z° — 70z® + 15z)
Ps(z) = % (2312° — 315z* + 1052 — 5),

P7($) = —

T (42927 — 6932° + 3152° — 35z) . (H.35)

Transforming back, our final result is

Afem(ya) = (24 +1) (—1)~ mlgs i >, (@k+1) (731 " IS) /Awdp

=1,3,...,2j B
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2P, (M”—JI}‘—) F(p)G(p)(—1)

@£+1)(2Z+1) (g ]8 g) {f ’: f}

VB Y @L+1)R (E"%ﬁﬁ) ({; (1) g)

L=k—1,k+1
H @)

L s j
I:F)\(p)2(2£+1) (e L g) {L 1 k}
0 0O .
£ s j
k<0 = k=-—(j+3), t=5-% [I=t+1,

” /L 7
k>0 = K=3j+3, (=441 I=¢-1 (H.37)

3 ST B
w = ®

The conventions for the angular momentum is given by

Recall for every j, there are 3 (2j + 1) multipole distributions, Afyk, where
k=(1,...,2j).
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H.1.1 Moments

We first calculate the moments of the multipole distribution functions and from
these we can reconstruct - via the multipole expansion - the moments of the

usual distribution functions. We have

A . 1 A d3 R0
[ v o S5

0

{2Yko(ﬂp)FA(P)GA(p)(_1)jé\/(2£+1)(2g+1) (g ](; é) {f ]: f}

—V6V2k+1(-1)" Y V2L +1 Yie(Q) ({; (1) ’S)

L=k—1,k+1
1)
k . (H.38)
J

£ s j
[mp)z(zm % { : }
0 0O .

£ s j

i

{L

/
From the orthogonality relation for the spherical harmonics, for the first term in
the curly brackets to be non-zero we must have k = 0, however for the multipole
moments k = 1,3, ..., 27, hence this term is zero. Similarly, for the second term

only the L = 0 term is non-zero, and hence we have k = 0. Therefore

-Gorei+n (g & 1)

n = W

—
X
—~
=
g

[ ]
~~
[\
(Y
+
—t
o

N
(e N
o O
O
N
——
y O
w = O
R )
N —
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Using the results

YOO(QP)Z\/_Z_;, (0 1 1)2_ 1

Ll (s o 4]
V3v2aL+1 (s 5 1

_ (—1)ittrstlg(—1)i+brs [5G + 1) + s(s + 1) — £(£ + 1)] (H.42)
V3V2LFT  /2j(25 + )2 +2)2s(2s + (25 +2) T

substituting s = % we have

£ s j \/é[j(j—i—l) 0+1) + 3]
{2 19 j} 3v20+14/25(2j + 1)(27 +2) (H.43)

_1)¢
(g 8 §>—\/(2—Ell—1’ (1) =—(-1), (H.40)
and .
aj ’ . (_1)b+c+J+K o b J
{;&’ ;i’ g} -~ V(@T+1) (2K +1) {d c K}’ (H.41)
giving

Therefore the first moment becomes

4 1 2
Afer(ya) = 8k1 (25 +1) —
/0 duaBaslun) =0 G5+ 1) 47 75 e+ D@g + 2

[ ok {por G n-resn+g

+ G [iG+ D) -+ + 2] } (H.44)

Using the normalization condition, the first moment of the multipole distribution

is
A
25 +1
dya A fa( \/71/
/0 ya Afer(ya) = 2 +2)

{J(j +1) —I— /(27r) [ﬂ(f + 1) p? Fa(p)® + 00+ 1)p? GA(p)Q] } (H.45)
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Using the multipole expansion and the result

(3 9 - 0

m —m 0] \/52j+1)(+1)
we obtain
A m
/0 dya A fem(ya) = G+
{j(j +1)+ g - /(;TP)S [E(E +1)p® F\(p)? +Z(Z+ 1) p? GA(p)2] } (H.47)

Some explicit examples are

o k=—-1 = j=%,€=0and2=1
A V2 4 dp
d = — <1 —— e 2} , H.48
]ﬂ Ya Q%k(yA) k1 A { 3 (2’”)3 P A(P) ( )
A 1 2m 4 dp y
dyag2™ =" {l== 24 3}. H.49
fu Ya92" (yYa) Y { 5 (%)3;0 A(p) (H.49)

®o K=—2 = j=%,€=1andl7=2

4 2v/5 8 [ dp .
/0dyAg%k(yA)—(sklH {1-5./ . pG)\(p)}, (HL.50)

A 3 2m 8 [ d
/ dya g2™(ya) = 34 11 3/ v Gx(p)g}- (H.51)
0 Yi§

/OA dyAg%k(yA)=5k1§ {1_11/ (jrp3p2F)\(p)2}, (H.52)

3
2 L. 2m 4 d
/ dya g2 (yA) S A {1 - 5/ p3P2 Fk(p)2} . (H-53)
0 T
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H.2 Spin-Independent Nucleon Distribution

In the convolution formalism the spin-independent quark distribution in a nu-
cleus is given by

qu (18 ) CaJiIm/ dyA/ dx 5 $A —Ya x) o n(x) fﬂm(yA) (H54-)

a,Km

where

fom(@a) = V2 My / (;”)’ 5(5° + £x — My a) T (@) 7 Uom(F) . (H.55)

