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Abstract

The central theme of this thesis is an investigation of the in-medium mod-

ifications to nucleon structure. We focus on the medium modifications to the

three twist-two quark lightcone momentum distributions and associated struc-

ture functions. To achieve this we utilize the Nambu-Jona-Lasinio model, with
the proper-time regularization scheme, in which conflnement is simulated by

eliminating unphysical thresholds for nucleon decay into quarks. The nucleon

bound state is obtained by solving the relativistic Faddeev equation in the quark-

diquark approximation, where both scalar and axial-vector diquark channels are

included.

In this framework we obtain excellent results for the free spin-independent

and spin-dependent quark distributions. The transversity distributions satisfy

the Soffer inequality and are simila,r to the spin-dependent distributions. With
the introduction of mean scalar and vector fields that couple to the quarks in
the nucleon, we obtain a good description of many nuclear matter properties,

including saturation at the correct energy and density.

The medium modifications to the nucleon structure functions are investigated

in both infinite nuclear matter and for the nuclei 7Li, 11B, 15N, 27AI and the

closed shell neighbours 12C, 160 and 28Si. In each case the in-medium quark

degrees of freedom are accessed via the convolution formalism. For finite nuclei

we use a relativistic shell model including mean scalar and vector fi.elds. We

derive, for the first time, relativistic expressions for the nucleon distributions in
a nucleus, that retain the phenomenologically important lower components of
the nucleon wavefunction. We find that we are readily able to reproduce the

experiment aI F2¡f F2¡¡ ratio, that is, the EMC effect. However, the main focus

of this thesis is on a new ratio - the nuclear structure function, 91¿, divided by

the naive free result - which we refer to as the polarized EMC effect. We find
that the medium modifications of the spin structure functions are remarkably
large, up to twice the usual EMC effect. This result has important experimental
implications, and may provide the impetus for future polarized deep inelastic

experiments on nuclei.
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1

lntroduction

Developing a vigorous and complete understanding of Quantum Chromodynam-

ics (QCD) is arguably the most exciting and potentially rewarding challenge

confronting the nuclear and particle physics community. The solution of QCD
strikes at the heart of our modern understanding of asymptotically free gauge

theories. It could either solve or shed light many unresolved problems in nuclear

physics, particle physics and even cosmology. For example a solution to QCD
would provide a far greater understanding of the Big Bang and the first few

seconds of the universe, the observed matter-anti-matter asymmetry and the

formation of stars and atomic nuclei. It may even provide answers to philosoph-

ical questions, akin to those offered by Quantum Mechanics.

The solution to QCD appears at the moment to be extremely difficult, cur-

rently the only known approach is to solve the path integral directly on a Eu-

clidean spacetime lattice. However this method has its own shortcomings, which

will probably prevent it from ever providing a complete solution to QCD. The

incredible complexity of QCD results from the simple fact that the gauge boson

of the theory, the gluon, carries the colour charge. This is in contrast to the

well understood theory of Quantum Electrodynamics (QED), where the photon

does not carry the electromagnetic charge. The consequences of the gluons pos-

sessing the colour degree of freedom are immense, for example the perturbative

techniques used so successfully in QED are now valid only at large momen-

tum transfer or equivalently at small distances scales. However, even at the

extremely high energies of modern particle accelerators the non-perturbative
nature of QCD cannot be avoided. For example, in deep inelastic scattering
experiments, the non-perturbative physics is encapsulated by the quark distri-
bution functions.

Fhom its beginnings at SLAC in the late 60s deep inelastic scattering (DIS)

has played a fundamental role in developing our understanding of the quark-

gluon structure of hadrons and consequently of QCD. A paradigm shift in our

understanding came in 1982 when the European Muon Collaboration at CERN
measured fhe F2(r) structure function of iron and compared it to that of the

deuteron. Nuclear effects in DIS were thought to be largely negligible, except
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at large ø where Fermi motion becomes important. The nucleus was viewed as

a system of quasi-free nucleons where, because of the large differences in energy
scales, the quark structure of the nucleons was thought to be insensitive to the
nuclear environment. However, when the ratio of the iron F2 structure function
and the F2 deuteron structure function was taken, a large deviation from one was
observed in the valence quark region (0.2 S r J 0.8). This indicates that the
quark structure of the nucleon has substantial nuclear environment sensitively.

This result, which became known as the EMC effect, brought to the fore the
importance of quarks in traditional nuclear physics and has generated an enor-
mous amount of experimental and theoretical activity. The initial interest in
this result was propelled by the hope that it could help bridge the gap between
our knowledge of QCD at short distances and its completely unknown impli-
cations at the distance scales of traditional nuclear physics. This has indeed
happened, however the fundamental mechanism responsible for the EMC effect
remains unknown.

Another paradigm shift occurred when the European Muon Collaboration
made a precise measurement of the proton spin structure function gr(r). They
found that the fraction of the proton's spin carried by the quarks is unexpectedly
small. At the time the estimate was consistent with zero, but modern results
find that about 20-4tJ% of the nucleon's spin comes fïom the spin of the quarks.
This result became known as the "proton spin crisis" and gave rise to many
new experiments and a large amount of theoretical activity. In particular the
important role played by the axial anomaly in the singlet sector of g1(r) was
highlighted. This anomaly produces a gluonic correction to the spin structure
function at all values at 82. This implies that the measured singlet contribution
to the first moment of gg(r), which we denote by Â,E, has a gluonic correction
given by

ÂÐ: aÐo - t# Ls(Q\, (1'1)

where AD6 is the object normally associated with spin, as it satisfies the usual
SU(2) commutation relations. Although this gluonic correction does reduce the
spin sum, it is not large enough to resolve the spin crisis. Theoretical work from
many directions has made substantial process in understanding the proton spin
structure, however a full resolution of the proton spin crisis is stiil lacking.

In light of these two ground breaking experiments it is surprising that there
has been no polarized deep inelastic scattering experiments on nuclear targets,
where the potential for new and even fundamental discoveries appears quite
possible. The alleviation of this shortcoming, from a theoretical perspective, is
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the main goal of this thesis. In each successive chapter of this thesis we build
the formalism necessary to determine the spin structure functions of atomic nu-

clei. In Chapter 6 we deflne a new ratio - the nuclear spin structure function

91¿ divided by the naive free result - which we call the polarized EMC ratio.

The deviation from unity of this ratio measures the degree of medium modifica-

tions of the spin-dependent quark distributions in an analogous fashion to the

usual EMC ratio for the spin-independent distributions. We find large medium

modifications to the spin structure function, and a substantial decrease in the

fraction of the spin carried by the quarks in a bound proton relative to that
of a free proton. We hope that these potentially exciting results may provide

the impetus needed to develop new experimental programs to perform polarized

deep inelastic scattering on nuclei.

The outline of this thesis is as follows: In Chapter 2 we give a brief overview

of the formalism of inclusive deep inelastic scattering (DIS), introducing the

three twist-two quark distribution functions, first in the parton model and then
more formally in the context of factorization theorems. Finally we touch on

the Drell-Yan and semi-inclusive DIS processes that can be used to measure the

transversity quark distribution functions.

As we have mentioned, a full solution to QCD is still some time arù/ay. There-

fore to study the in-medium modifications to the nucleon and determine nuclear

structure functions we must use a model of QCD. In Chapter 3 we introduce

such a model, the Nambu Jona-Lasinio (NJL) model, which is interpreted as a

chiral effective quark theory of QCD. In this chapter we focus on the constraints

imposed by chiral symmetry and on the solution of the three-quark bound state

problem in the relativistic Faddeev framework. In Chapter 4 we present im-
portant results for the spin-independent, spin-dependent and transversity quark

distribution functions obtained using the NJL model and the proper-time regu-

Iarized scheme.

The results we present in Chapter 5 have produced a large amount of exper-

imental interest, particularly for the 12 GeV upgrade at Jefferson Lab. Here we

extend the NJL model to flnite density and calculate the EMC, polarized EMC

and transversity EMC effects in nuclear matter. We find excellent agreement

with data for the EMC effect and large medium modification to the spin and

transversity structure functions.

Finally, in Chapter 6 we utilize a relativistic shell model to extend our in-

medium results to finite nuclei. Here we focus only on spin-independent and spin-

dependent distribution functions, as the QCD evolution of transversity quark
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distributions for targets with J ) 1 is still not fully resolved. Then, in Chapter 7
'we summarize and discuss possible future research directions that could utilize
the formalism developed in this thesis.

'We also include a large amount of detail in the appendices that the reader
may consult if further details are required. In particular we give the full deriva-
tion of the transversity quark distribution functions in the NJL model (Ae
pendix D) and the derivation of the relativistic nucleon distributions in the
nucleus (Appendix H).
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Deep lnelastic Scattering

The archetypal process for probing hadronic structure is inclusive deep inelastic

scattering (DIS). Many important insights into nucleon structure and Quantum
Chromodynamics (QCD) have been obtained through DIS experiments. For

example, the measurements of the spin averaged structure functions, F1(r,Q2)
and F2(r,Q2), which exhibit the predicted Bjorken scaling [1], was one of the first
confirmations of strong interaction physics. Later, smali Q2 scaling violations

were observed and these were found to be described perfectly by perturbative

QCD. This important result led to an almost universal acceptance of QCD as

the correct theory of strong interactions. F\rrther polarized DIS experiments

measured the spin-dependent structure functions n@,Q2) and g2(r,Q2). A
precise measurement of g{r,Q2) by the European Muon Collaboration [2] found

that the fraction of the spin of the proton carried by the quarks seemed to be

very small and even consistent with zero [3]. This become known as the "proton
spin crisis". Modern anaiysis finds a spin fraction of AE : 0.213 + 0.133 [4]'
however a resolution of this problem remains an open and intensely debated

question [5-S]. DIS experiments have also provided precision determinations of

the strong coupling constant a" [9,10]. And importantly, as it is the focus of this

thesis, DIS experiments on nuclear targets (e.g. carbon, aiuminium and iron)

have shown that the nuclear medium modifies the nucleon structure functions

[11].

In this chapter we review the formalism of DIS with a focus on spin-] tar-
gets, like the nucleon. Later, in Chapter 6, we will generalize this discussion

to include DIS on an arbitrary spin target. \Me begin this chapter by introduc-

ing the kinematic variables of the DIS process. \Me then discuss the differential

cross-section and the associated structure functions. A brief introduction and

motivation for Feynman's parton model is also included. We examine the Fac-

torization theorems with a focus on the link these provide between the parton

model and QCD. Finally, we will finish with a brief discussion of the chiral-odd

transversity quark distributions and describe deep inelastic scattering processes

that are sensitive to these distribution functions.
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Figure 2.1: The lowest order graph for DIS. The quantities k,s and k,,s,are
the initial and flnal lepton momenta and spin, P, S is the target momentum and
spin, while q is the momentum transfered to the target by the exchanged vector
boson. The angie d between the incoming and outgoing lepton is defined in the
target rest frame.

2.L Reactions and Kinematics

Deep inelastic scattering is the process where a lepton, in practice an electron,
muon or neutrino is scattered from a target (usually a nucleus) transferring large
amounts of energy and four-momentum squared. The DIS process is depicted
diagrammatically in Fig. 2.7 in the one boson exchange approximation and can
be written in the form

(.(k, s) + A(P, S) ------+ l'(k' , s') + X(Px), (2.1)

where / is the initial lepton, A is the target, l' is lhe scattered lepton and X
represents the undetected final hadronic state. In brackets we label the four-
momentum and spin of each state. The only quantities measured experimentally
in inclusive DIS are the energ¡ Et, and the scattering angle, d, of the frnal state
Ieplon (t.

Each of the three electroweak gauge bosons can play a role in DIS (see

Fig. 2.1). These are usually referred to as the electromagnetic current (1),
neutral current (20) or charged current (W*) exchange. For charged current
exchange the initial or final lepton must be either a neutrino or an anti-neutrino

(,

sPA



2.1 Reactions and Kinematics

to conserve charge at the lepton-boson vertex. The four basic process are

7

(.+A 14 (,+x
(u)u+A 4 Q)u+x

t++A Y: @)u+x
tt¡I

(v)u+A 5 t++X

Electromagnetic and Neutral Current, (2.2)

Charged Current. (2 3)

Reactions where the final state lepton is a neutrino represent a significant exper-

imental challenge because of the immense difficulty in detecting this neutrino.
Experiments have been proposed to measure cross-sections for these processes,

however they rely on determining the missing transverse momentum in the final
state X or on "likelihood" estimates [12].

Neutrino DIS has two significant shortcomings, one is the difficulty in ac-

curately determining the energy and momentum of the initial neutrino and the

another is that the target must be very large (e.g. several tonnes of iron) because

of the very small neutrino cross-sections. This makes polarized DIS extremely

difficult. The experimental benefrt of charged current neutrino DIS is its quark

flavour sensitivity (a consequence of charge conservation) and this is the impetus

behind neutrino facilities such as Fermilab.

There are three independent kinematical variables in inclusive DIS. Working
in the target rest frame, where

Pt" : (M¡,0,0,0), (2.4)

and neglecting lepton masses, these are often chosen to be

Q' = -q2 : (k' - k)' : 4 E E' sin2 (i), (2.5)

(2.6)

(2.7)

s: (k + P)" :2 MtE + M2A,

W2:ptr:(p+ù2,

where E (E') is the energy of the initial (frnal) lepton and 0 is the lepton scat-

tering angle with respect to the incoming lepton beam. The interpretation of
these quantities is Q2 is the negative of the time-like four-momentum squared

transfered to the target, s is the centre-of-mass energy squared and W2 is the

squared mass of the final hadronic state. The physical region for the DIS process

is

s > M'A, Q2 )- o, w2 > (Mt + mn)z, (2 8)
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where mn is the pion mass. Other important invariants are

*- Q, - Q,* 2P.q- 2M¡u'
P'q u

(2.e)

(2.10)

(2.11)

u P.K E,
,,-P'q - E - 8,,

Ma

where E is the fractional energy loss of the lepton , u Lhe energy transfered to the
target and r (Bjorken z) is interpreted as the fraction of the nucleon momentum
carried by the struck quark. We will discuss the significance of this variable in
Section 2.3.1

Noting lhatW2 > M'A it is easy to show using Eqs. (2.7) and (2.11) that the
Bjorken scaling variable r iies in the range 0 < r ( 1 and that the fractional
energy loss is bound by 0 ( g ( 1. Further, using Eq. (2.7) we find

r:r-w'-M2.
2P .q (2'r2)

Therefore r : L implies W2 : M2¡ and hence the r: 1 limit corresponds to
elastic scattering. Rearranging Eq. (2.12) gives

1Ï: r+(w2-M2AW' (2'13)

which implies that any state X with fixed mass, for example resonance produc-
tion, can only contribute very near r : l in the deep inelastic limit.

2.2 Cross-Sections a nd Structu re Fu nctions

1In this chapter we shall denote the target scaling variable simply by z, to avoid cluttering
the notation. However in Chapter 6 where we discuss nuclear targets, the target scaling
variable will be il4 and the variable ø is reserved for the nucleon.
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which are not observed. Assuming that the Lorenl,z invariant squared-amplitude

only has a contribution from one photon exchange we have

lMl" :ll*fr',s')1p u(k,ùÉ# 6lr"(0)l¿,')l'. (2.1b)

Therefore the DIS differential cross-section can be written as the product of two

tensors

,l'r: ! dt,k' P4

4J 2/'l27tj Qn'" 
L¡"'WP'' (2'16)

where L* is the leptonic tensor defined by

2

Lt"' a(k' , s')1þu(k, s)
st
t

:Z(kpk" +k" lc,p - gp"k.k,+¿ep,^oq¡ko), Q.IT)

and the hadronic tensor, ¡4/uu, has the form

w,, = +Dfr t #;rn (p + q - p*)ltx,lt,to)10,,òl',
X¿ i,:1J Yatr / o"x

7f: 
2* J d'{¿xa'E (P' slJ'(€) 't(0)lP' s)'

If: 
^ J oe 

",*E 
(P, slur(€)' ,t(o)llP' s)' (2.18)

The full derivation of the leptonic and hadronic tensors is given in Appendix B.

Therefore in the target rest frame Eq. (2.I\ reads

dO ,.2 ñt

dody, 
: 

#A^"U L*Wr" ' (2'19)

where oem: e2f 4tr and f) is the solid angie into which the lepton scatters.2

In Fig. 2.2we give a diagrammatic representation of the leptonic and hadronic

tensors. We see that the lepton tensor is purely perturbative and can be de-

termined fully using Quantum Electrodynamics (QED), however the hadronic

tensor contains highly non-perturbative quark-gluon interactions and therefore

cannot be calculated using perturbative QCD.

As illustrated in Fig. 2.1, the exchange of. Zo galrge bosons can play a role

in DIS processes. Therefore, if there exists both electromagnetic and neutral

2In deriving this expression the result k! : E'(I,sin d cos /, sin d sin /, cos d) is useful.
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leptonic

hadronic

Jr(o) J"(€)

Figure 2.2: Diagrammatic representation of the perturbative leptonic tensor and
the non-perturbative hadronic tensor in the one boson exchange approximation.
The electroweak current, Jr, ís inserted at the origin and removed at position {.

current exchange, the squared amplitude has the form lMl' : lM., + M"l'.
Hence there are three terms; a purely electromagnetic term , lMrl', a purely
weak term, lM"l', and an interference term of the lorm MrM> + MzM;.
It is easy to show, following similar steps that led to Eq. (2.19), that the full
differential cross-section including both 7 and Zo exchange, is given by

don. o3^ E',
(2.20)

dQ dÐt 2 MA84 E t Li,wf" ni,
'¿:1,12,2

where

n1 :7' rí'I, : (#k) (#M")''z : (r¡12)2' (221)

and
L\"X : Ø, - Às¡)Lf,, Lzw: Ø, - Àsò2L7,,. (2.22)

The sign of the incoming lepton helicity is denoted by À, therefore À : t1.
TTre relations in Ðq. (2.22) hol<i for negativeiy charged incoming ieptons, for
positively charged leptons one simply replaces g¡by -g4, where [16] 

3

1
+ 2 sin2 01ry,

1go: -, (2.23)9v
2

The charged current cross-section is given by an analogous expression to that in
Eq. (2.20) except that the sum is over the appropriate I4l boson and

rtw :;(ffi) Già' LtY'* : (7 +2^)2 Ll.' Q24)

3The coupling constants ly and g¿ discussed here should not be confused with the vector
and axial-vector coupling associated with the baryon number and Bjorken sum rules.



2.2 Cross-Sections and Structure Functions 11

The interesting physics in DIS is contained in the hadronic tensor, which

from a theoretical standpoint is extremely difficult to calculate. The most gen-

eral form of the hadronic tensor that is both Lorerft,z and CP invariant can be

expressed in terms of eight independent structure functions Fi, F|, Få, gi, g'r,

gl,, gL, g! and has the form

wl, : -2sp, Fi +2?h F| +'i€-tttT P"qB Få' P'q z P'q
, .2Mp .oaøo ^if 2Md 

r* n"ff lq" SB gi - 2n' ù vzl - p u rPuS, -f SrP,] g'3

+ zm^ffiPt"P,9,q+ zm^fiup,9's, e.25)

where i e .y, .yZ, Z,W+. In deriving Eq. (2.25) rve can ignore terms proportional
\o qP arrd q", as these terms do not contribute to the cross-section, since the

lepton tensor is conserved, that is qpLp, - q"Lpr:0. The structure functions
F], gj are functions of r and Q2 and are expected to scale in the Bjorken limit,
that is F](r,Q") - F](") and s'j(r,Q') - o'¡@) as Q' - *. The weak

interaction is parity violating hence Eq. (2.25) contains both second rank tensors

and pseudo-tensors. However, in the case of purely electromagnetic interaction
(i.e. one photon exchange), which is parity conserving, we have

gl : gJ :0. (2.26)

Restricting ourselves to the pureiy electromagnetic case for simplicity we can

now obtain the differential cross-section in terms of the structure functions. If
we sum over the initial electron helicities in Eq. (2.19) we obtain the unpolarized

cross-section, which has the form

Fl : g!:

r1,o e4

drdgdþ 4r"Q'

where n : l-ry Instead, if the difference between the positive and negative

lepton helicity cross-sections is taken, access to the spin-dependent structure
functions is possible. The spin-dependent cross-section is given by

{'r,r., e\ + + (t - a - Ç ø - r) F2(r, a'))\ 
çr.ut

dLo - "n 
{ lt - i-+(" - t)l s,@,e') - iø - r)s,(,,o\} ,drdadó +"2Q2 ll- 2 4 ''' -/ )rL\-'' 

a / 2' 
(2.2g)

where we have assumed that the target is polarized parallel to the lepton beam.

In obtaining these expressions the following result is useful:

do M¿.u do

drdUdó Et dÐtdÀ
(2.2e)
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2.3 Quark-Parton Model and Bjorken Scaling

In 1968 (based on current algebra arguments) Bjorken predicted [1] that in the
Iimit

Q2, u -----+ oo with r : fixed, (2.30)

the (spin-independent) structure functions would become independett of Q2,
that is

Fr(r,Q\ ------+ fi(r), Fr(*,Q')------, F"(*). (2.31)

This kinematical limit is now known as the Bjorken or scaling limit. Bjorken's
prediction was almost immediately observed at SLAC [17-19] and was the im-
petus behind the famous parton model of Feynman 120,27].

The parton model, which assumes that the nucleon is made of point-like
constituents called partons (which were later identified as the quarks and gluons)
still plays a fundamental role in our understanding of high energy scattering
within QCD. In particular, the parton picture provides a connection between
perturbative QCD and hadrons, a connection that has thus far not been derived
from QCD itself.

The principal assumption of the quark-parton model is that the quarks inside
the target can be treated as free massless particles. For historical reasons it
has therefore been conventional to formulate the parton model in the i,nfi,ni,te

momentum framea. Time diiation effects were then used to argue that the
interactions between the partons can be ignored, on the time scale relevant to
the parton probe interaction. However this is slightly erroneous, the true reason
partons can be treated as free is because of asymptotic freedom, not a particular
choice of reference frame.

The hadron tensor in the parton model is given by the handbag di,agram
which is illustrated in Fig. 2.3. It is easy to show within the parton model that
all other diagrams are suppressed by at least llQ2 and hence approach zeroín
the Bjorken limit [ZZ].5 When deriving the parton model it is assumed the target
is made of collinear moving partons each with a fraction {, of the total target
momentum (where 0 < €, ( 1 and Dn €n : 1). The contribution to the hadronic

aln the infinite momentum frame the target is assumed to have momentum Pp :
(P + M'zAIQP),0,0, -P) where P -----+ oo.

sThis is also true in full QCD, as a careful use of the operator product expansion (OPE)
can demonstrate.
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€P+s

4P tP

Figure 2.3: This diagram represents the hadronic tensor in the parton model

and is known as the handbag diagram (c.f. Fig. 2.2). Ir can be rigorously shown

in QCD, using the OPE, that in the Bjorken limit this is the only diagram that
contributes to the hadronic tensor, as all other diagrams are suppressed by at
Ieast 7f Q2.

tensor from a single parton is therefore given by

ut",: +ï I #r(2r)aõa(€p+ 
q_ e)l

2

({P, slJr(O)lp', r')

: +i"? I #*(zr)a6a(€p + q - p') l"te" l1,u(p','')l' , Q'32)

where ef is the charge of the parton and the factor 1/( comes from converting

the parton flux factor in the cross-section to that of the nucleon, since E = {E¡¡.
Using the identity

l#t: lffiôt(sp.,q-p),t: Iffiha(e + *ln),
(2.33)

and performing an analogous calculation to that of the lepton tensor given in
Appendix B we obtain

e]ut",: 
#4(z¿2e,P, - np,tP 'q+ i^(€¡,,.,BeoPu) d(€ - "), (2.34)

where we have used p' : €P I q and so : À{PB (here À is the parton helic-

ity). Therefore the parton model implies , : € and hence the Bjorken scaling

variable, r, is interpreted as the fraction of the target momentum carried by
the struck parton. The final step in obtaining the full hadronic tensor in the
parton model is to integrate over { weighted by the probability to find a parton

with momentum fraction { and helicity À. To achieve this we define the quark

distribution functions q+(€) and q-({) to be the probability to strike a quark
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with momentum fraction { and helicity parallel (+) or anti-parallul (-) to the
target helicity. Therefore the full hadronic tensor is

+ l,' 
d't lq+G)wp, i- q-(€)w,,],

: -2ep,++þ+@)+ q-(r)l .'++ D,"?rlq+@) + q-(*)l

+ Pffiø' PP Ð! w.øl - q-(,)l (2 3b)
-q

Comparing Eq. (2.35) with the electromagnetic part of the hadronic tensor given
in Eq. (2.25), we obtain the familiar parton model formulas for the structure
functions, namely

F,(,) : T>,"? lq@) +q(r)| (2.36)
q

W¡", :

Fr(r) : *D"? lq@) +e@)1, (2.37)

(2.38)

(2.3e)

q

er(r) :;Ðel, lvq(r)+ aÇ(r)l ,

q

Tz(n) : g.

In Eqs. (2.36) (2.39) we have defined the spin-independent quark distribution
as q(n) = q+(r) + q-(r) and the spin-dependent quark distribution as Aq(ø) :
q+(r) - q-(r). We have also included the contributions from the anti-quarks in
Eqs. (2.36) (2.39), which can be derived in an analogous manner to the quarks.
Analogous parton model expressions can also be derived for the neutral and
charged current structure functions, these results can be found in, for example,
Ref. [23].

An important feature of this result is that the structure functions have no

Q2 dependence and hence the parton model provides a very clear physical inter-
pretation of Bjorken scaling. Another feature of this result is the relation

Fr(') :2r h(r), (2.40)

which is known as the Callen-Gross relation [Z+].6 fnis identity is only approx-
6The experimental confirmation of the Callan-Gross relation indicates that the quarks have

spin- j, because for example, if the quarks had zero spin we would have

GP lJrl tp + ql a 2{p, * q¡,,

v¡hich would imply f'1(z) :0.
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imately true in QCD, as it is broken by the perturbative gluon fleld

The continuing importance of the parton model lies in the fact that it remains

valid in QCD, where it is viewed as a zeroth order result. The o" corrections

can be determined using perturbative QCD, which we will discuss further in
Section 2.5 when we examine structure function factorization.

2.4 Lightcone domina nce

Recall that the hadronic tensor is given by

w¡,, : + I d,{ ¿tø c (p, slUr(€), ¿(o)llp, s) , (2.4r)

where ( is the distance between the two current insertions. To determine the
important distance scales in DIS we must examine the integral in Eq. (2.41).

The Riemann-Lebesgue lemma states

Iim
lql-oo 1",

d,{¿iEø /(€) :0, (2.42)

for any Riemann-integrable function in the domain ¿ ( € ( ó. Therefore W¡",

will be dominated by the region where lq.€l i. finite. The dot-product q'€ is

Lorentz invariant, so we choose to work in the target rest frame with the incident
photon moving in the z-direction, therefore

q ur0r0, - U2+Q2 (2.43)

In the Bjorken limit this becomes

Q + (u,0,0., -u - Mt r) .

Introducing lightcone coordinates where

n* = #(øo 
+ ø') ,

(2.44)

(2.45)

we see that in the Bjorken limit q- ---+ oo and qt - -M¿"/\/r. Therefore a

finite lq'(l requires {+ - 0 and l€-l - 1/21(U¡r)J

To maintain causality the commutator in Eq. (2.41) must vanish for {2 < 0

[1a] and hence, since {2 : 2€+€- - i|, this implies {] -- 0. Therefore all

TThe dot-product in lightcone coordinates is given by a'b: a+b- I a-b+ - dt-tt-
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components of 6r' vanish in the Bjorken limit except {-, and thus DIS is not
a short distance phenomenon (€, -- 0), but is instead a lightcone dominated
(€'-- 0) process. In fact the two constraints €+ - 0 and €- - rtl@4r)
imply l€ol - l€'l - Il(M"ø). Flom this relation we can get a feel for how far
the struck quark propagates, for example with r:0.5 we have €3 - 0.4fm,
similarly ø - 0.05 implies €3 - 4fm. Therefore as r becomes small the quark-
quark correlation length probed by DIS gets rather large, and when compared
to the size of the nucleon can definitely not be considered short distance.

In general a hadronic cross-section includes contributions from both short and
long distance physics, contains mass singularities and is infrared divergent.
Therefore hadronic cross-sections cannot be computed using perturbative QCD.
Factorization theorems state that for certain processes, in particular kinemati-
cal regimes, the hadronic cross-section can be factori,zed as a convolution of a
renormalized soft non-perturbative piece and a hard scattering piece that is free
of long distance singularities. The idea of factorízation is nicely illustrated by
the following identity

1+a ^(#)+ - l,*" ^(#). ] l,*, ^(fr). I 
, (246)

where the factorization scale, F¡, is an appropriate scale at which this separation
is valid.

For inclusive DIS cross-sections this implies that the structure functions can
be written as 125,26]

(2.47)

2.5 Factorization and Quark Distributions

F,(*,e'): 
? I,' I q¿,(€, tt¡, tt) Htq (î,1, T, 

o"(r)') *

dË qt(€, tt¡, tr) u^ (î,1,T,,"{r)) *
1

F,(r.a2\: \--!\ / v / ,LJ I,

I,
dË

(2.48)

ë
ç

+.... (2.4e)
q

The ellipsit (. ) represent higher twist contributions and terms of order O (p'lp?)
This factorizalion of the DIS cross-section has been proven to all orders in per-
turbation theory l27l and is the basis of all other cross-section factorizations, for
example the Drell-Yan reactions and semi-inclusive DIS.

q

gr(*,Q'): t Lqt(Ë, tr¡, tt) Gu (î'9r'T'o"rr,
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The hard scattering functions, H¡q, a,Íe, infrared finite and calculable in per-

turbation theory. In general they depend on the type of exchanged electroweak

vector boson and the type of parton, but are completely independent of long

distance interactions. The functiots q¡, Lq¡ are the parton distributions dis-

cussed in Section 2.3 and contain all the long distance non-perturbative effects

of the original cross-section. These functions depend on the type of target, A,

but have no dependence on the probe which is used to measure them. This

important result gives rise to the notion of the universality of the parton distri-
bution functions [28]. This means, for example, that each structure function in

Eq. (2.25), with i €^1, 20, ^lZo, W+, can be expressed in terms of the same

quark distributions, with only the hard coefficient functions differing.

The universal nature of the quark distributions greatiy increases the predic-

tive power and utility of QCD, since, for exampie, these functions can be mea-

sured in DIS experiments at Jefferson lab or Hermes and then used as inputs in
analysing the pp collisions at the Large Hadron Collider (LHC) at CERN.

At twist-two for a spin-j target like the nucleon, there are three indepen-

dent quark distribution functions for each quark flavour. These are the spin-

independent distribution, q(r), the helicity or spin-dependent distribution Aq(ø)

and the transversity or traverse polarization distribution Lrq(r) [29]. This can

be seen by inspecting the Dirac structure of the nucleon wavefunction in the

Bjorken limit [29] or by analysing the number of independent helicity ampli-

tudes [30].

All three distributions yield a probabilistic interpretation: q(z) is the prob-

ability of striking a quark with longitudinai momentum fraction z of the parent

hadron, Lq(r) measures the number density of quarks with spin parallel to the

target minus those with spin anti-parallel, each with momentum fraction r of a

longitudinally polarized target. If we define the quantities q1(z) as the number

densities of quarks with helicity tT,as in Sections 2.3, then we have

q(r): q+(r) + q-(r), (2.50)

Lq(") : q+(r) - q-(n). (2.51)

The transversity distribution has an analogous interpretation to Lq(") except

that the hadron is transversely polarized. In a transverse basis we have

Lrq(r): q(r) - qt@), (2.52)

where, f, denotes transverse polarization parallel to the target and, J, transverse

polarization anti-parallel to the target. In this basis we must also have

q(r) : q¡(r) + qt@). (2.53)
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Nucleon quark distributions are defined field theoretically as lightcone Fourier
transforms of forward nucleon matrix elements and are given by [29,31]

A,q

q(r)

(")

IT
Itr
IT

"inP+,-(p,r lú(o)r* çrþ(€-)1r,"), (2.54)

"inP+,- 
(p,'lú(o)fxçrþ(€-)lr,'), (2.bb)

"in 
P+ ,- (p, t lrÞ{o) t*t'ls Ç ú(€-) | r, "), (2.56)L7q(r):

where for the transversity distribution we have assumed that the target hadron
is polarized along the ø-axis. If the g-axis is chosen for the transverse polar-
ization then one simply replaces 71 with 72 in Eq. (2.b6). The factor g is the
path dependent link operator which joins the two quark fields, rendering the
definitions gauge invariant, and is given by

Ç : P e-'s l8- d'srAu(s), 
Q.57)

where 2 is the path-ordering operator and At" lhe gluon field. By working in the
axial gauge, A* : 0, and by choosing an appropriate path along the lightcone
we have Ç : | [26]. Therefore, from here on we simply assume Ç is unity. The
derivation of Eqs. (2.54)-(2.56) is rather tedious and the interested reader should
consult Refs. [26,29]. The basic idea is that the operator rþ.1+r/ is the number
operator for the "good components" of the quark wavefunctions, relevant to
physics near the lightcone. The other operators with a .ls or .yr.ys simply project
out the desired spin components of the quark wavefunctions.

The anti-quark distributions are easily obtained from the following relations
l2el

q("): -q(-r), (2.b8)

^-/ \ ^ / \A,Qlr): Lq(-r), (2.5e)

LrQ@): -Lrq(-r). (2.60)

It is important to note that Lrq(r) is a chirally odd distribution, which is
easily seen from the operator structure in Eq. (2.56), and therefore cannot be
measured in inclusive DIS. This point will be discussed further in Section 2.7.

2.6 QCO Evolution of Quark Distributions

In the quark-parton model the quark distributions are independent of Q2, how-
ever in QCD the quark distributions have a weak logarithmic Q2 dependence.
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In a triumph for perturbative QCD these scaling violations can be described

by the DGLAP (Dokshitzer-Gribov-Lipatov, Altarelli-Parisi) evolution equa-

tions [32,33].

The DGLAP equations can be obtained from the renormalization group equa-

tions, however this derivation is rather complicated and involves a careful use

of the operator product expansion [26]. A more intuitive approach [34,35] is
simply to realize that as Q2 increases, so does the resoiving power of the probe,

and therefore there is a finite probability that a single parton will be resolved

as two or more partons.

\Mith this in mind there are three classes of parton distributions: the gluon

distributions, quark distributions that mix with the gluons and quark distribu-
tions that do not. The later are called non-singlet quark distributionss and are

of the form
qts(r) : q(r) - q(r), (2.61)

with the valence quark distributions, q,(z) = q(r) - q(*), being the prime ex-

ample. The non-singlet evolution equation has the form

oq^"@,Q') _ p ('ffi : Pqq(",o,(Q\) I q*t(r,8'), (2.62)

where the convolution product is defined as

P(r) ø q(r) = l.' y, (:) q(z), (2.63)

(2.64)

and Pnn is the q-q splitting function. Physically a splitting function Po,o(rf z)

represents the probability for a parton of type p with momentum fraction z to
emit a quark or giuon, and become a parton of type p/ with momentum fraction
fr.

Because the number of valence quarks must remain independent of the res-

olution of the probe we must have

a
ð In(Q2) I,

1

dr qNS(r,Q") :0,

therefore using E,q. (2.62) the q-q splitting function must satisfy

[' o" Pooe) :0. (2.65)
Jo

8The formal reason for the name is that differences of the type q - q transform as the
adjoint representation of the Stl(3) flavour group.
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Quark distributions that mix with the gluons are called singlet distributions
and are of the form

qs(r): q(r) + ø(r). (2.66)

These distributions appear, for example, in the structure functions -F1, f'2 and
gt. Because we have mixing between the singlet and gluon distributions the
DGLAP equations are coupled and have the form

a (qt(r,8')\ _ (pnn@,.,(e\) pnn(*,o"(O'))\ 
^ (qt@,e\\

At"@ \g(r, A\ ) - \&, (",o"(Q')) Pnn(r,""@'D)- \g(r, A') )'
(2.67)

The QCD evolution equations for the helicity distributions are analogous
to Eqs. (2.62) qnd (2.67), with just a change of notation. For the traverse
case however, there is no coupling between the quarks and gluons because of the
chiral-odd nature of this distribution. Hence the transversity evolution is simply
described by evolution equations of the non-singlet form, namely

a
Lrq- (r , Q\ : Lr Pqq,- Ø Lvq- (r, 8') , (2.68)

0tn(Q2)
a Lrq+(r,Q'): LrPqq,+ I A7q+(r,Q'), (2.6s)

ðIn(Q2)

where LrQ+ : qî+Ç¡ and Lre- : qI Çt. The splitting functions A,7Pn ,- and
LrPsq,+ are given in Ref. [36].

The reason there is no twist-2 transversity distribution for the gluon in the
nucleon, is easily seen if we consider the helicity amplitude. T[ansverse polariza-
tion distributions are related to helicity flip amplitudes. Gluons have helicity tl
and hence to conserve angular momentum the nucleon must undergo a helicity
change of t2, which is clearly not possible. However, for higher spin targets
l:ì -.. rì-..- -l--,r- 1 I: !/ 1 r. a I mr P 1uÁe ulre ueutelorÌ or p, lÌeIL:rty colrservautoll calt oe satlsne0. Iflerelore, gluon
transversity distributions do exist for targets with J ) 7 and hence transversity
singlet quark distributions will couple to the gluons.

The splitting functions are calculated in perturbative QCD, with an expan-
sion of the form

p(,,e\: (#) pto)e). (#)2 pl)e) + . (2To)

where p(o) i. the leading order (LO) and p(t) ir the next-to-leading order (NLO)
result. Expressions up to NNLO for all three distributions can be found in
Ref. [37] and in Fig. (2.a) we give the diagrams that contribute at LO. For a
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Figure 2.4: These diagrams are the LO spiitting functions that form the kernel

of the evolution equations. The function Po,, is the probability for a parton
of type p with momentum fraction z to emit a particle (a quark or gluon) and
become a parton of type p/ with momentum fraction r.

consistent solution of the DGLAP equations we also require os up to the order
we are working. The NLO result is

o"(e\:nn ,t l,- 1ttîlilat) +o(-1 \t ,.rr¡p; r" (çil l' - tu r' (en) U", (An)/ I ' (:

where

e¡: #,, 0o:!x" - lr,, o, :TM- f rr" n¡ - 2cpn¡, (2.72)
,,QCD

and l[6 is the number of colours, n¡ lhe number of active flavors and C¡ :
413. The value of l\qco depends on the number of active flavours and the
renormalization scheme, in the M,S scheme typical values are [36]

L$å]'n'u'u) : 10.248,0.200,0.131,0.050) Gev. (2.73)

FYom a theoretical viewpoint determining the number of active flavours is non-

triviai. In the M,S scheme the renormalization scale for a heavy quark is usually
chosen as þq : Tt7,qt therefore as a rule of thumb n¡ is the number of quarks

with mo ( Q. For a discussion on the role of the charm quark and in particular
charm quark thresholds in the nucleon, see, for example Ref. [3S].

