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Abstract 

Causal reasoning has been studied extensively in experimental 

cognitive psychology. Generally, the focus is on how individuals 

learn causal relationships in their environment through 

observation or interventions. Although it seems self-evident that 

causal beliefs about some phenomena are learnt largely through 

linguistic channels, to our knowledge no empirical studies have 

addressed this issue. In this paper we investigate causal reasoning 

that is embedded in naturally occurring language. We focus on 

genetic counselling for cancer, in which complex relationships 

between genes, medical interventions and cancer are 

communicated by health professionals to clients. We borrow the 

idea of graphical causal maps from previous experimental studies 

and show that they can be applied to the study of causal reasoning 

in naturally occurring talk. We see this study as complementing 

existing experimental research, while maintaining that the study of 

causal structures embedded in naturalistic language adds an 

important dimension to our understanding of causal reasoning. 
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A Qualitative Approach to the Study of Causal Reasoning in Natural Language: 

The Domain of Genes, Risks and Cancer 

 

Causal models provide a natural method for understanding the dependencies that exist 

between variables in the world (Pearl, 2000), so it is not surprising that human learners 

tend to form beliefs about the causal relations between entities (e.g., Sloman, 2005). 

Indeed, while understanding how people uncover causal laws is a topic of study in its 

own right in psychology (e.g., Cheng, 1997; Gopnik et al., 2004; Griffiths & Tenenbaum, 

2005; Sloman & Lagnado, 2005; Steyvers, Tenenbaum, Wagenmakers & Blum, 2003), 

causal relations play an important role in other areas, such as the study of conceptual 

structure (e.g., Rehder, 2003) and conditional reasoning (e.g., Evans & Over, 2004). When 

modelling this process, it is typical to assume (generally for the sake of simplicity) that 

mental representations of causal laws develop as a consequence of direct observation of 

the environment. In everyday life, however, it is very common for people to acquire 

causal representations through reading or conversation, rather than via direct 

experience of the environment. To the extent that linguistic data provide proxy 

‘observations’ for people, this is unlikely to pose any particular difficulty for 

psychological models, although it certainly complicates matters. On the other hand, the 

ready availability of linguistic data provides a rich source of data regarding the 

naturalistic use of causal concepts. In this paper we build on previous work on the 

cognitive processes assumed to underlie causal reasoning. In particular, we draw on the 

notion of causal maps as useful representations associated with causal reasoning 

processes (Gopnik et al., 2004). However, rather than provide participants with a simple 

environment in an experimental setting in which we can control the causal relationships 

and attempt to model behaviour, we take a more exploratory approach and focus on 

some of the ways in which people employ causal language in spontaneous real-world 

speech. The advantage of this approach is that we observe causal language in a natural 

environment, but the disadvantage is that we forgo control and quantification.  

     The domain in which we undertake our investigation is genetic counselling sessions 

for familial cancer. We focus on the causal representations that are implied by the 

genetic counsellors as these may be considered to be the ‘stimuli’ upon which clients’ 

subsequent causal representations are likely to be based. In order to analyse these data, 

we employ qualitative methods commonly used in social psychology and the health 

sciences (e.g., Wetherell, Taylor & Yates, 2001). In line with common applications of 

discourse analysis, our commentary is focused primarily in the domain of interactive 

communication, rather than individuals’ actual cognitive processes. Rather than make 

the strong assumption that causal models are literally communicated in speech, we 

make the weaker suggestion that some causal representations may be viewed as being 

‘implicit’ in speech, and act to constrain the interpretation of events that a listener might 

entertain.  
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     As we are interested in a knowledge domain (familial cancer) in which causal 

relations are transmitted to a lay population almost exclusively via discourse, we feel 

that an investigation that focuses on this discursive dimension is not only justified, but 

essential. We see this study as complementing experimental studies that investigate 

causal reasoning processes in a controlled environment. Whereas the value of 

experimental studies lies primarily in understanding the formation of causal 

representations resulting from direct interactions between individuals and their 

environment (e.g., Steyvers, et al. 2003), the present study contributes to an 

understanding of the causal frameworks formed as a result of communication with 

others. We also see this study as adding to experimental studies by investigating the 

operation of phenomena that have been studied extensively in laboratory contexts in 

more naturalistic settings (e.g., Neisser, 1981). 