In order to evaluate Eq. (H.55) we first consider

1 1 o8

— 1
Tyt =Wyt o = 0t (14+4%°) U= —0!
v 7’y 7 (1++°%) NG
where we are using the Dirac representation for the gamma matrices. Us-
ing the expression for the Dirac wavefunction given in Eq. (H.3), and noting

[(—4)¢]" (—i)* = 1 we have

(esimiro), Gsimic®) (s %) (G ),

{F@)anu(p) ({simlosgm) + (Esimio’l )

) W, (H.56)

Tyt =

I

Sl Sl

+ Fu(p)? (6sjmltsim) + Gn<p>2<ésjm|isjm>}. (H57)

Using the result
|¢sjm) = —G - p|lsjm), (H.58)

and hence
(Lsim|o®|lsjm) + (sjm|o®|Lsim)
2 3
—(esjm|{o®,& - p}|esjm) = —%(Esjmwsjm). (H.59)

Therefore

fem(ya) = MN/ ;17:; §(p® +ec— Myya)

Fu(p)’ + Calp)’ — %Fn@)m(p)} (esjm|tsjm). (HL60)



216 H. Explicit Calculation of the Nucleon Distribution Functions . . .

To evaluate Eq. (H.60) we first introduce unity in the form

1= Z YELz(Qp)YLLz(Qp)? (H.61)
L,L,
and obtain
d3p 3 *
fmm(yA) = MN/ 3 5(17 + €k — MN yA) Z YLLZ(Qp)
(27) iz

{F,i(p)2 + Gx(p)? — 2TI;BF,g(p)Cr*,c(p)} (€sjm|Yrr,|8sjm). (H.62)

We now consider in matrix element (£sjm|Yyr,|¢sjm), from Eq. (H.13)
(€sjm|YrL,|€sjm)

=gy (20 B S gy,

= (=1)7"™ (25 + 1) (—1)j+f+s+L(_1)e\/T(2£+ )
oot s me

Now L, =0 and L is even, therefore the matrix element is given by

[SIE

(EsjmlYir,[esjm) = (=1)™ (25 +1) (~1)'*
VE ey (LEo( L N mey

(27 +1)

Fom(ua) = (=177 (<14 2222 (2041) M

d3
/ (27:;3(5(273 + &, — MN yA) Z vV2L+1 YEO(QP)
L

Therefore

{FH () + Gr(p)? — %{%@)GK@)}

g L j\N[(¢ L ¢\(¢ L ¢
(—m 0 m) (0 0 0) {j s j}' (H.65)

We now expand f.m(y4) into multipole distributions f.x(y4). Using the identity

g3 JIN(7 3 T\ _ b
Z(m —m 0) (m —m O>_2J+1’ (H.66)

m
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we obtain

fielya) = (=1)*3 (27 +1) (2 +1) V2 +1 (f; : f;) {f k f}
Zf:@ /Aoo dmv{l*}(p)g+Gﬁ(p)2

+ % (ex — My ya) Fn(p)Gn(P)} P <%> , (H.67)

where we have introduced the Legendre form for the spherical harmonics.

H.2.1 Baryon Number Sum Rule

Our result for the spin-independent distribution given in Eq. (H.65) must obey
the baryon number sum rule, that is

A A
/0 dya fnm(yA) =1, = Z/o dya fnm(yA) = A (H68)

We have
| v fenta) = (277 (- e B @t

/ dyA/( 5(p® +ex— Myya) Z V2L +1Y[5(9,)

[F,.;(p)2 + Gy(p)® — 271*}(10)%(10)}

CoENEENEE D

Noting that p® = pcosf and cosf = 4/ %” Y10, the orthogonality condition for
the spherical harmonics

s 2
/ do / d0sin6 Yy (8, 9) = Var 8x0mo, (H.70)
0 0

implies that L = 0 for the F? and G? terms and L = 1 for the F'G term.
However (§3§) = 0, therefore

(25 +1)

/0 By Frm(a) = (1)~ (—1)7+} (20+1)

ir
/(521;3 [Fe(p)? + Gu(p)?] (_jm g gl) (é 8 g) {5 2 f} (H.71)
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Using the results

i3 0\ _ (=™ £ 0 z B (_1)‘
m —m 0) 2j+1 0 0 VoAU +1

20 ¢ (—1)/+ere
{ } \/2]+1\/2£+1 (H.72)

we obtain
1 d’p
(2)°

/0 dya fom(ya) = )+ Ga0)] = 1, (H.73)

as required.
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H.2.2 Momentum Sum Rule

The momentum sum rule

A
S [ dusva funtin) = A .74

is used to determine the mass per nucleon My. From Eq. (H.65) we have

/0 dyaya fom(ya) = (—1)77™ (=1)*3 (_21:71)

A 43 _
[ s [ SE 80+ = ) 3 VAT Vi)
0 L

(20+1) My

[mp)Q G - 27€3Fn(p>an(p>]