Solving the DGLAP equations is non-trivial and must be @ç¿g_Tg11ggUL
except in the special case of LO non-singlet equation. There are several computer
codes available which solve these equations, with algorithms based on Mellin
moments [39], Laguerre expansions [40-42], recursion relations [36,37] or "brute
force" techniques 143-45| In this work we utilize the latter approach.

2.7 Tra nsvers¡ty Cross-sections

Despite its fundamental importance there is currently no experimental informa-
tion on Lrq(r).The reason that the transversity distribution is not observable
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in inclusive DIS is that it is chirally odd and the electroweak and strong inter-
actions conserve chirality. Therefore Lrq(r) must couple to another chiral-odd
function which is not possible in inclusive DIS. However L7q(r) appears in
certain semi-inclusive DIS reactions and also in hadronic reactions like Drell-
Yan [46].

The Drell-Yan process is the reaction

A+ B ------+ L- + l+ + X, (2.74)

*n"r" A and, B arcinitial hadrons which collide producing a virtual photon
which decays into a lepton-anti-lepton pair and X is the unobserved hadronic
final states as in DIS. The Drell-Yan double spin asymmetry

. do|| _ doîIArr = don + doy, Q.75)

for two transversely polarized protons, pîpl ------+ t-t+ + X,, at leading order in
the parton model is given by [29]

Al, o Do "?l\rq(rt,Q') Lre@",Q") * L7q(r2,Q2) Lre@t,Q\l
(2.76)

Dn "?[q(rt,Q") 
q(rr,Q') + q(r2,Q2)-q(q,Q2)]

\Me see that A7q(ø) appears with Lr|@) and hence the product is chirally
even. However L,yq(r) is expected to be small for z J 0.2 and the size of this
asymmetry is expected to be only a few percent.

A more promising reaction is Drell-Yan with protons and anti-protons. In
this case the clouble spin asymmetry is given by

Aon o D, "?ILrq(q,Q2) 
Lrq(nr,Q") I L,7Q(r2,Q') Lr1@r,Q')]

(2.77)f e2lo(r,.A2\a(r",Az\ +a(r".A2\ o(r. O2\lutl q rr\ tt v / a\ þ1 'e / ' r\''.) a / t\--!1 a /J

This reaction provides one of the few processes that give direct access to the
transversity distributions. Predictíons for this asymmetry were calculated in
Refs. [47,48] where saturation of the Soffer inequality [49]

zl\,rq(r)l ( ø(") + Lq(r), (2.78)

v/as assumed. An effect of the order 20-40% was found.

For semi-inclusive DIS there are broadly three different processes that give
access to the transversity distributions [29]. These are semi-inclusive DIS on a
transversely polarized target with lepton-production of
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o a transversely polarized hadron,

o an unpolarized hadron,

o two hadrons.

For semi-inclusive DIS the measured asymmetries involve the product of the
transversity distribution with a chiral-odd fragmentation function, which de-

scribes the probability for a quark with momentum fraction r to "fragment" in
a particular hadron. To do this topic justice would take us too far afi.eld, so we

refer the interested reader to Ref. [29].

The major drawback of semi-inclusive DIS transversity experiments is that
they do not give direct access to the transversity distributions, only to their prod-
uct with the poorly known fragmentation functions. Hence the most promising
experimental process is Drell-Yan with transversely polarized protons and anti-
protons which gives a direct measurement of A7q (see E,q.2.77), however these

experiments are still in the proposal stage [50].

2.8 Summary

In this chapter we have tried to give an brief overview of deep inelastic scattering
on a spin-j target, in particular the nucleon. We have seen that the structure
functions which parametrize the DIS cross-section can be factorized into a hard
part calculable in perturbative QCD (the coefficient functions) and a soft non-
perturbative piece - the quark distributions that currently remains incalculable
in QCD. We have tried to emphasize the important role the parton model plays

in our modern QCD based understanding of the strong interaction. In particular,
how the model provides a physical connection between perturbative QCD, based

on the QCD Lagrangian, and the inherently non-perturbative bound states - the
mesons and baryons - which are detected in experiments.

Notable omissions from this chapter include a discussion of the operator
product expansion (OPE) (which gives rise to the twist expansion) and also the
renormalization group equations. Thorough treatments of these topics can be

found in many standard texts, for example Refs. [46,51 53].
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Nambu-Jona- Lasinio Model

Quantum Chromodynamics (QCD) is almost universally accepted as the theory
that correctiy describes the strong interaction. The utility of QCD has been

convincingly demonstrated for hard processes in the large momentum transfer
regime, where asymptotic freedom permits a meaningful perturbative expansion.

However, at low energies or large distances where the QCD coupling is large,

the theory remains poorly understood. In fact, there is currently no ab i,niti,o

calculation of a hadronic observable in the non-perturbative sector of QCD.

At the moment the most direct method with which to gain access to the long
distance behaviour of QCD is to evaluate the path integral on a 4-dimensional

space-time lattice, that is, lattice QCD. This method has its own problems how-

ever, the most pressing of which is its computational intensity. Nobody knows

exactly how much computing power is needed to perform a realistic calcula-
tion at physical quark masses, as the behaviour of QCD as a function of mo

is unknown. However, the minimum requirement is probably several hundred

tetraflops [54]. In addition, flnite density lattice QCD calculations appear to
be formidable, if not an impossibility, even for the modest densities of nuclear

matter. This is because the introduction of a chemical potential into the QCD
Lagrangian results in a complex path integral measure, which renders standard
importance sampling techniques unusable.

With this in mind, the importance of models that have strong overlap with
the underlying theory and wide ranging applicability cannot be overstated.
These models should posses many of the same symmetries as the full theory,
exhibit relevant symmetry breaking mechanisms and also include important phe-

nomenological constraints. The candidate model that we consider here, which
meets all these requirements, is the Nambu-Jona-Lasinio (NJL) model [55,56],
regularized using the Schwinger proper-time scheme [57,58].

The NJL model was first proposed by Y. Nambu and G. Jona-Lasinio in
the early sixties as an effective theory of strongly interacting particles, which at
the time were primarily the nucleon and pion. Motivation for the NJL model

was derived from the BCS theory of superconductivity [59,60], which today
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is interpreted as a low energy effective of QED, although this link has not be
proven.

With the advent of QCD the NJL model was initially criticized because of
its non-fundamental nature, but was soon re-expressed as an effective theory
of QCD in terms of quark degrees of freedom. Since then, the NJL model has

achieved considerable success in the study of a vast array of strong interaction
phenomena. For example, the vacuum structure of QCD [61], the meson and
baryon spectrum [62] and nuclear physics applications such as neutron and quark
stars [63, 64].

In this chapter we will give a brief review of the NJL model with a focus
on the constraints imposed by chiral symmetry and the Faddeev description of
baryons.

3.1 NJL Lagrangian and Regularization

The non-renormalized QCD Lagrangian has the form [46]

Lqcn :ú (uþ - mn) rt' - jr;,rY", (3.1)

where / is the covariant derivative, mn is the quark mass matrix and Ffr, the
gluon field strength tensor [a6]. The known symmetries of QCD are

S: ^9U(I/¡)2, ISu(l/r)nISU(lrr") s¿/(1)yICI PØT, (32)

where l/¡ is the number of flavors, ff" the nurnber of colours, ^9U(l/¡)2, I
SU(¡f/)a is the chiral symmetry (realized às rnq -- 0), SU (N.) the colour gauge

symmetry, U(1)" is the baryon number symmetry and CPT are the usual dis-
crete symmetries. Note, the QCD Lagrangian has an axial U(1) symmetr¡
but this is broken by the QCD vacuum and hence is not a symmetry of the
theory [46].

The NJL model is the minimal chiral effective theory of QCD involving only
quark degrees offreedom (the gluon degrees offreedom have been absorbed into
the effective coupling). The general form of the NJL Lagrangian is

Lutt, :ú (uø - n"rn) ú-t L¿q I Luo + .. . (3.3)

where L¿n, Lan, etc are the 4-,6-quark interaction terms. The 6-quark term
is introduced to explicitly break the axial t/(1) symmetry in the SU(3)¡' NJL
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model. It is usually taken to have the 't Hooft determinant form [65]

Laq: r{det WO+È,þl rdet Wí-Èúl}, (3.4)

where K is the effective coupling. This term has been used extensively in NJL
model studies 162,,66,67], especially in the meson sector where it provides a

mechanism to induce the q-1t mass splitting [62]. However its use should be

treated with caution, as it has been argued in Ref. [68 70] that the consequences

of the dynamical breaking of the U(1)" symmetry in QCD, cannot be modelled

by adding an explicit symmetry breaking term to any effective Lagrangian.

F\rrther, and potentially more troublesome, is the fact that the inclusion of
the 't Hooft term gives rise to an effective potential that is unbounded from
below 177,72]. An immediate consequence of which is an unstable pion with
respect to the strong interactions. The authors in Refs. 171,72] propose the
introduction of an 8-quark interaction term, ,Csn, along with the usual 't Hooft
term. They find a stable vacuum, provided certain inequalities between the
effective couplings are satisfied. However the problem of explicitly breaking the

I/(1) axial symmetry remains.

In this work we restrict ourselves to the 4-quark interaction only, and view
the dynamical breaking of the I/(1) axial symmetry as a very interesting open

question within the NJL model. Moreover, the focus here is on baryons, in the
quark-diquark approximation, and the 't Hooft term does not directly influence

diquark structure, since there cannot be any flavour singlet diquarks. Conse-

quently, in the quark-diquark approximation to the baryon sector, the effects

of the 't Hooft term can simply be incorporated via a renormalization of the
4-Fermi coupling constants.

There have been many 4-Fermi interaction Lagrangians utilized in the liter-
ature, in the original paper the form was

Tôo1
Lqq:Gl(rþrþ)" - (4nsn¡)'1 (3.5)

Another popular choice is the so-called colour-current interaction Lagrangian

used in Refs. [62,73,74], which has the form

L+q:-ct (rhrTx.rþ)', (3 6)
c:I

where À" are the SU(3) Gell-Mann matrices. In this work we do not choose a

particular form for the 4-quark interaction. Instead we use a Fieru symmetrized
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Lagrangian G"lG G"lG G"lG
G [(1, L) - (^yuru,16r¿)]

G l(+^.,år") - (f,\.1urn,I¡"turo)l

G(l,l')
G(T\.t,lx.tr)
G('Yr'Yu,lqls)

G(TÀ"lrlu,L\..yrlu)

1
6

_1

1
6

_1
I

1
6

_1
I

13
12

1

0

_1
6

_2
I

1
t)

2
I

12

1

18

1

1

t2

18
1

1

T2

1

18

Table 3.1: This table is reproduced from Ref. [75]. The left coiumn refers to
the different interaction Lagrangians where, (fr, fr) = (rþf t þ)(rþlrrþ) and the
remaining columns indicate the interaction strength in the pionic, scalar diquark
and axial-vector diquark channels.

form of the Lagrangian, where the interaction strength in a particuiar channel
can be read off directly (see Ref. [75] for further details) and exchange terms
are automatically included. Then different choices for the initial interaction La-
grangian simply result in differing coupling strengths in each particular channel.
In Table 3.1 we illustrate this by giving examples for the pionic eq and diquark
qq channel, where we include both scalar and axial-vector terms.

In this work we relax the constraints on the coupling Gn,, G", Go, etc implied
by the Fierz transformation and simply treat these couplings as free parameters,
to be fixed phenomenologically. In this \May we use the physics to determine L¡.
It should always be possible work backward to find an interaction Lagrangian
that gives the desired coupling under Fierz transformation, if one is sufficiently
keen.

The NJL model is non-renormalizable, which is easily seen, for example, by
the fact that the effective coupling constants are dimensionful. Therefore to
fully define the model one must specify the regularization scheme. The most
important feature of the regularization scheme is that it must preserve as many
of the symmetries as possible. For the NJL model this means in particular that
it should be covariant and not break chiral symmetry.

There are in principle an infinite number of regularization schemes. Here
we quickly review some popnlar examples that have been utilized in NJL model
studies. In all cases discussed below the regularization is in momentum space,
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we denote the integration variable by p and the regularization scale by Â:

o Three-momentum cutoff: In this scheme one integrates over p6, then

imposes the constr aint f2 < L2. The main drawback of this approach is

that it is non-covariant.

o Euclidean four-momentum cutoff: Here one Wick rotates and imposes

the constraint p2t < 42.

¡ Pauli-Villars: This method is implemented via the following modifrcation
to a product of quark propagators [76]

ü*+-å",{ü q+,4\, (37)

where co : 7, Ao : 0 and an arbitrary number (n) of regulating masses .4,¿

and constants c¿ have been introduced. To guarantee convergence of the

loop integrals the following conditions must be satisfi.ed

\"u - 
o, D"utt? : o. (3.8)

Therefore n ) 2 is required. Pauli-Villars is attractive because it preserves

gauge invariance, but in the NJL context it explicitly breaks chiral sym-

metry through the introduction of the regulating masses, which cannot be

taken to inflnity.

o Proper-time: In the NJL context this method is implemented on a prod-

uct of propagators by first introducing Feynman parametrization, then

Wick rotating and finally using the result [57,58]

1 1

lo* 
a,,'-'I"-rX =,5 I::;':d,rrn-'Ie-'x 

(3e)Xn (n - 1)!

Here X is the result after introducing the Feynman parametrization and

performing Wick rotation. To render divergent loop integrals flnite it is

only necessary to introduce the UV cutoff, however we will also include the

infrared cutoff, À¡¿. The infrared cutoff removes the imaginary piece of the

loop integrals and hence eliminates the unphysical thresholds for hadron

decay into quarks, thereby simulating an important aspect of confinement.

Throughout this thesis we will utilize the Schwinger proper-time regulariza-

tion scheme. An important caveat in the regularization of the NJL model is

that it is usual to assume that the regularization scheme respects ail symme-

tries. That is, one can freely shift integration variables, etc, and only at the end

is the regularization introduced.
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:I

Figure 3.1: Diagrammatic representation of the gap equation. The bold line
represents the propagator of the dynamically generated massive (constituent)
quark, while the thin line is the current quark propagator.

3.2 Grp Equation and Dynamical Mass

Generation

The gap equation is a one-body equation that describes the interaction of a
particle with the vacuum. This equation is represented diagrammatically in
FiS. 3.1, for the NJL model. For a parity conserving and Lorentz invariant
vacuum, in the mean-fleid approximation, the only non-zero contribution to the
fermion loop in Fig. 3.1 is from the scaiar 4-Fermi interaction, that is ($tþ)2 162]r.
Therefore, in the NJL model the gap equation has the form

M : *n + 2¿Gn 
rtlT* 

o lS"(" - a)), (3.10)

where M is the dynamically generated quark mass, mn the current quark mass
in the NJL Lagrangian and Gn is the coupling in the scalar Çq channel. In the
mean-field approximation the Qq condensate is given by [62]

(rþrþ) : -i, t{rh [S¡(ø - a)]. (3.11)

Hence the gap equation can be expressed as

M : ffi"q - 2G^_(4,4,t\. (3.12)

Evaluating Eq. (3.10) using proper-time regularization gives

3M:mol MGn dr
I
"e

-rMz J
T2

(3.13)

where the integral is appropriately regularized (Section 4.12 presents a deriva-
tion of this result).2

lFor additional arguments that also consider the 1/l/ expansion, see for example Ref. [77]2Throughout this thesis we will regularly leave absent the integration limits on the proper-
time integration over r. However, in each case the integration limits are implied in the sense
of Eq. (3.e).
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Figure 3.2: Dynamical quark mass generation as a function of GnlGn.rit

It is clear that Eq. (3.13) permits atrivial solution when Gn:0, however if
G,, is large there also exists a non-perturbative solution. If mo: 0 this critical
coupling is given by

,
1t-

(ttT, - tt',
")-'

(3.14)Grcrit
3

Fþom Eq. (3.12) we see that if M I mn then (rþtþ) f 0, hence dynamical mass

generation is also associated with the generation of a non-zero chiral condensate.

In Fig. 3.2 we plot solutions of Eq. (3.13) as a function of Gn/Gn.,¡t. In the

chiral limit with Gn 1 Gr*it we see that both the quark mass and hence also the

chiral condensate are zeroj this is the Wigner-Weyl phase. For G," ) Gr.".i¡ the

chiral condensate becomes non-zero and we are in the Nambu-Goldstone phase

where chiral symmetry has been dynamically broken.

Chiral symmetry and its breaking play a pivotal role in low energy QCD.
In this section we have tried to demonstrate that the NJL model provides a

transparent mechanism for the breaking of chiral symmetry and is an excellent

tool with which to study this phenomenon.

3.3 The Pion and Chiral Symmetry

The usual method with which to study the pion and other mesons in the NJL
model, is to solve the relativistic two-body bound state equation, that is, the

mq :0MeV
ms:5MeV
mq :50MeV
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+

Figure 3.3: Beth-Salpeter equation for a quark and an anti-quark. The shaded
Iine represents the meson ú-matrix and the solid lines represent a dressed quark
propagator.

Bethe-Salpeter equation (BSE) [7S]. The Bethe-Salpeter equation for mesons
in the NJL model is represented diagrammatically in Fig. (3.3) and is given
analytically by [75]

'T.B,r¿(k) : Ko¡,tõ. I ffi Koþ,\, s"¿(k* q) ,sr.x' (q)7"'x',.,d(k). (3.15)

In Eq. (3.15) the two-body ú-matrix is denotedlry T,,S is the fermion propagtor,
K is the appropriate interaction kernel and the indices label Dirac, isospin and
colour degrees of freedom.

For the pion the interaction kernel has the form

Ko¡,tô : -2iGn ('yurn)oB('6r)ro. (3.16)

The solution to the Bethe-Salpeter equation is given by

'T"B,r¿(k) : ('ysr¡)oBr*(le) (15r¿)16, (3.17)

where r*(n):=#ft@, (3.1s)

and the quark anti-quark bubble graph has the form

n rr-2\ ", f daq ,n^i-. crl^\^. cr /r^ , -\r /o r^\Ir'7r\tù / - "' J @y 
rr [/5^J\qi'l5oF\tL-Tq)J' \o.r-vl

The mass of the pion is then given by the pole in the ú-matrix, that is

7 + 2G*lI^(k' : n'¿7) : 0. (3.20)

It is easy to show that

rr.(*?*): -# I *)e-,M' - h*Zr(*?), (3.21)

where

I(*?"): da | *i 
"-rlm2*(.,_..,)+rw2f 

. (3.22)
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3'Ys ,i.yp.ys

Figure 3.4: Diagram representing pion decay in the NJL model.

Therefore, using the gap equation result given in Eq. (3.13), we

following expression
rnq 1

obtain the

(3.23)

vanishes in

m?"

\Me have therefore derived the important result that the pion mass

the correct chiral limit, that is rmq ---+ 0, not M ---+ 0.

Another important pionic observable is the pion decay constant, /,, which
is defined via the matrix element

(olÚtøuL""l"u(q)):ifnep6oo, ß.24)

where z6 is a pion with isospin b. For the NJL model, the diagrammatic rep-

resentation of this matrix element is given in Fig. 3.4. Analytically, Eq. (3.24)

can be expressed as

i f" Qp : Jt/g" (3.25)

where g, is the effective pion quark-quark coupling, defined by

s;r : -on,@\lôq'ln,:^?

: h Io' 
oo I a'l+ - *?(o' - ")] "-'lm2*(a2_.,)+nr2)' 

(3'26)

With this result, the gap equation (Eq. (3.12)) and the pion mass condition
(Eq. (3.23)), it is easy to obtain the following expression

fi*| = -mn\1þú). (3.27)

This result is the first-order approximation to the Gell-Mann-Oakes-Renner
current algebra relation [79], given by

I
rÌ*7 : -;(*, + m¿) (nu + dd). (3.28)

In this section we have explicitly demonstrated that the key consequences

of chiral symmetry are not destroyed by the introduction of the proper-time

regularization scheme to the NJL model.

M # G" I(m2*)

I ffit lzu s(t')lt't''s(k - q)] ,
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3.4 Baryons

Any model framework for hadrons must include a description of baryons, how-
ever because of their minimal 3-quark nature they are notoriously difficult to
model. There have been many different approaches in the literature, ranging
from the MIT and cloudy bag models, to solitons and lattice QCD. \A/ithin the
NJL model, two approaches are popular, the soliton approach motivated by the
Iarge ÀI" expansion of QCD and the Faddeev framework, that is, solving the
relativistic 3-body bound state equation.

The solitonic approach originates from work by 't Hooft that showed in the
limit of a large number of coiours, ¡f", QCD can be regarded as an effective theory
of mesons and glueballs [80]. Subsequently, it was argued by Witten [81,82], but
not proven, that baryons emerge as solitonic solutions of this underlining mesonic
theory. For a review of this approach see for example Refs. [77,83].

The 3-body Faddeev approach for baryons, which is the focus of this section,
can be seen as the natural extension of the 2-body Bethe-Salpeter formalism used
successfully in the meson sector. In this section we will outline a derivation of the
relativistic three-body Faddeev equations 174,84,85], for a general introduction
to the 3-body problem see Refs. [86-89].

The complete solution to the relativistic 3-body problem is encapsulated by
the Dyson equation for the 3-body propagator. In operator form the Dysorr
equation is given by 

11 _ /1u : Lzo I Go K G, (3.29)

where Gs is the product of three quark-propagators and y'f is the interaction
kernel, which contains alI 2- and 3-quark irreducible diagrams. The formal
solution of Eq. (3.29) is

G: årK, (3.80)

which makes sense mathematically, but it is difficult to interpret physically.
If we introduce the "Faddeev approximation", which is to neglect all 3-quark
irreducible diagrams, the interaction kernel can be written as

K : Kt I Kz I Ks. (3.31)

Here K¿ represents the kernel for the interaction of quarks j and k, where quark
'i is a spectator. It is convenient to introduce the 2-body propagtor in the 3-body
Hilbert space, g¿, which satisfies the equation

g¿ : Go I Gs K¿ g¿. (3.32)
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The general solution of this equation is

Using the identity

1 .å*(K¡+Nr)å,N,

(3.33)

1

7-GoK L-GoKi
(3.34)

we can express Eq. (3.29) in the form

G : e¿ t- s¿(K¡ + Kk)G. (3.35)

The 2-body ú-matrix in the 3-body Hilbert space, l¿, is obtained by amputating

all external quark legs from the connected part of g¿, and satisfies

ot: (L + Golà) Go. (3.36)

It is easy to show using the above result and Eq. (3.35) that the 2-body ú-matrix,

f¿, also satisfies

in: Kn + Kicoii. (3.37)

Using the Faddeev decomposition of G, which is

G : Go * Gr f Gz I Gs, G¡: Go K¿G, i : 7, 2, 3, (3.38)

and Eq. (3.36) we obtain

G¿ : Gol¿Go-f Goli (G j * Cn). (3.39)

The three-body ú-matrix is given by T : Du Tu,where G¿ : GoT¿Go and each

component satisfies

T¿ : l¿ -f l¿ Gs (G¡ + G¡) . (3.40)

These coupied 4-dimensional equations are the familiar Faddeev equations, which

relate the Faddeev three-body components, fr, to the full 2-quark ú-matrix in the

three-body Hilbert space, l¿. Where l¿ are obtained as solutions of Eq. (3.37).

We can simplify this result slightly by noting that the Faddeev components

fr contain reducible three-body processes, and that these can be separated via
the introduction of quantitiesY¡ which satisfy

T¡,: i¿+ t inY^l^. (3.41)
fn
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Physically the term t¡Y^ú- describes three-body irreducible processes where
the pair j interacts first and the pair z second. If we now introduce the quantities
Xju: S¡]U¡ ^9;/, tfre Faddeev equation can be expressed as [75]

X j, : õn¡rSm + t Sp¿ Sp¿, t¿ X¡r, (3.42)
¿¿t

T¿ : t¡S"/ + D tu x¿*t^, (3.43)

' 
: 

\'o' 
(3'44)

where 6nj*:rirö+ j + k or zeto otherwise. The usual two-body f-matrix in
Eqs (3.a2) and (3.43) is related to l¿ by, l¿ : t¿ Si| .

The Faddeev equations, expressed in Eqs. (3.42)-(2.44), are in principle
far simpler to solve than the original 8-dimensional Dyson equation, given in
Eq. (3.29). However, solving these equations is still a formidable task and it is
necessary to make further approximations, in particular assumptions regarding
the form of the 2-quark ú-matrix, l¿, are usually made.

In the derivation so far we have not assumed a particular form for the interac-
tion kernel, K. However, the 4-Fermi interaction of the NJL model is separable,
and this facilitates a significant simplification of Eq. (3.42). For the general case

of a separable interaction the Faddeev equation has been reduced to an effec-
tive two-body equation, describing the scattering of a quark on a pair of quarks
(quasi-particle). The resulting simplification to Eq. (3.a2) is a Fbedholm integral
equation of the second kind, which in operator form is given by

X:Z+KX, (3.45)

nr ¿-nlì^illrrvr w^I/uvr ur./

XPo(p',p) : ZP"(p',p)

f dLn'l* J ffi z1^t (p' ,p") sl! Gp + p") , Gp - p") xoo(p,p"). (8.46)

The full derivation of this result can be found in Ref. [75]. In Eq. (8.46), 1, is
the two-body ú-matrix for the two-quark quasi-particle, and we associate this
particle with a diquark in the nucleon. In Fig. 3.5 we illustrate Eq. (3.46)
diagrammatically. All that remains is to specify the form of the interaction
kernel, from which we can determine the form of. Zþ" and the two-body ú-matrix
T
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d'+ e¡z
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-d -t'
p+P12

Figure 3.5: Diagrammatic representation of the Faddeev equation expressed in
Eq. (3.46). The single line is a quark and the double line represents a diquark.

In this work the baryon two-body components are restricted to the scalar

and axial-vector diquarks. The NJL interaction Lagrangians in these channels

are respectively

Ë) ,þ C-'^furrþ"ú') ,

(rlt C-'f ,orr0"ú')

Performing the colour and isospin projections the ?: j euark exchange kernel

becomes [75]

z(p,,p)- -3 (i;f,;Yrl?,ï,,, {i;"'i:8 i;';,,)
and the f : Z quark exchange kernel is [75]

Z(p',p)- -6 (t, Sr(n'+ù:/').

The kernel in Eq. (3.50) only contains the axial-vector two-body channel and

after spin projection it will correspond to the Delta baryon. The kernel given in
Eq. (3.49), which after spin-projection will correspond to the nucleon, contains

both scalar and axial-vector diquarks, where the off-diagonal terms represent

coupling between these two channels. For details of the spin-projection see

Ref. [75]. The full Faddeev kernel is therefore

K : z(p',p) Se (iP + p), GP - e) . (3.51)

Throughout this work we will employ the "static-approximation" [74] to the
quark exchange kernel. That is, we neglect the momentum dependence of the

exchanged quark, therefore Se(p' + p) - -# ,n Eqs. (3.49) and (3.50). The

quark exchange kernel for the nucleon therefore becomes

,7_3 ( 1 \a37p7b\t : M (..,'arr r' '-11+7 )' (3'52)

/L": G" 
lrþ
/L,: G" 
lrþ

Crr0o/b

.ry

lrCr¿r2pA rþ'

(

)

(3.47)

(3.48)

(3.4e)

(3.50)
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while for the Delta we simply have

z : ! (-P.P'\
M\'v-'Y* ). (3.53)

We make this approximation because we wish to study the nucleon at finite
density. Therefore we require a good description of nuclear matter, in particular
we need nuclear matter saturation. It was demonstrated in Ref. [58], that in the
NJL model this seems to be achievable only by using proper-time regularization.
This scheme has the added advantage that it simulates some important aspects
of confinement. However it obscures the pole structure of the Faddeev equation,
making a full numerical solution very difficult.

In the static approximation to the NJL model, the nucleon ?-matrix satisfies
the equation

T: Z+KT: Z* Z|I¡¡T, (3.54)

or equivalently

T: Z +T K: Z -fTfl¡¡ Z, (8.5b)

where Z is given in Eq. (3.52) and fIry represents the nucleon quark-diquark bub-
ble graph. Including both scalar and axial-vector diquarks the nucleon bubble
graph is given by

n",l@): [ Í*r"d(q) s(p - k), (3.b6)/v\r/ J (2n)"

where

-cd,t¡ (r"(q) 0 \r"lq):("ò" ,tJ(n))' (3.57)

The quantities r"(q) and r!" (q) in Eq. (3.57) are solutions of the Bethe-Salpeter
equation in the scalar and axial-vector diquark channels, respectively. These
diquark ú-matrices have the form [75]

rn(q): --=9-7 + 2G*II,(q')' (3'5s)

,t" (q) : 4'i G o 
ln'" - * *-t 

üffi, (n,' - ry)1, (3 be)

where the quark-quark bubble graphs are given by

t 
[u, 

s(k) x s& - q)f ,

*lr' s(k) { s(r - q)]

I k¿nll,(q') :6¿
(2n)n

d4tc

(3.60)

It"(q') s",_ffi) :6'i
(2n)n

(3.61)
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P-

P

P-k

Figure 3.6: The diagrammatic representation of the homogeneous Faddeev equa-

tion expressed in Eq. (3.65). The shaded area represents the nucleon vertex, the
single line represents a quark and the double line a diquark.

Explicit expressions for these bubble graphs are given in Section 4.8.

In the lightcone normalization, the three-body ?-matrix near a three-body
bound state of mass M7y, behaves as

r -- lt fl , (3.62)
P+-€p

where uo: #.This defines the three-body vertex function f7y. Therefore near

this ?-matrix pole Eqs. (3.54) and (3.55) become

f¡¡ f¡¡ : (p+ - er) Z + Z|IN f¡¡ f¡r, (3.63)

f¡¡ f¡¡ : (p+ - er) Z * f¡r I NII¡,r Z. (3.64)

Taking the limit p+ + €p1 we obtain the homogeneous Faddeev equations for

the nucleon vertex and conjugate vertex functions (in the static approximation),
that is

k

P

k

|¡¡ : Z\IN fr: KlN,
fry: f¡¡fI¡¡ Z:l¡,r K.

(3.65)

(3.66)

A diagrammatic representation of the homogeneous Faddeev equation for the
nucieon vertex function, f¡¡, is given in Fig. 3.6.

In Ref. [90] the form of the nucleon vertex function in the static approxima-

tion was obtained. In the lightcone normalization this result becomes

fr(p, 
") 

: 17 M1¡_¿r¡V 
p_ l

#'rr'* o, t' tufu^(P' 
s)'

l-r
Ly

1,,

.-
^

_z*T (3.67)
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where Zy is the nucleon vertex normalization (see Section C.3 for its definition
and its explicit form). To solve for the conjugate spinor we note

K : IJ (to tçI n) u, (8.6s)

where

U- 1

0

0

-1
(3.6e)

(3.72)

Taking the hermitian conjugate of the Faddeev equation for the nucleon spinor
we obtain

rL : r! r<t. (8.70)

Multiplying from the right by .yoU and inserting %U U 7o : X, we obtain

r]u'y, ¿/ : fL -y,u (U % KI .y"U) : (rÏ" * u)R (8.21)

Therefore the conjugate vertex function must have the form

fiy(p, s) : (.h'.) U,

We obtain

-zNY ll r'l ,

,[-mf l" (",#^ts l-o,rur')] (3.73)

3.5 Summary

In this chapter we have given a brief introduction to the NJL model, its initial
mnfir¡olinn .-'l ;+- rr+il;h' ;- +tr ^ l^-^-.i^+:^- ^f l-^+L ^-l L^-,-^-^ T-ÚAIU ¡('T] UU¡TTUJ ¡IT UIIU UWÐUTTYÙTUTT UI UUI,II TITUù\JIID ¿LITLÌ IJATJUTT¡'. III

particular we have demonstrated that the NJL model encapsulates much of the
phenomenology demanded by chiral symmetry. For example, quark masses are
dynamically generated in the NJL model, with this mass generation explicitly
iinked to the formation of a non-zero chiral condensate. We have also shown
that the Gell-Mann Oakes-Renner relation is satisfred and that in the limit of
vanishing current quark mass we have m?n -+ Q.

A large section of the chapter was focused on baryons, where we utilized
the Faddeev framework to solve the three-body bound state problem. This
method is superior to the mean-field methods of Refs. [91,92] and complements
the bosonizatíon approach of Ref. [83]. The advantage of solving the Faddeev

fnr(p, 
") 

:

s): u¡rll?
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equation is that the nucleon bound state is obtained in terms of the quark

degrees of freedom. This maintains a strong connection to the Bethe-Salpeter

framework, which has proven to be very successful in NJL model studies of the
meson sector.





4

Quark Distributions from the
Nambu-Jona- Lasinio model

The discovery in the late 1980's by the European Muon Collaboration (EMC)

that the fraction of the spin of the proton carried by the quarks is unexpectedly

small l2], caused much excitement in the nuclear and particle physics commu-

nities. The "proton spin crisis" prompted many new experiments, leading to
major new insights into the spin structure of the proton. Recent experiments

at Hermes [93], using semi-inclusive DIS, have also made some headway in de-

termining the transverse spin structure of the nucleon. Future experiments,

possibly at Jefferson Lab [94], promise further exciting results, enabling for the
first time a thorough experimental determination of the entire triplet of the
twist-two quark distributions. However, a thorough theoretical understanding

of these non-perturbative parton distributions is lacking, and remains a very
important and exciting challenge.

In this chapter we aim to alleviate this shortcoming by calculating the spin-

independent, spin-dependent (helicity) and transverse (transversity) quark dis-

tributions in the Nambu-Jona-Lasinio (NJL) model [56] framework. While not

QCD, the NJL model possesses many important attributes of QCD, such as co
variance and a transparent description of spontaneous chiral symmetry breaking,

as detailed in Chapter 3. In particular, the proper-time regularization is applied

to the NJL model in order to simulate the effects of confinement [95]. We will
utilize the formalism presented in Section 3.4 and construct the nucleon as a

bound state solution of the relativistic Faddeev equation [75,85,96,97] in the
quark-diquark approximation [58], where both scalar and axial-vector diquark

channels are included. This quark-diquark description of the single nucleon has

the further advantage that it can be extended to finite baryon density [0a], which
is the focus of the next chapter. We will pay special attention to the helicity
and transversity structure of the nucleon, the related axial and tensor charges

and also their QCD evolution. Where available we will compare our results for

the quark distributions and charges with the empirical data.
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4.L Quark distributions

The triplet of leading twist nucleon quark lightcone momentum distributions are
defined via lightcone Fourier transforms of particular nucleon-nucleon matrix
elements. Explicitl¡ the definitions are

q(r) : p-

L,q(r) : p-

L7q(r) : p-

I
I
I

d€-
2r
d€-
2r
d€-
2r

ei'p+ e- þ, tlrþne).y+rþnç-)lp, r)",

ei'p+ Ë- 
@, "lrþn@)'v+'rsús(€-)lp, 

t).,

ei'p+ Ë- þ, tlrþoQ) l+ltlsrþn(€-)lp, ")",

(4.1)

(4.2)

(4.3)

(4.4)

where T/n is the quark field of flavour q and r is the Bjorken scaling variable.l
The subscript c reminds us that only connected matrix elements are included,
that is, vacuum transitions of the form (0 lJrJ"lo)(plp) do not contribute to the
quark distributions. The 71 in Eq. (a.3) implies that the transverse axis is chosen
in the r-direction, similarly a 12 in Eq. (a.3) would imply that the transverse
axis is in the E-direction. Clearly, the choice of the transverse axis cannot change
the final result, but does influence how the Dirac spinors are constructed, as we
will illustrate in Sections 4.13 and A.74. We normalize the nucleon state vector
according to non-covariant lightcone normalization: (p, tlrþnl+rþnlp,s)" : 3.

To determine the quark distributions in this model, it is convenient to express
Eqs. (4.1)-(a.3) in the form [22,29]

q(r): -, | #õþ -þ) o lt* twn@,k)1 ,

f d,4k / ,. \ -

^qlr) 
: -i, J ñ 

d (" - i )T ltttu (p, k)) ,

Lrq(r): -,¿ I #õþ -þ) * lt*ÌtuMn@,k)),

(4.5)

(4.6)

lThroughout this thesis we will denote the spin-independent distributions by q(*), or when
a particular flavour is discussed by u(r), for example. Similarly we label the helicity distribu-
tion by Aq(r) and the transversity by Lrq(r). For the moments of these distributions, we will
drop the function variable r, for example the moment of the transverse up quark distribution
will be denoted l:y L'7u. We mention this explicitly as there is potential confusion in the
literature, because for example, in the Jaffe-Ji convention the helicity quark distributions are
labeled as g1(r), which should not be confused with the universally accepted name for the
spin-dependent structure function 91(u). For further discussion see Ref. [2g].
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Figure 4.1: Feynman diagrams representing the quark distributions in the nu-

cleon, needed in the evaluation of Eqs. (4.1)-(4.3). The single line represents

the quark propagator and the double line the diquark ú-matrix. The shaded

oval denotes the quark-diquark vertex function. The operator insertion has the

form 7+ õ(" - f) f (I I r,) for the spin-independent distribution, for the spin-

dependent case we have 7+ - ^l+'ls and similarly for transversity the operator
.a11
lS ?' --+ ^l''Y-'Ys.

where Mn(p,k) is the quark two-point function in the nucleon, defined by

IMn(p,k) : ¿ d4u eik'u \N,plT lúq(o)rþn@)l l¡r,p) (4.7)

(4.8)

Hence, within any model that describes the nucleon as a bound state of quarks,

the distribution functions can be associated with a straightforward Feynman

diagram calculation.

The Feynman diagrams considered here are given in Fig. 4.1, where in our

model the resulting distributions have no support for negative r. Therefore this
is essentially a valence quark picture. The diagram on the lefb in Fig. 4.1 we

call a "quark diagram" because the operator insertion is on a quark, similarly
the diagram on the right is a "diquark diagram" as the operator insertion is on

a quark in the diquark. By separating the isospin factors, the spin-$e.ne.n{e$
z- and d-quark distributions in the proton can be expressed as

Lu,(r) : Lfåør) * ; Lüro¡ ø(
5
"l * å ^rh*@)
LÍtrot 

t *@) + frntfr,l ¡ * @),

(
1

t
2r)+ 
J

+6

^ß*
r

:)

1 -t' 1* äo¡i,rt*@) - ¡æ"ffi¿tt*@). (4 e)

The superscripts s, ø and m refer to the scalar, axial-vector or mixing terms, re-

spectively, thesubscripf qlN impliesaquarkdiagramandsimilarlyq(D)lN adi-
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quark diagram. Similar expressions hold for the spin-independent and transver-
sity distributions, however for the spin-independent case there is no mixing con-
tribution (i.".ffrolt*@) : 0) [90]. F\rrther, since the scalar diquark has spin
zero, we have Aff,rltt¡@) : 0 and Lrf lp¡¡*(*) : 0, hence the polarization of
the d-quark arises exclusively from the axial-vector and the mixing terms.