 

Representing Causal Relations 

 

Recent views of causal models in cognitive psychology have borrowed heavily from the 

graphical model formalism advocated by Pearl (2000). While it is neither necessary nor 

desirable to outline this approach in any mathematical detail, a brief qualitative 

overview may be useful. The simplest form of causal model takes the form of a directed 

acyclic graph that connects variables, first suggested by Wright (1934), and illustrated in 

Figure 1. This network is derived by considering the following dialogue from The 

Simpsons: 

 

Homer. Every time I learn something new, it pushes some old stuff out of my brain. 

Remember when I took that home wine-making course, and I forgot how to drive? 

Marge. You were drunk. 

 

---- Figure 1 about here ---- 

 

The cleanest representation of this interaction involves four variables, corresponding to 

the act of taking the winemaking course, learning new facts, getting drunk, and 

forgetting how to drive. Homer’s statement sets up the following causal relations: (1) 

wine-making education causes new learning, and (2) new learning causes forgetting of 

prior learning. Marge’s reply suggests that, instead, (3) the wine-making knowledge 

causes drunkenness, and (4) drunkenness impairs driving. Notice firstly the directed 

nature of the connections. Impaired driving is an effect of drunkenness, not its cause. So 

improving Homer’s driving skills will not cause him to sober up, but sobering up will 

improve his driving. This asymmetry lies at the heart of causal explanation. Secondly, 

note that the causal relations are acyclic: there is no path by which the winemaking 

course can indirectly cause the winemaking course. Finally, note that the two potential 

paths by which winemaking courses can cause poor driving (skill loss and alcohol) are 

competitive. By postulating an intoxication-based explanation for Homer’s driving, 



 5 

Marge is implicitly refuting Homer’s “limited capacity” explanation. This phenomenon 

is called explaining away, and plays an important role in understanding human causal 

reasoning.  

     Gopnik et al. (2004) refer to these graphs as causal maps and argue that they are an 

improvement over other explanations for learning causal relationships in the world as 

they allow for people to learn causal relations by observation, rather than relying solely 

on learning by intervention, in a trial-and-error fashion (on this topic, see also Lagnado 

& Sloman, 2004; Lagnado, Waldmann, Hagmayer, & Sloman, 2006). We would like to go 

one step further and suggest that in many instances, causal representations are formed 

without direct learning or observation. In our view, causal representations are also 

formed through participating in communicative activities, or being the target of certain 

communications. 

     In the present study, we use causal maps in much the same way as Gopnik et al 

(2004). As Gopnik et al point out, although causal maps may represent causal 

knowledge, they are not necessarily the only devices that perform such a function. 

Nevertheless, they are a likely candidate when it comes to learnt relationships. 

Importantly, while causal maps may encode deterministic relationships between 

variables, in general they encode probabilistic relationships. One significant difference 

between the processes for learning causal maps considered by Gopnik et al. and our use 

of causal maps here is that Gopnik et al. are concerned with inferring causal maps from 

observed events (the inverse causal problem). Clearly, this is both a conceptual and a 

computational problem. In contrast, we are here concerned with learning causal maps 

not from discrete data, but from discourse in which complete causal maps are already 

implicitly embedded.  

     Although we propose a genuinely novel approach to this problem, there has been 

some relevant work on the study of causal reasoning through language, both in 

cognitive psychology and other disciplines. Drawing on literature from cultural and 

medical anthropology, for instance, Lynch and Medin (2006) study the ways in which 

different groups construct causal chains about illnesses. The authors convincingly argue 

that, “illness explanatory frameworks are not necessarily tied to single cognitive 

domains and that the notion of cognitive domains is not sufficient to explain how people 

construct causal models of illness.” (p.306). Significantly, Lynch and Medin’s study drew 

on interview data, in which participants were asked explicitly to draw causal relations 

between factors. Other recent work in cognitive psychology has focused on learning of 

categories and causal relations through language. For example, in one study Sloman, 

Love, and Ahn (1998) asked participants to draw links between concepts with which 

they were already familiar. Similarly, much of the literature on conditional reasoning 

(e.g., Evans & Over, 2004) considers the implied role of causality in language. For 

instance, in the study of counterfactual conditionals (e.g., Over, Hadjichristidis, Evans, & 

Sloman, 2007), the role played by causality is central: while a typical conditional of the 

“if P then Q” kind often implies a causal relation in a linguistic form, the counterfactual 

version “if P had happened then Q would have happened” makes the causality 

somewhat more obvious. Finally, some recent studies have focussed on how causal 
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relationships are expressed linguistically (e.g., Wolff, 2003). Most significantly, Wolff, 

Song, & Driscoll (2002) conducted an important study that focussed on how models of 

causation capture distinctions that people make when using causal verbs, such as 

“hinder”, “help”, and “prevent”.  