(o o m) G ool ¥ ap

Using the delta function to remove the dy, integration we obtain

) )
/0 dyaya fom(ya) = (1™ (-1y+ (_23/4%1)

[ty o

(2¢+1)

[F,i(muan(p) - 2R e ﬂ<p>]

(o )60 o)1 25 o

The terms proportional to €, and p* are analogous to the baryon number sum
rule, however the term proportional to (p®)? is new. Therefore

" - jom (_qyied (24 +1)
/0 dyaya fom(ya) = MN+(_1) (=17 Van

1 d*p ; 20°) o5 /5
e / (%)3; V2L +1 Y;,(9,) [— ~ FN(P)G&(P)]

My
i L j\[t L &\[e L ¢
(—m 0 m) (0 0 U) {j s j}' (H.77)

(20+1)
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Using cos? § = g\/g Yz + 3 we obtain

[ tvavatmtsn =2 - [ L g g
: yA'!/A Km ?JA MN 127['_MN (27r)3p Ii?p Ii?p

— (1P (1)1 (25 +1) (2 +1)

i prwen (22 ) (02 02w




Further Finite Nuclei Results

In this appendix we present many results for the finite nuclei multipole quark
distributions, not included in Chapter 6. The nuclei we include are “Li, ''B,
120 15N, 160, 27Al and 28Si. We also illustrate our results for the EMC effect in
12, 160 and 28Si, which where not presented in Chapter 6. For more complete
figure captions see analogous figures in Chapter 6.
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Figure I.1: Spin-independent 1%* (K = 0) multipole u-quark distributions in "Li.
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Figure 1.3: Spin-independent 2" (K = 2) multipole u-quark distributions in
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Figure 1.5: Spin-dependent 1°* (K = 1) multipole u- and d-quark distributions
in "Li.
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Figure 1.6: Spin-dependent 2™ (K = 3) multipole u- and d-quark distributions
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Figure I.7: All spin-independent nucleon multipole distributions, f. (ya), in "Li.
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Figure 1.8: All relevant spin-dependent nucleon multipole distributions,
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Figure 1.10: Spin-independent 1** (K = 0) multipole d-quark distributions in
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Figure 1.11: Spin-independent 2°¢ (K = 2) multipole u-quark distributions in
1
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Figure 1.12: Spin-independent 2"¢ (K = 2) multipole d-quark distributions in
11B.
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Figure I1.14: Spin-dependent 2" (K = 3) multipole u- and d-quark distributions
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Figure 1.17: Spin-independent 1% (K = 0) multipole quark distributions in 2C.
Note, in '2C the up and down quark distributions are equal.
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Figure I.18: The Unpolarized EMC ratio for '2C. The experimental data is taken
from Ref. [160].




231

1.4 15N
1.4 15N
16 o T T T T T T I ¥
IONT . e free
N - scalar
<< 12+ S, mmme=ees + Fermi -
~ + vector
VammS
08 | -
=)
L=l [l
N’
S
g 04 | .
0 ko o s s L Teeeasa
0 0.2 0.4 0.6 0.8 1.0 1.2
TA

Figure 1.19: Spin-independent 1% (K
15N_

]_6 L T T T ¥ 1] ] 1
IS i T T —— free
N - scalar ]
< 12 g g 0000 emekdezs 4+ Fermi -
~— i + vector
<
G
—~ 08 -
o I
e
‘%‘C
S 04 .
0 R o —
0 0.2 0.4 0.6 0.8 1.0 1.2
TA

Figure 1.20: Spin-independent 1% (K
15
N.

0) multipole d-quark distributions in



232 I. Further Finite Nuclei Results

+ vector

_0.4 N I " 1 N I s 1 1 i 1 i I 1 i " 1
0 0.2 0.4 0.6 0.8 1.0 1.2
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Figure 1.22: All spin-independent nucleon multipole distributions, fik(ya), in
15N.




145N 233

1 T T T T T T i T T T T T
15N /\
0 e\
VN
< -1 } .
=
N~—
ES
S
=2 & .
<
-3 | -
k=-1, k=0
_4 1 1 1 1 1 1 i L 1 1 f

0O 02 04 06 08 10 12 14 16 18 20
Ya

Figure 1.23: All relevant spin-dependent nucleon multipole distributions,
Afe(ya), in PN
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Figure 1.24: Spin-independent 1% (K = 0) multipole quark distributions in 1%0.
Note, in 60 the up and down quark distributions are equal.
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Figure 1.25: The Unpolarized EMC ratio for 160. The experimental data is taken
from Ref. [160].
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Figure 1.26: Spin-independent 1% (K = 0) multipole u-quark distributions in
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Figure 1.27: Spin-independent 1%* (K = 0) multipole d-quark distributions in
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Figure 1.29: Spin-independent 2" (K = 2) multipole d-quark distributions in
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Figure 1.31: Spin-independent 3™ (K = 4) multipole d-quark distributions in
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Figure 1.34: Spin-dependent 3™ (K = 5) multipole u- and d-quark distributions
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Figure 1.35: Spin-independent 1% (K = 0) multipole quark distributions in 28S;.
Note, in 28Si the up and down quark distributions are equal.
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