Importantly, in this covariant framework, the Ward identities corresponding
to number and momentum conservation are satisfied from the outset, guarantee-
ing the vaiidity of the baryon number and momentum sum rules [95,99]. That
is

I,'dr uu(r) : 2 dr du(r) :2,

t, dr rlu,(r) + d"(r)l : L

(4.10)

(4.11)
1

4.2 The nucleon in the NJL model

The NJL model is a chiral effective quark theory that is characterized by a
4-Fermi contact interaction of the form, Lt : DuGn (,,Þf u!t)', where the f¿
represent matrices in Dirac, colour and flavour space and G¿ are coupling con-
stants [56]. Applying Fierz transformations, the interaction Lagrangian can be
decomposed into various interacting qQ and qq channels. Writing only those
terms relevant to this discussion, we have

L:1þ (¿ô - ^ò ú r Lt,n-t Lt," I Lr,o, (4.I2)

where mn is the current quark mass. The interaction terms are given by

Lr,n :Irc" (ført)' - (rþ-ru;rÐ') , (4.1s)

Lr,s : Gs(ú rucrOoú') (rlt' c-'xrþ" ,þ), Ø.t4)

Lr,o : c"(úncr¿rzþAø')(rp' c-t1pr2r¿B" rl), (4.1b)

where þo : ,ß^" (A:2,5,7) are the colour 3 matrices and C :,i.yz.lo.
The familiar term L¡,n gerrerates the constituent quark mass, M, via the gap
equation and the pion as a qq bound state. The terms L¡,s afid.4¡,¿ represent
the interactions in the scalar (J" : 0+,7 : 0, colour3) and axial-vector (J" :
L+,7:1,colour3) diquark channels and are used to construct the nucleon as

a quark-diquark bound state. The couplings G,, G" and Go are related to the



4.2 The nucleon in the NJL model 47

original couplings, G¿,viathe Fierz transformation, but we use them here as free

parameters which will be fixed by the properties of the pion and the nucleon.

Solving the appropriate Bethe-Salpeter equations, the standard NJL results

for the diquark ú-matrices are obtained [75,90]. As explained in Ref. [58], these

can be accurately approximated by the forms

r,(q):4iG" - n"?W,
,t' @) : 4,iGo st" - FryW (n" - ffi),

(4.16)

(4.17)

which we aiso use here. The masses of the diquarks M", Mo and their couplings

to the quarks gr, go are defined as the poles and residues of the appropriate full
diquark ú-matrices (see Section 4.9). '

The nucleon (quark-diquark) ú-matrix satisfies the Faddeev equation

T: Z + Z|INT: Z lTfI¡,¡ Z, (4.18)

where Z is the quark exchange kernel and fI¡¡ the product of a quark propaga-

tor and a diquark ú-matrix. In the non-covariant lightcone normalization used

already in Eqs. (4.1) (4.3), the quark-diquark vertex function, f7y, is defined by

the behaviour of T near the pole

- 
p t-ep fru f¡¿,l'.:_;nffi, (4.19)

. tvr?.
where €p: '# is the lightcone energy. Substituting this result into Eq. (4.18)

gives the homogeneous Faddeev equations for the vertex functions

l¡¡ : ZfI¡¡l¡¡, and l¡¡ : l¡,tllv Z. (4.20)

For this investigation we restrict ourselves to the static approximation, where

we neglect the momentum dependence of the quark exchange kernel, Z. Includ-
ing both scalar and axial-vector diquark channels, Z takes the following form in
the colour singlet and isospin-j channel

z:!( .t,,ß'rn:\. (4.2r)'- M \v6ruz, --yp,f )'
The quantity fl¡y effectively becomes the quark-diquark bubble graph

f dlk
rl¡''(p) : I #r(p-k)s(k), (4.22)

J l'z1t )*
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where

f(p,") : uu(p, s),

(4.23)

(4.24)

'(q) 
: r"(q)

0

0

,t"@) )
The eigenfunction of the kernel K : Z fI¡¡, in Eq. (a.20), has the following forrn,
up to normalization:

tr#
Q.1

?s * az^lq'ls

where the upper and lower component refer to the scalar and axial-vector diquark
channels, respectively and z¡¿ is a free Dirac spinor with mass M¡¡. We choose
the normalization uwuN: 1 : Ff.2 Inserting this form into Eq. (4.20) gives

three homogeneous equations for the a's and the nucleon mass M¡¡ is determined
by the requirement that the eigenvalue of K, in Eq. (4.20), equal 1.

The normalization of the vertex function follows from the definition given in
Eq. (4.19), we obtain

fr(p, t) : (4.25)

where

p- -1Z¡¡ *{ r@)ry? rþ)' (4.26)

In Appendix C we explicitly solve the Faddeev Equation, Eq.(a.20), and show
our result for the normaiization Z¡,¡.

As with any non-renormalizable theory a regularization prescription must be
specified to fully define the model. \il/e choose the proper-time regularization
scheme [¡2, ¡S, 100. 1011. where loop integrals of products of propagators are
evaluated by introducing Feynman parameters, Wick rotating and making the
denominator replacement

1 1 fr/(LtÐ2

*. - 1, -tn Jr,rnuu, 
d'r rn-L e-'x ' (4'27)

where Â7¿ and l\uy are, respectively, ultraviolet and infrared cutoffs. The former
has the effect of eliminating unphysical l,lrresholds for Ìiadron decay into quarks,
hence simulating an important aspect of confinement [101].

2The conjugate vertex function, l, which is a left eigenfunction of y'l : fI¡¡ Z, is obtained by
taking the ordinary hermitian conjugate of I and introducing a minus sign for the axial-vector
components.

-z.Trþ, "),
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4.3 Resu lts

The parameters of the model are Â.¡¿, l\ryv, m, Gn, G" and Go. The infrared

scale is expected to be of order l\qcn and we set it to A¡¿ : 240 MeV. This is
slightly larger than our previous work [95], because our studies of the saturation
properties of nuclear matter favour this [98]. The parameters mq, l\uy and Gv

are determined by requiring M : 400 MeV via the gap equation, "f" 
: 93 MeV

from the familiar one loop pion decay diagram and mn : LA}MeV from the
pole of t]ne qQ l-matrix in the pion channel. This gives rnn :76.4MeV, Ì\uv :
645 MeV and Gn : 19.04 GeV-2. The couplings G" and Go are determined

by reproducing the nucleon mass Mu :940 MeV as the solution of Eq. (4.20)

and satisfying the Bjorken sum rule within our model, where 9A : 7.267. We

obtain G" :7.49GeY-2 and Go:2.80GeV-2. With these model parameters

the diquark masses are M" : 687 MeV and Mo : 1027 MeV and the coefficients

in the nucleon vertex function, Eq.(a.2\, are (o1, az,os): (0.43,0.02, -0.45).

To compare the predictions of the model with experimental data as well as

the empirical parameterizations, it is necessary to determine the model scale,

83. W" do this by optimizi"e QZ such that the spin-independent distribution,
uu(r), best reproduces the empirical parameterization after Q2 evolution. We

find a model scale of Q3 :0.16 GeV2, which is typical of valence dominated

models [90,99,102].

Results for all three valence u- and d-quark distributions are presented in
Figs. 4.2 and 4.3, respectively. \Me see that the helicity and transversity distri-
butions are quite similar in magnitude, although L,7d(r) is rather suppressed at

small r relative to Ad(r). Note, that the difference between Lq(") and A7q(r)
is a purely relativistic effect, and therefore in any non-relativistic model, like the

constituent quark model, these distributions are identical.

There are a few positivity constraints that should be satisfied by any model

calculation of the quark distributions. The simplest follows directly from the

probability interpretation of the quark distributions, expressed in Eqs. (2.50)-

(2.53), which states

lnqþ)l ( q("), and l\rq(")l < q(") (4.2s)

The other inequality, which relates ail three twist-two quark distributions, was

derived relatively recently by Soffer [49], and has the form

q(r) + Lq(") > zln q@)1. (4.2e)
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Figure 4.2: NJL results for the twist-two valence u-quark distributions multiplied
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ud Lu Ld Lru Lrd 9t 9r
NJL

Experiment

2L
27

0.967

0.s26(r4)

-0.300

-0.343(18)

7.044

?

-0.236

?

7.267

7.267 8

1.280

?

Table 4.1: Moments of the quark distributions and the nucleon axial and tensor

charges. The experimental values for Az, Ad and gAare take from Ref. [103],
however the experimental results given in Refs. [104,105] agree to within two
significant figures. Note we have used g.s as a constraint.

It is clear from Figs. 4.2 and 4.3 that the calculated quark distributions satisfy

these three inequalities. These quark distribution inequalities clearly constrain

the moments as well, in particular the Soffer inequality implies

lLru"l < 1 +

llrd"l < ] +

Empirically the z-quark moment , Lru, is of order one which implies l\r"rl S t.
However since Ad, ( 0 a stronger constraint on L,7d,u is possible. If l\d"l > ä,
which current empirical results imply [103], we must have l\rd,l ( ] a"a hence

the d-quark contribution to the axial charge must be greater than its contribution
to the tensor charge.

The nucleon vector, axial and tensor charges are related to the moments of

the twist-two quark distributions. In the absence of anti-quark distributions
these relations are

Lu,
Ld,

1
2

1
2

(4.30)

(4.31)

I,

t,

I,

drlu(r) - a@)l: evt

drlLu(r) - Ld(r)l: eA¡

1

1

1

(4.32)

(4.33)

l\,ru(r) - L,rd(r)l: 9r¡ (4.34)

where the vector charge, gv, is simply the baryon number. In Table 4.1 we give

our results for the moments of the quark distributions and the related nucleon

charges. We find Lqu ) Au and Lrd < Ad with 9A - 7r,t which is potentially
an interesting result. Relativistic effects cause significant differences between

the helicity and transversity quark distributions, however these largely cancel

for the nucleon axial and tensor charges. It is widely believed that it should be

possible to derive a relation between Lq(") and A,7q(r) , since

q+(r) + q-(r) : q(r) + qír), (4.35)
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however such a relation is yet to be obtained. Further investigation of our results
is necessary to see if there is an underlying rea,son for the similarity betweerr g¿
and gy, or if it is mere coincidcncc.

Our model results for the first polarized moments are Lu,u : 0.g67 and
Ldu : -0.300 which agree quite well with the values Lu,u:0.926 + 0.014
and A du : -0.341 + 0.018 determined from the axial coupling constants of
octet baryons discussed in Ref. [103]. This emphasizes the importance of in-
cluding axial-vector diquark correlations, since the pure scalar model would give
a vanishinï L du and a somewhat smaller A zr. The spin sum in our model is
AE : 0.667, which is smaller than the result of the pure scalar model, but still
somewhat larger than the accepted value of AE :0.2t3+0.138 [4]. Although a
re-evaluation of the data may result in a somewhat larger value [106]. The dis-
crepancy between our result and experiment may primarily reflect the absence
of the I/(1) axial anomaly [5,107] in our calculation. For the transversity mo-
ments there are no experimental numbers, however there have been a number of
theoretical calculations, for example the MIT bag model [108], Chiral quark soli-
ton model [109,110], chiral constituent quark model [111] and some exploratory
lattice studies [112, 113]. Between them they find 0.80 ( Aru ( 1.12 and

-0.15 ( Ard < -0.42, therefore our values of A,7u : 1'04 and A7d : _'0.24

are consistent with previous work.

In Figs. 4.4 and 4.5 we show the results for ail three z- and d-quark distri-
butions after QCD evolutions to Q" : 5.00 GeV2. Empirical parameterizations
exist for the spin-independent and helicity distributions and we illustrate these
in Figs. 4.4 and 4.5, however it will be sometime before empírical parameteriza-
tions for the transversity distributions are available. We find excellent agreement
between the model results and the parameterizations. Although the helicity d-
quark distribution presented in Fig. 4.5 is a little small. This could be a result
of the static approximation, because the quark exchange diagram, absent in this
calculation, would contribute to this distribution. For the scalar diquark case
in particular, this contribution may be rather large. This result illustrates the
importance of going beyond the static approximation in future work. However,
we should note that in comparison with the pure scalar model [95, 11b], the
agreement has improved substantially, especially for the spin-dependent case,
iliustrating the important role axial-vector rliquarks play in nucleon spin struc-
ture.

3We utilize the computer program of Ref. [43] for the spin-independent case, of Ref. [a ]
for the spin-dependent case and of Ref. [45] for the transversity case. We choose DGLAP
evolution with N¡ :3, r\qcl :250MeV in the MS renormalization scheme up to NLo.
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The behaviour of structure function and hence quark distribution ratios at
Iarge r has been an area ofconsiderable debate [116,117] and is one ofthe regions
where perturbative QCD (pQCn) offers firm predictions [118]. Experimentally,
the ratio d(r)lu(r) is surprisingly poorly known [11g]. In the limit r ---+ 1 it
is thought to lie somewhere between 0, the prediction based on scalar diquark
dominance [120] and ], the pQCD result [118]. Analysis in Ref. [116] favours
the pQCD prediction. The same predictions also hold for the spin-dependent
ratio, Ld(r)lLu(ø), as r approaches 1, however to our knowledge there remains
no pQCD prediction for the transverse ratio.

In Fig.4.6 we plot our results for the ratios d"(r)lu,(r), Ad"(r)lLu,(r)
and A'yd,(r)f L'7u,(r), together with the ratios of the empirical distributions.
The r --+ 1 limit of the spin-independent ratio of - ] is slightty larger than
the pQCD prediction. The spin-dependent ratio is less than or equal to zero
and therefore has the opposite sign to the pQCD result. Although the empirical
parameterizations are constrained to give 0 for these ratios as ø ---+ 1, we note
that the systematic errors in both empirical ratios are very large in the region
ø J 0.5 [4,10,704,174].

It is important to note that the pQCD predictions for the mixed flavour ra-
tios are somewhat model dependent, as assumptions have to be made about the
relative strengths of the u- and d-quark contributions to the nucleon wavefunc-
tion. A more rigorous pQCD prediction, relying only on helicity conservation, is
possible for the single flavour ratios Lu(r)lu(r) and Ld(r)ld(r). Perturbative
QCD predicts that both these ratios should approach 1 for large n, which would
require a change of sign in the Ad distribution. In Fig. 4.7 we plot our results
of the single flavour ratios, we find in the larger z limit that the Lq(r) lq@)
o-l A -^(^\ /^(-\ -^+;^- ^-^-^^^L -^-^ -,.L:l^ +L^ A ^/^\ I A ^/-\ -^¿:^ ^r r^---- --crru A7'Y\&)/C\tu) r@urvD cl/yruauu ¿çr\.,r wrrrlti trlru /l?q\¿)/lJq\L) r¿1UlU it,t/ Lò"Ige'J;

remains finite.

In Fig. 4.8 we plot our results for the ratios (Aq + Lù I @ +q) where q €
(u,d). Since we wish to compare these ratios directly to recent experimental
data, we include sea quark distributions generated through the Q2 evolution. In
Ihe r ---+ 1 limit our model ratios approach = 0.8 for the z-quark and = _0.25

for the d-quark. This seeming contradiction to pQCD has also been suggested by
recent experiments by the Jefferson Lab Hall A collaboration [117,124], with our
predictions consistent with their experimental results. This data is also shown
in Fig. 4.8.
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Figure 4.6: Mixed flavour ratios for the three twist-two quark distributions.
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The nucleon asymmetry Ay is deflned as

At = 
ot/z - oz/2. 

(4.86)

where os¡2 isthe photoo "r.*-; ,i:"":::i:rr'" ot oron and nucieon spin-

components along the direction of photon momentum are aligned and o1¡2 is

the case where the nucleon spin is anti-aligned. Expressed in terms of structure
functions the asymmetry becomes [117]

¡r: eL@)-Í-9r@) - !(:), . Ø.rT)'-r Ft(*) - Ft(r)'
In Fig. 4.9 we show results for the asymmetries Ato@) and A6(r). We find
excellent agreement with the Jefferson Lab data [117] in the valence quark region.

However, for small r, A7o(r) is slightly too large, which reflects an enhancement

of gry@) in the same region. This is most likely associated with the omission

of the effects of the axial anomaly in the present work. It is also clear from

the experimental data that the uncertainties in these ratios at large r, are still
significant.

In Fig.4.10 we give our results for the spin-dependent structure functions

7ry@) and g¡(r). The parameterizations of Ref. [104] are also included as the

shaded areas) which indicate the empirical uncertainties. Our results compare

well with the empirical parameterizations, lying within uncertainties for the

region r ) 0.3. Comparison with experiment is also favorable, although the

experimental determination f.or g¡(r) is less certain.

4.4 Conclusion

Using a covariant quark-diquark model for the nucleon, including both scalar and

axial-vector diquark channels, we calculated the complete triplet of twist-two qu-

ark distributions, that is, the spin-independent, spin-dependent and transversity

distribution functions. A key feature of the framework is that it produces quark

distributions that have the correct support and obey the number and momen-

tum sum rules. The model also incorporates important aspects of confinement

by eiiminating unphysical thresholds for nucleon decay into quarks.

Highiights of our results are obtaining values for the polarized first moments

of the quark distributions Az, : 0.967 and Ldu: -0.300, in good agreement

with those obtained from axial coupiings of octet baryons. We also obtain excel-

lent agreement with empirical parameterizations of the valence quark distribu-
tions. We paid special attention to the single flavour ratios (Aq + LÐ I @ +q)
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and the asymmetries A1o and A1n, finding good agreement with recent experi-
mental results from JLab.

These results indicate that diquark correlations are an essential feature of the
non-perturbative structure of the nucleon. In particular, the admixture of axial-
vector diquarks, though small, is essential to obtain the observed agreement with
empirical data.

Finally, we would like to mention that a very important advantage of this
covariant quark-diquark model is that it can be readily extended to the case of
finite nucleon density. The results presented in this chapter strongly suggest that
this model should provide a reliable basis from which to begin investigation of the
medium modifications of both spin-independent and spin-dependent structure
functions. We investigate this in the following chapter.
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Quark Distributions in Nuclear
Matter

The discovery in the early 1980s by the European Muon Collaboration (EMC)

that nuclear structure functions differ substantially from those of free nucle-

ons [11,727,L28] caused a shock in the nuclear physics community. Despite

many attempts to understand this effect in terms of binding corrections it has

become clear that one cannot understand it without a change in the structure

of the nucleon-like quark clusters in matter [129 131]. Mean-field models of

nuclear structure built at the quark level, which have been developed over the

past 15 years, are yielding a quantitative description of the EMC effect. Most

recently it has been demonstrated that at least one of these models leads nat-

urally to a Skyrme-type force, with parameters in agreement with those found

phenomenologically to describe a vast amount of nuclear data [132].

A second major discovery by the EMC concerned the so-cailed "spin crisis"

[2], which corresponds to the discovery that the fraction of the spin of the proton

carried by its quarks is unexpectedly small. This has led to major new insights

into the famous U(1) axial anomaiy, prompting many new experiments' With
this background, it is astonishing that, in the 19 years since the discovery of the

spin crisis, there has been no experimental investigation of the spin-dependent

structure functions of atomic nuclei. Of course, such experiments are more

difficult because the nuclear spin is usually carried by just a single nucleon and

hence the spin dependence is an O(1lA) effect. NeverthelessT as we shall see,

such measurements promise another major surprise, with at least one model

which reproduces the EMC effect in nuclear matter - suggesting a modifi.cation

of the spin structure function of a bound proton in nuclear matter roughiy twice

as large as the change in the spin-independent structure function.

Modeis of nuclear structure like the quark meson coupling (QMC) model,

achieve saturation through the self-consistent change in the quark structure of

the colorless, nucleon-like constituents - in particular, through its scalar polar-

izability [132,133]. Physically the idea is extremely simple, light quarks respond

rapidly to oppose an applied scalar field. Specifically, the lower components of
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the valence quark wave functions are enhanced and this in turn reduces the effec-
tive øIl coupling. The fact that changes in the structure of bound nucleons are
so difficult to find appears to be a result of this mechanism being extremely effi-
cient and hence yielding only a small change in the dominant upper components
of the valence quark wave functions.

On the other hand, the spin structure functions are particularly sensitive to
the lower components and this is why measurement of the spin-dependent EMC
effect is so promising. In this chapter we extend the NJL model discussed so far
to enable finite density calculations, by introducing mean scalar and vector fields
to the NJL Lagrangian. We find that with this finite density NJL model, coupled
with the proper-time regularization [57,100, 101], and the inclusion of both scalar
and axial-vector diquarks, we readily obtain nuclear matter saturation at the
correct energy and density. This model exhibits similar properties to the QMC
model, with the advantage that it is covariant. We extend the work of the
previous chapter by determining the medium modifications to the entire triplet
of the twist-two quark distributions. We determine the medium modifications
to the nucleon axial and tensor charges and calculate the EMC, polarized EMC
and transversity EMC effects.

5. 1 Fin ite Density Q ua rk Disrributions

The spin-dependent lightcone quark distribution per nucleon in a nucleus of
mass number A, momentum Pp and helicity fI is defined as

Lqf) @o) : + I ff"nr-:rau- 
rA (A, p, Hlúne) t+tsúq(u-)lA, p, H),

(5. 1)
where /n is the quark field and r¡isthe Bjorken scaling -variable for ihe nucleus
multiplied by A, with support 0 1 rt < A. We utilize the non-covariant
lightcone normalization where

(A, Plrþn.y+ uþqlA, P) : 3A. (b 2)

The definitions for the finite density spin-independent and transversity quark
distributions are obtained in the usual way via the respective operator substitu-
tions, 'y+^ls - 7+ and .y+.ls 

-.y+.y'^ls, in Eq. (b.1).

The matrix element in Eq. (5.1) is extremely difficult to evaluate directly.
Therefore we utilize the convolution formalism 122] and express Eq. (b.1) in the
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form

tqf) (ro) : 
Io"oro Io'0, 

õ(ro - y¡r) a,q(r) nfliÀy,ò , (5.3)

where Lq(r) is the medium modified spin-dependent quark lightcone momen-

tum distribution in the nucleon ana tfff)(gr) ir the spin-dependent lightcone

momentum distribution o a nucleon in the nucleus. These distributions are

defined by

Lq(*) : p- [ o: 
"n'-"- (N,nlúort¡t+tsúq(u-)l¡r,p), (b 4)J2r\

"; [ 4_"ur-at,- /A Ø, plú;n) t*turþ*(r-)lA, p], (b.5)Lf x/t(ue) ::o 
, 2¡r

with the normalizations

(N,plrþnt+ rþnlN,p) : 3,

(A, Plrþ*'y+ IþNIA, P) : A.

(5.6)

Analogous expressions to those in Eqs. (5.3)-(5.5) hold for the spin-independent
and transversity finite density quark distributions.

The convolution formalism is depicted diagrammatically in Fig. 5.1a, where

all final state interactions between the nucleon and the remaining fragment of
the nucleus are ignored. Examples of diagrams not included in the convolution
formalism are illustrated in Figs. 5.1b and 5.1c. Unlike the discussion for the
nucleon, the operator product expansion cannot be used to show that these

non-handbag diagrams for the quark distributions in a nucleus arc O(Ll}'),
and hence vanish in the Bjorken limit. Nevertheless we shall proceed and look
for anv deviations from the convolution model.l

To calculate the in-medium quark distributions within our model we once

again express them in the form 122,291

(5.7)

(5.8)q(r) : -, I
Lq(r) : -'¿ |

Lrq(r): -'¿ |

rY lz* M(p,k)),k_

p-
k_

& p-
k_
p-

rr [z+rs M(p,k)], (5.e)

T\ lt+lx M(p,k)], (5.10)

lSome experimental results that would indicate a breakdown of the convolution approach

are discussed in the next chapter.
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Figure 5.1: Figure (a) is a diagrammatic representation of the convolution for-
malism. Figures (b) and (c) are diagrams that are ignored in this approach.

where M(p,k) is now the quark two-point function for a quark in a bound
nucleon. Therefore, as in the previous chapter the quark distributions can be
related to a straightforward Feynman diagram calculation (see Fig. 4.1), except
here the propagators include the self consistent scalar and vector mean-fields in
the nucleus. The quark propagator therefore becomes

11
^9(k) 

: 
T-M-aj: ft-M.J, (5'11)

where O and Vp - (%,0') are the constant scalar and vector fields respectively.2

It is clear from Eq. (5.11) that the effect of the scalar field can simply be
incorporated by replacing the free masses with the effective masses in the nu-
clear medium. In Ref. [95] it is demonstrated that the vector fleld dependence
of the quark distributions in the nucleon can be expressed via a simple scale
transformation on Bjorken ø of the nucleon. That is

Ip'

- 3V+

where the subscript 0 denotes a nucleon quark distribution uninfluenced by the
vector potential, but includes the effects of the scalar field. Identical shifts to
that of Eq. (5.12) also hold for the spin-independent and transversity distribu-
tions.

To derive Eq. (5.12) we note that the quark Hamiltonian for nuclear matter
at rest has the form 

îr _ ^,,q - hn lVsQ, (5.13)

where Âo i. the quark Hamiltonian in the absence of the vector field and Q is
thc quark number operator, defined by

^fQ: I arr4;t@)t¡t(r). (b.14)
J

2Note, in infinite nuclear matter at rest there is no preferred direction, therefore the 3-vector
part of I/P must vanish.

Lq(r): U!* Lqo(r) *_ y* \r- o*- t*)' (5'12)
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T[anslational invariance of the quark fleld implies

'þ(€) 
: 

"iPtÊ 
tþ',0) e-iPrË,

which leads to [95]

'X#,' :i*ol}'+c] : -neoø(e)

The solution of this equation is

'þ(Ë) 
: 

"-uu 'þo(€),

(5.15)

(5.16)

(5.17)

where úo(€) is the quark fi.eld uninfluenced by the vector fleld. Therefore the
dependence of the quark fleld on the vector potential is simply given by a local
gauge transformation.

The second observation concerns the vector field dependence of the nucleon

states. We denote the bound nucleon momentum, influenced only by the scalar

field aspfir, which is related to the nucleon momentum, pp,where both scalar

and vector fields are present by

plv : pt" _ 3vt". (5.19)

If the nucleon state vector lll,p) is an eigenstate of Êo and.I with eigenvalues

p6 and 3 respectively, then

ñnl¡v,p) : (po - B%) l¡/,p) : po'lN,p). (5.19)

The nucleon state in the absence of the vector potential is denoted by ll/,pr)o
and we have

ÈnlL,pry)o : ÊnlN,p), QolN,p,u)o : QnlN,p), ñnl¡v,p¡¡)o: inlN,p),
(5.20)

therefore

l¡f,p) : ll/,p¡v)0. (5.21)

Substituting the results of Eqs. (5.21) and (5.17) into the definition of the quark

distributions (Eq. (5.4) for example), it is easy to derive the scale transformation
of Eq. (5.12).

As discussed earlier, the effects of Fermi motion are included via convolu-

tion (see Eq. (5.3)), where we defined the spin-dependent smearing function in
Eq. (5.5). The primary focus of this chapter is the change in q(r), Aq(z) and
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Lrq(n) in-medium. We therefore incorporate the Fermi motion effects on the
bound proton quark distributions by replacing nflfÀ@") and Lrfff)(ao), in
Eq. (5.3) (or the transversity equivalent), with the spin-independent distribu-
tion f¡¡¡¡(At), calculated in infinite nuclear matter [95]. This is an excellent
approximation for a nucleus with maximal spin projection, as we demonstrate
in the following chapter.

It is convenient to express the spin-independent version of Eq. (5.5) as [29,
95,130]

t*ø.(aò : -+ t !Lu( ,^- +\Ty [.y* c,(p)] , (5.22)AJ (zr¡a"y"^ m*)-',
where G*(p) is the nucleon two-point function in medium, defined by

G*(p) : '¿ [ d4u eip', (A, elr lrÞx(o)úr(r)] lA, p). (b.23)

"l 
\

This two-point function is related to the in-medium Feynman propagtor by [13a]

G*(p): '/rv S¡v(p), (5.24)

where V is the volume of the system and the Feynman propagtor is given by [95]

Sr(p) : ^9r"(p) + S¡¡r(p),

1 þ¡vIMrv -: 
,lN - M* +,i€+'itr!-::--------:-õ(po- 

Ep)a(pF -li)' (5'25)

The second term, S¡¡¿(p), accounts for the fact that the maximum nucleon
momentum is pp, the Fermi momentum. In the mean-field approximation one
replaces ,Sr(p) with S¡¡¿(p) in all loop integrals [95] and therefore Eq. (5.22)
becomes

ftu¿,@t):-r+ I u(r^ #)rl[r*,s',(p)] , (526)
dnp

(2n)n

This equation is represented diagrammatically in Fig. 5.2 and evaluates to the
simple expression

Í¡v,q.(a¿):; (,ï)' le)' - G-,u,], (5.27)

1-U a
€p

Pp
(5.28)

with support

E¡ 171l
€p
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€p x

Figure 5.2: Feynman diagram representing the Fermi smearing function

l*¡a(Ua), given in Eq. (5.26). The solid line denotes the nucleon propagator,

Srr(p), and the operator insertion has the form 7+ ¿6- - 'q"#)." v-- {2 )'

The Fermi energy, 6¡, and the vector potential are related via3

¿F- p2r-rMk+3%:Ep+3%. (5.2e)

p

It is easily demonstrated that the vector field dependence of f¡rø(A¡) is given

by

r*nq@t): #r¡vlqo(Ht"- ,,1þ), (b.30)

where

r'øo(úò:i(#)' l(#)' - G-nu'), (b 31)

with support 1 - ffi . ao.7 + ffi.

Substituting Eqs. (5.12) and (5.30) into Eq. (5.S), we obtain the full vector

field dependence of the in-medium quark distribution as [95]

Lq.s(,.a):#on^(fi""-#), (b32)

where Lqo(rò is the quark distribution including both Fermi motion and the
scalar fleld and is deflned by

A'q.qo(f t): da'q dr 6 (r¿ - ü,q.r) Lqo(r) f xt.qo(aò, (5.33)

where Aqg(r) is the quark distribution where the free masses have been replaced

by the effective masses in the nuclear medium. In obtaining Eq. (5.32) we have

usedp+ : hrr, which is valid for nuclear matter at saturation density.

3In deriving Eq. (5.27) we have used the fact that at the saturation density of nuclear

matter, MN : ep.
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The various distributions have support

q(r), 0<z<1,
qo(r): 0<r<1,

f*øo(aò: 1-+ PP

'üp<-r¡1t+ Er'
q.ao(r;'): 01ña1r*#,

u@¿') t vo 1rt 1 Ee I Pr lvo
€p €p

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

and Fermi smearing functions satisfy the sum rules

da,q, Íx/¿,(ut): dut y¿, f w/t(at) : 7, (5.3e)

Ida,q, fxøo(to): dat u¿, f wLqo(a,s) : 7 (5.40)

With this machinery it is now a relatively simple task to obtain results for
the in-medium quark distributions. One simply takes the results of the previous
chapter (see SectionD.2 for explicit expressions), replace the free masses with
the effective ones, perform the convolution with the Fermi smearing function
and then shift the Bjorken scaling variable via Eq. 5.32. The remaining task is
to determine the effective masses, Ep, pp and I/o in our NJL model for nuclear
matter. This in the subject of the next section.

5.2 Finite Density NJL Model

The NJL model is a chiral effective quark theory that is characteúzed by a 4-
Fermi contact interaction. Using Fierz transfbrmations any 4-Fermi interaction
can be expressed in the form !n Cn (Úrorþ)', where the f¿ are matrices in Dirac,
colour and flavour space. The coupling constants G¿ are functions of the original
coupling appearing in the initial interaction Lagrangian.

We consider SU(2)t NJL Lagrangians; writing explicitly those terms relevant
to this discussion

L:,þ(¿ô-*òú+G"(@,þ)" - (útur,Ð') - G,(ûtp,,¡,)'z +..., (b.41)

where we include the scalar, pseudoscalar and vector terms and mo is the current
quark mass. Separating the nuclear matter ground state expectation values of
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Figure 5.3: This figure shows the scalar diquark, axial-vector diquark and nu-

cleon masses as a function of the scalar fieid, where the nucleon mass is obtained

by solving the Faddeev equation using a modified static approximation. We show

the exact Faddeev result of Ref. [75] and the vertical dotted line represents the

strength of the scalar field at nuclear matter saturation.

the quark bilinears as, tþ|þ : \plrþ'|rþlp)+ 'rþTrþ,, 
where T : 1, 1", the

Lagrangian can be expressed as

rlþ 
5.42)r-$(¿6-M-V),þ 4G* , 4G,.:rþ(¿6- M -nrþ-(* -=,*)' +vl: +Lt, (l

where we have defined M : m-2G"(plúrþlp),V' :2G,(plrþlprþlp) and,C¡ is

the normal ordered interaction Lagrangian.

In Fig. 5.3 we illustrate the dependence of the scalar diquark, axial-vector

diquark and nucleon masses as a function of the scalar potential, Q : Mo - M,
where Ms is the quark mass at zero density and M is the effective mass. In
Ref. [58] it was found that in the static approximation the nucleon mass decreases

far too rapidly, forcing a modification to the usual static approximation.a We

introduce a parameter c which modifies the mass of the exchange quark, such

4Ref. 
¡SS1 is a scalar diquark only model, however the inclusion of axial-vector diquarks

does little to alleviate this problem.

Mo

Exact Faddeev

M
M"

o.*
q

-MN
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that 1 1 Molc
M Mo M+c'

in the Faddeev kernel. This variation effectively interpolates between the usual
static approximation (c : 0) and the case where the mass of the exchange
quark is fixed at the free mass (c : oo). Our calculations tend to favour a
value of c - 1GeV, where in Fig. 5.3 we have c : 7.2 GeV. Flom Fig. 5.3 we
see that the difference between our modified static results and the full Faddeev
calculation of Ref. [7S], is very small up to the saturation density of nuclear
matter. The regularization used in Ref. [75] is the euclidean sharp cutoff and
therefore caution should be taken when making a comparison with our results,
which utilize the proper-time regularization scheme. We also find the potentially
interesting result that our nucleon mass starts to increase for large values of the
scalar field, however this effect has little impact on our results at saturation
density.

To calculate the mean scalar and vector fields as a function of density, we
need the equation of state for nuclear matter. The effective potential for nuclear
matter can be rigorously derived for any NJL Lagrangian using hadronization
techniques. This results in a complicated nonlocal effective Lagrangian, that in
principle can be applied to nuclear matter. Using the mean-field approximation
and ignoring diquark and baryon "trace log terms" in the effective Lagrangian
we obtain the following effective potential from Eq. (5.42)

t : tv - E. I ffio {o" - tlt),o, Ø.44)

where ,r: 1/f' + M{,+ 3 y0. The vacuum contribution has the familiar "Mex-
ican hat" shape, and is given by

(5.43)

tv :72i ln
(iui - m)2 (iuio - m)'

(5.45)
(2")n 4Gn 4Gn

In this work we only consider nuclear matter at rest

The zeroth component of the vector field can be eliminated in favour of the
baryon density, p,via the condition

(5.46)

K
tÁ

d,-
+

at
AV,

0

which implies

Vo:6G, p. (5.47)
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Figure 5.4: Effective quark, diquark and nucleon masses as a function of the

density. The vertical dotted line is the density at nuclear matter saturation.

The constituent quark mass M, for a fixed density, then follows from the condi-

tion af
a"tø 

: o' (5'48)

For a fully self-consistent calculation the constituent quark mass must satisfy

the in-medium gap equation

M:m-zG"(plrþrþlò, (5.4e)

which is the case here, since

0

(5.50)

In Fig. 5.4 we illustrate the density dependence of the quark, scalar diquark,

axial-vector diquark and nucleon masses. Note, we discuss the values of the
parameters of the model in the following section. \Me see in Fig. 5.4 that the

nucleon mass does not approach zero with increasing density, consistent with
expectations based on confinement. However, if the infrared cutoff, Â'¡¿, is set to
zero, thereby retaining the unphysical thresholds for nucleon decay into quarks,

the nucleon mass is found to approach zero far more rapidly [58]. This provides

æ M-m
aM- 2G^ r\

M
M"

Mo

M¡¡

\b :
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Figure 5.5: Binding energy per nucleon as a function of the density,

further evidence that the introduction of the infrared cutoff encapsulates many
of the important aspects of confinement.

An important feature of any model of nuclear matter is that it obtain the
correct values for nuclear matter saturation. This is not the case for the NJL
model with scalar diquarks only [58], where saturation occurs at too large a
density. However, with the inclusion of the axial-vector diquark channel in the
nucleon wavefunction, we are able to obtain saturation of nuclear matter at the
correct density and binding energy. We illustrate this in Fig. (5.5), where

Epc
A "o - **o, (5'51)

and M¡¡s is the physical nucleon mass at zero density.

5.3 Results for in-medium Quark Distributions

The parameters of the model are A¡6, Ì\uv, Mo, c, Gn, Gr, Go and Gr, where
A¡a and l\¡¡y are the infrared and ultraviolet cutoffs used in the proper-time
regularization. The infrared scale is expected to be of the order l\qcn and

ip : 0.16
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we set it to Â¡¿ : 240MeV. We also choose the free constituent quark mass

to be Mo : 400 MeV 5 and use this constraint to fix the static parameter,

c. The remaining six parameters are fixed by requirin1 ln : 93 MeV, TrLn :
140 MeV, M¡,¡:940MeV, the saturation point of nuclear matter (pt,E"):
(O.fOm-3,15.7MeV) and lastly the Bjorken sum rule at zero density to be

satisfled, with ga:7.267. We obtain l\uv:645MeV, c:7027 MeV, Gn:
19.04GeV-2, G, : 7.49GeV-2, Go :2.80GeV-2 and G, :6.03GeV-2.

With these model parameters the diquark masses at zero density are M, :
687 MeV and Mo : 7027 MeV. At saturation density the effective masses become

M* :320 MeV, Mi :565 MeV, Mi :940 MeV and Mfr : 746 MeV and vector

field strength is I/o : 44.5 MeV. The free effective diquark quark-quark couplings

a,re gs: 3.82 and go:74.5, in medium these become gi :3.52 and g[: L3.4.

Finally the free and in-medium nucleon vertex normalizations are Ztr : 29.9

and Zio: 36.0, respectively.

The Fermi momentum can be determined from the nuclear matter formula

nî:{ o, (5.52)

which gives pp : 263MeV and therefore we have a Fermi energy of. E, :
790 MeV. A good test of our NJL model for nuclear matter is to determine the
compressibility at saturation densit¡ which is given by

K - o^rõ' Eu,, - ¿o'fuî. (5.53)

Physically plausible values for K are generally thought to lie in the range 200-

400 MeV [135], with 1l : 270- 300 MeV being the preferred experimental range.

Our value of K : 368 MeV is therefore approximately 20To too large, but not
unreasonable, and represents a significant improvement on Quantum Hadro-

dynamics, where values of K > 450MeV are routinely obtained [136]. The
introduction of a pion cloud to the nucleon and the inclusion of the ¡meson in
the nuclear medium may help reduce our value for K.

Using the parameters given at the beginning of this section in Eqs. (5.32) and

(5.33) (and spin-independent and transversity equivalents) we obtain results for
the in-medium z and d spin-independent, spin-dependent and transversity quark

distributions. These results are presented in Figs. 5.6-5.8, at the model scale of

sOur results do not depend strongly on this choice, remaining almost unchanged with Mo
is between 350 and 450 MeV. This is also true for ,4.¡4, where a change of 150 MeV results in
not qualitative differences.
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Figure 5.6: Spin-independent quark distributions, ?ro and d,, at the model scale,

83 : 0.16 GeV2. There are four curves for each quark flavour, with the up-
per curves representing the u-quark distributions. The dotted line is the free
nucleon distribution, the dot-dashed line illustrates the effect of replacing the
free masses with the effective ones. This distribution convoluted with the Fermi
smearing function, Eq. (5.33), is presented as the dashed line, and the final result
where the vector field is also included via the scale transformation, Eq. (5.32),
is represented by the solid line.

Q3:0.16GeV2. For each quark flavour and distribution there are four curves,
representing the different stages leading to the full nuclear matter result. The
dotted curve in each figure are the free results of Chapter 4, Íhe dot-dashed line
illustrates the effect of the scalar field only, that is, the free masses have been
replaced by the effective masses at saturation density. The dashed line includes
Fermi motion effects on the bound nucleon and is obtained by convoluting the
dot-dashed line with the Fermi smearing function of Eq. (5.31), as expressed
in Eq. (5.33). Finally the solid line also incorporates the effects of the vector
potential, and is obtained by shifting the dashed curve using Eq. (5.32).

Flom Figs. 5.6-5.8 we see that the scalar field tends to suppress the distri-
butions for r¡ S 0.6 and enhance them for larger r¿. For the spin-independent
distributions the baryon and momentum sum rules must remain satisfied in-
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Figure 5.8: As in Fig. 5.6 except here we show the transversity quark distribu-
tions A7z, and Lrdu.
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Figure 5.7: As in Fig. 5.6 except here we show the spin-dependent quark distri-
butions Lu, and Ld,.
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u d Lu Ld Lru Lrd 9,q 9r
Fþee

In-medium

1

1

2

2

0.967

0.790

7.044

0.934

7.267

7.049

1.280

1.161

-0.300

-0.259

-0.236

-0.227

Table 5.1: Moments of the free and in-medium quark distributions and the
nucleon axial and tensor charges.

medium. For the helicity and transversity distributions there exists no such
constraint and the introduction of the scalar field results in a quenching of the
first moments of these distributions, thereby yielding a reduction of the nucleon
axial and tensor charges in-medium. We will discuss this point further shortly.
The effect of Fermi motion resuits in a broadening of the distributions toward
larger z¿, where the distributions now extend beyond rA equals one. The first
moment of f w/n is one, hence normalizations are maintained after Fermi smear-
ing. However, if the correct smearing functions were used for the helicity and
transversity distributions, their normalizations would differ slightly from one

this will be discussed in the following chapter.

The effect of the vector fieid on the distributions is a iittle more subtle, but
basically the vector field results in a squeezing of the distributions either side of
rA: +. To illustrate this we note from Eq. (5.32) that

i ep v6:_^(.,*370\ _vo. (s,o:Ei"o-t-"o[t* rr)- E, \,.54)

Therefore iÎ ña < ] ttris implies r¡ ) ft¿, similarly if ñt > ] we have r¡ 1 ña
and clearly ñA: t : oo. The overall factor ff i" Ðq. (5.32) guarantees the
vector field preserves the quark distribution normalizations.

The moments of the in-mcdium quark distributions enable us, via Eq. (4.3a),
to determine the in-medium values of the nucleon axial and tensor charges. We
summarize our results in Table 5.1. We find that all in-medium moments are
quenched, except those of the spin-independent distributions. In particular, the
in-medium axial charge is reduced by approximately lTTo and the in-medium
tensor charge by l\Yo, relatíve to their free values. This quenching of. g¡ is

consistent with nuclear beta decay studies which require a similar reduction of
g¿ to achieve agreement with empirical data. Currently there is no experimental
information for either the free or in-medium values of the nucleon tensor charge.

Using the quark distributions of Figs. 5.6-5.8 we are able to construct the
structure functions, Fru(*) : LlF"rl Fzn], 9s(r), hto@) and the in-medium



5.3 Results for in-medium Quark Distributions 75

t.2

1.1

(n
o

1

Ðd
t-{

O
E o.a

rn
0.7

0.6

0.9

0 0.2 0.4 0.6 0.8 1

x)

Figure 5.9: Ratios of in-medium over free structure functions at nuclear matter
saturation density. The EMC data for nuclear matter are taken from Ref. [137].

equivaients F2¿(r¡), gatp(r¡), hnp(rt).6 Evolving these distributions to a

scale of 10 GeV2 using the NLO DGLAP evolution equations 143-45], we give

in Fig. 5.9 our results for the ratios Fz.qlFzw, g¡tef gw and h¡1ofh1r, that is,

the EMC, the polarized EMC and the transverse EMC effects in infinite nuclear

matter. In the valence quark region, the model is able to reproduce the spin-

independent EMC data [137] extremely we1l. For the polarized and transverse

ratios we find a significant effect, where the polarized effect is approximately
twice that of the unpolarized EMC result. To plot the structure function ratios

in Fig. 5.9 we have used the relation

M¡,ro
TA: 

- 

T¡
€p

to express the in-medium quark distributions as a function of the Bjorken scaling

variable for the nucleon.

The nuclear quenching effects on the individual quark flavours are presented

in Fig. 5.10. We find that the effect on both lhe u- and d- quark distributions is

6Obviouslyinfinitenuclearmatterdoesnothavea gne(ra)orhao(r¡) structurefunction.
Our results are therefore to be interpreted physically as the change in internal structure of a
proton immersed in a background of constant scalar and vector fields.

(5.55)

Q' : 10.0 GeV2

p - 0.16fm-sIt

0 I. Sick and D. Day, Phys. Lett. B 274,16 (1992)

_ð""t---r-+ *)"

-l
{

*"{'.

Polarized EMC effect
Tlansverse EMC effect

Unpolarized EMC effect
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Figure 5.10: Ratio of the quark distributions in nuclear matter to the correspond-
ing free distributions, at a scale of Q2 : 10 GeV2. Note, these distributions are
the full quark distributions and hence include anti-quarks generated through Q2
evolution.

large over the valence quark region. For the spin-independent and transversity
ratios the modifications to the u and d distributions are approximately equal,
however for the helicity ratio we find that the d-quark is modified much more
than the z-quark distribution. The resemblance of the z-quark ratios in Fig. 5.10
to the corresponding EMC ratios arises from the up quark distribution being
enhanced by a factor four relative to the down and strange quark distributions in
proton structtrre frrnctions. Absent from our model is the t/(1) a-xial anomalS' ¿nd
sea quarks (at the model scale), this prevents a reliable description of structure
functions at small r. For this reason in Figs. 5.9 and 5.10 we do not plot our
results in this region.

5.4 Conclusion

In this chapter we have studied the nuclear medium modifications to all three
twist-two nucleon quark distributions, and their associated structure functions.
We also investigated the properties of infinite nuclear matter using the proper-
time regularized NJL model with both scalar and axial-vector diquarks in the
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nucleon wavefunction. We find that we are readiiy able to reproduce nuclear

matter saturation at the correct energy and density, a feature of the model that
is only possible with the inclusion of axial-vector diquarks.

It as been well reported that models using scalar and vector flelds coupling

to point nucleons, including Fermi motion, are unable to reproduce the EMC

effect [13S]. However, if these mean scalar and vector fi.eids couple to the quarks

in the nucleon an idea first introduced by Guichon in Ref. [139] thereby

inducing a change in the internal structure of the nucleon, we find an EMC

effect in almost perfect agreement with empirical data.

We made predictions for the polarized and transverse EMC effects and found

remarkably large signatures. This suggests, at least for the poiarized case, that
an experimental measurement is feasibie. Such a measurement would help pro-

vide an understanding of how nuclear medium effects arise from the fundamental

degrees of freedom - the quarks and gluons - and represents an important chal-

lenge for the nuclear physics community.





6

Finite Nuclei Quark Distributions
and the Polarized EMC effect

One of the greatest challenges confronting nuclear physics is to understand how

the fundamental degrees of freedom - the quarks and gluons give rise to the
nucleons and to inter-nucleon forces that bind nuclei. Quark models such as

the quark-meson coupling model (QMC) [139-141] in which the structure of the
nucleon is self-consistently modified by the nuclear medium, can be re-expressed

in terms of local effective forces which closely resemble the widely used and

successful Skyrme forces 1732,1421. While this opens the possibility to describe

the low energy nuclear structure in terms of quark degrees of freedom, it is also

important to identify phenomena which provide explicit windows into quark-
gluon effects in nuclei. Probably the most famous candidate is the EMC effect

171,L29,143], which refers to the substantial depletion of the in-medium spin-

independent nucleon structure functions in the valence quark region, relative to
the free structure functions.

Considerable experimental and theoretical effort has been invested to try to
understand the dynamical mechanisms responsible for the EMC effect. It is now

widely accepted that binding corrections at the nucleon level cannot account for
the observed depletion and a change in the internal structure of the nucleon-like

quark clusters in nuclei is required [98,138,144]. Although the EMC effect has

received the most attention, there are a number of other phenomena which may

require a resolution at the quark level, such as the quenching of spin matrix
elements in nuclei [145] and the quenching of the Coulomb sum-rule 1L46,7471.
Important hints for medium modiflcation also come from recent electromagnetic

form factor measurements on aHe 
[148,149], which suggest a reduction of the

proton's electric to magnetic form factor ratio in-medium. Sophisticated nu-

clear structure calculations fail to fully account for the observed effect [150] and

agreement with the data is only achieved by also including a small change in the
internal structure of the nucleon [149], predicted a number of years before the
experiment [151].

The focus of this chapter is on the medium modifications to the nucleon



80 6. Finite Nuclei Quark Distributions and the Polarized EMC effect

structure functions in nuclei. We calculate the nuclear quark distributions ex-
plicitly from the quark level using the convolution formalism [22]. The quark
distributions in the bound nucleon are obtained using a confining Nambu-Jona-
Lasinio (NJL) model, where the nucleon is described as a quark-diquark bound
state in the relativistic Faddeev formalism. The nucleon distributions in the
nucleus are determined using a relativistic single particle shell model, including
scalar and vector mean-fields that couple to the quarks in the nucleon. This
model, which is very similar in spirit to the QMC model, has the advantage
that it is completely covariant, so that one can apply standard field theoretic
methods to the calculation of the structure functions. Using this approach we
are readily able to reproduce the EMC effect in nuclei. It will be some time
before the transverse quark distributions of nuclei are measured experimentally.
Therefore, the main focus of this chapter is on the nuclear spin structure func-
tíon, 91¡, and in particular a new EMC ratio - 91¿ divided by the naive free
result - which we refer to as the "polarized EMC effect".

6.1 Deep inelastic scattering from nuclear

ta rgets

The formalism to describe deep inelastic scattering (DIS) from a target of arbi-
trary spin was developed in Refs. [152,153]. \Me focus on results speciflc to the
Bjorken limit, expanding on those points necessary for the following discussion.

When parameterized in terms of structure functions, the hadronic tensor in
the Bjorken iimit has the form

._.rH ( p.q prp"\ n.rHt \, .€u,^oe\pWi,J':lgr"-,;+#lF,\ q- r . tt / ii @o) + t'Yf,fi- s{l @o), (6'1)

for a target of 4-momentum PP, tolal angular momentum ,,I and helicity É1

along the direction of the incoming electron momentum. In obtaining Eq. (6.1)
we have used a generalization of the Callen-Gross relation, F{,{ :2îAF{f 

,

and ignore terms proportionalto q, or qu as the lepton tensor is conserved, that
is

Qr L" - q, LP" : 0. (6.2)

ril/e defrne the Bjorken scaling variable as

r¿.:Aû¿.:AS , (6.3)' 2P'q'
so that the structure functions have support in the domain 0 < z¿ ( A.
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In the Bjorken limit the nuclear structure functions can be expressed as

p{f @ò: t "?"A lqrAH @ò +qtou ("o)l , (6.4)
q

s{f @l):T>,elltqlo*çro) + Lq'ou(,o)1 ,

J
H-H

(6.5)

(6 e)

(6.10)

q

where q represents the flavour and

q'ou ("o) : øif @a) + qif @ò, (6.6)

LqIu ("o) : øraf @"¡ - qt"ï (""), (6.7)

are generalizations of the usual spin-| quark distributions. The quark distribu-
tions, qtr!@o), are interpreted as: the probabi,li,ty to fi,nd a quark (of flauour q)

wi,th lightcone nlonl,entum fracti,on rolA and spi,n-component s 'in a target with
heli,city H. Paríty invariance of the strong interaction requires qto! : qtol , ,o
that F,!f; : F{o-u anð, g{[ : -g{o-u and hence in the Bjorken limit there are

2J + L independent structure functions for a spin--/ target.

For DIS on targets with J > I it is more convenient to work with multipole
structure functions or quark distributions [153] rather than the helicity depen-

dent quantities discussed above. The helicity and multipole representations are

related by the following transformations

F;to*): t ,qtuop:!.f, K:0,2,...,2J, (6.s)
H -J,...,J

sl:f): t A
H:_J,...,J

s{f, K :7,3, 2J,JK
H

where
JAtf : (-1)'-t 2K +T

and (. ..) is a'Wigner 3j-symbol. The inverse relations are

F{.{ : I ArrK rltoxt, (6.11)
k:O,2,...,2j

s{I : t t'"o s\!f). (6.12)
Ic:|,8,...,2j

Identical multipole expansions can also be defined for the spin-independent and

spin-dependent quark distributions. Comparing Eqs. (6.11) and (6.12) with the

familiar Wigner-Eckart theorem, it is clear that qf,*) und, tqf*) are reduced
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matrix elements of multipole operators of rank K. Some examples of the mul-
tipole transformations are given in Appendix G.

For nuclear targets the multipole formalism has several advantages, these
inciude

. Fli}) : \/rJ + 7 F2¿, where Fzt is the familiar spin-averaged structure
function.

o The number and spin sum-rules are completely saturated by the lowest
multipoles, K :0 and K :7 respectively.

o In a single particle (shell) model for the nucleus, the spin saturated core
contributes only to the K : 0 multipole and all K > 0 contributions come
from the valence nucleons.

o In all cases investigated in this paper, we find that the lowest multipoles,
K :0 for spin-independent and K : 1 for spin-dependent, are by far the
dominant distributions.

o The multipole quark distributions satisfy the sum rules [153]

d'r rn-7 q(rl{)(r) :0, K, r¿ even, 2 { n 12K, (6.13)

drrn-r LqQx) (r) :0, K, n odd, 1 ( n <2K. (6.14)I,

6.2 Nuclear distribution functions

The twist-2, spin-dependent quark distribution in a nucleus of mass number A,
momentum Pt" and helicity fI is defined as

LqIAH(*o):+ I /ArA-iP_e
d,a

,-
u

(A, P, Hlún(D t+tstþs(,.'-)lA, P, H), (6.15)

where ry'o is the quark field. To evaluate Eq. (6.15) we express it as the convolu-
tion of a quark distribution in a bound nucleon, with the nucleon distribution in
the nucleus 122]. If a shell model is used to determine the nucleon distribution,
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Figure 6.1: In this figure we illustrate the shell model structure of various nuclei.

For example, the ground state of Silicon-28 has all single particle states filled
up to and including the d572 shell. The focus of this chapter is on spin-structure
and in particular rve are interested in 7Li, ttB, tuN and 2741, where the last

three nuclei each have a proton hole in their outer shell level for ground state

configurations. The left hand side of the figure gives the correspondence between

the shell energy level and its rc value.

then in the convolution formalism Eq. (6.15) has the form

(*o):LqrAH D cli*
drKïn

D, clT" Lü,,(ro) ,

lroø^lrtonõ(r¿ - EAï) Lq.,,o(*) LÍ,,*(a^) ,

(6.16)
atnrn

where a e (p,n) label the nucleons and the sum over the Dirac quantum number

rc and jz : m (that is, the occupied single particle states) is such that the
coefficients C{Ï"^ guarantee the correct quantum numbers J, H, ? and T, for
the nucleus. Note, in Eq. (6.16) a sum over the principle quantum number r¿

is implicit. The correspondence between rc and the familiar shell model energy

levels is illustrated in Fig. 6.1.1

The function, L,f n*(A,q), in Eq. (6.16) is the spin-dependent nucleon distri-
bution (in the state rcrn) in the nucleus and is defined by

Ll**(at): \/, t P, õ(ro- +&) v**(i).y+.ysú,*(i), (6.12)
J (2n)' \"'^ M ¡,¡ / 'ut'u\' /

lThe conventions we use for Æ are summarized in Eqs. (F.11) and (F.12)
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where eo is the single particle energy, V r-(F) are the single particle Dirac wave-
functions in momentum space and M¡¡: M¡lA is the mass per nucleon. Im-
plicit in our definition of the convolution formalism used in Eq. (6.16) is that
the quark distributions in the bound nucleon, Lqo,o(r,a,), respond to the nuclear
environment. Expressions for the spin-independent distributions a,re obtained
by simply replacing 7+75 with 7+ in Eq. (6.17).

First we obtain expressions for the nucleon distributions in the nucleus. The
central potential Dirac eigenfunctions have the general form

v^*(F): (-i,)tl e"(p) Q* (0'Ó) 1

l".iil n*)"rio¡l' (6 ls)

where ,tl" and Go are the radial wavefunctions in momentum space and f)o- are
the spherical two-spinors, given by

{lo*(0,d) : f ((.m¿sm"U m)Yr^r(0,ó) x"^", (6.19)
rn! rÌTL s

where Xsm" a,rc', the usual Pauli spin vectors. The radial wavefunctions are nor-
malized such that

lr- # p'll,(p)' + G^(p)21 : t. (6.20)

Substituting Eq. (6.18) into Eq. (6.17) and also the spin-independent eq-
uivalent we obtain the following expressions for the single nucleon k-multipole
distributions in the nucleus

l*t (aò : ç1¡i+i (zj + 1) (2(, + Ð 2k+7

(t
k
0 Ð{:

k¿
sJ

PJ.p)' ¡ G"(,ù'

M¡¡
76z-3

\#t: dppPn

L

+-2
p

(tr - ¡w 
" ua) F"(p)C"ç'p¡ (6.2t)

I

Lf 
"n(aò 

: Qj + 7) 2k+I

2Pn F*(p)G*(p)(-r;r-å

(2(.+t)(2(,+r) k
0

- \/6 (-1)' t QL + r) Pr.

I: dpp

'ò{: !')(t

L:k-I,lc+L
(*T) (íåå)
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{i
L/\
00)

ln.çryçzt.') 
(á i Ð{i

-c,(p)'(2|. Ð (i (6.22)

where P¡x ale Legendre polynomials of degree k and Â : lM*Ao-r*|. In
deriving Eq. (6.21) it is convenient to use the identity Q_n : - (õ .p) Q"*.

The single nucleon wavefunctions (Eq. (6.13)) are solutions of the Dirac equa-

tion

l-.,r'V + þ M*(r)+ v'(")] ,þ-(r): eoúo(r), (6.23)

with scalar, ,Sr("), and vector, V1¡(r), mean-fields. In principle these fields

should be calculated self-consistently in our (NJL) model framework by min-
imizing the total energy of the system, as \Mas done in the Chapter 5 and in
Refs. [95,98] for nuclear matter. Instead we choose Woods-Saxon potentials for
Sr(") and 7¡¡(r), which have the form

s'(") ,90 v*(r): Vo
(6.24)

1+."o (=3) ' 1+ exp (+)'
where: So, Vo are the depth; as,t au are the thickness or diffuseness; and -R",

,R, the range of each potential. The depth parameters are set to the strength
of the scalar or vector field obtained from our self-consistent nuclear matter
calculation in Chapter 5, that is ,So : -194 MeV and Vo : 133 MeV [98].
We choose standard values for the range R" : R, : R : I.2 Ar/3 fm and

diffuseness as: ar: or:0.65 fm. The mass per nucleon M¡,t, which would

automatically be determined by a self-consistent calculation, is chosen such that
the momentum sum rule for each nucleus is satisfled (see Appendix H.2.2).

Given the radial wavefunctions, we can determine the mean values of the
scalar and vector fields experienced by the nucleon in the state rc, that is

IMNo: a3r þl(r) M,t(r) rþ*(r),

IVNo: d3 r þf,(r) vN (r) rþ 
^(r),,

(6.25)

(6.26)

where M*(r) : MN:_SN(r). Using a iocal density approximation in our effective

quark theory, the scalar field felt by the quarks in the nucleon can be evaluated
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by determining the quark mass, Mo, that gives the appropriate nucleon mass,

MNo, as the solution of the quark-diquark equation. The vector field felt by the
quarks is simply one-third of that felt by the nucleon (i.e. Vn: VNo/3). These
fields are used in the calculation of the quark distributions in the bound nucleon.

In Table 6.1 we list some results for M¡¡, MNo,V¡¡¡" and eofor various nu-
clei. Using these results in Eqs. (6.21) and (6.22), and the appropriate radial
wavefunctions, we plot in Figs. 6.2 and 6.3 examples of the nucleon distributions
in 2741. Here we have chosen to present the results in the familiar J, H rcpre-
sentation of the quark distributions, that is f " (A.ù and L^f o (At), rather than

f "n(Aò 
and A/,¿(AA) of Eqs. (6.21) and (6.22). This way a more direct com-

parison can be made with the infinite nucleon matter smearing function used in
Chapter 5.

Fig. 6.2 illustrates all spin-independent, f* (Ut), distributions and Fig. 6.3
presents all relevant (o : -3) spin-dependent, A/o*(U¡), distributions. The
full nucleon distribution in the nucleus can be obtained by simply summing over
the appropriate single nucleon results presented in Figs. 6.2 6.3. For the spin-
independent quark distributions all nucleons in the nucleus contribute, however
for spin-dependent quark distributions only the valence nucleons play a role.
This is easily seen because L,f o-(gt) : -Lf o--(At),, and hence the spin zero

closed core cannot contribute to the spin-dependent quark distributions. If we

ignore configuration mixing, the spin of Aluminittm-27 is carried solely by the
five valence protons, see Fig. 6.1, or equivalently by a single proton hole in the
ds¡2 sheIl. Therefore in this approximation the curves in Fig. 6.3 represent the
full spin-dependent nucleon distributions, for each spin state of 2741.

We find that these nucleon distributions have considerably more structure
than the usual infinite nuclear matter result, this increased structure is clearly
illustrated in Fig. 6.2. The reason the distributions are no longer symmetric
about U¿.: I is because there remains some angular dependence in the results,
which is easily seen by the presence of the Legendre polynomials in Eqs. (6.2I)
and (6.22). Finally we point out that Dqs. (6.21) and (6.22) obey the sum rules
given in Eqs. (6.13) and (6.14). In fact they satisfy a more tightly constrained
set of sum rules where the restriction of r¿ : even and n: odd in Eq. (6.13)
and Eq. (6.14), respectively, no longer applies. This increased restriction results
from using spherically symmetric potentials in the Dirac equation.
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Figure 6.2: All spin-independent nucleon multipole distributions, fo (g¡), in
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6.3 Medium modified quark distributions in the

n ucleon

To complete our description of quark distributions in nuclei we require the
medium modified quark distributions in the bound nucleon. The infinite nu-
clear matter example was discussed in Chapter 5 and Refs. [95,98, 154]. For
finite nuclei the formalism is much the same, except the strength of the scalar
and vector fields now depends on the energy level rc that the nucleon in the
nucleus occupies. Also instead of solving for the in-medium constituent quark
mass self-consistently, we determine M| by requiring that the Faddeev equation
yield a nucleon of mass Mw*

For the sake of clarity we give a short summary of our formalism: The nucleon
is described by solving the relativistic Faddeev equation including both scalar
and axial-vector diquark correlations in a confining Nambu-Jona-Lasinio model
framework. For this calculation we utilize the static approximation for the quark
exchange kernel [74]. The quark distributions in the nucleon are obtained from
a Feynman diagram calculation, where we give the relevant diagrams in Fig. 6.4.
Medium effects are included by introducing the scalar and vector mean-fields,
obtained from Eqs. (6.25) and (6.26), into the quark propagators. Inclusion of
the vector field leads to a density dependent shift in the Bjorken scaling variable.
Fermi motion effects are included via convolution with the smearing functions
(Eq. (6.21) or (6.22)) after introducing the scalar fleld, but before the shift
required by the vector field.

\Me now derive the shift induced by the vector field for the case of finite
nuclei. Recall from Chapter 5 that the dependence of the in-medium quark
distribution on the vector field can be expressed as (see Eq. (5.12))

Lqo,o(*): 
*!* Le,.,oo

p+

- 3Vo+
(6.27)

where we have included a label K oî L,qo,o6(z) and VI to illustrate that the
scalar and vector field strengths depend on the energy level. The subscript o
indicates either a proton or neutron and is used in Eq. (6.16). Recall that pø

is the in-medium nucleon momentum, Vj is the plus component of the vector
frelð,,V! = (Voo.,0), acting on a quark2 and Lq.,o,o is the quark distribution in
the absence of the vector fleld [95,155].

(")

2For the lightcone coordinates we use a¡ : fi(as I a3)
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p-q

p-k
q-k

Figure 6.4: Feynman diagrams representing the quark distributions in the nu-

cleon. The single line represents the quark propagator and the double line the
diquark ú-matrix. The shaded oval denotes the quark-diquark vertex function

and the operator insertion has the form 7+75 6 (" - 5) å (l t r") for the spin-
\ p-/

dependent distribution, while 'y+'ys - 7+ for the spin-independent case.

If we now define the auxiliary quantities

E*: €o - VNo, fu**: M ¡¡ - V¡¡o, (6.28)

it is easy to rewrite the ô-function in Eq. (6.17) to show

+
pppp

qq

M¡¡
fu*o

Lf " (a¡): Lfo,o*
M ¡v Vw*

fi*-ua - ñ-"

M¡¡ Vo

tw*^"o - ñ;

)
(6.2e)

(6.30)

where the function A/e,o- has the same form as Eq. (6.17), except for the
replacements eo -- Eo and M ¡¡ + Mwo. Substituting Eqs. (6.27) and (6.29) into
Eq. (6.16) and performing an analogous calculation to that found in Appendix C

of Ref. [95] we obtain

LqT,,@o): Hon,"(
where the distribution, Left*o, is given by the convolution of Ago6,o and L,fs,o .

The full nuclear quark distribution can then be obtained from Eq. (6.16). An
identical shift to that expressed in Eq. (6.30) is valid for the spin-independent
distribution also.

An important feature of this approach is that the number and momentum
sum rules are satisfied from the outset. For a nucleus of atomic number Z and
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mass number A: N + Z this means

foo 
orou^(rt) :22 t N,

In" 
orod,¿(r¡): z t2N,

(6.31)

(6.32)

(6.33)t,
A

d,r¿r¡luo(ro) -l d¡(rfi]: A.

6,4 Resu lts

The parameters for the quark-diquark model for the bound nucleon were dis-
cussed in Chapter 5 and Refs. [98,154], so we will not repeat them. The new
features presented in this chapter are those associated with finite nuclei. In
Table 6.1 we give values f.or M¡¡, MNo,V¡¡¡1 and eo obtained from the single
particle shell model. These values are then used in Eq. (6.16) to calculate the
nuclear quark distributions.

The unpolarized EMC effect is defined as the ratio of the spin-averaged struc-
ture functioî, F2¡, of a particular nucleus ,4 divided by the naive expectation.
That is Fzt Fz.qR-¿,:E^*:ffi' (6'34)

where F2o is the free proton structure function and F2n the free neutron structure
function3. In the limit of no Fermi motion and no medium effects of any kind,
this ratio is unity. An equivalent EMC ratio can also be defined for the K :0
multipole.

The polarized EMC effect is defined by an analogous ratio, which is the spin-
dependent structure function for a particrrlar mrcleus with helicitv H, clivided
by the naive expectation, that is

Rlol ::F-: 
---s{f - 

. (6.3b)
9iÃ,nuiu. r;" Çrn-f rå" Çtn

Herc gry and gln are the free nucleon structure functions and PNft, ts the polar-
ization of the protons (neutrons) in the nucleus with helicity H, defined by

pl" : Q, Hl2 1y¡t, u¡, a e (p,n) , (6.36)

3Experimental EMC ratios for N - Z nuclei are usually determined with the deuteron
structure function Fzo in the denominator. In our mean field model we assume Fzn =
Fzp + Fzn. We therefore anticipate deuteron binding corrections of a few percent to our EMC
ratios for r J 0.5, when comparing with experimental data.
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MN,, Vxo

-1-21-3
M¡¡

-1-21-3
933

931

929

930

811

793

785

771

856

829

815

794

815

793 820

89

101

106

115

76

86

101

86

101 82

58

ÇK

-1-21-3
7Li

118

15N

27 

^r

974

908

904

898

932

925

927

913

923

974 927

Table 6.1: All quantities are in MeV. The labels -7, -2,,1, -3 refer to the Dirac
quantum number rc, where l"l: i + ï.

where Si is the total spin operator for protons or neutrons. Flom an experi-

mental standpoint one should simply use the best estimates of the polarization

factors available in the literature. In this work we use the polarization factors

obtained from the non-relativistic limit of Eq. (6.36), which differ from the rel-

ativistic values calculated within our model by less than 2To. If only a single

valence nucleon or nucleon-hole contributes to the nuclear polarization, then in
the non-relativistic limit the polarization factor is simply given by

PJu : +:+, (6.32)
2(. + r'

where / is the orbital angular momentum and the t refers to the cases J : (,++.

The polarized EMC ratio can also be defined for the K : ! multipole struc-

ture function and has the form

Rf?
(J1)

9i¡' (6.38)
P;tt) 9ry t PÍtt) sr,'

where pj") ir the reduced matrix element

P:tr) : Qllz 3.114 : (6.3e)

Because the spin structure function gLn is smaller than gq and remains poorly
known, especially at large r, it is clear from Eqs. (6.35) and (6.38) that to
determine the polarized EMC effect it is necessary to choose nuclei where lP"l <<

lPol. There is also an upper iimit on the mass number of nuclei that can be

readily used to measure the polarized EMC effect, because for spin cross-sections

the valence nucleons dominate and hence gLqis suppressed by approximately 7f A
relative to F2¡, where all nucleons contribute.
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The best candidates are nuclei with a single valence proton or proton-hole, for
example the stable nuclei ttB, tuN and 2741. Another good choice is 7Li, where
the nuclear polarization is largely dominated by the valence proton. Extensive
studies of 7Li, beginning in the 60s with the shell model [156], to modern state of
the art Quantum Monte Carlo calculations [157], consistently find Po - 0.86 -
0.88. The Quantum Monte Carlo result for the neutron polarization is P, -
-0.04.

First we discuss the nuclear quark distributions, focusing on 7Li as its treat-
ment is a little more involved compared with the other nuclei, because there
are three valence nucleons coupled to J : 3f 2 and T : ll2. \il/e utilize the
shell model wavefunction found in Refs. [158,159] for the valence nucleons of 7Li

carrying z-component of angular momentum J": f , which is

-3/2
2

'Ú3/z þ3/2n3/2n
3

-t/ts
1

,/ß

\/ß

lp'/

þ3/2n[l2n-I/2f

2nsl2n_rt2j + +' \/15 ln-r/2ns/z nt/21 . (6.40)

Using the angular momentum lowering operator i- and the results

i- rþt/' : ,/5 rþt/" , i-',þtl" : 2 rþ-'/' ,

i-,r¡t-'¡' : r/5rþ-t/', i-rþ-3/" : 0, (6.41)

it is easy to obtain the 7Li wavefunction with J" : T. Using Eq. (6.40) when
evaluating the spin-independent analogue of Eq. (6.16) for the z-quark distribu-
tion in 7Li we obtain

ut2 3 / 2 

çr o) : z 
l"i/,'-r(* o) + ¿1r/,1tr" ¡]

+ fr |rs 
ul/,'-r(*o) + 20 dl/,-r(rt) + zul/lr@¡) + t0 d|/'z.-r(rò), rc.42)

where we have used charge s;rmmetry to relate l-tn <-+ do. For clarification on the
notation see Eq. (6.16). The spin-dependent distribution has the form

Luf;23/2çrr) : + ltz mlrl,ç,o) * z ul2,@e)]. (6.43)

Similar expressions hold for the H:712 and d-quark distributions. With this
wavefunction the TLipolarization factors are Pl' : f {f and Plu : ffrt. for
the other nuclei the situation is simpler as we make the approximation that the
nuclear spin is carried solely by the valence proton-hole.
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In Figs. 6.5-6.8 we show the leading multipole quark distributions for 11B,

together with the next-to-leading K: 3 multipole for the spin-dependent case,

at the model scale of Q'o:0.16 GeV2 [154]. The other nuclear quark distribu-
tions are similar, so \Me will not show them here, but these results can be found

in Appendix I. The dotted line is the result without Fermi motion and medium

effects, and is obtained from expressions like Eq. (6.16) by replacing each smear-

ing function with a delta function (multiplied by the polarization factor for the

spin-dependent case) and using the free resuits for the u- and d-quark distribu-
tions in the nucleon. The dot-dashed line includes the effect of the scalar fi.eld,

and the dashed curve also incorporates Fermi motion, which is the result after
convolution with the appropriate nucleon distribution (Eqs. (6.2I) and (6.22)).

The complete in-medium distribution is given by the solid line and is the result

obtained after also shifting the scaling variable using Eq. (6.30).

For the spin-independent distributions all nucleons contribute. Therefore,

in Figs. 6.5 and 6.6 we see that the z- and d-quark distributions are very sim-

ilar. For the spin-dependent case (see Fig. 6.7) only the valence proton-hole
contributes. Hence the distributions resemble those of the proton. We find that
higher multipole distributions are greatly suppressed relative to the leading re-

sults, see for example the 1l : 3 distribution in Fig. 6.8 and results contained
in Appendix I. The spin-independent K :2 multipole is an order of magnitude

smaller again and reflects the very weak helicity dependence of the F{f struc-

ture functions. This weak helicity dependence arises because the spin-zero core

is the dominant contribution to F{f , and changes in Ë1 simply reflect different

spin orientations of the valence nucleon(s). In Appendix I we give results for
all multipole quark distributions for the nuclei 7Li, 11B, t'C, ttN, 160, 27Al and
28si.

The main features of the medium effects displayed in Figs. 6.5-6.7 are sim-

ilar to those found in the nuclear matter calculation of Chapter 5. The spin-

independent distributions are quenched at large r and enhanced for small z,

whereas the spin-dependent distributions are quenched for all r. The discussion

on the effect of the vector potential presented in section 5.3 remains valid here.

The nuclear spin sum, ¡(A), and axial coupling, gf), contain information on

both nuclear and quark effects and are simply given by

¡(A): Lu¿,+Ld¡:E(Pr+P,), (6.44)

gf) : /ru4 - 4'dt: go (P, - P,), (6.45)

where Aq¿ represents the first moment of Lqtot and E, p¡ are the medium
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Figure 6.5: The first spin-independent multipole (K:0) z-quark distribution in
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p
7Li

118

15N

27 AI
Nuclear Matter

Lu

0.97

0.91

0.88

0.87

0.87

0.79

Ld

-0.30

-0.29

-0.28

-0.28

-0.28

-0.26

x

0.67

0.62

0.60

0.59

0.59

0.53

9¡

7.267

1.19

1.16

1.15

1.15

1.05

Table 6.2: Results for the first moment of the in-medium quark distributions
in the bound proton and the resulting spin sum and nucleon axial charge. It is

clear that the moments tend to decrease with increasing A.

modified nucleon quantities, defined by dividing out the non-relativistic isoscalar
and isovector polarization factors f.or H : ,.I. \Me find that E and g¿ are both
suppressed in-medium relative to the free values, as summarized Table 6.2. This
decrease of g¿ in-medium is in agreement with the well known nuclear B-decay
studies which, after taking into account the nuclear structure effects, require a

quenching of. g¡ to achieve agreement with empirical data.a

In Figs. 6.9-6.72 we give results for the EMC and polarized EMC effect in
7Li, 118, 15N and 27 AI at Q2 :5GeV2. The dashed line is the unpolarized EMC
effect, the solid line is the K : 1 polarized EMC effect and the dotted line is the
M : J polarized EMC result (c.f. Eqs. (6.38) and (6.35), respectively). For the
unpolarized EMC effect the results agree very well with the experimental data
taken from Ref. [160], where importantly we obtain the correct ,4-dependence.

Consistent with previous nuclear matter studies, we find that the polarized
¡lMU eflect is larger than the unpolarized case, with the exception of the multi-
pole result for 7Li at r >- 0.6. Based on the wavefunction given in Eq. (6.40) the
neutrons give a small contribution to the polarization. To test the dependence on
the neutron poiarization we also coupled the two neutrons to spin-zero, so that
P3/23/2: 0, which is closer to the Quantum Monte Carlo result of -0.04 [157].
We find that these results are very similar to those in Fig. 6.9.

The unusual shape for the 15N polarized EMC result is because our full
result fo, gl!;t/t 

"hur,g"s 
sign at r - 0.8 (see Fig. L21), and hence the ratio

aThe required quenching factors can be seen, for example, by comparing the experimental
and calculated Gamow-Teller matrix elements given in Refs. 1161,162].
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Figure 6.9: The EMC and polarized EMC effect in 7Li. The empirical data is
from Ref. [160].
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Figure 6.10: The EMC and polarized EMC effect in 118. The empirical data is

from Ref. [160].
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Figure 6.11: The EMC and polarized EMC effect in 15N. The empirical data is
from Ref. [160].
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Figure 6.12: The EMC and polarized EMC effect in 274I. The empirical data is
from Ref. [160].
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must go l,o zero at this point. The origin of this sign change is the nucleon

pt¡z smearing function, which becomes positive for large Aa (see Fig. I.23). This
resuit suggests 15N may not be a good candidate with which to study nucleon

medium modifications. The 118 and 27AI results resemble those obtained for
nuclear matter in Chapter 5 and Ref. [98], where we find a polarized EMC effect

roughly twice that of the unpolarized case. In Appendix I we give results for
the EMC effect inr2C,160 and 28Si.

6.5 Conclusion

Using a relativistic formalism, where the quarks in the bound nucleons respond

to the nuclear environment, we calculated the quark distributions and structure
functions of 7Li, ttB, tuN and 2741. For a spin-.I target there arc 2J f 1 in-
dependent quark distributions or structure functions in the Bjorken limit. For

example, 27Al therefore has six structure functions, however we find that the
higher multipoles are suppressed relative to the leading result by at least an

order of magnitude (see Appendix I).

We were readily able to describe the EMC effect in these nuclei, and impor-
tantly obtained the correct A-dependence. We also determined the EMC ratio
for 72C, 160 and 28Si and found ratios very similar to their A - 7 neighbours,

these results can be found in Appendix I. In Eq. (6.35) we define the polar-
ized EMC ratio in nuclei. This ratio is such that in the extreme non-relativistic
limit, with no medium modifications, it is unity. The results for the polarized

EMC effect in nuclei corroborate our results in Chapter 5 and those in refer-
ences [98,163] for nuclear matter, the results for light nuclei of Ref. [164] and
small r studies in Ref. [159] that find large medium modiflcations to the spin
structure function relative to the unpolarized case. In particular, we find that
the fraction of the spin of the nucieon carried by the quarks is decreased in nuclei
(see Table 6.2). Experimental confirmation of this result would help test some

quantitative differences with recent soliton model predictions for nuclear matter.
Thereby giving important insights into in-medium quark dynamics, helping to
quantify the roie of quark degrees of freedom in the nuclear environment.
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Summary and Outlook

QCD presents an immense, but incredibly rewarding challenge to the experimen-

tal and theoretical nuclear and particle physics communities. There are many

different avenues one can pursue to gain insight into the quark-gluon structure
of matter and the nature of QCD. It has been the goal of this thesis to bring
to the fore the potential of nuclei as ideal laboratories with which to investigate

quark-gluon dynamics and thereby extend our knowledge of QCD.

To achieve this we began with a chiral effective quark theory of QCD, the
Nambu-Jona-Lasinio model, regularized using the proper-time scheme. This
regularization method has many important attributes, most relevant to this
discussion being that it simulates some important aspects of confinement and

enables the saturation of nuclear matter. The nucleon as a bound state of three

quarks was modelled using the relativistic Faddeev formalism. The use of proper-

time regularization forced us to make a "modified static approximation" to the
quark exchange kernei. Using this machinery we calculated the entire triplet
of twist-two quark distribution functions. We obtained excellent results, which
satisfied all known positivity constraints and agreed very well with available

empirical parameterizations and experimental flrst moment data. A highlight of
this study was the prediction that the nucleon tensor charge is very similar in
magnitude to the nucleon axial charge.

Our successful description of the free quark distributions and our ability to
modei nuclear matter within the same framework, provided the motivation to
study the in-medium modifications to the quark distributions. \Me determined

the EMC, polarized EMC and transversity EMC effects in nuclear matter. Ex-

cellent agreement with nuclear matter data was achieved for the EMC effect

and we predicted large deviations from unity for the other two EMC ratios. An
immediate consequence of this result is that the spin structure of the nucleon

undergoes significant modification in the nuclear medium. We find that the he-

licity spin sum is reduced by 20% and the transversity spin sum by 13%. Similar
reductions in the nucleon axial and tensor charges were also found.

Infi.nite nuclear matter results are mainly of theoretical interest as all experi-
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ments are performed on finite nuclei. The lower components of quark wavefunc-
tions play a pivotal role in nucleon spin structure. Therefore in any study of the
spin structure of nuclei it is imperative to retain the lower components of the
nucleon wavefunctions. To achieve this we used a relativistic shell model and
derived expressions for the nucleon distributions in the nucleus, which are valid
in any model using spherically symmetric potentials. The convolution formalism
then provides access to the quark degrees of freedom in nuclei.

We calculated the EMC and polarized EMC ratios in the following nuclei:
7Li, 11B, t'C, tuN, tuo, 

'7Al and 28SI. For the EMC effect we found excellent
agreement with experimental data. The medium modifications for the polarized
EMC effect were up to twice that of the familiar EMC ratio, in agreement with
our nuclear matter studies. In-medium, we again found a quenching of the spin
sum and the nucleon axial charge. The amount of quenching increased with A
and appeared to converge to our nuclear matter result in each case.

The large signature for the polarized EMC effect has caught the attention
of a number of experimentalist at Jefferson Lab. Experimentally the polarized
EMC effect is suppressed by If Arelative to that EMC ratio, because only the
valence nucleons carry the spin of the nucieus. This almost definitely rules
out a measurement of the gs structure function for nuclei with atomic mass
larger than that of Aluminium. The best candidates for such a measurement
are likely to be 7Li and 118, with 7Li receiving the most attention because of
Jefferson Lab's proven ability to achieve target polarizations of at least 60%. The
measurement of the polarized EMC effect has been earmarked as a potentially
important experiment at Jefferson Lab after the 12 GeV upgrade. This interest
has been spurred by the potential for such a measurement to shed new light on
the role of quark-gluon dynamics in nuclei and the long range phenomenology
of QCD.

The formalism developed in this thesis can be applied to a large array of
interesting and important areas of mrclea,r ph;rsics. Possible fi-rtr-rre directions
include the calculation of the generalized parton distributions of the nucleon
and their modification in nuclei. The strange quark can easily be incorporated
into the model, giving access to the hyperon spectrum. The hyperons could
then be included in nuclear matter, having potentially important impiications
for neutron and quark stars. The inclusion of the qmeson would result in a
quark flavour dependence to the scale transformation that incorporates the ef-
fect of the vector potential on the in-medium quark distributions. This would
facilitate a very interesting investigation of charge symmetry violation in nuclei.
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Incorporating the pion into the model is probably the most pressing improve-
ment, as for example its introduction would enable the calculation of anti-quark
distributions in the nucleon and in nuclei. Nuclear anti-quark distributions are

largely unexplored, both experimentally and theoretically. FYom a theoretical
perspective there are many interesting questions that remain unresolved. For
example, to obtain the correct support for nuclear anti-quark distributions it ap-

pears that the anti-nucleons must play an important role. To my knowledge, this
particularly interesting area of physics remains almost completely unexplored.

In this thesis we have presented some potentially important results for our
understanding of the spin structure of nuclei. 'We have endeavored to highlight
the incredible opportunities the nucleus provides as a laboratory for the study of

QCD. There are many interesting and important theoretical and experimental
investigations possible with nuclei, that may give new insights into QCD and

in particular its long range structure. This would help us answer one of the
most important questions confronting nuclear physics, which is: how do the
fundamental degrees of freedom - the quarks and gluons - give rise to nucleons

and the inter-nucleon forces that bind nuclei?
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Notations, Conventions and Useful
Results

4.1 Regularization and 4-D Polar Coordinates
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Xn (n - 1)l Jo
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A.3 Lightcone Vectors

The lightcone contravariant four-vector is given by

o' - (or, o', o', o-) : (a+ , d,¡, a-) ,

where, in the Kogut-Soper representation

o*:Ifuo+a3\,
\/2' /

o- : L= (ao - a3\
!E\- - tI

(A.1)

(A.2)

(,{.3)

(A.4)

(A.5)

(A.6)

ao

3

(a+ +a
1

-'/z
1

-t/z

)

(o*o, - a-). (4.7)
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The Kogut-Soper 7-matrix structure is defined similarly, and the Dirac algebra

{'l',^y"} - 2gp" is of course satisfied. The covariant four-vectors are obtained
via rr: g¡"rr' and the metric is given by

{g'"} : {gp,} : (A.s)

001
1000-

0 0-1 0

1000
\Mith this convention the Lorentz scalar product is

a.b: apb\ - a*b+ + a-b- - d,¡É¡: a¡b_ I a-b+ - d-rËt

Some useful relations are

{t',f} : s

'y+'y+ :'Y- 'r- : o

{'v*.,t-} : z

^l+ j- 'y+ :2'Y+
zt) : 2lr+x',
l^,- 

-o^,-I -AI.
.Y .Y

(A.e)

(A.10)

4.4 Usefu I Relations

(r+ï)"-' : an-'I + (n - r)a,-,L- + iø - L)(n - z)o,-,ft +

{t

: ¿n-r . T fto"-' .; # #o"-' * (4.11)

(A.12)

4.5 Feynman Parametrization

Using

1

AB

1

AB"

Therefore

1

(k, - M'A + i, e) (k, + p2 - 2k. p - M2" + i,e)

k+kiap d,a 1

-* 
lk, - (., - d)p, - "M"" - (1 - ") 

M,AI i,el2'
(A.13)
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1

(k, - Mr"+ t e)2 (kz r p2 - 2k . p - M2B + i€)

t,
1

oo 2(7 - a)** 
lk, - (o" - a) p2 - "M'B - (1 - *) M'A-t i,e]s

A.6 lntegra I Relations

d4lr kp

l++leIap

(2r)a (k2 -E+i,e)"
dLlç lçt"lç"

(2r)a (k2 -D+ie)"
d,4te kt'lc" lrPko

(zr)a (k2 -D+ie)"

(A.14)

(A.15)

(A.16)

(A.20)

(A.21)

I
I
I

0

d4k k2

(2r)a (h2 -E+'ie)"'

1
Q-8+ ------+ - "+

1
q:'

(2r)a (k2 -E+i€)"'
(A.17)

d4tc

(qo,ù ------+ (¿qot,dt) , e2 ------+ -q:8.

(A.1e)

1:-
4
gt"

: 
){nr" nPo ¡ gttPnu" + Oø" n"o¡ f

f d4k ¡rz _2 f
J @ @,- E+.oY-- "J

d4k ¡ta

1
(A.18)

(ztr)a (k2 -E+i€)"'

where n ) 7 and the function X has no k dependence. These relations are easily

proved using integration by parts.

A.7 Wick Rotation

d4lç_ ------+ ?,

(2n)n

In an O(4) invariant regularization we have

q?,

Q-Q+Q-Q+ ------+ - rA
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4.8 Simple Bubble Graphs :- 17"(q'), il, (q')
and lI"(q')

rr*(q"): r"(ø') : uu | ffin [r, s(k) trs(r - ø)] ,

: -# | a" {)u"'' *+ l,' ¿6'!"-'lø'r"-.,t**'l}

rl"(q') (nr" - ffi) : uo I ffi*lr, s(k){st* - n)].

rr"(q') : -# n' l" o" | ¿, ! a(r - a) e-'lø2(."z_-.)+rvt2l.

4.9 EfFective Couplings :- gn, g, and go

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.2s)

(A.2e)

s;' : h l,' o. I * l+ - 
m?- (o' - *¡f "-"ï*+(..z--.)+u2l

s;' : # l,' o" | * l+ - 
u! (o' - .,¡f 

"-"1*:(."z-.)+rø21

q2:m7

q2:M3

-2e": 6¡1¡nz¡faqz s2:MZ

9o ' : # lo' 
o' I a"o(1 - ", l+ - 

ml (o' - o)f 
"-"1'a(,"2--.,)+t'r21. 

(4.30)



4.10 Propagators 109

4.10 Propagators

t tr+Me/L\ -v\&.i - tr_Mli,e- k2_M2 I,ie,

,*(q) : -2i,G"
| + 2G* II"(q,)

4iG,

(A.32)

7+2G"II"(q')
------+4iG"- 

^ '.9'-" -ù q'- M? lie'
(A.33)

(A.31)

(A.34)

(A.35)

(A.37)

(A.38)

,"(q) :

"!" 
(q) : 4i Go

:4'iGo

'i Ín Qp6ob : 3{ç õ"a

This implies

.----- 
lnoc

s" - F:æ¡æQ* -ffi)1,
gtt'

a

(A.36)

In this analysis we use Eq. (4.36) as the axial-vector diquark propagator, since

the term ffi o"ty changes our results by iess tlran 1To.

A.11 Pion Decay Constant fn

------+ (nnc"
L9o

q2-Ml-li,e

The pion decay constant is defined by the matrix element

ta
(}lrþQ)trtu 

,rÞ@l"u(q)) 
:'i fn ep6oa

Therefore

I ffi*ltu s(k)t,tu s@ - q)l

M
f" : -72t/g"i' (2tr)a ç¡çz - M2 + ze) l(k - q)' - M2 )- i,e]'

f- : :- M Js- [' oo I or! "-rlm2*(a2-.,)+u2l (A.39)rtf 4r2 
-'- u "n Jn -* I T

By defining rrù1r : 140 MeV, M : 400 MeV Â¡¿ : 240 MeV and fn : 93 MeV,

Eq. (4.39) enables us to determine Ì\uv :645 MeV.

d4lr
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A.L2 The Grp Eqration

The gap equation has the form

M : *n+zi,G* I #n ts(k)l, (A.40)

where M is the constituent quark mass, mo the current quark mass, and the
trace is over Dirac, colour and isospin indices. Therefore

M : ffis + 2iG" ¡/" ¡/¡ tr+u
lû-M2+ie
4Md4k:rmq+2iG"N"N¡

(zn¡4 kz - M2 + ie'

t
I

:rnq.?9# 
I,* orrri#l*,

: ffiq . YS#It I a, 
lr* 

or, tç2*e_,@'u+M'),

:rmq*Y#!tla,+
Therefore

ffiq: M
Gn N.N¡ e-'M"

1
2r2

1 (m o '/ip+ pt - ipz) ,

1u+lp): ,ffii
1u_lp): rúu

dr

0

rn

-pr + i,p2

,/2P*

(A.41)

(A.42)

(A.43)

For M : 400 MeV and Gn :19.04 GeV-2 we ffiq: 16'4 MeV

4.13 Dirac Spinors

Throughout this work we us the Dirac spinors of Kogut and Soper given in
Ref. [165], which have the form

4

1

4

u+\P):
2 '/F

u-\p):
2

"/F
(-nt - tn, t/2p* o *) . (A.44)
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It is important to note that these spinors are defined with respect to the Kogut
and Soper chiral representation of the Dirac matrices, which has the form

^o ft 1\ ^, - (o -o'\| -\r 0) ' r-\ø'; 0)' 'ys='i'vo^1r"":(å -Î) (A'45)

It is easy to demonstrate that these spinors are solutions to the Dirac equation
using the result

P tm:
0 po - pz -h |-'ip2

lm -h-ipz poi-ps
pt-ipz Im 0

Po-Ps 0 lm
(A.46)

4.14 Matrix Elements

Throughout this work we normalize the nucleon spinor such that

aw(p) ux(p) : L. (^.47)

A.14.1 Helicity matrix elements
The following results are matrix eiements between the spinors r.t,.,. and LL1, needed

for the spin-independent and spin-dependent quark distribution calculations in
Chapter 4. The abbreviated notation used here is such that (f^2) I ¿*{lv*:

(r-) : Mk+el+nZ p-I

/^,+\ - P'\/ /- Mx, MN,

t^.2\ - 
P2\t /- w,

2Mx p+

(t'):fi, (ru) : o. (4.48)

þr-'Y+):7, (l-l'):i#,

(ry+ry-) : 1, (7*7t) : o, ('t*'Y') : o,

r
t J- , P' ,(z*ru) : fu. (4.4e)

(t*t'tu) : o. (4.51)

t-trP2(t-t'tu) : -î. (4.52)

t-r\'P]-
\'Y 'Y- ) : -t p*

(z-ru) :-!##É. (Abo)

0*l-lu) : -7,

t - J- , Pl(Y 'Y''fs) : --M*,

(l*l'lu) 0,

(l-ltlu) : #
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Throughout this thesis the transverse polarization axis is always chosen in the
z-direction. Therefore, transverse nucleon spinor are given by [29]

'f) : ir". +'-), ancl 
"'\') 

: t: 
¡'''* - u-), (A'53)t \/2'

where rr1 and u- aîe the positive and negative helicity spinors given in Eq. (4.43)

The following results are matrix elements between the spinor. 
"f') 

utrd ,f'),
needed for the transversity quark distribution calculation in Chapter 4. The
abbreviated notation used here is such that (f-2) + úf)Ouf):

l-*\: Pt 1--\ - u'* +P?+eZ
\/ ' M*' \/ / 2MNp+ )

(n'\: Pt (-'\ : P'\, / M;, \'Y') : 

^, 

(lu) : O. (4.54)

, -! -\ Mx I i'P2(y''y ) : M*

4.14,2 Transverse matrix elements

(7*7t) :0,
a

6t+.v2\: i,P'
'tIM¡¡,

(z*ryu) :0. (4.55)

/^.-_,+\ MN -'ip2 /^,-^,r\ _ _; prp2
\7 ^l'): 

-MN 
, \"1 "l l: -t' *¡,
(.y-f):l(W)

h't)= u*, (7r7u) :1,

^t -+h*t-tu): fu, (t*trtu) : h,
j--)- , Pl(Y ^l'"ls):-W, , \ MI_,pl+nZ\l-l'ls):tffi

(A.56)

(t'tu) :0. (4.57)

(1+1215) :0. (4.58)

t-, Pl(Y 'Ys) : ,p-

/n,ln,2n,-\ 
- - 

P2
\/ IIsl- M¡¡

(t-trtul - _!L. (A.be)

(A.60)

1
(p' - ¿¡w*) .h*t-l') M¡¡

(A.61)
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A. 15 37-sym bols

The definition of the 3j-symbols is

Llt .tz

\-, ,r2

cyclic permutations

column interchange

(A.62)

Jt

-lTl,1

(A.63)

õi¡ õ^*' (A.65)

i\ _ (-l)ir-iz-*z r.,i-^
m) - \/rl+1 "itmtizmzt

where Ctiï*r¡"^" is a Clebsch-Gordon coeffi.cient. If a 3j-symbol does not satisfy

the foilowing constraints it is zero:

t. jt, iz, i > 0,

2. mt€ (-1rr1,..., ljt), *, e (-ljrl,...,Url), rn e (-1j1,..., lil),

3. mt I mz I m:0,

a.U'.-rzl ( j {h-t jz,

5. jt + iz + j is an integer.

Symmetries of the 3j-symbols:

(#, #, '^): (i" Jt Jz

ITLI fTL2

: (-7¡i'l+i*t (#, t- 
#r) :... : (-1)i'*i',*i ( .iz i\

-,TL2 -*)

Orthogonality relations

| {zi+t¡

t) (i;, i;t '^) :6^,,n\õ^,*',, (A'64)

(#, #, L) (#, #, I,):
'fitr7rm2

Useful identities

å) 
:o lf jr+ iz+ j is odd. (A.66)
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4.16 Spherical Harmonics

The spherical harmonic orthogonality relation is

dô d0 si,n0 Yfi *, (0, ó)Y¿^(e, ó)

: 
Io'^ I_rord(cos 

0)yi*,(0,ó)n*@,þ): õa,¿õ*,^. (A.67)
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Derivation of Lepton and Hadronic
Tensors

The differential cross-section for inclusive scattering (e P ---+ e' X) is given by

* : iffi? fr I #htAt2(2'r)4an(p 
+ n -ioò, (B 1)

where J : P.k is a flux factor, which equals J :4ME in the nucleon rest

frame. The sum runs over all hadronic final states X which are not observed,

where each hadronic final state consists of n¡ particles with momenta p¿, where

DT:rp¿ = px. The squared-amplitude lAl2, given by

i"'g*
q2

a(k' , s')1Pu(k, s) (xlJ"(0)lP, s)
2

lAl":Ð (8.2)
sl

can be separated into a leptonic çLu") and a hadronic (Wr") tensor, such that

lAl, : Øò, # Lp, w¡",, (8.3)

la(k' , s')1qu(k, s)]. la(k' , s')1"2(k, s)] .

(8.4)

where a: e2l4tr - 71L37 is the electromagnetic fine structure constant

8.1 The Lepton Tensor

The lepton tensor is given by

LP":Ð
2 t

st

a(lc',s')1Pu(le,s)
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Now [a(k', s')1pu(k,s)] is just a complex number, therefore its complex conjugate
is the same as the hermitian conjugate, therefore

la(t{, s')1\u(k, s)]. , : lu(k', s')1þu(tc, s)]I ,

uI (lç' , s')1o1pu(k, 
")]t ,

uI çk, s)(1u)i(?o)t"(k', r')] ,

uI1k, s)(1u)If u(k', s')f ,

uI (k, s)1o1pu(k', s')f ,

u(k, s)1qu(k' , t')] . (8.5)

\ffhere we have used the result 'ypt'yo :'yo'yp.Therefore

Lþ' - Ð ,(f , s)1\u(k' , s') a(k' , s')1"u(k, s)
sl

To evaluate this expression we write the matrix indices explicitly, giving

Lt'" - Ð ,,(tt, s)(lþ),puB(k', t') ùr(k', s')(1\qut(k, r). (8.7)
sl

Using

D uu(t ' , s') ar(k' , s') : (ft' + m) p., , (8.8)
sl

(8.6)

(B.e)

we obtain

Now using

Lt"' - úo(k, s)(t\,8 (ft' + *¡ ur?y)ru¿(te , s),

: u¿(k, s)ao(k, s)(l\.p (ft' + ^¡ ur(t)r.

rFLo-of^-o
I 1IUT VTVI V

u6(k, s) úo(k, ù : llff * *¡(r + -yul)]r,, (8.10)

fff * ù Q+ 7'l)] uo(yp)oo Q4' + *¡ ur?y")t¿,

rT 
f(# + m) (1 + ts]) -y, (þ' + ù {1,

"I\]ft.y'ft' + mft.yp.t" + ftxþf ft't" + rnft.ysí.yp.y'

+ *luþ'y'ft''y" + *' 'yuí'yP 'y" + *'yrtr'^l' + rn2 ,' ,'f ,

- kolc'pttlt"f tLr"f * m ko somlt"nt"rrr"f

-t m so o'umltn"f f {l + m2 nltr{l

1

2
1

2
1

2

Lt'"



8.2 The Hadronic Tensor tt7

In the last step we used the fact that the trace of an odd number of gamma

matrices is zero. Using the trace theorems and recalliîE {'Yp,'ls} :0, we obtain

Lt', : 2 ko kB lgoþ gA" - go9 gP" -l g'" gø01 ¡
Z,irneooþ'koso - 2¿meon?"sok'p I m2 gþ'. (8.11)

Therefore, the (summed over final spins) lepton tensor is given by

Lt", :2(lrt, kt, + k" k,t") l2gu" (*, - k.k') -l2i,m€þ,\oq^so. (8.12)

8.2 The Hadron¡c Tensor

¿+¿"tø'€ (p, rlJr(€) ,/"(o)lP, r),

¿aç 
"tø'Ë 

e,{lJr(€) ,t(o)llp, 
").

(8.17)

We obtain the current commutator in the last line of Eq. (8.17), because the term

J"(0) Jp(€), gives a vanishing matrix element since it produces the delta function

õ (q - P + px), which cannot be satisfied because of energy conservation. As

the nucleon is the ground state baryon and there is no intermediate state with
E' : M - Qo 1 M. Note, for physical lepton scattering from a stable target

4o)0.

The Hadronic tensor is given by

wt" - *4U I #htn (p + q - px) lrxtetollP, ") l,

: +Ð [ I &6n (P * q - px) \P,slr,(0) lxù(x,lr,(o)lp, ")'X i:t" ' 
(B.13)

The hadronic tensor can be significantly simplified; first one rewrites the delta

function as 
Qn)4 A4(r * q - px) : 

I 
O^' "i(p+s-px)'Ë, (8.14)

then translational invariance implies

ei(P-p*)'e (p, s lJr(o) lX) : (p, s lJr(() lX) , (8.1b)

finally multi-particle completeness [14] gives

ÐYl #htxi)(x^:L' (8 16)

hence

Wþ':* I
1[

-2"J





c
Solution to the NJL Faddeev
Equation in the Static
Approximation

C.1 The Nucleon Quark-Diquark Bubble Graphs

nif þ) : I ffi,ou(p - 
k) s(k),

: Iffi(""{r-t) 'r'l-r')^g(k),

("

dr

r"(p)
0

-a

0

IIItu
]Va (p)

(c.1)

(c.2)

(c.3)

(c.4)

Where

flor" (p) : I ffirQt - k) s(k): at* #",

1at': 
L6tr2

9'Maz: 
16¡12

IY(ruv)o {+Y"-rM2-rs,M
da -e-rA

T

1

da

nK"@): I

d,r 
a 

e-'A
T

and A is given by A: ( )p'+oM? +(1 - a)M2. AIso

ffir"(p- /c)S(/c) : sþ' (u, * #r), (c.5)
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u,: # I:^^:: o, 
{!9#e-,M, t soM I,' o,l"

, -hoM ft o, [,^fu drae-,'oz: 
r6trz Jo 

oo 
J 

^h, 
ar -L ,

where B is given by B : (o" - a)p2 + o M:+ (1 - o)M'.

-rB

)

(c.6)

(c 7)

(c.11)

C,2 The Faddeev Equation

The Faddeev equation for the nucleon vertex function l"(p) in operator form is
given by

f"(p) : zoo, nloruþ) = K"b(p) fa(p), (C.s)

where

r7a 3 ( 
=t 

'',ferr'z_u). 
(c.9)2 a'- u \,[zlul' _.''r"Y' ) '

and IIfffb contains the nucleon quark-diquark bubble graphs. Therefore the Fad-
deev kernel has the form

K"b @) : #ln,î.þ! i' r .,) 
tï; 

6:: t,ll (c 10)

The RHS of Eq. (C.8) becomes

where

Y

laz
Mu
M

K",@)ru@): # iî1 ",ro,,1,

x:nt(,'* #",) \/3 (ru,*#r),b, - #. o,) - as2\/3

UrfnM*
Ma")-"pP^rs

M¡¡
, (u,-Q2

t'yþ'ys[-",* (,' * #.) - ", u,-#u, I as2b1

(c.12)



C.3 Normalization of the Nucleon Vertex Function

Therefore to satisfy the Faddeev equation, which can now be expressed as

These three equations can be written homogeneously as

t2t

#l{,lu.(p,") : 1,, # r,"'* o,trtu)uu(p,s), (c'13)

we must have

o,:hþ,(,, .#*)
-tazt/r(r, - #r) - a32,/5(ra, * #r)1, (c 14)

*,: #l-*,r(r, - #r) -.,nffu,f , (c lb)

*,: h [-",* (,, * # ",) - *, (0, - #t) * .,zu'f (c 16)

Mn
Mzt
Mst

Mn
Mzz

Mn #,)(î):u(p', (ii) 
:'

:Jz(u'- #r),
MrB: -zt/5(ru, * #r) ,

(c.17)

(c.18)

where

M¡¡
MM1: a1l M

at--'3 M

M¡¡
M

2

Mzt:0, Mzz : -n# ur, (c.19)

MMzs:2h- 
T,,
(c.20)

b2

Msz:-ór * #r",

The nucleon mass then follows from the condition det M(p' : M2tò :0

C.3 Normalization of the Nucleon Vertex

Fu nction

The ?-matrix for the nucleon is defined as

T:Z+KT:Z+ZIINT.

Mst: -

(c.21)
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In the lightcone normalization, the three-body ?-matrix near a three-body
bound state of of mass M¡¡, behaves as

7 _- It rl, 
( c.22)

P+-€p

where ,o: #.Therefore near the ?-matrix pole Eq. (C.21) becomes

f¡r frv : (p+ - eò Z + Z IIN fry f¡'. (C.23)

Taking & "f 
the above equation, noting that fffr Fl, and Z have no p+ depen-

dence, then taking the limit p.,, - €p, we obtain

o:z+zffrrFr. (c.24)

Removing the factor Z and multiplying by liv, we obtain

o: Fn¡ + l¡, ær,) r,. e.25)\
This implies

(c.26)

Using lN: -Z*Y l, we obtain for the nucleon vertex normalization

(c.27)

(c.28)

t'# rry : -1'

where

Now

#1,* #6,)
where given by

1

M-

* h6')
Q.7

u¡v(p, s),

: hl Iz

orffijs lo¿z'yp'ys

(c.2e)
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Using uN u¡t : 1 and ux j+ 'ttrN : ft, we find

It:a?(u,* #*.*#u,),
rr : (a2, - 2a2a3 - z.,|) (a' - # 

^0, 
- ff a,

)
+ 6oj?h. (c.30)

Therefore

where

zN:hlq(u,* #*..#")
+ (o', - 2.,2a3 - z.,?) (a' - # *u, - ff t,

-1
+ 6a?bt (c.31)

A1

ã,2

b,

b,

8r2

-9" M

-9, M IY
" (t;;F

IY
" a^ulP

IY'(ñ;uF

, IE o, 
Io' 

d.,,.,(a2 - a) e-'n (c.3b)
812

A : (o' - a)p" + a Ml + (1 - o)M',
B : (r" - t)p, + a Ml+ (1 - t)Mr.

d,a (a2 - .) 
"-" 

o, (c.32)

d,a a (a2 - o) 
"-" 

o, (C.33)

d,a (a2 - *) 
"-" 

u 
, (c.34)

(c.36)

(c.37)

p-

p-

dr

1

8r2

-9o M

o" l,
o" I,

1

p-
8r2

-9o M

Recall

In order to reproduce the normalization for the case with scalar diquarks

only, that is

(c.38)
P:Mx

we require ff : 1. Therefore the foilowing condition for the coefficients of the
nucleon vertex

al + al - 2a2o,s I 4al: 1, (C.39)

must be satisfied.





D

Explicit Calculation of the
Transversity Distributions

D.1 Transverse Feynman Diagrams

D.1.1 Transverse Scalar Quark Diagram
\Me have

L,qy*@): riF¡,, I ffi u (" - !-) æø) i,1+1.11s,i,s(k),"(p- k) r',
ZxMx-

p-
k_

p-
.t,-- S(k) f lx S(k)r"(p - t') u*,

(D.1)

where l¡¡ a,re the scalar transverse vertex function in the r direction. 'We 
eval-

uate the distribution using the moments where

drr"-t f(r) (D.2)

Therefore

1

d4k

É)

n-I
An: l¡v

(2n)n

dÍtc
- f¡¡

(2")n

:A*+Al.
Using the result

S(k) t*t't5 S(k)r"(p - k) rr,

"-' (ft-t M)f ÌxØ + rw¡

e) (k, - M2 +ie)2| _:gt_'l a",l4ic"-ffi1
(D.3)

(ft+ u¡r*ttx(ft+ M):21c2-'y-'yt'yu+ (k3- k?+ M')f lx
- 2lct kr.y+.y2.ys - 2 k- lcz.yr.y' js

+ 2k- k, (tu - t*t-x) + 2M (tt-| ts t lclfx), (D.4)
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and the matrix elements in Section 4.14 we have

a¡¡ (ft + M)f..'x(ft + M) u* : T n'z-+ (re| - k? + M') h,+2 Mk-. (D.b)

Therefore the numerator of Af is given by

Nl : (Ð"- lT rc,- + (rel - k? + q h, *, * r-f

Nl:(n3-n?+m\ff;. (D.7)

(D.6)

Ignoring terms odd in /c and using g-- - g-t : g-2:0, the only non-zero term
1S

Therefore

Af : -4iG, Z¡¡
d4k kZ-k?+M2

(D.s)
(hr)a (k2 - M2 i i,e)z'

Wick rotating where k?: kZ: ikl, introducing 4d polars and the proper-time
regularization gives

¡42ZxGAf: I l,*drr dkl kI 
"-r(k2u*M2) 

. (D.e)

Integrating over le2t and using the fact that only the first moment is non-zero we
have

1
-r M2

T
(D.10)

Evaruating oi,*"":"(') 

: 6@)q# | o"

4¡r2

f dLlet_
I Qn)n É)

-e

AI : i'g"
Z¡¡ M¡¡

yk?+(k3-k?+M')fr+2Mk_
(k, - M2 + i,e)2 (k2 t q2 - 2k. q - M? -t ie)'

Using Eq. (4.14) and the fact that the kl and, kl terms will cancel, we obtain

n-l

p-

Zx MN
d,az(t - ù | ffi (r- ;:,-)"-'
y (k-+o,p:i2 +M"ffi+2M (k-+ap-)

(D.11)

p-Aln : i,g^

It* - (d2 - a) p2 - oM? - (1 - d) M2 * iels'
(D.12)
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Ignoring terms odd in lc and hence noting that terms like

gives

(
n

)
Ic-lap-

- 
o¿n,p-

AP" 2

9o ZN

I612

¡7

Jo 
o*a'-rz(t - a)

d4k Y*'p'-+M'ffi*2Map- (D.13)
(zn)n lkz - (a2 - a) p2 - aM? - (1 - o) M, -t iels

Therefore from the definition of the moments we have

LrqB (r) : ino Z¡¡ 2(7 - r)
M'*r'+2MMNr+M2d4k

(2n)n lk2 - (r2 - r) p2 - rM? - (1 - ,) M, -t iels'

\Mick rotating, introducing 4-d polar coordinates and the proper-time

ization gives

Lrq'(r):#0-ù@M*+M)'

l"*dr 12 dk2E k?E 
"- 

"ftc2u 
+ (*2 -,) n2 +' rø! + (r - r) M2l. 

( D. 1 b )

Therefore

(D.14)

regular-

(1-") (* M* + M)' d,r e-"1(*' -n)o2 +,rtt! +(t-QM2l (D. 16)

Hence the full transverse scalar quark diagram result is

L.7qB (r) :

L,qåø(n): ô(ø) 
q+Y 

I a,l"-"'"
. 9oZ¡v ,.+ tan, (r - r) (' M* + M)" I a' 

"-'l(*2-,-)n2+'u!+1r-'¡rvrz] 
' (D'17)
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D.l,2 Transverse Axial-vector Quark Diagram
We have

L,qiN@): i,rlu I ffiô(" - 
t-) ,sfÐi.y*^t,.yuts(k)r,,(n- k)r,,

ZN Mu 
=p

p-

Zw Mu 
=prp-

lffi'

d4t{ "-' (ft -f M)t+l'x& + tttt¡

É) (k, - M2 +ie)2

S (k) f lx s (k)rr"(n - t ) r",

(D.1s)

(D.23)

(D.24)

k_
.L--

p-

where f" is the axial-vector transverse vertex function in the r direction. We
evaluate the distribution using the moments, where

¡7
An: 

Jn 
o" r"-' f @). (D.19)

Therefore

A- ,k I ffi (i)"-' s(k) t*t'tu s(k)r,,(p - k)r,*,

(2n)n

, ,igo I .,l4i,G"-ffi1 t',,

: Aî + A"". (D.20)

Therefore we need

l'(ft + M)f lxØ + tr¡r r, (D.21)

where frorn the scalar quark diagram we have

(ft + tw\r*.yr.y,(ft + M) :2k2-.y-.yr^ts + (kZ - k? + M') f ln
- 2 kt kz .y+ .r2.ys - 2 k- lcz .yl .y2 .ys + 2 k- kt (lu - .y- .y- .y5)

+2M (t'-l %t telf x) . @.22)

Recall that

rr(p, ') 
: (o, ffi,, + *rtr'vu) ux(P, s),

l'(0, s) : u¡,¡(p,r, (r, ffi.r, * .,rrurr) ,

and hence it is easy to show

fpCIf, - u¡¡ l@3 - 2a2c.s) .ys?.ys -t alyl\Qlt.ys] uw. (D.25)



D.l Transverse Feynman Diagrams 729

Using the following results which are easily proven using the matrix elements in
Section A'.14

l'-y-.y'^ru- , : (oZ - z*rc,r) ff,, l'.y*.y'.yul , : (oZ - zc,rc,s) 
pl- 

,

l''y*'y''yul' - o, l'^l'y''yultr:0,
l'.y*^l-.yuf¡, : 0, l'.yt.yul, : - (.7 - 2c,2c.s + 2al) ,

lP1+151, : g, FP75f, : ¡. (D.26)

Hence

l'(ft + M).y*.y'tu(tr + u¡t, : (oZ - 2a2,,s) lTÈ
+ (k?, - k? + *\ h - , , r-l - 4M a!k-. (D 2T)

Therefore the numerator of Af is given by

Nî:
n-I

(*Z-2.,2.,s)lþe

+ (kZ - k? + q h, - 2M--] - 4M .,1k-\. (D.2s)

Ignoring terms odd in k and using g-- - g-r: g-z:0, the only non-zero term
1S

Therefore

Al : -4iGo Z* (ot" - 2o,2as)
d4k k3-k?+M2

(D.30)
(2r)a (k2 - M2 * ie)z'

Integrating oú k2t and using the fact that only the first moment is non-zero, we
have

Wick rotating where k? : k3: Ik'r, introducing 4-d polars and the proper-time
regularization gives

Af :%+Y @'r_ 2a2as) | a, 
Ir* 

dk'Ekl"_'(k2'*M2). (D.31)

Nl : ('3 - 2a2c.s) lk| - k? + M'l h,. (D.2e)

d,rr e-" *'Lrql(r) : õ(r) %#y 
@Z - 2a2.,s)

T
(D.32)
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Evaluating Af , we have

AB:is"zr# lffi(f)"-
@3 - 2c,2as) lY*'- + (k', - k? + M') h - 2Mr-] - 4M a!k-

(k, - M2 + ie)2 (k2 I q2 - 2k. q - M] + ie)

Using Eq. (4.1a) and the fact that the kl and k| terms will cancel, the numerator

of A# becomes

NB : (r+ï)"-'{ @3_2a2as)ly rr+y)' o.

* *, h - 2M (r+ï), 
] 

- 4M ú (t-+ï), ) (D 84)

)(

(D.33)

(D.35)

Noting that terms like

Nl : a"-'

nIc-Iap- ---+ an, givesp-

{r, - 2a2as) 
l** 

*' p- + M2 !:- - 2M "o-f - 4M '?*o-} ,

: o"-'h{@?-2a2as) 1"" u'* + M2 -2aM x,t*) - 4M MNoo?} .

Therefore, from the deflnition of the moments we have

LrqB(*): inoZT¡2(l - r)

Therefore

dLk (*3 - 2o,2as)l* M* - Ml' - ao\M M¡,¡ r
(2n)4 ¡¡z - (*" - r) p2 - rM7 - (1 - r) M2 t iel3' (D.36)

Wick rotating and introducing 4-d polar coordinates and the proper-time regu-

larization gives

LrqB(r): #(1 - r) {('Z- 2.,2.,s)l*M* - Ml'- aoZM M¡¡r}

I orU I or, t ?t 
"-kln'"+("_')n'+*rurl+(t-n)rw2l. 

(D'37)

LrqB (r) : #(1 - ") {ø, - 2c,2r,s) l, M* - Ml'

- ao?M Mu"\ I d,r e-'lþ"_')n2+'røf;+1t-QM2l (D.38)
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Hence the full transverse axial-vector quark diagram result is

Lrqiopv@): ð(ø) 
q#

(oZ - 2.,2as) | ar! "-' 
u"

* #(1 - ") {r, - 2a2,"s) l, M* - Ml'

- aa3 M M¡,t "\ I d,r e-'l('"-n)o2+'u!+çr-{M21. (D.39)

Note also that

@Z - 2a2as) l* M* - Ml' - a*? M M7¡ r
: (a, - o.r)" l, M* - Ml' - o3l" MN -f N4' . (D.40)
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D.l .3 Transverse Axial-Vector Diquark Diagram

We have

L,rirotø(r) : iûr I ffi I ffiô(" - i),tr - ù,^,(q)

(-tc-trrrrrþA) p,o, (øs1r; i.y*.yt^yuå (t + r")i,S(k)).,.

(4" c rrr¡ Bo') .uis (q - Ie) B, B r,o(q) l"*,

:irì, I ffi I ffiu("- i)'r- ù,^r(q)
t-

ml(c-'trrn rþo) (s(t')t*t'x|g +r,) s(k))

(t'crrr¡Po') r'(n- *)] r,o(q)rox. (D.41)

'We 
leave the isospin calculation until the end, but include a factor of 2 here that

we will divide out later. AIso using CSr(-q)C-t : ,S(q) and Th{T"Tb}: }õ"u

where To : t, po : \ß^" and hence T){popo'}: årv{r,ÀA'} : f; x
41){TATA'} :3õoo,. Therefore we obtain

6r^n,tt*@):¿Fì, Iffi Iffiu("- þ)sø-ø
r¡p(q) ru,(q)r"w afl) ltp S (k)t*t'xS (k){ S(k - q)] . (D.42)

Inserting the identity in the form

!: aqT õ )

which implies d(, - h) ----- õ(, - sz), sives

Lrfiro'*(r) :,i 
lr' 

oo 
lo' 

or6(, - tO l:¿q1rl,

I ffi'('- i) uø'- q?") s(p- q)'x'(q)'""(q)r"*

Tr [zps(k).y*t'tus(t'){ s(k - q)] .

(D.44)

': !o' 
as [' a" , - i)'( k_

t__
nY-

d(ø'-ø3), (D.48)

k_
6i

q-
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We deflne

L,7\IP" (2, e) : LrIIA (r, q')rr*t' + LrfIB (r, q') (qtqoeo\+" + q_'q't""")

:6,i k_
q-

rY [7ps(k) t+tLnS(k){ S(k - q)] , (D.45)

and

We have

Lrlip¡¡N@) : Lrro@) + L,rrB @). (D.46)

ePtr" r¡r(q) ,,"(q) : 6ttrtu 4i,G"

:( 
)

2

6FlIv 9tp,Tuo I X gxpqrqo

I X g,oQxQ, i X' qxQpQ,Q,),

: ro(q)' {g-^g"" - 9zx9-o t X lqr(g-^q" - :-"Qx) -l q- (gz"q^ - n"^r")]l}, ,

(D.47)

where X : 2GolI"(q') lq', 6--tt2 : 1 and we have defined

r"(q):-ffi@ (D'48)

The term proportional to X are discussed in section D.1.3 FYom the spin-

dependent axial-vector diquark diagram we also have the results

qo€o þ*' r^t"(q) r,"(q) : ro(q)' 
{ø- 

lsr^or" - gt^g2o)

-l qtlg->,gzo - gzxo-o] + qrlgtxg-o- a-^ør"1), (D'49)
)

qo€o'1'r^t"@) r,,(q) : ro(q)' { n-ln*^nr" - or^o*"]tL I

-f q+lgzxg-o - T-xTzol + qrlg-^g*o - 9+x9_-o] (D.50)

Using the identity

a
_1
n tA
oQ+

,"(q)' : -L effi ' 
#^(ù 

: 
+g"(q')

(q), (D.51)
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we have

where I e(A,B). Defining

#r;, I ffi u(' - i) oø, - qZ) s(p - øta"f't G,^"(ùr,N, (D b2)

L, f lt o,Q, qZ) : ¿g 
"@3) 

Lrf"(r, qZ),

LrrLø(u,qZ): ø_r;, I ffit( o(ø' - ø3)

s(e - ,)+P Gl,(q)r"*,

(D.53)

(D.54)

where we have introduced one in the form -'i'i :1. we now simplifu Lflt*@, q?.)

Integrating by parts in g-, gives

LrlHø*,qZ): -r#* I dnq

(2")n

ft0ø' - q3) s(p - q)G'^"(q)) 
",(ø)ri,,

a 7aqt- -L
" ôq?" ' 2p- op*

lffi'Q-i) õ(q' - qZ) s(p - q)'"(q) Gl,k)r"*

ô

Therefore the spin-dependent axial-vector diquark diagram is given by

õ(q' - qZ) s(p - q),"(q) #ri,rnrrf .
(D.55)

.#*1ffi

L,riço¡¡N(") : r I"' l,'ur* - u,) l-*, oú@") 
^,f',-,*@,ilI

(D.56)
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where

Lrflto"Q,q?.) : i,s"@]) L,rn!"Q,ql), (D.57)

L,rLt*@,qz): -î'#r^ (t&. +#)
I ffiu(o - ï) uø' - qz) s(p - q)'"(q)cl'(q)r"

i Zx M¡,t ^),+--l' 2up- p- (,

q3)

LrfiluQ) : i'g"@3) L^7rr!"(2,øïlr,

^rLp@):-;ut#
-Àar^

dp+

õ(q' -

L Zw Mx f^2ap- p- 2r

S(p - q)r"(q) Gl"@)r"

- q)r"(q) 
ft"'^"{r¡r",

(D.62)

dnq

(2n)n

4

s(e - q)r"(q) ft"t^"{n¡r", (D.58)

and

G*": g-xTzo - 9zx9-o,, (D

Gu* : ør(ø-lgzxgto - gt^g2o] -f qtlg-xgzo - 9zx9--o] + qrlgtxg-o - r'--^rtrÀ)

* r-(n-lg+xgzo - g2^g+o]-f q+lgzxg-o - l-'xtzol+ qrlg--^g*o - o+xo-À)'
(D.60)

If we make the on-sheli approximation, the transverse axial-vector diquark dia-

gram reduces to

L,Íiro¡ø(') : 
Ð I,' l,' 

uo -sz) L'rilo,Q) ^'rLt*(s)' (D'61)

where

.59

M3

q

I
¿a

)
(p+ I u(,-i)'

)(

andI elA,Bl
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Lrüto"Q) : rs"(q!)Lrn"e, qZ) I (D.63)
lq?:u3

wherele(A,B) and

A,7JJA(2, Q')tr*t" + LTIIB (2, Q2) (ørQ"eot.t*u i q-qoeopr")

: uo I ffiõ(' -L) * lt's(k)t*t'tus(t')t" s(k - q)l ' (D'64)

Determining LTfIq,aQ)

Recall

Using the moments and the result

ry lt'Ø-t M)f fm(ft + M){(ft - ø + M)l
: - ¿Ml@'- M2) eu+t" +2k-q,€oþr' +2krqoror*"1, (D.65)

we have

(L)¿+k n-l
AH :24M

(

(2n)n

6ttllu
lç2 - M2 + ie) (k2 I q2 - 2k. q - M2 -t ie)

+
4(l - ") [(k- + o,q_) Qo€oþr' + (kr t oq,) qoeoP+"1

lk2 - (a2 - a) q2 - M2 -l ie]3

* 2lc- qoe"t"r" + 2lerqoeot'!' \-l
Using the Feynman parametrization results of section 4.5 we obtain

¡7
AH.:z4M 

lo 
o" Iffi (r-i:r-)"-'t ,'*'"

t [k' - (o' - a) q2 - M2 + te]2

. (D.66)

(D.67)

(D.68)

Using

: ¡1'n-7 + @ - t)a"-2L- + ...q-
and that g-- - g-t:0 and ignoring terms odd in k we have

A#' :24M 
lo 

d,aan-t I ffi
t ,r*t" _ 4a(L - a) [q- qoe"pI" + q qoe"t"+"]\

\-Ì
(D.6e)
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FYom the definition of the moments we have

k 1

lk2 - (22 - z) q2 - M2 -f i,el2
L,7\IA(2,, q2) : 24M

(2n)n

L,rfIB (2, q2) : 96M z(7 - z)
d4k 1

(2r)a ¡¡z - (", - z) q2 - M2 -t i,el3

\Mick rotating and introducing polar coordinates we obtain

¿t

A,7\IA(z,q'): i

L,7frB (2,q") : -rY zG - ,) lo* 
anz' 

" 
:\ q, + M+. (D.73)

Introducing the proper-time regularization gives

L,yrIA(z,q'): r# I ar, 
fo* 

dkîk|"_'lrcl+("2_,)ø2+tw"l, (D.74)

LrrB(z,q'): 4?+ zG - ¿ I orr' I, dk?Ek?8"_'lt'2u+(22-")ø'+t'r21.

(D.75)

Integrating over kfi gives

L,7|IA(z,q'):,i ¿r! 
"-,1("'-,)ø'+u"1,T

z(r _ ¿ [ a, 
"_,1(""_,)ø"+m,)'"l

3M
2r2 l"*

(D.70)

(D.71)

(D.72)

(D.76)

(D.77)

3M
2r2

L,7frB (2, q') : -i
3M
iT2

Therefore

Lrlo(") : -eoY" I d,r! 
"-"1þ2_,)tur3+tw2f 

, (D.78)

LrÍu(r) : n"Y z0 - ¿ I o, "-,1(22-")ul+M'1. (D.7e)
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Determi n ing A,7 f Ê" t *@)
Recall

LlÊ"p@): -;e_'.i.
F^

Zx Mx
ðp+

u(, - i) tr - q),"(q)Gî"(q)r"

u('- i) tr - ù,"(q) **rî,rnrr"

a

FÀ

t dnq

)4(2n

dnq
+ 2up- p- (2")n

Since G*": (g-^gro - 9z>,g-o), we have #C*": 0 and hence

^tÊ"p@):#'#r^#1ffi, S(e - q)r"(q) G{"r".

(D.80)
Let

/ s(e - q)r"(q),
(2n)n

dnq

q' + p' - 2p.q - M2 +,ie lnn

M

_ IAr + IAz.

Using the moments to evaluate IAr we have

dnq

(2n)n

q+3*P 
nn c" ft I ffi çn- l_o-)"-'

:0,
because there is no p+ dependence. Hence

IAL :0.

Taking the moments of IA2 and using Eq. (4.13) gives

A#': nuc"! [oP+ J

dnqa
ap.
0

ap. (2")n

ø

dnq
(=ï-)

1 n-I

(2n)n

(t -.)P - +M

M-ø
q2 - M2 +i,e'

(D.81)

(D.s2)

1l.as)

tA2Af¿+n. --xqo ^ I
oP+ Jo

d,a

[q' - (o' - a) p'- (1 - a) M3 - aM2 + ie]
. (D.s4)
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Ignoring terms odd in k and using g-- - gr- : g2- :0 gives

Aî':-nn"#1,
1

da

dnq ,"-' [(t - ùF + M] - ø_ø+f,fra"-,
(D.s5)

Qr)a ¡nz - (o, - a) p, - (1 - a) M3 - aM2 -t ie)2

Integrating by parts in da and noting that the surface term is zero as it has no
p1 dependence and using the definition of the moments we have

IA2: -rn"# I l0-ùy+Ml+q_q*f*
(D.86)

(hr)a ¡oz - (*" - a) p2 - (1 - ") 
M: - aM2 )- iel2

Using the result for the spin-dependent axial-vector diquark diagram

dnq

ro:# I*{*l - (u' -u) I(za-t p2 -M3+ Mrla
î

Now

i ZNMN
2ap- p-

Therefore

f-f2 - frf- - u¡¡ {"30-n - 112t_)} uw

: -2a?uu.yr.y'u* : -2i t!

-2p_(a'-s) [(1 -ùp+Ml "-"1(a' 
-u)n2 +(t-y) Ml+sM2l . (D.S7)

^rkø@) 
: -;nt# r^rA Gf"t",

'i Z¡vM¡v 
=: - 2̂ap- p-

{F- ¡o l, -rr/o f-} (D.8s)

Therefore we need to determine f-f2-fzf-, f- 7+ lz-lz7+ f- andl_pl2-
YrFl- In general we have

f-r¿f2-f2CIf- ( I P-- u¡,¡\orotl*." (An - 1'nQ) x

+ ffit,(z-CI - c,r-)r,l t o\tu(t-an - nay)zu),'. (D.8e)

p+
(D.e0)

Mx'
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F-7*f, - Fz7+f- : oro"hu* (l*n - .yz"r+) u¡¡

: zoror#ux-y+-yzuw : -2iazatl#, (D.91)

l-Pr, - f r4l- : -o|uw (l-91, -.yzpt-) u¡¡ : -2i,a!p+. (D.92)

Therefore the final result is

Nkp@) : -#; I *{ffi l++ 
(1 - u) lQu - 7)p" - M: * r"lf

+2al(t - a)10 - s)M* + Ml\"-"1("-')n'+1t-s¡rw'+uM'1. (D.93)
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Determin ins Ly f fl t *(a) .

The diquark in the nucleon part of the diagram has the general form

LrfLtv@) 'i ZvMN
2ap- p-

r^#1ffi' S(p - q)r"(q) G'^"@)r"

+ 2up- p-

where in this part we have

Glo : x lq, Ø-^qo - l_.oex) -l q- (gz"qx - gzxaòl

2GofIo(q2) , ,: --T lqr(g-^q" - g-"Qx) I q- (gz"q¡ - gzxq")]

ffiu(o -i) tr- q)r"(q)f,",^"{o¡r",'t Z¡v M¡v

(D.e5)

If we make the pole approximation to the diquark ú-matrix from the beginning
this term does not contribute. However if we keep the full ú-matrix until the end,
which is the normal practice, then these term will contribute. In the on-shell
approximation the X(q') term moves outside the integral and becomes X(M:),
where \G"[I"(M:) : -1, hence we have

^,räp@):-;ut# åî#1ffi'(
+;h'-#fir^1ffi'Q

(D.e4)

S(p - q)r"(q) c{"@)r"

- Ð s@ - q)r"(q) ftc{"ølr|r'

where

G{,: [qr(g-^q" - g-"qx) -f q- (gz"qx - gzxq,)] (D.e7)

If we just consider the matrix element part we have

T^ cf"f" : FÀ n 
{lø, 

(g-^q" - o_"ex) -r q_ (g""qx - or^øà)}y (D.es)
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where f,) is some Dirac structure. Summing over the indices gives

f^ c{"r" : 
{ørfn*F-c,t* 

+ q-F-CIr- * qrF-orl + q2F-clr2

- q*F+CIf- - q-F-CIf- - s1F1CIf- - qrF2CI.-] 
)

q*F+CI|, + q-F-f¿fz + qrFlc¿f z + qzf2 Ql,

- q*Frftf+ - q-FzCIl - - qtlzlrt - ørFror'] )
(D.ee)

Cancelling and grouping terms gives

r^ c{"r" : 
{ø, þ- {r-nr* - F*nr-)

+ q1 (llf¿r- - F-c¿r ,) t- qr(Frcrr- - f-CIlr)])

* 
{n- fo* {r-n., - F,err-)

+ ø- (r*elr2 - F2CIr*) + q, (Fror, - r'orr)] ). (D.100)

Therefore Lrf#,t*@) has seven terms. Letting

s(e - ùr"(q), (D.101)

+ {'- [

L,fo''(a) : -;l'# å t, - I q-qzr* - F* I q-q,r-},

I

I, s(p - q)r"(q), (D.102)

these are

Arlo't(a)
i, ZNMv -1

2ap- p- M3

'i Z¡¡M¡¡ -1

L,Ío''(a) : -;nt# å tt'I qßzr- - F- I q-q2rr) ,

(D.103)

(D.104)

{i, t q|r- - r- r q}rr} , (D.105)

(D.106)
^,rA'n(u) 

: -;-tu# å tr- I q+q-r, _I,I q+q-r-) ,

Lrlo'u(a) 2up- p- M3 {F*1ø'_rr-rrt q2_l+}, (D.1oz)
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L,ro'u(a): -;lt P å,tr,r qß-r, - r, r q'q-r,|, (D.108)

{F- ¡' q-lz - 12 t' q_.f -} . (D.10e)Lrf o'' (a)
i, Zr,tMrv -1

2up- p- M3

We now evaluate each of these terms.
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Determin ing, L,, f fl) * (y)

i, ZNMv -1tt#")*@) 2up- p- M3

S(p - q)r"(q) q-qzlg-xs+o - g+xs-ol lo. (D.110)r^#1ffi'
Flom the ô-function we have q- + Ap-, therefore

'i ZwMN
2p-

ô

Flom *" Lfflfpv(gr) calculation we have

t¡H)*@) 2 p- M] l6tr2

i ZxMx 7 go

where

Therefore

t¡ä),,t@) r^hIffi
S(p - q)r"(q) qzls-xs+o - g+xs-ol l" . (D.111)

tt,,'tu@) : n## 
uQ - u) .,s(as - ,,)

I * | "-,1(u' 
-u)o2 ¡(t-s)rvIl+uM2l . (D. 1 14)

Determin ing, L,, f #.? * @)

t¡,"?*(s) : -;nt# år^ # I ffi
o(o - i) tf - q)r"(q) e-Qzlsus-o - e-xeøl to. (D.115)

Flom the Llflltx(g) calculation we have

Lf#"'t*@):0.

Determin ing, L,, f fl| * @)

u0 - ùp- t2

I a" ! 
"-"1(u' 

_u)n"+{t-ùu""+sm'f, 
(D.112)

F-ry'f* - F+ry'f- :2'i,as(o, - ot) . (D.113)

(D.116)
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r¡Hix(ù:-;nt# -år^#1ffi
o(t - i) tf - q)r"(q) q\lgzxg-" - s-^s2ol ro. (D.112)

Flom *u LÍBltu(g) calculation we have

n¡#i*@): #h I a" \ "-"1(o'-u)o'+{t-u)rw3+aM'l

1",
I ri [t +r (t - ù lQs - 7)p' - tw] + u'll

i2ra!(t-ù10-ùM*+Ml (D.118)

Determin ing, L,, f fll *@)

î#1ffit¡Hl*@)
2ap-

u(,

Z¡tMw -1
p- M3

S(p - q)r"(q) q-q+ls-¡szo - eÐ,e-,1 f". (D.119)
q-
p-

FYom the ô-function we have q- + Up-, therefore

n¡#"1N@)
i, Z¡¡M1¡ -1

M3
F^

a
Ap.2

[ ¿nq

I Qn)np-

u(, S(p - q)r"(q) Q+ls-xszo - sz^s-o] l" . (D.120)
q-
p-

Fbom tlrre A,fBr',*(g) calculation we have

n, f ä1N@) : L, ff' n (a) + L, lî"n (a) + n, f*' n (a), (D.121)
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where

L,rl'n(u):ml*)

lzu"?õ@-Ð-ffi#ur-')f"
(D.722)

L,ff"n(a) : - uffi | a" ilu, - r)e-r rvtz + õ(y) "-"wf, (D.123)

Lrl,'n(ù @n, ,l*i

{"t,t -u)lr - ral(s - r) p' - tw\+ M')] tfr - a)Mu + Ml

- ffiliot - 2)M'* - + -; lt - 2v t r u@' - u)n'f

l(zy - r) p' - u3 + *'lf\u" ", (D.t24)

where A: (a2 - u) Ur* + (1 - u) ml I aM2

Determin ing, L, f #"1 * @)

tt,,i*(s):-;e_zr# nt¡r^# I ffi
o(, - i) tf - q)r"(q) q?ls+xgz" - ezxe¡ol to. (D.12b)

Flom the ð-function we have g- + Ap-, therefore

t¡,"1*(s) : -Lr***, år^ # I ffi
o(, - ï) tf - q)'"(q) le+¡szo - ezxe+ol to. (D.126)
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FYom the LÍBlt¡,t (g) calculation we have

t¡fliN@):-ffiu, d,r e- " [(a' - a) rø 2* + (t - y¡ rw ] +u rø 2l

{',',fl . ,t - a) lQa - r) M'* - M: * *'lf
- *? (r - ù l(¡w* + M)' - M:l (D.r27)

Determin ing A,, f flut * @)

n¡,"?*@:-;ntt# år^# I ffi
u(t - ï) tf - q)r"(q) etQ-lezxsto - st^s2of to,

f dnq
,

I Qn)n

ð

------+ 0

?, ZwMw -1 F^2up- p- M3

L ZnMu
2ap- p- ap- T^

a
ap.

s(p - q)r"(q) hlgz¡rto - ltxlzo] l" .

(D.128)

Flom the ô-function we have q- + Ap-t therefore

n¡'"i N@) : - ;ut# ro- fir^ ft
I ffi o(, - i) tf - q),"(q) etlezssto - st^s2of to . (D.12e)

Flom the A,fBrt,*(g) calculation we have

t¡,.?*@): -P? 

"##";azdsu 
G - a)

"- 
" l(u' - u) n2 * (t - fi M ! + a M2l,

(D.130)

Determinins Lrffll*@)

f dnq,

I Qn)n

dr
1

T

ttBlp@)

õ S(p - q)r"(q) q-ls-xs"o - sz¡e-ol l" . (D.131)
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Flom the ô-function we have g- + Up-, therefore

^r'lø@):;:# år^ |
'(e-i)

dnq

(2")n

S(p - q)r"(q) ls_^sro - 7zx7-ol l" . (D.132)

Flom fhe L,fB{¡*(gr) catculation we have

N'lø@):-##jl*i

lzm"zõ*-Ð-ffi#ur-')] -r M2

9o Z¡,r

l6tr2 Ml I dr
"- 

" l(u' - a) n2 ¡ (r - s) rø I + u M 2l1

T

{"; ttt - ùMx + Ml + ffilrz, - r)p, - MZ + *,]} (D.133)

Summary of Results for L7fflt*@)

'We 
have

Lrf#"t*@): LrfA't + Lrlo'' + Lrlo'"
¡ Lrfo'n + Lrlo'u + Lrfo'u -f Lrfo'7,

: Lrfo't + LrfA'' + Lrfo't + Lrfo'n
+ Lrff'u + Lrfîlu + Lrlfl'u + Lrfo'u + Lrff'' + Lrff''.

(D.134)

where

LfA''g,) : n## 
aG - u) r,s(az- or)

I a, ! 
"-'l(u' 

-a)o'+çt-v¡r,r' +sM"], (D. 135)

LÍo''(u) :0, (D.186)

Ld't(a) : 
J.zn-J!Z!-2n, M: I a" \ "-"1(o'-u)n'+1t-s¡u3+um'l
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{W[t 
+ r (a' - a) lea - r)p' - twl + M']l

-t2ra!(t - ùlG - ùM, + Ml (D.137)

(D.138)

(D.13e)

(D.140)

(D.141)

(D.t42)

t,rl'n(u): -##- | a,

lz 
u,",õ(s - Ð - ffi # u, - r)f"

n,r["n(u): #ffih I a" ilu, - r)e-rMz + õ(a) "-'ú],

Lrr,'n(ù : #h I a"! 
"-"1{"_a)utu+(r-*w'"+srur'l

{'t,r - 
u)[r -,a l(u - Ðp' - rwl + M']] ttt - y)M* + Ml

+ Hilio' - 2)M"* - + -; lt - 2v t r u@' - u)r'l

l(zu - t) p' - twl +-'l] 
),

LfA'u @) : ## r, I d,r e_'l(o"_'v)røtu+(t-u)tutl+uur2l

{".,'[] * ,t - a) lQa - r) M'* - ul * *'l)

- "? 
(t - ù l(u* + M)' - twSl

LÍo'u(a) :0,
^ n'tTt ¡ GoZxA/í^'\a): g", MZ

1
o

l*i
zMal6(s-t) Qzas d

r M¡¡ d,g
õ(s - t) -r M2 (D.143)e

nfî'' @) : #h I a, ! "-'l{'" -u)n2+(r-a)rø2"+aM"f

{"; ttt - ùM* + Ml+ffilt'o - r)p' - u3 + *']\
Note L7ff'a(y) and LÍf'' @) cancel.

(D.144)
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Determining Lrfflt*@)
R,ecall

Lfuaø@): -;n f dnq,_
I Qn)n

Z¡'rM¡rt

p- F)
a

ôp+

+
Zx M¡,r

FÀ
dnqI2up- p- (2")n

u(, - i) tr- q),"(q)G'*(q)r'

Q - i) s@ - q),"(q) #*'*rnrr", (D.14b)6

where

Gu*: q, (ø-lor^or" - gt^g2o] -l qtlg-xgzo - 9z^9-ol + q"lg¡g--o - g-^gro]

-l q- Q- l9 +xTzo - g2^g +o] + q+ lg2^g -o - 9 - xgzol + q, [g -^g *o - g +xg _-o]

= c"^: + cu^: + ... + Gl:,

)

)

and hence

Therefore
#"f : e- lezñ-o - e-sezol = clJ

(D.146)

(D.r47)

S(e - ùr"(q) Gft"'na ro,
^r'Ët*uu 

(a) : -;nt# r^ # I ffi
S(p - q)r"(q) Gu^:r".

(D.14s)

LrtJm@) : : zw M¡'t 
T^¿gp- p-

Determin ing L,r f Bpt 

¡ * 
(U)

t¡B)N@):-;*t#î#1ffi
ð

i Z¡¡M¡¡

q-a--p-

up- l^ ôp
q-

)
a

S(p - q)r"(q) eú-lgzxgto - gr^g2o] lo 
1

+

f dnq
t_

I Qn)n

S(e - ù""(q) hlgzxgto - gtxozo) lo.

(D.14e)

u(,
2up- p-

p-
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Let

BII õ

ð

dnq

(2n)n

a
AW

a
õp.

(2n)n

dnq

('

(,

s(p - q)r"(q) q',

+M
q'+p'-2p'q-M2+i'e

- -,iso! [' d,.,.n_.
oP+ Jo

l- ^ iso l
l4i'G"- q'z - MMl+ie)ql'

= Il'+ If'. (D.150)

The pa dependence of lrBr can be removed via the shift q ---+ q + p hence

rf' :0. (D.151)

Taking the moments of Ifr and introducing Feynman parametrization gives

At:: _is"# 
Io'oo I ffi(r-t:-)"-'

le_ùp_ø+M)ør
lq, - (o" - a)p2 - (1 - d) MZ - aM2 i-i,el2'

dnq -q?l
(zr)t ¡nz - (o, - a) p2 - (1 - ") MZ - aM2 I i,el2'

(D.152)

Using the definition of the moments, \Mick rotating (noting q? - iq|), ,nt o-

ducing 4-d polars and the proper-time regularization gives

rr : ## I ar, 
lo* 

d'q?'q?'?iq?')'rt 
"-'lø?'+(u'-u)n'+{t-ùMt+aM2l,

: -# # I ¿' \ 't "-'l(a'-u)n'+çt-Y¡rw'iaM2l '

: --r*, (a' - ù r- I orlÎ "-'l(u"-a)n2+(1-s)Ml+aM2l. 
(D'153)

Therefore we need the matrix element

fz 71 fr - Fr ?1 lz:2atarho*'r'^l2u* : -2'iazatffi (D.154)

Hence

i, ZNMx 9a (-rn,,,,ffi) rn - a)p-

I a, ! 
"-"1(a'_a)n2+(t-u)rur3+aM2l, 

(D.1bb)

t'lBo'ø@) 2 p- 76¡12
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which simplifies to

t¡B)r¡@): o? ffiazasu G - a)

Determin ing A,7 f 
BD2, 

* (E)

"-"[(u' 
-a)n2 +(t-s) M]+aM2l 

.

(D.156)

dr
1

T

tfBlø@) i, Z¡¡M¡¡
- - 2up- p-

ð

I
(2n)n

dnq

1

q-u--p-

;ÀA f dnq

' ap*J@æ

) 
tfo - q)r"(q) q?ls-xsz" - s2^s-ol t". (D.157)

Let

I q

(2")n

¿+d
AW

a
ap.

B2 s(p - q)r"(q) q?,

+M
q2+p2-2p.q-M2+i,e

lnnc"-F!ffiq1q?,
= If'+ If" (D.158)

The pa dependence of Il2 can be removed via the shift q ---+ q +p hence

Il' :0. (D.15e)

Taking the moments of If2 and introducing Feynman parametrization gives

At::-is"# 
lo'oo I ffi(;:-)"-'

lQ-ùy-g+urlø?

lq' - (r' - a) p2 - (1 - a) M3 - aM2 t i,el2'

__,iso#í, da

dnq o" l0 - ùp + Ml ø? - ]:ø?Q_Q+.y+ fra"-t
(ar)+ ¡nz - (o, - a) p, - (1 - a) MZ - aM2 -t i,el2 

'

(D.160)

Integrating by parts in da, noting the surface term has no ?+ dependence and
using the definition of the moments we obtain

rB2_ :^ a t dnq l0-ùy+Mlqi+fø?a_c+t+ft,'r2 - -Úea ap. l @
(D.161)
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wick rotating, noting q? - lqT ""¿ 
q?q-q+ -- -f,nøï, introducing 4-d polars

and the proper-time regularization gives

- 2rp- (s' - s) [(1 - ùy + Ml
"- 

" l(u' - a) n2 + çr - s¡ rw I ¡ s tw 2l

(D.162)

The required matrix elements are the same as A.rf o"/¡,t(y) and are

Ir,:##I' q:E

{ff'- øø {r^' ft} ,"t"+(u'-u)n'+(t-s)M!+aM2l,'

:# l*i @'- a)lea-L)p'-M:+M'll

I

F-fr-frf-:-2lt?h,
IA

F-?*f, - fr7+f- n'^ ^ P'P'
- -ztu2Lt3 MK'

Í-yr, -rzpr_ - -2i,alp+.

(D.163)

(D.164)

(D.165)

Therefore

Determin ing A,, f BD1, 

*(g)

-t2ral(t - ùlG - ùM* + Ml (D.166)

n¡Biø@) : -#; I o, \ "-"1("-v)n2+(t-u)rø3+aM'l

{æ[t 
+ r (t - u) l(za - r)p" - u! + u'l]

a
0p+

n fTÍtx@) : -;u
S(e - ùr"(q) qúzlgtxs-o - e-xetl1". (D.167)
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Let

B3I a
ap.

a
ðp.

dnq

@
dnq

(,

(,

ô

ô

s(e - q)r"(q) qtqz,

P-ø+M
q2+p2-2p.q-M2+i,eI (2")n

' igo I
l+r,c"- F _q+æ)ø,u,,

= Il" + Il'. (D.16s)

The p-. dependence of 1rB3 can be removed via the shift q - q I p hence

Ilt :0. (D.169)

Taking the moments of If2 and introducing Feynman parametrization gives

At: : -u n" # lo' 
oo I ffi (o- to:)"-'

l0-ùP-ø+Mlnøz (D.170)
lq' - (o' - a) p2 - (1 - a) MZ - aM2 -f i,el2

Since gr2 : g-r : g-2 :0 we have

Ift :0,

and hence

Lf Bltu@) :0.

Determin ing A,, f fa, * (g)

n¡Bhx(a) : -;u:# î # I ffi , Q - i)
S(p - q)r"(q) q2-ls+¡szo - 9zx9¡o] lo. (D.173)

FYom the r)'-function we have g- + Up-, therefore

(D.171)

(D.t72)

t¡Bhn@): -î,r***rr^# I ffitQ -i)
S(p - q)""(q) le+xszo - ezxe¡ol1". (D.174)
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Let

rB4: # I ffiu(o_ i)'r-q),"(q),:#1ffi'Q-i)ffi
lnnc,_F:6n1,

= Ifn + Ên. (D.175)

The p1 dependence of lla can be removed via the shift q - q lp hence

Iln:o (D.176)

Taking the moments of lfa and introducing Feynman parametrization gives

a
9a

ôP+ Iffie+.)
n-l

"qlï : -¿ da

lG-ùp - ø+ Ml

lq'- (o'- a)p" - (1 - ") MZ - aM2-ti,el2'

Flom the same calculation in L,rffi¡*(g) we have

Ifn : # I *+\t*lu +' u o - ù lQu - 7)p' - u] * *'l]
i 2p-, a G- s) [(r - a)P + M1) 

"-"1@'_.o)n'+çr-v¡rw'+am'f 
.

')
Therefore we need the matrix elements

F*f, - Frf+ - u¡¡ {t?0*1, - lzlì) u¡.¡

:zaTaxj'^l-u* : ioZ
MK - o7 + nZ P-r:o

I,

Mu P+

(D.177)

(D.17s)

(D.1s0)

¿'7U! . tD.17e)upt\/

f+7+f, - Fr7+f+ : ftor*tuN (p+.y2f) u*

+ 2ala* (l' -'l''l*'l-) u*,
: 'iaz (2a3 - c"2) .

M,N
,p+Í*Flr-rrpl*:i,r? (D.181)
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Therefore

rln

Therefore

:,i# 
| a, 

"-"1(u' 
-u)r2+(t-v)M!+vM2)

{^Zli+(1 - u)lQu-r)p'-M:+M2+(1 - ùM,N+MMNI]

- r"z,,sf| * ft - u) lQu - r) p' - M: * *'l]\ (D.1s2)

t¡Bhx@) : n# 
u' I a, 

"_'l(u'-u)n2+(t-v)rut|+sM2l

{^Zl]-+ 
(1 - a) lap' + M MN + M2 - *'il

- ."z,,si| * ft - u)lQu - t)p' - ul * *"lI (D.1sB)

Determin ing L, f BDí, 

* (y)

NBh*@): -;n -f#1ffi,Q-i)Z¡vM¡,r

p-
S(p - q)r"(q) e-Q+[92x9-o - g-xszo] 1". (D.184)

Flom the ð-function we have q- + Up-, therefore

t¡ßh,r(u): -;2.i. î# I ffi'Q -i)
S(p - q)r"(q) Q+lszxs-o - 9-x9zo] 1". (D.185)

Let

s(e - ùr"(q),

P-ø+M
q'+p'-2p.q-M2+ie

rB6:#1ffi'Q-i)
:#1ffi'Q-i)

lnuc" - 'i so 
IL qr-M3+crl

= Ilu + Iî'.
Performing the shift q --+ q *p and taking the moments of .Ira5 gives

"-t(M-Ð(q*+p+)
qz - M2 +'ie

(u-ø)
A?: : 4i,Go

:4iGo

a f dnq (q-+p_\
op+ J (zn)n \ p- )

lffi çq-;*-o-)"-'

Q+,

(D.186)

q2 - M2 +ie
(D.1s7)
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Using
q-+p- \ tr-l 

. u_

) 
:1-r-("-I)î+...,

and ignoring terms odd in k and using g-- - g-7: 92- :0 we obtain

A?: : 4i,Go
dnq M-(n-Ð*q_q*

(D.18e)(2n)n q2 - M2 + i,e

Wick rotating, introducing 4-d polars and the proper-time regularization gives

g-7-i,e
1

g-L+i,e
1

: 6(a - 7),

1

(D.1ss)

(D.1e0)

(D.1e1)

(D.1e2)

(D.1e3)

(D.1e4)

(D.1e5)

(D.1e6)

(D.1e7)

A?: : -ffi | a, I,* onrn,l* + @ - u#rZl"-,tø'u+u2f ,

:_ffi |a"il-+@_u#le-,M,
The distribution can be obtained from the moments via the formula

r@) : * nl'r" - i'e) - F(r+ r;e)],

where

F(r):

and

1

Ë4
L .yn
n:l

Therefore using the results

we have

Now

1 1

oos??,-l I\,L. rn (r - t¡z'n:l \

pP,u (ù : -# | a, +lh. 6+ #le-' 
M'

2r i,

lim

lim
e-0]-

1

2r i e-o+ (a-t-ir)' (a-tti,e)2
1td

Ztr i, dg y-7-i,e g-IIi,eIim
e+0* l: -#6@ - t)

If we also use the matrix element results from L,yf Bo2,*(a), that is

Frf - - F-f, : z¿ *7 *,t"*- 
,

Fzz+f- - F-?*f, : 2i,azazffi , (D.1e8)
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we obtain

Ifu : l*;h I a, \lz u 
"Zõ(a - Ð - ffi #0, - ')f"

'We 
now consider 1145, taking the moments and introducing Feynman o.rr$"'rtnå

tion gives

At: : -,is"# 
lo' 

oo I ffi ( ;:-)"-'
[{t-" + Mllq+ + op+l

lq"-(o'-a)p2 -(1 - o)M3-aMz+iel
The numerator of -IrB5 becomes

We first evaluate the surface term, which is

,r -B5-surface:1â2n

(t-")P+M-ap+.y+

(D.200)

Nfnu : o"-'{ø* l_.q-ll t ap+ l(t - ")p 
+ Ml}

+ f,{w lG - ')p + Ml t ap+ [-q*r*] ]I^""-'
.tufr(t*ø*ø*) #*"_.,

- cr.n-t {"0* l(t - ")y + Ml - e+e-.y-} * o.-' _ {e+ r+z+}

-'"'T{tt - o)p + M - ap+-y.\ #, t Nfns_'o'r*,,'

* ""-t;# ?t* q*q*) # . yBns-surtane:2 .

(D.201)

. ô tdaq: -zg" ap+ J @
q-q+
p- o¿'-l 1

a:0lq" - (o' - a) p2 - (1 - ") M3 - aM2 -t iel

: -zs" aw J W p- \lqr - M\æ -,1T* 
lqr - MZ + x4 l '

: #i I ¿, \1"-'*' +r+' ,*-t"-'uz). @.202)

Using earlier results we have

p*ns-svlare'': #i I ¿, \l'J-;n"*' +)e-"*zf . (D.203)
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rf5-s'trare:r:,i9s!4!h l¿, \ lutr- r)e-rtwz +õ@)"-"4f . @.204)

We now evaluate the second surface term, we have

¡ B|-strla¡e:2 , 'Y+ Ar+r; ------ - -29oræ ap_

Therefore

Using

we have

dnq ^1
Q-Q-Q+Q+ a'' -

Qr)a ¡nz - (o, - a) p2 - (1 - a) M3 - oM2 + l€l

1

A:0

(D.205)

qpq'qpqo ----- 
hq4 

(gt" gpo I g+onuo I gøo guo¡

+ e-e-e+q+----- høn 
(s-_ s** t s-.+n_.+ + s-+t-+¡: i,nn, (D.206)

tt Bl-sttrfãße:2 , 'Y+ AA2n : -Lgo r[È Ae+
1

¿4, q4 zf(za - t)p' - M," ¡ 11421on-tq

Qr)a ¡nz - (o, - a) p" - (1 - a) MZ - aM2 * i.el1 a:0
n+ f r|!q! nn- -iso ,r- J @y \ø - u;¡æ +r'+

lq2-Ml+i,el
Wicking rotating and introducing the proper-time regularization gives

dnq

n4rn-r (D.207)

Af5-su'rare'" : -so #, I a, ilu" *' + ÌT ,'-t "-' 
w,f . (D.20s)

Flom Al'-'"rrac*l we have

rf5-s,trane:2:-,iffiffi la, \ lrtr- r)e-rAtz +õ@)"-,rzf ,

(D.20e)
and hence the two surface terms cancel. We now evaluate the second last term
of Eq. (D.201), we have

1+a
2p2- op+

Q-Q-Q+Q+

(2r)+ ¡nz - (a, - a) p2 - (1 - a) M3 - sMz + iel
I#' : ¿go

(D.210)
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Using

(D.211)

Therefore, \Mick rotating and introducing the proper-time regularization gives

1

e-Q-e+e+ -----. u,nn.

tBsc 9o 'y+ A ft2n : - JgLnr¿ Ap. J
, I o* 

o oî n', # "-' lø?' + (a' - u) n' + çr - v¡ rw' + " "f 
,

I a" i *Lr, 
n(u' -u) n2 + (t -s) M! +u M2l,

: #i I -+{l? -r(2a -t)l(za -r)p'- M:* *'lf

- (s' - ù lze' - r lQa - L)p' - M: * *1')

dr

9o 'Y+ A

64tr2 p? ôp¡

e-rA

Using the matrix element result

Fr7+f- - F-?*f, : z'i,ororffi ,

we obtain

rfi" :,#fuo,o, | -+{l? - r(zs - t) l(za - Ðp' - M: * *'lf

- (u'-ùlze'-,1(zu - r)p'- M:+ M'l'l Ìr-"'. (D.2r4)
'J) \

'We now continue with the evaluation of the remainder of tfj , from the definition
of the moments we have

rr: : -'is"# I ffi{oo.l|- u)v+ Ml

+ g-L 
lp + p*t* - p-.y-l - T lG - u)y + M - ap.1.l #\

lq' - (u' - a) p'- (1 - ù M: - aM2 + i'e)-2. (D'215)

(D.2t2)

(D.213)

Wick rotating and introducing 4-d polars gives

rf::##1"*orrn'
ap*10 -ùP+ M) - frø?'n*t+ + føklG - ùY+ M -ap+'y+f

lq?t + (a' - u) n2 + (t - a) M3 + u
(D.216)
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Integrating over qfl gives

9oA dr
"-"1(u' 

-v)o2 ¡(t-s) Ml+s M2l
7612 ðp¡

{rr.ll_ u)p+Ml-+P+'f

- 
" 

*lG - ùP + M - up+'Y+f lQa - 7) p' - M3 + *'1| (D.218)

Performing the partial derivative gives

Introducing the proper-time regularization gives

tB5l2n

IF:

: ## I a* 
fo* 

d,q!tq!te-"lu'u+(a"-a)o'¡Q-firø!+arur2l

{no. lG - u)p + Ml - {ø?,n**
- *r:' l0 - a)P + M - up+'v+f llu - 7) p' - M3 + *'l]|

: -go - [ a, !"-"1{u'-ùn"+{r-s)rw!+yrw2]
L6r2 J r

(t - ùlt - " a l@ - r) p' - tû" + *"lllft - ùl + Ml

l- 1 1r
+ f 

lu 
n*Qu - Ð - + - +1, - ro +, u(u' - ùn'f

lQs - r) p' - ul + tw2l

1

T

(D.217)

(D.21e)

(D.220)

(D.22r)

(D.222)

ry:

Using the matrix element results

a

frf- - F-f, : 2i a? ft,
IA

Fr7+f- - F-7*f, : 2i,azasffi ,

¡"pl- -Í_'yrr:2i,a?p+,
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we obtain

I î: :,# L* 
| a, ! "-' 

l{" -')P2 +(t-a) Ml+a M'l

"?(r -u) lr - ral@ - r)p, - M: + M"l] 1r - ùMN + Ml

+ ffiliot - 2)M'* - + -; lt - 2s t r u(u' - u)n'l

Lr f frÍ+u¡@) : # | a, ! "-' 
l(u' -u)o2 +(t-a) rutS+aM'l

"?(t-ùþ- ,al@- r)p'- ul+M,l] ttr - s)M*+ Ml

+ ffi(n** - lrn- 1 +, aQ - s) l(a - r) p' - tw'z" * *'ll
l(zy -r)p'- M3+ -ù\

(D.228)

Determinins LrÍBftu@)
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nÍBfø*):-;n'#r^#l ffit

t¡u"f¡*(u): - î#1ffi'

q-
p-

s(p - q)r"(q) q-q,
^9+o 

- g+^g-'l1". (D.229)

('

ls-

Flom the ô-function we have q- + Ap-, therefore

i ZuMu
2p-

(2n)n

dnq

(2n)n

S(p - q)""(q) qzls-¡s+o - s+^s-"1l" . (D.230)

Let

rB6:#T s(p - q)r"(q) qz,

y-ø+M
q2+p2-2p.q-M2+i,e

dnq
(,

(,

õ

ð

lnu
Qz,

(D.231)

(D.233)

= Ifu + Ilu

The p-,. dependence of 1186 can be removed via the shift q - q I p hence

lttu : o' (D.232)

Taking the moments of If6 and introducing Feynman parametrization gives

a
AW

daI,
1

Iffi( )

n-l

- -L9oAi:
q- + op-

p-

lq, - (*, - d) p, - (1 - a) MZ - aM2 -t i,el2'

Ignoring terms odd in q and noting 9-- - 9-r: g-2:0 we obtain

lG - ")y -ø+Mløz

I,
dnq -q3f

1

da an-L
a

Al,r : -i,g" ðp+

(zr)+ ¡nz - (o, - a) p, - (1 - ") M3 - aM2 -t iel2
(D.234)
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Using the definition of the moments, Wick rotating, introducing 4-d polar coor-
dinates and the proper-time regularization gives

Ifu : # # | a", I oo,' øZ (-jøZ) f "-"loz+(a"-a)n"+(r-v)Mt+uM2f ,

: -# # I a' )f "_'l(u"-u)o2+1r-s¡rwf;+urut2l,

: -#a0 - ùp-t, I a"! 
"-"1(u'_.a)o'+tr-a)rur3+am'1. 

(D.23b)

The matrix element we need is F-7211 - F+?2f- and has the value

F-z,f* - F+7rf ( 2azat '_ _ 
"rt ffi ln*t*t, _ p_.y-.y2f

- o!lt*f'Y- - ^t-'Y2r*l )rr 
:2i,,s(o, - .,r) . (D.236)

Therefore

Let

I

I ar ! 
"-"[(u' 

-u)n"+çt-s¡rø'+uM'l. @.zJT)

Determin ing Ly f B; 
¡ * (g)

^tulø@):;nt#r^ |
dnq

(2")n

S(e - ùr"(q) Q-l7zx7-o - g_^s2o] lo. (D.23S)

Flom the d'-function we have q- - Ap-, therefore

^.rilø(u):;:#î Iffi,Q
q-\
p-)

q)r"(q) lgzxg-o - 9-t92,] l",s(p (D.23e)

dnq

(2")n

B5 I
I

(2")n

dnq

s(e - ùr"(q),

y-ø+M
q2+p2-2p.q-M2+ie

=tf7+ Iî,
4ico-F:ffi*l

(D.240)
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Performing the shift Çl ---+ q * p and taking the moments of IrBs gives

A?:: .G"|ffi ("i!-)"-'ffifi
Flom a similar calculation iír Lr-f B6/N we have

rf, : -,#h I a, il, M o?ö(a - r) - ffi hur-')]
We now determine If7 , we have

Ir':1ffi'Q-Ðffi1
FYom Lrfht* we obtain

(D.241)

-r M2

(D.242)

x9o

q2-Ml+ie
(D.243)

I
(D.244)

Using the matrix elements from L,rf 8o5,^¡ gives

¿" ! 
"-"1(a" 

-u)o" + çt_v) Ml+v rw2l

T

{"; ttr - a)MN + Ml + #:lrro - r)p' - tw\ + *']} . e.245)

However we must also include the a surface term, which did not contribute to
LrfÊ"t* because of pa derivative. This term has the form

¡87-surfarev Ln,

ln'
:2'9a-

p-

9o

ß"'
r87t2

9ap- ft
8r2 Mx J

rr':¿

d,, 
L 

"- 
"l@' -u)n" + Q_a) ul +u tw2l

T

{,t - ùp + * * +lrro - r)p' - M3 + *']}

1

I dnq Q_ Q+d"-7
(2r)t ¡nz - (*, - d) p, - (1 - o) M3 - aM2 -t i,el2

Inv,
: ,t,9a _

p-
dnq

(2")nI
0

)
.246(D )

Using the results from Afl-surrace we obtain

yB.-surraæe : o ffi h I a, \ lutn - r)e-r uz+ ô(E) 
"-"*'")

(D.247)
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Therefore

^t"lø@) 
: # | a, il, M o?6(a - Ð - ffi # o, - t)f"-.,'

- gtz! [ o, !"-"1(u'-u)n'+{t-v)M]+s*t2]
1612 J r

{"; trt - a)Mr¡ + Ml + #:lt, - r)p' - M3 + *']}
.t## | a, ilo, - t)e-ruz +õ@)"-",2f . e.248)

Summary of Results for Lrlu,.t*@)

The full result for A,7f Bo,*(g) contains seven terms, that is

Lrfup,t*@): Lrftt + Lrlu'+ Lrfut
+ Lrfun + Lrfuu + Lrfuu + Lrfu'. (D.249)

Both A7luu(U) and L,fB7(g) contain one contact term, however these terms
cancel, Lf"'@) also contains a surface term which we give below as Lf!?(y).
The full result is

Lf"t(u) :0,

Llu'(ù:-#.1

{Wfr 
+ r (t - s) l(zu - L)p' - ul + u'll

¿, \ "-'[(u' 
-u)n2 +(t-s) M]+s M2f

(D.250)

\u.zcz)

-t 2ra! (t - s) l(r - ùM* + Ml (D.251)

,r rB3¡- t n
^J \'9):U,

Lf "n@) : ,# a, I a, 
"-,1(a'-v)n2+(t-s)rt'r|¡srwzl

{^zli+ (1 - a)lsp'+ M MN + M2 - *:ll

- c,z.,sf] * ft - s) lQs - L)P' - M: * *'l]],
/.rltu(ù : n# 

| ar! 
"-,1(u'-a)n2+(t-u)rur3+aM'f

(D.253)

"?(r -u) lr - ra l@ - L)p, - M: + M,l] ttt - ùMx + Ml
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+ ffiþ'*f - Qu- 1 +, u(7 - a) l@ - 7)p' - url + M'l)

l(za - r) p' - ¡w3 +,r,r']] 
),

LÍuu(ù: os (oe - or)r#a0 - a)

¿, ! 
"-"1(n'-u)r'+çt-v)M!+uM2f 

,

Lf"z @) -# | ar!"-"1(a'-u)n"+tt-ùt'r3+uM'l

{"e 
ttt - s)M* + Ml + ffilfro - r)p' - uZ + *")},

^fl,@) W# | a, ilu, - r)e-rMz + ô(s) "-"'z].

(D.254)

(D.255)

(D.256)

(D.257)
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D.l.4 Transverse Mixed Diquark Diagram
In the calculation below we caiculate the two diquark mixing diagrams together.
That is, the diagram where we have an axial-vector diquark ---+ operator insertion
---+ scalar diquark and the opposite diagram scalar diquark ---+ operator insertion
---+ axial-vector diquark. We have

Lrr'-^)/w(,) : ur. I ffi I ffiõ(" - i) tr - ù,"t"@)r,(q) rî,

in 
l@-'-ysrzþA) (s(t )f lx.u Q + r,) s(k)) (trcrirr7"') t, (o- k)]

+ iFî. I ffi I ffiõ(" -'*) tr - q) r'(q)rp(q) r'
ir l@-r.y,rrrn0o) (s(t )f Ìxlr (t + r") s(k)) (tucr"øo') r'(n 

ìj]lrr,
Using CSr(-.q)C-t: ^9(q) and Tl{T'To}: }do6 where To: +,po: rß^o
and hence T){PAPL'}: åt{l'^A'} : t r 4"h{TATA'} : Z6t¿,. AIso the
isospin trace for each diagram gives, respectively

L1}lr(J Lr")r¿rz]: |1)[r2r¿r2] + åTl lr2r,r¿r2]: I +a\lr"r¿]: +.ö¿",

(D.25e)

|iltfr2ro(L tr,)rrl: LÞ[r2r¿r2] + åTf fr2r¡r,rzl: +Jzly[r¿r"]: Iõ¿".
(D.260)

Therefore we obtain

LrÍq-^)/N(") : n - I ffi í ffió(" - i) tr - ù',,(q)
6?Th h5S(k)t*.yrtu S(kþps(k - q)] 

""(q)fft
+?F; iffi iffið("- i)'r- ù'"(q)

afl\ ltps(k)f t'xS(kþl1(k - q)f ,r"(q)r*.
(D.261)

We have dropped the isospin part, as this coefficient will be evaluated later and
inserted an extra factor of 2 which will be cancelled via the final isospin factor.
Using

TY frs^9(k) 
-y+^t'.ys S(k)1p S(k - q)l

: -rr lt\ s(k)f lxs(t')ms(k - ø)] + 2 (tcu - q')T ltus(t')f t'ryus(¿)]: -rb ltrs(k)f lxs(k)tu,s(k - q)] , (D.262)
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since g+1 :0, we obtain

Lrfq@.)/t{(r): -¿
dnq k_

p- ,"r(q)r'(q)
(2")n

where in the last line we used To¡1: T¡to

in the form x. : li aa Ii ¿, u(, - F) o

6(" - Ez), we obtain

{ri, s(p - ø) f¡r - Fnrs(p - q) ri,} 6irr h5s(rr).y*t'tu s(k)1p s(k - q)] ,

(D.263)

and TorT" : TsTop,. Inserting the identity

(, - T), which impties õ(r - i) -.

Lrrq@^)/N(,) : -u I,' ,t I: d,z 6(r - az)

lffi' g- ,"r@)r"(q) {Fi s(p - q) rN - F ,S(p - q) ri,}i)
d4k

6i 6
k_

T! [75s(k)-y+.yt.yu s(kþps(k - q)]

(D.264)
(2")n q-

We define

kLrfq/o^(r,q') lQrgp+ - q+gP'f :6i, ô
(zn)n

Therefore

Tr [75.9(k)-y+.yt^tus(kþps(k - q)] , (D.265)

A,rfq.ør(a,p2) : -, | ffit Q - Ð r"t (q)r,(q)

{Fi s(p - q) r¡¿ - rrS(p - q) ri,} lQrgp+ - q* sr'). (D.266)

¿+ k_
q-

Lrfqe¡^)/¡v(*) : ds

If we make the on-shell approximation for the diquark we have

LrÍq@^)/N(r): dy

dz õ(r - az) Lrf¿'.p(a,p") Lrlq/o*(r,q').

(D.267)

1

dz õ(r - az) A,rÍo^p(a,pt) LrÍq/n^(r, M'ò.

(D.268)
l"
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Lr lq/n^(r, q') lgr gp+ - q+ gPrf : 6i'
f d4lcII en)n

6(' - T) * ltus(n)t*t'x s(k)t's(r - q)l ' (D'26e)

Using the result

t [ru(/ß -t M)f lx(tr + Mh'(þ - ø + M)]

: a f{rt sr* - k* srt) k . q )- (t *q' - t*ø+) rcuf

+ + (te2 - M") [{r* * q*) sr' - (k' + qt)gr*f , (D.270)

where we have used g+1 : 0 in the last line. Letting

Lrfq/n^(r,q") : LrlA(z,q') + LrltQ,q'), (D.271)

Determining the quark in the diquark: Lrf iln*(r, M'o)
'We 

have

where

L,rA(2,q\ lqtg'* - q* g"f : 48i,
f dltct_

I QùN

6
k_

q-
(kI nu+ - þ+ grt) k. q + (k*qt - ktq+) lcu

(k, - M2 -l i,e) (k'+q2-2k.q-M"+i,r)'
(D.272)

Lrr" Q, ø') løt g'+ - q* g"f : 24i
f dLlcI

I QòN
(k, - M')IØ* + q*) su7 - (k' + qt)gr+l

(k, - M2 + i,e)2 çkz * q2 - 2k. q - M2 + ie)'
íD.273)

ô
k_

q-

Using the Feynman parametrization results of section 4.5 and taking the mo-

ments gives

Af lø'o'+ - q* g"l :96'i da(I - a)
q-

[(rt + oqt) s,'+ - (tt* + u,f) s,'''] lk. a )- uq2l

+ l(k* + oq*) qt - (kt ¡ oøt) q*llt" + o,q'l

Iffi(
n-lk- + aq-

Itt' - ("' - o) q' - M2 izef-s . (D.274)
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Considering just the numerator, ignoring terms odd in k and using g-- - g-r :
g-2 :0 we have

l/f løt or* - q+ sr'f : ( 1 - *)o"-' {[/tt ttt o, + q' (tq)'l g'+

- lt<+ k- q- + q* (oq)'l grt + k+ kþ qr I a2 qt qu n+ - lçr kp q+ - c'qt q'q*\

+ (1 - ùT{rn'k+q- gP+ - .,q+ k+q- gpr I aqrq+¡çu - ,,øtq*n'}! (rn-| .

(D.275)

Cancelling terms and integrating by parts in da gives

Nf lqt gp+ - q* g"f : ( 1 - o)."-t 
{O' 

*t r,, gt"+ - kr kt' q+

+ k+kt"qr - k*k-q-grt + (aq)'lArgu+ - q*grtl\

- o"-'*(L - a)at *n-løt st"+ - n* nrt)

+ (1 - a)an-\at *n-lø'gp+ - n* n"f (D.276)
1

where the surface term is zero. Using the relation

d4k lçt"lc"

@Y(k,-A+i€)"
dLk k2

0

(D.277)

¡tz

4
i an-t (D.278)

and g11 - -1 and g-+ : 1, we obtain

d4k

(2n)n

6

I"*
G-")

Lrlo(r, q') dk2|k?E

Nl : (t - a)a'-' 
lT 

. T * @n)'

1

4 (2r)a (k2 - A+ ie)n'

lr2 lç2 d
a--4 - 4da

gt"'

Therefore from the definition of the moments we have

(L-r) z2q2++-r+* +r+
LrfA(z,q') :96i

lk2 - (22 - z)q" - M2 +ò€]
(D.27e)

Wick rotating, introducing 4d-polars, then the proper-time regularization gives

l"o' - * *'** I - "n"I'4
lk', + (r' - z) q2 + M2l3

"-"1("'-r)ø"+u"l 
.

(D.2so)

: # Ia"{rr - ò1,'n'- +-},çr,- r)q"
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Therefore

Vy'e now evaluate Lrf u 
Q,q2), taking the moments we have

LrÍA(r,q'): # I * l"O - 
r)q' - lf u"f"'_,)ø'+tur'1. (D.2s1)

Af lqtsp+ - q*s,,1 :24,i 
lo' 

o. I ffi (r- !n*-)"-'

[tr* + (1 + a)ø+] sr, - [fr1 + (r -t a)qtleu+

[k2 - (d2 - a) q2 - M2 ï ie]2

Ignoring terms odd in q and noting g-- - g-r: g-2:0 we obtain

(hr)4 ¡tP - (., - a) q2 - M2 i i,el2

Therefore from the definition of the moments we have

Therefore

Lrr" Q, q') : fi ft * ò I ar, 
fo* 

dkl k'zE 
"_'lr'!+('2_z)ø2+tur2"l. 

(D.28b)

(D.282)

1

daan-r

(1 +o)
lqrgt'+ - q* g"l. (D.283)

(1 t- "\ rln .-"1(", -r)ør+rrl /Tì o04\
\u.LOV)

Af lqr sP+ - q* s"f : -24i lo
d4lç

(D.2s4)

Wick rotating, introducing 4d-polars and the proper-time regularization gives

A^fB(z ,2\ -
-tJ 

\-14,l

3

2r2
1

T

Therefore the final result is

Lrlq/n-(",q'):#, la, (r - ")q' "-"1("'-")ø"+r,1. (D.2SZ)
T

1+-
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Determining the diquark in the nucleon: Lrlo*l*(A,p')
We have

We define

Lrtn^tN(u,p'): -, I ffiu (, - T),",r)""(q)
{fi sþ - q) r' - F'S(p - q) ri'} lqtgu+ - q* s"f ,

: n o,'t# I ffi, (, - f,) ntø),"tø)

{n' [t.tt p - q)r -Fs(p - n) r*] - o* [F't (p - q)r -Fs(p - nl t'] ]

q¿aA

B

I

(D.28s)

q-
õ

ô

u-- r"(q)r"(q)S(p - q) qt, (D.2s9)
p-I

I

therefore

Using the result

,"(q)r"(q) :
29o

q2 - M" -'ie
1

(2n)n

dnq

(2n)n
r"(q)r"(q)S(p - q) q* , (D.290)

L,rf o.r,¡(a,p') : i,a1-!Pp-

{ [a.rrf - Fr,.*] - [-."" r - Ft" t'] ] = o,f" - L,fu (D.2e1)

lno
4iG, -

: -r6Go"" * 
[n 

Goe"i #:W] M? loe

+ 4Gr 9o - M3-M?

q2_

9o 9" (D.2s2)

we have

f _ fL + IA2 + Iot, IB : IBr + IB2 _f IBs, (D.2e3)

and hence

Lrlo : L.rf ot + LrlA' + LrfA3, LrÍu : L,rf ut + Lrf "' + Lrf ut.

(D.2e4)
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Taking the moments and performing the shift q ---+ çl *p, we obtain

Determining Lrf A(A, M'"),

\Me first determine the individual parts of IA, we have

rA, : -r6GoG" I ffi u (, - i) ffit (D.2eb)

(D.2e6)

Ignoring terms odd in q and noting g-r : g-- - 0 we obtain

A*t : L6G,G"
dnq -q?+ (D.2e7)

(Zn)n q' - M2 + ie

Wick rotating, introducing 4d-polars and the proper-time regularization gives

Aî':t6GoG"lffieÐ"-';ffi

Aî' : c 
q* 

+ I d, I ¿qI q:, Gqî) "-,lu?'+rw2l
. GoG"

2r2

Using the following method to obtain the distribution from the moments

1

,\p Ir{" - iu) - F@ + ¿e)1, (D.2ee)Í(") 2tyi

where

+ | a' 1e-'M'

¿, \ e-'M'
TU

(D.2e8)

(D.300)F(r):+*,

Io'(a):¿6(u-Ð#+ | (D.301)

Therefore we need the matrix element F*?t f - Flt f+, where in general we
have

we obtain

Therefore

l-Ps-¿l-Fc¿lp:uw ptt

W ('yuf¿ - CI75) + az (.¡s1',þQ - Qlr 11") uN. (D.302)Q,2

F*7t f - Flt li :2az uw.ys.yru¡,t l2asuu.,ls.,l+.yruN :2 
# ,"" - or) .

(D.303)
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Hence

LrÍo'(a)

Evaluating 142, we have

IA2

(r, - o")

1 p-ø+M
q' - M? I i,e q2 t p2 - 2q' p - M2 + ie

la' + e -r M2 (D.304)

(u 4Go e" -r 
]

I ô qr. (D.3ob)
(2n)n

Taking the moments and introducing Feynman parametrization we obtain

A*':ln""s"+ #:Wl I,' ^
I dnq
t_

J en)n ("+") l0-*)p-ø+Mlq'n-l

lq, - (o, - a)p" - (1 - o)M? - aM2 -t iel

Ignoring terms odd in q and using g-r : g-- - 0 we obtain

2'

(D.306)

A*':ln",s,+ #:Wl I,' ^'"-' I
dnq q?

(D.307)
Qn)a ¡nz - (t, - a)p" - (1 - o')M? - aM2 -t i,el"

Using the definition of the moments, then rüick rotating, introducing 4d-polar

coordinates and the proper-time regularization gives

.Y

to'(ù:lnr"s"+ffifu1#

l,* on"z (1':'

drr

"-"1ø'u+@' 
-ùp2 +(r-ùM3 +vt I'1. (D.30S)

I
)

Therefore integrating over qlt we obtain

4Goe"*#t-*?l

*!L t ¿, \"-,1{a'-u)n'+g-v)rø!+sM2l. (D.309)
3212 .l T2

Io'(u):
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nrÍAr(u) : ln",n ]

a1 la" \"-"lro'-ùn'+çr-s¡rw'+uM'1.

Therefore using the previous matrix element results we have

Therefore clearly

(D.310)

(D.311)

Lrfo'(a):

Ignoring contact terms gives

4G"eo-#:@]

e.1 
la, \"-"[rn'-a)p2+(r-u)M3+aM']

MrA@):#fu

"3u**@ | a" ) lr"o-ù¡ø? - "-,<r-atwl "-,1{u'-ùn'+vM"f. 
(D.312)
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Determining Lrf "(U, M'"),

We first determine the individual parts of IB, we have

rB, : -r6GoG" I ffiu (o - ï) ffi'-,
: -!6coG"ap- I ffiu (, - i) ffi (D 313)

Taking the moments, where we temporarily drop the factor gt to avoid confusion

with the sum over moments, and performing the shifb q ---+ q + p, gives

dnq ("#) n-7

Wick rotating, introducing 4d-polars and the proper-time regularization gives

Al' : -,T ,- I o, 
fo* 

aq; ql l* * @ - t)q:' #lrn"'tM'1,
-_ 

_cg!+r_ | ¿, \l* *(, - 1) #le-.M,. (D 316)

Using the following method to obtain the distribution from the moments

'l

Í(r) : ;¿lP(r - ir) - F(r -t i,e)1, where F(r) : î*
0

Al' : -76G"G"P-
M-ø

(2n)n q2 - M2 +ie

Ignoring terms odd in q and noting g-r : g-- - 0 we obtain

AP,t : -76G,G"P-
dnq M-(n- t)q--q*L
(2")n q2 - M2 + ie

Ip'
M-

(D.314)

(D.315)

, (D.317)

(D.320)

(D.321)

we obtain

tu, (s) : -iq+ no- I a, \l* urr- 1) - #huro - r))"
(D.31s)

where we have reinserted the factor of gr. Therefore we need the matrix elements

Ft l - Ff1 and Ftry* f - Fry* f1, where in general we have

F'CI1-Fc¿P':- I p' '| ^-orys) +r,t(lnyþí]t 
I

ú* 
lorfu{rrC, - 

Ctrys) t as('ys'yþCI - 07'7u)l "r. (D.319)

Therefore

2as
1_

f'f-llt:-
1_

f'l*f -f7*lt:-2as
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and hence

GoG" Z¡¡trÍu'(ù : o*rYäa a

I a, +l+ #ur- 1) - 2 M MN õ(u - Ð1" @ 222)
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'We now evaluate 182

\Me have

1""(s): lffi'
p-ø+M

4Goe"-#:wl ap-

1

q2 _ M? I i,e q2 I p2 - 2q. p - M2 + ie
(D.323)

Taking the moments (again temporarily removing the factor g) and introducing

Feynman parametrization we obtain

G*"t#:w)o- I,'0" I ffi e+y)
-ø+Ml[(t -') (D.324)

dnq o"-' l(t - ùp + M) - f, n-n*¿*"-'
(2r)+ ¡nz - (., - a)p2 - (1 - d)M? - aM2 I'iel2'

n-I
AP"'

þ

- (1 - t)M? - aM2 -t i.el

Ignoring term odd i -- - 0 we obtain

I
Al" : l4G"g" +

L

I
lnr"n"*#:wl, l,

1

I dnq

(2")n

da an-r

(t-')l+M+f,ø_'ø*h
lq, - (o" - a)p2 - (1 - o)M? - aM2 -t iel2

I
We first determine the surface term, we have

p-

dnq

(2n)n lq, - (r, - a)p2 - (1 - o)M? - aM2 -t iel2

(D

+ ln""n"*#!tì-*?l
-f ø-ø¡*"-'

1

0

325)

t 82 surfaæeAn ln""n".#:@l
I

'y'

I ¿+ q 1 ^n-l

Qtr¡+ 
a-ø+

lq' - M' -t i.el2 lq' - M? -t i'e)2
(D.326)
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Wick rotating, introducing 4d-polars and the proper-time regularization gives

¿,2:surrane : ulnGoe"-r #:Wl# I ¿, 1{"-,*' - r,-,t"-,u?} .

(D.327)

Summing over the moments and reinserting the factor gr gives the result

\ragst 
W_M?

1

þ

I
u'v'
3212

rB2:strface :I :'L

T2 {ufn - L)e-r lwz - 6@)e-" M?} (D.328)

Noting limr-o yõ(U): 0 and using the earlier matrix element results, we obtain

dr

Lrf'2:s,rrac"(u) : 
lnr"n" 

* #fu] u,, - t) orrrffi | a"
1

7" -r M2

"- 
" l{u' - ù n' ¡ Q - fi rø! + u M 21 

.

(D.333)

(D.32e)
We now continue with the regular part of IB2. Using the definition of the
moments \Mick rotating and introducing 4d-polars gives

t"(u):ulnGoe"-rd:Wlffi

l *t rZ (D 3Bo)

Introducing the proper-time regularization, then integrating over qfi gives

Iu'(u):nlnGoe"t #:@)
[ *llft - rlp + M --| !] "-"1,0'-ùn2+1r-'¿1røz+aM'f. 

(D.331)
J t L z't p_u'g)

Using earlier matrix element results and

T'pr - rprt - 2c,s M¡t u¡.ys-y'r* : -Zas M¡¡, (D.382)

we obtain

Iu'(ù - -iazln""n"* #:WlW
| *ilr,t - u)Mx +zM. #rzs - r)f
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tu'(ù - -'iat

Hence, the full Lrft(a) result is

GoG" Z¡¡Lrfut(g):.tttTa

4Goe"* #:WlWtMN +2Ml

Therefore

Lrf"'(a):

dr 
7 

e-,1@2 -ùp2+(r-ùM?+aM'\. (D.334)
T

! luro- 1) - 2 M MNa(s - r)l erq'a I
-r M2 (D.335)

d,r -r M2

(D.336)

dr
"- 

"l{u' - ù n" ¡ g - v) M | + s M2)

(D.337)

4Goe"* #? - *?f "'""i#lMx +2Ml u

d,r
"- 

" 1{u' - ùn' + ( - s) tø ! +s rø21

6(u-r)aps#l 1

"a

I 1
T

+
þ

Therefore

+

Ignoring contact terms we find

L,ru"@):ln""o,- ffln4gf ",",t+#lM* +2Ml u

1

T

ln*" 
n"

^,r'(a): #fuo,*ti#lM* +2Ml u

l*|l"-r(t-y)M! 
_ 

"-r(r-y)Mll 
e-"1@" -alp' +aM'1. (D.33g)
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Summary of L,rf n^/y(A, M'o)

'We 
have

A'rln*p(u, M'") : LrlA(u) - Lrf" @)
: L,rfot + Lrfo'+ LrfAs - Lrlut - Lrft, - Lrfu". (D.B3g)

where

LrlAt(u) : õ(E - t¡9"Ç""4 at(az - "r) I ¿, \ "-'*',T"
(D.340)

(D.341)

(D.342)

L, tA, (u) : 
ln 

* 
" s " 

+ #ful 
tt+=

I o, \ e-"1@' -ùo2+(r-v)ttz+'*'1,

L,ro'@): 
þ"" s,- ff!41'tt#-"ù

I a, \ "-"[tn' 
-a)p2+(t-a)M3+oM'1,

Lrfut@) : ataz9ol;'* ,

I a, )l+#or- 1) - 2M MNõ(u -Ð]"
(D.343)

Lrru'(a):þr,n"* #:@]
.,r" r'i# lM* + 2Ml u I a" ! "-'l{r" 

a)n'+çt-s¡rø'+aM'l

r ar.,sõ(a - Ð 
tJ#+ 

| a, i"-,*' , (D.r44)

Lrlu'(u):ln""t"- #:@l
otorti#lM* +zMl u I o"!"_'llo" u)n'+çt-s¡rt't'+aM'l

.,ps õ(s - r) 
z-!#!t 

I d i"-, 
*' , (D.845)

where we have canceled terms between Lrlu,(U) and L,7fB3(y)
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D.2 Summary of All Feynman Diagram Results

D.2.1 Scalar Quark Diagrams

Spin-lndependent

Íl¡*(,):4##(1 -,)

I a, {+. *l@.* + M)' - tt't?l} u"l@2-ùMk+rM!+(t-QM2l' (D'346)

Spin-Dependent

Transversity

Lr"ø¡,t@): õ(r)ú# | ar| 
"-'rt'r" 

-ú#(1 - r)

I a' 
lO 

*. + M)' - 1] '-"" 
#-n)t'rtu+nrut!+(r-n)rw2l' (D'347)

^,r;*@): 
õ(r) 49#!: I a,! "-'t't'

.ú#(1 - r) (, M* + M)' I a, 
"-'l("-*)u7+nM!+(r-r)M2f 

. (D.34s)

D.2.2 Axial-Vector Quark Diagrams

S pin- lndependent

ri¡*@) : -# G - ù | a, 
"-'l(r2-')t'r2*+nM!+(t-QM2l

{rt - 2.,2as - z.,ì) l}. " l(m* - M)' - M:l) - n"?, * **\
(D.34e)
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Spin-Dependent

^rip@) 
: -6(n) ?# @Z - 2a2.,s + za!) | a, | "-,,'

* #* G - ù | a" 
"-'l(xz-æ)uz*+tM!+(r-QM2f

("3 - 2a2a3 +zal) - (rM* - M)'1

T -4MM7¡ra! . (D.350)

L,Íiø@) : õ(n) 
q# 

@Z - 2.,2.,s) | a"! 
"-,t,r'

- 9o Z¡v 
¡,,, 

r6nz r. - Ø) {@Z - 2a2as) l, Mu - Ml' - ao? M M¡¡ r}

I o" "-'l(*' 
-')n2 +nMl+(t'-u)tt2f 

.

D.2.3 Scalar Diquark Diagrams

Spin-lndependent

Transversity

where

and /ir,u(l - g) is just the spin-independent scalar quark diagram.

Spin-Dependent

Lf'q@)/x(n) : o

ril,(,) : h s"(M") I S * l+ - @' - ")*:] "-'l{*'-')tø?*¡w"),

dy dz 6(n - uz) f]¡"Q)f[¡*(t a), (D.352)

(D.353)

(D.354)

(D.351)

f"n<otø@)

Transversity

Lrf[p¡¡N(r) : o. (D.355)
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D.2.4 Axial-Vector Diquark Diagrams

Spin-lndependent

where

*1,fiçr¡¡*(ù : lo dz 6(r - uz) li¡"Q)fi¡Ní - a), (D.356)

ritoQ) :Y Q' - ,) | a, l*ru' - z) - !,f u"tu'-ò¡ør+M'\, (D.357)

1

and fi¡*Q - g) i. just the spin-independent axial-vector quark diagram.

Spin-Dependent

Llirotø@): dy dz õ(r - az) Lfi¡"Q)Lfi¡*(u), (D.358)

where

Transversity

where

^fitoQ): -* | o" lg? - z0 - ò*:1"-'l(22-z)rur|*7"r'), (D.35e)

^tip(a):Wrlo,
(t-ùl(u*+M)'-M:)-+1

T "- 
"l(u' - v) n2 ¡ (t - s) M! +s M 2l 

.

(D.360)

/.rliçol¡w(") : 
,Ð,"1r' Ir' 

ur* - az) L'rilo"Q) L'r;t'(s)' (D.361)

(D.362)Lrrîtr,Q): -n"ffi | ar! 
"-"1("-")ml+u21,

Lrrfio"e): n"ff z0 - ¿ I o, 
"-'l(22-")ttl*u"),

(D.363)
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LrfÊ"p@) : -n#; I a, 
"-'l(a'-u)n2¡(r-v)u!+vM2l

{æfi *,t - ù lQu - r) p' - trfi * *'lf
+2a!(t-ù;0-ùM*+Ml , (D.364)

Lrf"uø@) : -#: I *l ,_'l(u'-u)n2+(t-s)M2"+aM2f

{mll * ror, - a) u'* + l(zu - r)MK - tw'z" + M'l

It + a i r s(7 - ù lQa - r)M'* - ul * *'l]l
(2u-I)M*-M+ry\-u)

lrr'*i, - lea - r)M* - Ml (u'* + u,, - (D.365)

The function L,f fl,*(g) also has a surface term of the form

¡ ¡B:surfaceu r P¿a2ag Z¡¡
ÄTJ D,/N (g ) : 32", M_

I a, i,lu, - L)e-rrwz + 6@) "-"*zf (D.366)

D.2.5 Mixed Diquark Diagrams

S pin- | ndependent

ffro¡¡u@) : o'

Spin-Dependent

(D.367)

-a!

1

Lffrott*@): t
ICA,B

6(" - uò Lf ltq.Q) Lf'"^ø@), (D.368)
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where

ffinQ, q') : Y zG - ¿ I o, 
"-'l("2-")ø"+*"1,

rflnQ,q') : -# | a" l| * r,rt - ,rr"f "-'l("'-")o'+m"f

(D.36e)

(D.370)

The diquark term has the form

LÍ'"^t*@) : LÍtt(y) + Lf"(ù + Lf"(ù + 4,f1""'r*"(g), (D.371)

where

^ÍA'(ù: 
o,9o#, I *i,lrr",M¡¡ - .,s(M^r + M)l

- ",;;#lhõ@ - L) "-'*' , (D rT2)

^rA' 
(a) : 

ln " " 
s " 

+ ff!41f,'- t

{* lru'* + u'z" - M'l - aslMw * *l\

l4a - r)M"* - u! + M'l I ar!"-'lto'-n)p2+(r-u)M?+aM'1, (D.373)

^ro' 
(a) : 

ln " " 
n" - fflql#,

{* lu| + ul - M'l - aslM^r * *l\

lQg - r)M'* - lttl + M'l I ar!"-'lt'"-')n'+1r-s¡r,r'+aM"l, (D.374)

A¡ÊAsurfacel u) : õ@ - 7) (G" g" -f G, n"¡#

| *i l*, * r (o, - az)MN. #le-'M'

+ 6(a) ffi .,o, I a,;{ ¡ Goe" -t #:Wl e-' M?

,lnr"n,- ff!*glr"'r\
(D.375)
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Lr"r@) : -"'z+?"G"

I * ïlr*, * õ@ - Ð - ffi#u, - Ðf"
(D.376)

^tu':ln""s"+#fu]*
{", ,,t - u)M* + Ml + #;l4u - 1)M', - ru! * ,'l}

I o, lr"l@' 
-ùp' +(t-v)rw! +urur2l, (D.3zz)

^r"':ln""n"- ff!41P'-
{',',t - y)M* + Ml+ ffileu - r)M,* - ul * *,1}

I a" ! "-'l{" 
-o)n2+1t-s¡rt't' +aM"l, (D.328)

A.¡ÊBsurracelù:6(s- 1) [4 Goe"-r4G"s,]#ffi f or\"-"*'

+ ô(s) #ffi | a, ){l^G. e" i #:wl e-. M?

*ln*"n"- ff!*31'"\

Transversity

where

Lrffrot,"',): l,
1 1

I,

(D.37e)

6(, - uz) Lrføo,,(z) L7f q"¡N(u), (D.380)

3

- 2r2o
(r - ")q' +-1Lrlq/ø*(r,q')

T "-"1(22-z)ø'+t 
t"f, (D.3S1)
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and L,yf a¡*(U) has the form

Lr f q^ø(u) : L, lÊ^ t*@) - L, lh t*@)
: LrrAt(ù -l LrfA'(a) + nrfAt(a)

- Lrrut(ù - LrrB'(ù - LrÍ"t(g) - a.ft"""*"(v),
(D.382)

where

(D.383)

Lrfo'(a): 4Goe,.#:Wl

trfA'@): ð(s - 1) at(az- or) | a, i "-"'',

o, I 
"-rllu' 

-ùn2 + (r_v¡ uz +o r'1,
T

(D.3s4)

(D.385)

-r M2 (D.3s6)

(D.387)

(D.3s8)

(D.38e)

Lrf tt(ù : oror9o+4 u

I a" +l+#urr- 1) - 2M MNor, -')l "

Lrf"'@):ln""n"* #:Wf
o'orti#lM* +ztq, I

Lrf"(s):ln""t"- #:Wl
z * ly lM * + zMl a I a, ! 

"-"1@' 
-ùn'+çt-s)M!+urvr2] .ororlón. _ _ J*,ru

IA¡ÊBsurracel ù : õ@ - t) g#'- 
(Go 9, + G, g") dr

1

"€
-r M2
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Ignoring contact terms we find

^,rilø@): #:W",4*a@

Lrl'n^ø@): # w.*rti#lMN +2Ml u

I a, ! 
l"-"<r-otM! - "_'(t-øwf "-,1{u' 

-ùn' +uM'l 
.

I a" i l"-,r-s)m? - "-"tr-atu3f "-,1{u'-u)a'+oM'1,
(D.3eo)

(D.3e1)



E

Derivation of the lnfinite Nuclear
Matter Distribution Function

We begin with Eq. (5.26) which has the form

rup,(aò:-ut Iffit '/2p_A.q- 
¿̂F

T} [r* sr"(p)] , (E.1)

where

,srr(p) : ¿n fl - 3Vu+ M* 
õ @o - JVo - Er) Ø (p, - l¡l)

up

Evaluating the trace gives

Tt lry* srr(p)] : 4ltrô (po - 3vo - Eo)@ @, - l|ltpi#up

o(p" - ldl) 
t-#

EolPt
Ee

(8.2)

(E.3)

(E.4)

(E.5)

Using the delta function to remove the ps integration in Eq. (E.1) we obtain

r*rq@ t) :', I ffit (, " - 
t-rytÊ)

Making the change of variables

Ë:Eplp3, + dË:

Therefore Eq. (E.a) becomes

dpt

r¡,rø(at):', I ffiae a(ua- 

=f) 
@@,- ldl)' (E6)

The constraint imposed by the O-function can be re-expressed as

o (p" - lF l) ------+ o ln', - pi - G - Er)'1. (E.7)

Therefore, using the remaining delta function to remove the { integration, Eq. (E.6)

becomes

t¡vt¡(uò 
+^",:J .';,:,',*o- *o-,':,,^* ,-rli''t' (E s)
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Using

we obtain

2.5

2.0

Id2f¡ -- 2r d,p ---+ r d,p' and o'r - lp', (E.e)

(E.10)

(8.11)

(E.12)

Í*t,@t): + [' 47t"pJ
1

2r2 p"n

dp' ,o ,Vî - |o' - e', (r - ro)'],

lpi-€IG-ao)'1 .

The density is related to the Fermi momentum via

2P: Jn,
p2r

Therefore we obtain the final result

r¡v¿(aò:i(#)' l(g)' - 0 -,u"]

fõ .¡)1

0.5

0

0 0.2 0.4 0.6 0.8 1.0 L.2 I.4 1.6 1.8 2.0

U¿'

Figure E.1: Plot of Eq. (E.12) with values for the Fermi energy and Fermi
momentum taken from chapter 5, namely ep : 924.3 MeV and pF :263 MeV.



F

Dirac Equation with Scalar and
Vector Potentials

F.1 Coordinate Space Derivation

The Dirac equation with spherically symmetric scalar, I/"(r) and vector, Vp :
(V"(r),0'), potentials has the form

l-u^.V + þltw(r) -v"(r)l+u"Ølrþ?): E,þ(r), (F 1)

where

':(;i) , u:(å i) (F2)

It is easy to show that the operators J', J" and P : 'foP commute with the

Hamiltonian, and hence their eigenvalues are constants of the motion. Simulta-
neous eigenfunctions of these operators can be written as

ú¡m(r-):

'lTL¿,fiLs

,þfr*\
,þin*)

F(r) Q¿"¡*(0, þ)
i,G(r) Q¿,¡*(0, ó)

(F.3)

(F.4)

(?) R,ecall that the

(F.5)

)

where the spherical two-spinor has the form

Qu¡^(0, ó) : Ð (¿ rru s rnsli *) Ym,(0, ó) x"^"

The spin vectors are given l:y Xtt : (å ) and X 1

2
1
222

parity operator acting on the spherical harmonics gives

P Y¿^ (0, ó) : Y¿* (n - 0, ó I r) : (_t)t Vn^ (0, ó) ,

hence

(F 6)

Therefore if {¡^(r) is to be an eigenstate of parity we must have Í.: Lt1. Now

if. L and, s couple such that j : (. + ], in order for i. and. s to couple to give the

P,þ ¡ ¿*(r-): (,,_tl,; #rr,i::;fr'.îrr)
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same jr we mus-t have (, : (, + 1. Similarly lf .(. and s couple such that j : t - +
we must have (, : | - 1. Therefore in summary

(.
(.+7 for j:(.+
(.-7 for j-(.-

1,
It

(F.7)

In reiativistic systems it is convenient to introduce another operator that also
commutes with the Hamiltoniaî, K : þ(o.L+7), which satisfies the eigen-
value equation Krþin* : -KIþj¿* and is sometimes called the eccentricity or
Runge-Lenz operator. Evaluating the eigenvalue equation we have

o "o*' ,oi.',) ff;,:)'
J2-L2-s2+1 o

o - ll'- t2 - s2 +t]
i(i+1)-t(t+1)+j o

:(

:(

:(

tþ¡¿^K

0 -Vt, + 1) - t(t +1) + å]

,þfr^\
,þfn*)

(F.8)

If j:l+L,whichimplies (.: j -|and (.: j1_lwehave

Krþ¡m: (j + T) rþtn^: -K1þj¿^, (F.9)

hence if n < 0, j,,e and.i. must-satisfy the above conditions. Similarly if j : [_ 1,,

whichimplies (.: j*j and (: j- ]wehave

Kþ¡m: - (j + |) rÞim: -K1þjt^, (F.10)

which implies rc ) 0. Therefore the sign and magnitude of rc determines both j,
[, and, hence /. In rn--ary we have

rc<0 + K:-(i+;¡, j:t+T:-n-|,
------+ ¿: - (rc + 1) , ¡, : .(. -f | : -Kt (F.11)

rc)o + n:t(i+;¡, j:{,-+:n-},
-+ l:K, Í.:(.-1-K- 7, (F.12)

note in both cases we have i : lol - å. W. can therefore label our states with
the more compact notation Qo a {l¡m. Therefore the complete states can be
Iabeled

ún*,n¡) : ( .!""(')f¿"-(d' d) \
vd;i"j n-àrtiø)' (F 13)
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where we have also included the radial quantum number, n, fot completeness

Note the spherical two-spinors satisfy the orthogonality relation

d0 sin? d,ó QI^,,,-,(o, ó)Q,^(0, ó)

T,
d (cos 0) d,ó QI,,*,(0, ó)Q,*(0, þ) : õ o, oõ^, ^. (F.14)

The states are normalized such that

I
which using Eq. (F.1a) reduces to

I,*

d3r gf,*(r')rþ, (r-):1,

dr 12 lF^(r)t + c"çr¡"f : 1. (F.16)

Assuming the complete solution of the Dirac equation is of the form {(r) :
1Þr** (r') ei Et 

, we obtain

M -v"+v"
-id.i

-id.i
w-M+v"

(a"d),

(F.15)

(F.17)

(F.18)

(F.1e)

(F.20)

(F.21)

(F.22)

)r
Fn*(r)Q"*(0,ó)

i,G""(r)Q-" (0,ó)

-E
F""(r) Q"*(0, ó)

i,G,^(r) Q-"*(0, ó)

To simplify this equation we note

d.v

Using the identity

D

It+o-ao.0:Q,,o+1,o

o.r (u ,u V)

we have

õ i:;(, u :T(,*-, t)

To simplify further we nee esults

o ' L{1**: Qo : - (o + 1) 0r-,
o 'îQor, -
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the first of which is easily derived using previous results (see Eq. (F.8)). The
second is obtained by noting that the quantity o . f {lo has the same quantum
numbers j and rn, but opposite parity to (ln*, then an explicit calculation shows
that the proportionality constant is -1. Using these results we obtain

(F.23)

Substituting the above result into Eq. (F.17), we find that the Dirac equation
reduces to two coupled first order partial differential equations given by

ö.ie, :-(#.+) {t-n*

(*

(*

+

+

l+n
T

l-n
r

F""(r): (M + E -V)Gn*, (F.24)

G"^(r):(M-E-L)Fno, (F.25)

(F.26)

(F.27)

)

where we have defrned V :V"*V, and L,: V" -V". These equations can be
rearranged to give

F,(r): _,t_^ø (r'^n, +!-!r,"("))

G*(r) : 
+ Er _v(O ?^n +!-!4("))

F: +? F:++ F.+ M+ _ 
^(*. 7 r.)

- (M - E - L) (M + E -V) F, : s, (F.28)

G,r +?G,o t + G^ + M+ _ 
^(r, 

* 7 r")

- (M - E - L) (M + E -V)G^ : s. (F.2e)

Flom Eqs. (F.26) and (F.27) it is easy to derive the relation

It is then trivial to decouple Eqs. (F.24) and (F.25), giving

where M* : M -V'(r), which is useful if one wishes to take the non-relativistic
limit
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F.2 Momentum space solutions

For the present application, that is nuclear structure functions, we require mo-

mentum space solutions to the Dirac equation, Ó"rr(F), which can be obtained

from tþo*(f) via Fourier transform, therefore

f
ó-*(F) : J 

ot, 
"-oío'rþo 

(r'). (F'31)

If we consider the upper component first we have

ól^@) : ¿3, 
"-i' 

f'r' pr(r)e *^ (0, ó) (F.32)

Using

L97

ooL

e-ir'r: +nÐ D (-¿)' j"(pr)YÏ*(a,)Y"u(Qo)
L:Om---L

Tk¿,'ITL s

ooL
: +nÐ I (-¿)'i" (pr)Yi,r(oòY"¡r(Q,), (F.33)

where f)o are the angles (0, þ) for p- and fl" the angles for r', we obtain

óî*(F):4" dt, D?ù" j"(pr)Y|*(a,)Y"u(Qo) r"(") Q^ (0,Ó) ,

L,M

:4n d,r 12 l(-¿)" i" Qr) F"(r)
L,M

I
I

l,:O rn:- L

U ilQ,Y;M(Q') Qo*(0,,ó,) Y"r(Qr),

: n* I d,r12 D?¿)"i"(pr) F.(r)

D, Wrn¿srrùsli nxl dQ,Y;M(n') Y¿^,(Q') Y",w(Qò ,U
: 4lr d,r 12 \ (-¿)" i " 

(pr) F"(r)
L,M

Ð W rn¿ s n'Lsli ml (õ7¿õ¡a^,)Y"*(Qò ,

TL¿,rÍLs

drr2 (-t)ti¿(pr) F*(r) Ð Urn¿sn'¿sli mlYm,(Q) ,

TT¿¿,TN 8

: 4rr
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: ei)t (* | d,r12 i¿fpÒ F-Ø) r),,-(0o),

: ç-t)¿F(n)a**(0,ó).

Similarly, for the lower component we find

Now

ôl^@): i,(--i)î (* | d,r12 j¿(p,)G.?))

(F.34)

c)"-(Or). (F.35)

<+ K 10,
<+ rc;>0,

(F.36)

ie'ù¿+r : ei)¿ for

i,(¿¡t-t : -ei)¿ for

tr,:(.-ll
tr.:(,-l

i.(-i,)t : i(-i¡¿+t :

hence

i,(-i,)o : -sisn(rc) (-i,)t. (F.37)

Therefore, the lower component of ó (F) becomes

ó1*@): -sisn(rc ) (-i,)' @ I d,r r2 j¿foÒ G,Ø)CIo-(oo) ,

: ¿¿ G(p)e**(o,ó) . (F.38)

Hence the momentum space solutions to the Dirac equation have the general
form

ó¡*(r): (fn): eù'(F(p) Q¿,j*(O, ó)
G(ùA:,"j^(o,ó) )

(F.3e)

(F.40)

(F.41)

(F.42)

(F.43)

(F.44)

where

F(p):4n dr 12 j¿ (pr) F,(r),

G(P) : -4n'sign(rc)

The inverse relations are

dr 12 j¡(pr) G^(r).

F(r): + l,* drI¡,@,) F*(p),

G(r) : -f ,ig'(" ) lr* doI ¡u@ù G*(p),

which are easily proven using the identities

d,r r j¿ (pr) jt (p'r) :

l,*
I,*

I,*

l,*

6(p - p')
p

r(
r

dpp jr(pr) j¿(pr'): õ ,')
(F.45)
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In momentum space the normalization condition for the Dirac wavefunctions is

t !!- óIo óon : L, (F.46)J en)'

which becomes

l,- # p' lF^(p)' + G *(p)21 : t (F.47)
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Multipole Formulas

The multipole expansions have the form

¡ØÐ @) : t (-Ði-* J2k + L t) rt^rol, Iç:0,2, ' ",2i,JJ
n'L -rnm:-J,...J

L¡(int(ù : t (-r)i-*,t*n (¡ :* E) or,^ru), k: 1,3,
m:_i,...,i

where li*(ù is the spin-independent result and Lf¡^(g) the spin-dependent

expression. The inverse relations are

ri^@): (_r¡i-^ 
r:Ð ,,/úET 

(L :* å) r,,*,{r), (c.3)

Lfi*@): (-r¡i-* t 2lr+L (* :* å) ot"-',,,

(c.1)

.,2j,

(c.2)

(G.4)

(c.7)

(c.8)

k:t,3,...,2j

Examples of the multipole transformations are given in the following sections.

G.l J 0

/(oo)(s): Íoo(u), (c 5)

(G.6)

G.2 1tJ

¡(Lo)@):,/i fii@),
n¡(+')(s) : t/z ryàLçr¡.
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G.3 J

G.4 J

G.5 J

r1o) (u)

1

1

\/3 lzf',@) + fro@)l , (c.e)

(G.14)

(G.15)

(G.16)

G 7)

(G.18)

(G.1e)

(G.20)

(G.21)

)l
t,,

')@):lil¡"@)-r'o@
')(s) : lz tl"@).LIG

lG (G.10)

(G.11)

(G.12)

(G.13)@) - tÈi@

3
2

çs¡ + ¡3*@
-qqt,,
rÊz

1...:

'/s
1
t=

võ

¡Go)

¡(Èz)

(å')

) + ¡E+tù],: ,l'rlEErù + tEÊ(u

:#þ¡EE@)- Í83

(a):
(u) :
(s) :

)

)

Lr
fs 

r¡å Ê@) + nfiåço¡f

It¡ts(s) - ¡ Us+çr¡]n¡(i')(s) :

5
,

¡Go)

¡(Ea)

(å')

)

) - 4 ÍE+tù],¡G') çr¡

)

)

G')6¡

@

(u

(u 1(

Lr (a

Lr

ryGu)çr¡

1r_t
rt1,
f2

V*
1

..........:

3\/5
1

..........:

zt/f

¡E E @) - s rE Ê @) + z ¡E L 1o¡],

frn¡; E@) +zt¡EÊ¡¡ + t¡Eiqr¡f ,

[sr¡B 
E@) - z ryEZ@) - +ryï*@],

It¡E 
E(s) - s ryE Ê @) + n n^¡E + fù].
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Explicit Calculation of the Nucleon
Distribution Functions in the
Nucleus.

H.1 Spin-Dependent Nucleon Distribution

In the convolution formalism the spin-dependent quark distribution in a nucleus

is given by

tqlu (ro) : 
F,_ "lU lroø^1"'o16(r¿ - aor) Lqo,o(r) Lf * (ut), (H.1)

where J and H are the angular quantum numbers of the nucleus and

6,Mn f dsn s---aLr, (at) : ry J 6fT r(e' t eo - M¡t a.q)V"(d) z*ru v^(p-)'

(H.2)

For the spin-dependent case we consider only A-odd nuclei, with only one particle

or hole outside and a closed spin zero core. In this case J and H arc simply the

quantum number j and rn of the valence level and the sum over À includes just

this single energy level, where l: ((,sjm).

In momentum space the Dirac wavefunction for a central potential has the

form

v*,,(F): ?i)n (ägì,,ni!,T,,,,üì) (H 3)

where

lkjm;CIr) = Y 1(t[.,t"lim) Yu"(fto) lss,). (H.4)
lr,s.

We have also introduced the quantum number rc, which is defined by

1j+,
):{

-({,+t) for i:[*l,where i.:(,+7,
(. for j:t-1, where i.:(,-!,n:* (H 5)
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We now wish to evaluate Eq. (H.2) Consider

-V^t*,yuü:\[¡t ^yo^t+.yr*:å** (l+ ffh¡ü: f:t, ("t 1\ tt ' to ' \/t' ,/r- \ t ot) *'
(H.6)

where we are using the Dirac representation for the gamma matrices. Using the
expression for the Dirac wavefunction given in Eq. (H.3), and noting (l¿). lt : t
we have

Ú 7+75 ilr : (t s j ml F (p), ([,s j mlG (e)( )(i :,)([ii]"ii"il),
{rrrr"rr) ({r,i* 

tsjm) + (tsjm rsjfl)

1

-t/z
1_--

\/2

+ F (p)2 ((. s ¡ mlos lt s ¡ m) + G (p)' (rs ¡ mlos ll s ¡ *)). (H. 7)
)

To evaluate the above matrix elements it is advantageous to use the Wigner-
Echart theorem, which states

(r J MlrlK) lr, r, M1 : (-:)': 
(r, K M, lr M) \r rllrtx) llr, r,), \/2J + 7'

:(-t)'-, (j* i 
t*,)vtn @)llr,r,), (H8)

where 4t) it a component of the irreducible tensor operator T.r) and, (rJllf{x)llr' J')
is called the reduced matrix element

To utilize this theorem we introduce unity in the form

(H..e)
L,L"

and obtain

LÍ^*(a¿) : ry I # 6 (n3 + € o - M u nò 
Ð.yi,".(e,)

(t\

t 
F (o) c (o ) (U' i ^lv" ¡.1[. s j m) + (i. s j mlya a,l!. s j m))

+ F (p)2 ((,s j mly, ¡, o3 |t s j m) + G (p)2 (t s j mly; 7 
" 

o3 |t,s j m)

We can now evaluate the matrix elements using the Wigner-Echart theorem and
various reduced matrix element identities. Consider

(tsimlY7.a"l(sim) : (-t¡i-^ (:^ 
tr" t*) W'r¡ytL)llîs¡). (H.11)

. (H.10)
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Using C.89 of Ref. [166], which states

(7r2 fi J 2 J 1¡T@ llr' r' J' J L J' ) : õ n,;õ 6 4 (- 11r' 
+ h + n+n

(2J + 7) (zJt + t)

Therefore

(t s j mlYT 7,1[ s j m) : ( - 1 )i-'Îr¿ ( - 1 ; 

j+z+"+ L (z¡ + t)

{: :, 
t;}'n"'117@)llr'r'ltl (H 12)

i\uv@ î)
s

(t i ',) (H 14)

'l:l (-1¡j+z+"+ "(-t)n47f

(:^ ',, t) (t i 'ò {: : ')

'))(Í í 'ò{: :
J
rn

j L j
-rn L, rn){:

L
(H.13)

Now

(L rllv {r') llr") : ( - 1 )"

Therefore

(tsjmlY¡¡.,1k¡m) : (-r¡i-^ (2i + 1)

(2(,+t)(zt+t) (H.15)

Now (SES):0 if (,+ L+Ír, odd, therefore since tr.: [.11, only terms where

tr is odd contribute, hence

(kjmlYl¡..llsjm) : (-7¡i-^ (2i + 1) "r* ' (_r)(- t¡'*"
47f

(2(,+1)(2t+t) (H.16)

Since s: L, we have

((.sjmlY¡.¡..1(.sjm) : (-t¡i-^ (z¡ + t) "r* 
t (_t)t_'

+77

(2(.+t¡çzi+t) (H.17)

The above equation is symmetric in [, --+ 1,, hence

\l. s j mlYT ¡,li. s j m) : ([s j mlY7.¡.,1[ s j m)

(i L

\-- L"

(:^ ',, t) (t ', 'ò {: ', ')

(H.18)



206 H. Explicit Calculation of the Nucleon Distributíon Functions

To evaluate the third matrix element in Eq. (H.7) we first couple Y and o to an
irreducible tensor of rank K: L,L+I, giving

Yrt" t 2K + 1 (-1)L-t+Kzos : yf') oG) _
K I{,

(i,, å :r,) [r{¿) ø ".,fi) (H.1e)

Using C.88 of Ref. [166], which states

(7r2 J 1 J 2 J llv {x t llrlri J', J', J' ) (2J +L 2K + r) (2J' + 1)

(r1Jr 7&') r!J'r)þ2J2 U(kù rLJL), (H.20)

J,
K
J

ri
k2

Jz{{;

where y6) : lftn'l 6 ¡¡&ùf(t) urrd the \Migner-Echart theorem, we obtain

(t s j mlyy. ¡. o3 l(,s ¡ ml : (- r¡i -* D,/rR+1 (- r¡r- - t+ x.

K,I{,

'r" å :r,) (:* l, '*) (",ll t""' ø o(')l''' 
ll '"r) 

,

: ç-r¡i-* (zj + u 
Ð,(_l¡r'-t+x' 

QK + r) ,

L
L"

r K\(¡ Kt\[ii'.)
; :*") (; ;" m/ lt , ,lQ 

vQ') 4þ o() s)

(H.21)

Using Eq. (H.la) and (.s llrr(1) ll .') : .Æ we have

((.sjmlY11"o3l{.s¡m) : (-t¡i-m Q¡ + t)
2L+7

hr
J6 D (-!¡r'-t+x" eÐn eK + r) (2(, + r)

K,K"

K
K"

Now because of the Õ integration in Lf r*(Uò only the L" : 0 terms are non-
zero, hence we must also have K" :0. F\rrther, in analogy with a similar earlier

(; t Ð(:,
1

0

jK
-rn K")(
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argument, -L must be even for (f å d ) to be non-zero and hence K must be odd

because of (å fi l(). Therefore

(tsjmlY6.o3l{.s¡m) : (-7)i-m Qi + 1)

Therefore clearly

(lsjmlYl,o3l(.sjm)

: (_7ì)i-^ (2j + 1)

: (-t¡i--" (z¡ + t)

Therefore

ry#(-l).,GD(-r)'
+lT 7

(2K +1)(2r*') (Í i å) (; å i) (:- i 'ò{i
s

1

s

'l#(-1) .,Æ I (-r)i (2K + r) (zr, + t)+ir T

(t t'ò(t å f) (:* i '^)

'l#*I (-r)' (2K +t¡ çzt +t)

(t ', 'ò (', å f) (:* i '-)

{i

{i
s

1

s

(H.24)

LÍ, (sò : ç-r¡i-* (zi + Ð ffi I # d(n' + eo - MNa¡)

DJrî+r Ylo(CIo) zF¡(p)G¡(p)(-r¡i-å (2r+1)(2(+7)
L

J

-n'L :'){:å)

J6D
K

1( )o
1

0
( (;1)+ JJ

rn -rn Ð
2K
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lruoy,rn.,) 
(Í ', Ð{i

- G^(p),(2î.Ð (i t, Ð {i
(H.25)

A significant simplification can be made if we expand, L,f *^ (* : - j, . .. , j) in
terms of the multipole distributions A/,¡ (k : -!,8, . . . ,2j), defined by

Lf ,^ = t A'* Lf *r: (-t¡i-* I øEi(L :* t) o,"r

L) : õ^'^t'õ*'^;'#, '-) (i;, l:,

k:lr3r...,2j Ic:I,3,...,2j

The inverse relationship is

LÍ, = I Aff A,¡o^: t eÐi-* ,Æk +1

6tt,
- 2J +L'

jjk
n1, -n1, 0

(H.26)

Lf *^,

(H.27)

(H.28)

(H.2e)

Tt:-Jr.,,rJ nù:-J,...,J

which is easil¡r proven using the orthogonality relation

Another orthogonality reiation is given bv

with a special case being

F,_,,r, 
*Ð (#, #, '^) (#, #, #) :6¡¡,õ*^,,

\rzi *Ð (#,

Ð(* :* t)(* :^ í) (H.30)
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Using Eq. (H.30) we obtain for the multipole distributions

LÍ,,n(ut): (2j +Ð ffi I #ô(r3 + e,-M*at)

I

2Yko (Q e) F 
^ 
(fi G ¡(fl (- t¡i - L (2(,+1)(2(.+7)

- t/6 2k +7 (-1)n t 2L + 1Y"o(Qo)
L:lc-l,ki7

(t t'ò{: !'}
å)

1

00

{i

L

'ù
lr^rr,rn*,) 

(Í i Ð{i

- G^(p),(2U. Ð (t

s

1

s

(H.31)

Note the sum over ,L in the second term includes only the k - 1 and k + 7

components, because (å å 6 ) is zero otherwise. To evaluate Eq. (H.31) we note

that

Y"o(Qr): 'l:l P7 þoso) ,
+'tT

(H.32)

where P¡, Ð"re Legendre polynomials of degree -L. We also introduce polar coor-

dinates, where

¿tp 6(pt * eo - M w a¡) f (p, cos d)

: 
Io'" 

dó 
l_trd,cosl Io* 

ooo'ðþcos 0+eo-MNaòr (p,cos0) ,

acoso 
Io* 

oro' 
ot 

r("", , -**ni-'")
dpprQ,-^T)

I (p, cos á) ,

(H.33)

Where in order to satisfy the delta function we must have p > IM*A¿.- €,1,
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hence L: lMxU¿.- e^l.Therefore

Ll,n(aò : (2j + 1) \Æk +1 I: dpp
M

l6tr3 A
]V

L:le-]-,h+l

The first few Legendre polynomials are

Ps(r) :1,

Fx(p)Gx(p)(-r¡r-å

(2(,+7)(2(+r)

T@"'- 1) ,

] {ru"' - ror2 + 3) ,

fi{rt *u - Jr'na tro5r2- b),

P1(r) : r,

Pz(*) : Tþ*' - J*) ,

Ps(r): ] {urru - Tors -t r5r) ,

2Pn

1

0( )(å- ^/6 
(-r)' D QL + r) PL

(t t'ò{: : '}
Ð

lruoyrrn*,) 
(l

-G^(p),(2U. Ð (i

'ùÐ{i:
L
0

{i

P2(r):

Pa(r) :

P6(r):

(H.34)

(H.35)Pz(*) : fr{n nr7 - 6gur5 * 31bø3 - 3br) .

Tbansforming back, our final result is

Lt^ (u¡): (2j+ 1) (-1)j-* H r:P ,,,(2k+u 
(1, :* t) l: -



H.l Spin-Dependent Nucleon Distribution 2LL

2Pn

n<0
rc>0

Fx(p)Gx(p)(-r¡i-å

(2(,+1)(2(+1)

- '/6(-1)' t (zL + r) PL
L:lc-l,lc*'].

The conventions for the angular momentum is given by

lruoyrrn.,) 
(l í Ð{ii ù

-G^(p),(2r.Ð(t | Ð{i

'ò{: :'}
/!. k

[oo
(;åå)

tr,:[+1,
i.:(,-7.

(H.36)

(H.37)

s

1

s

+ K:-(j+Lr), [:j-+
+ K:i++, (,:j-l|,

Recall for every j, there are f,(2¡ + 1) multipole distributions, A/'¡, where

le : (I,. ..,2j).
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H.l.1 Moments

We first calculate the moments of the multipole distribution functions and from
these we can reconstruct - via the multipole expansion - the moments of the
usual distribution functions. We have

loo 
orolÍ*n(aò : (2j * Ð à l,^ oo^ |

dtp

(2")t
ð

(t 3'ò{1 ::
)

)

fo
JO

2Yko (Q e) F 
^(fl 

G ¡(fl (- t)i - i (2(+r)(2t+1)

- \/6'Æk + r (-r)t t'/n + r yro(er) 1

0

lr¡nyçzt*,) 
(Í ', i)

L:k-r,klI

-G^(p)'(2t + t)

'ù

')

'ò-G^(p)'(zu. Ð (t 3

{

(t

(,

L
(,

s

1

3

Ð(;

x Ð{i: i}l } H38

Flom the orthogonality relation for the spherical harmonics, for the first term in
the curly brackets to be non-zero we must have k :0, however for the multipole
moments lc : r,3, . . . , 2j , hence this term is zero. Similarly, for the second term
only the L : 0 term is non-zero, and hence we have lc :0. Therefore

da¡ Li*n(ao') : ô*, (zj + t¡ ffi í #

{- 
*n(-r)n 

",,rn ) (3
11\
0o)

lr¡nyçzt*,) 
(l 3 Ð{íl

{i: i}l} (H.3e)
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Using the results

%o(0o)
1

\/4n'

Ð

Ð
0

0

lo1
[oo

(t

{zi):

{: ;'}{i: i} :{i i ù

1

'/5'
7)n (-r)': -(-1)', (H.40)- lEî+tj

(-7)b+c+r+I<

zt+t)(2K+L)

(-1)r+z+"+t

\ß\D[ +1
tttstr 2(_t¡i+t+"+t V(j + t) + s(s * t) - (.([ + L)] , (H.42)

(

and

glvmg

b

c
(H.41)

(- 1)j

\ß'Æ[TI
substituting s: ] we have

2j +7 2j +2 2s 2s+7)(2s+2)

{i
rtl¡fi +1) - (((+1) +il

zt/z[+ t 2j 2j +7 zj +z)
(H.43)

Therefore the first moment becomes

T
A

d,u.qLf 
^t 

(ut) : 6t r.(2j + tl *

l#{nør'li{i+t¡-

2

\/5 2j 2j +r 2j +2

(((+1)+ål

+ G^(p)'þfi * r7 - Zçtr* tl * å] ) Ln-44)

Using the normalization condition, the first moment of the multipole distribution
is

loo 
oro Lf ̂

n@¡) 
: u^ l',

2j +1
j(2j +2)

i(i+1) +å- ffiVW * r)p' FÁp)' + tlt + r)p'c^(n)'] (H.45)
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Using the multipole expansion and the result

J

-rn å) 
: (-t¡i-^ ^ (H.46)

(H.47)

(H.48)

(H.4e)d,y¡gz*(g¿):

2j +t +1

8

5

J

we obtain

lo" ono'r,,^(aò: ffir¡
{rf, 

+ 1) + å - t #VW * t)p' F^(p)' + lçi + r)p'"^fol'1 
}

Some explicit examples are

. K:_I + j:i,(.:0andtr.:I

o K:-2 + j:Ê,(.:LandÍ.:2

fo" 
o'oo4(uo): tr"#

loo 
o'ogÊ*(ao):'# 

{t

a¿'*(da¿.gt
2

1

" '/2ona

'#{ 1

. K:1 =+ j:I,(,:landi,:0

p'G^(p)' (H.50)

(H.51)

(H.52)

(H.53)

1
dp

(2")'

-iffip'c^(p)'j

T,^

1,"

,uts\(at) : ôr, + {, - i | # p, p^(ù,},

¿aogl*@^) :'+ 
{' - ä I #nn@),}



H.2 Spin-lndependent Nucleon Distribution

In the convolution formalism the spin-independent quark distribution in a nu-

cleus is given by

qou (*ò : 
Fr 

c!:^ 
lroø^lr'or 

õ(r¡ - aAn) Q,,*(n) Í,*(uò, (H.54)

where

f* (a¡) : \/rM. | # õ@' + eo_ Muae)ú,*ç'¡) f ú**(F). (H.55)

In order to evaluate Eq. (H.55) we first consider

iú,y*ir,:.rÌ707+ *:#tî (n+ ff)*:#*t (; T) *, (H56)

H.2 Spin-lndependent Nucleon Distribution 2L5

where we are using the Dirac representation for the gamma matrices. Us-

ing the expression for the Dirac wavefunction given in Eq. (H.3), and noting

l(-¿)']. (-i,)o : 1 we have

iF7+ {r :

Using the result

and hence

Therefore

l[.sjm) - -d .þl(,sjm), (H.58)

1....:
t/z

1

-'/z

(

{

(t sjmtF (p), Q sjmtGþ)) (1, i) (ä8ì,,'i!,H,)

F (p) *,,G,@) (Q' i ^lo3 |(,s 
j m) + (t s i mlo' jt' ¡ ^))

+ F*(p)2 \ts jml[s jm) + G,(p)2 Qs¡*1îr¡*¡\. (H.57)

(k j mlos lls j ml + (k ¡ mlos l(.s ¡ m)

: -(tsiml{r',d .n}lts¡m¡ : -'+(tsimltsim). (H.5e)

l**(ut) : Mw I # õ(n3 + e^ - Mwu¡)

,rr.,ror' + G,(p)' -'lr^olc,1o)) ((.sjml(sjrnl. (H.60)
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To evaluate Eq. (H.60) we first introduce unity in the form

, : DY;1"(eòyLn"(ep), (H.61)

and obtain

r,*(vt) : M N | #ð(rB + €o - M ¡,r u^) 
Ðyi,""(er)

{r.ror' 
+ G*(p)' -'lr.f)G,(p)} e,i*1""¡,lkjm). (H.62)

We now consider in matrix element ((,sjmlY7¡"1(sjm), from Eq. (H.13)

([,sjmlY11.l(,sjm)

: (-I¡i-*(-1)i+z+s+" (Zj + t)

Therefore

(:* :, '-) {:

(

(H.63)

x ,){: !'} (H6b)

õtt,
2J +l

L(.
Js 1t¡v{r')¡t¡,

: (-t¡i-^ (2j + 1) (-l)i+r+s+Let)t 'l#e¿+r)
jL

-n'L L"

Now ,L, : 0 and .L is even, therefore the matrix element is given by

(tsjmlY¡1"1[sjm) : (-7)i-* (2j + 1) (-1¡r+]

'l#et+r)

L
síÍ) ((t

,)
L
0(t

¿

j

t) {: ! ') (H 64)
L
0

J

-n'ù

f **(u¿) : (-L¡i-*(-r¡,*; W e( + r)M*

I #t@' +,* - M N r^)Ð Jn-+ tv;o(CIo)

lr^fr' + G^(p)' -'lr,flc^@)]
J

-1t1,

L
0

'We now expand f , (uò into multipole distributíons f o¡,(y.a). Usi.tg the identity

J

-n'L í)Ð(*:*{)(*
(H.66)
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we obtain

fi*@.q): (-1¡i+å Qi +t)(2(+1) 2k +I

oo olr.@)' + G*(p)'

+? (r,- MNu,+) F,(p)c.@l)rr("*ï-)

Ð{:
/(. k

[oo
k
s ')

MN f*
16"t J^

, (H.67)

where we have introduced the Legendre form for the spherical harmonics.

H.2.1 Baryon Number Sum Rule

Our result for the spin-independent distribution given in Eq. (H.65) must obey

the baryon number sum rule, that is

t,
A

P^1,

A

danf**(ut):1 dat l*,,(ut) : A. (H.68)

(H.6e)

We have

lo" 
oro l**@.c) : (-t¡i-^(-r¡r*; W e!, + r)-M *

lo" 
ono I #t@' + ,o - -M N n^)Ð \/n + Lv;o(CIo)

lr,ror' 
+ G,(p)' -'lr-rolc,þ)]

(:*"'-)(tíÐ{: ')
L
.9

Noting that p3 - pcos 0 anð.cosá: ,Æno, the orthogonality condition for

the spherical harmonics

îT f2r

J, oó J, alsinl Yk@,ó): t/4tr 6¿sõ^s, (H.70)

implies that L : 0 for the,t'2 and G2 terms and L : 1 for the F G term.

However (8t, 6) : 0, therefore

loo 
oro r^,,@t) : ç-t¡i-*(-r¡i*; @+! e¿ + r)

| #tp,@)'+G.(p)'t(:* 3 t) (t Z Ð {: 2 I (H 71)
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Using the results

we obtain

as required.

3) 
:j

rn (t
0

0

(-L)n

'ø+1
t):

1
j*l*s

, (H.72)
\/rl+1\Æ[+1

lo" 
o'o Í^*(aò : h I lp"@), t G^(p)2f :1, (H.73)

dtp

(2n)t

{: 

" 

:\:
(
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H.2.2 Momentum Sum Rule

The momentum sum rule

A

*
data¿.lo (uu) : A,

is used to determine the mass per nucleon M¡¡. Flom Eq. (H.65) we have

t,

lo" 
oroa.q r^ (a¡) : (-r1i-*(-r¡r*; W Q(, + r)M *

lo" 
onoo^ | #uf't€o--u*ao)Ð

2L + 7 Yi,o(ao

(H.74)

(H.75)

(H.76)

)

lr.t r' + G^(p)' -'lr,6 c,þ)]

(:* | '-)(t i ,){: i ')

using the delta function to remove lhe d,y¡ integration we obtain

lo" 
oooa¡ r^^(at) : (-r7i-^(-r;'*; W Q¿ + r)

/ d3p p3+e'¡-
lQò'MN? 2L + 7 v;o(CIo)

lr.r, + G*(p)' -'#r,rrlc,1r)]

(:* í '-)(t i Ð {: ')
L
s

The terms proportional to ao and p3 are analogous to the baryon number sum

rule, however the term proportional to (p')' is new. Therefore

¡A

Jo" 
o'oa¿'r^*(at): h

#r#+
+ (-t¡i-^ (-t¡'*

2L + r Yi,o(ar)
l

')(:^ | t) . (H.77)
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Using cos2 0 : tluuVro * f we obtain

¡AI aroa¿ Í**(a¿) : +JO M¡¡ l#pF*(p)G.(p)
2

j 2 j
-n'L 0 n'L

2

s
(H.78)

t2tr M ¡¡

- (-t¡i-* (-r¡r*; Qj +r) (2¿+t)

h l#pr^@c.@)( '){:)(á 3 Ð
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Further Finite Nuclei Results

In this appendix we present many results for the finite nuclei multipole quark

distributions, not included in Chapter 6. The nuclei we include are 7Li, 118,

t'C, tuN, tuo, "Al and 28Si. We also illustrate our results for the EMC effect in
12C, 160 and 28Si, which where not presented in Chapter 6. For more complete

figure captions see analogous frgures in Chapter 6.

1.1 7Li

f
<{.ìì
\¿ L.2

2.0

1.6

0.4

colôr

-sf o'8

0

0 0.2 0.4 0.6 0.8 1.0 t-2
ix¿

Figure I.1: Spin-independent 1" (K : 0) multipole u-quark distributions in 7Li.
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0.6
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0.8 1.0 t.2

Figure I.2: Spin-independent L*t (K: 0) multipole d-quark distributions in 7Li
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Figure I.3: Spin-independent 2"o (K : 2) multipole ø-quark distributions in
7Li.
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c\ì
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Figure I.4: Spin-independent 2"d (K: 2) multipole d-quark distributions in 7Li.
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