     While we do not wish to detract from the valuable insights gained in these studies, 

we would like to emphasise some important differences to our approach. First, while 

Lynch and Medin’s (2006) data are also qualitative in nature, our study is quite different 

in that we focus on the process whereby causal beliefs are transmitted via language. We 

thus focus on the causal structures that are embedded in natural language, rather than 

eliciting them explicitly. As we demonstrate below, this has important consequences, not 

least of which is that we find the language about causal relationships in our domain to 

be highly ambiguous (something that would not have emerged, had participants been 

asked to state their beliefs about causal relations explicitly). Second, because of the 

experimental design of such studies as Over et al (2007), these statements are examined 

in isolation and under controlled conditions. In our study, we forgo the tight control 

offered by traditional experimental designs in favour of a ‘field study’ that offers a real 

world context (and we hope to demonstrate that this trade-off is worthwhile, given some 

of the patterns we are able to demonstrate through our analysis). We should also point 

out here that we use the term ‘natural language’ somewhat differently to the way it is 

employed by Over et al (2007) and authors of other similar studies. In particular, Over et 

al state that they use ‘natural language’ in their study of causal reasoning. However, 

while their study uses statements that are ‘natural’ in the sense that they are meaningful 

expressions written in standard English rather than, say, propositional logic, this is still 

very different from the kind of real-life environments in which we are interested. We are 

interested in natural language in the sense that it is naturally occurring. In fact, as our 

data consist of audio recording of genetic counselling sessions, they were not even 

elicited for the purposes of the study, but constitute a snap shot of how causal structures 

are embedded in and transmitted through language in real world contexts. Finally, the 

analysis we present below offers a level of detail that is not available in the application 

of software packages to large data sets. 

     In summary, Gopnik et al. (2004) argue that people, and in particular children, 

represent causal relationships in ways that can be described by causal Bayes nets. They 

also argue that individuals construct new causal representations through observing 

correlations and interventions. To a large extent, therefore, Gopnik et al. are concerned 

with the process whereby individuals come to acquire beliefs about causal relationships 

between certain phenomena. In contrast, we are not concerned with the question of how 

individuals come to construct causal representations from first principles. We agree with 

Gopnik et al.’s notion of causal maps, but argue that in many instances causal maps 

need not be constructed through observations of correlations, and interventions. In 

many cases, already constructed causal representations are conveyed to individuals 

through some process of communication. In the remainder of this paper, we focus on the 

causal maps that are embedded in one such process of communication. 

 



 7 

Causality and Familial Cancer 
 

In familial cancer clinics, individuals and families attend genetic counselling sessions to 
discuss the possibility that they may have a genetic predisposition towards specific forms 
of cancer. Based on these consultations, individuals and families have to make decisions 
about taking genetic tests, implementing risk management strategies, medical 
surveillance options, and disseminating risk information to other relatives (O’Doherty & 
Suthers, 2007). The domain is psychologically interesting for a number of reasons. 
Firstly, there is a great deal of uncertainty as to the ‘correct’ causal model for the 
development of cancer in any given individual. This uncertainty is reflected in the talk of 
counsellors and clients, which can often be seen to reflect a range of hypothesized causal 
models. Secondly, while both clients and counsellors possess a rich domain theory for 
cancers and related phenomena, not all of the variables of interest have well-defined roles 
in the domain. For instance, while genes, cancers and surgery are objects that fit easily 
into people’s existing knowledge via physical domain theories (e.g., Griffiths, Baraff & 
Tenenbaum, 2004), risks do not have a straightforward interpretation (O’Doherty, 2006). 
The ambiguity associated with the concept of risk introduces interesting variation in 
causal talk. As a result, in different parts of the conversation, a range of different causal 
structures are implied. Thirdly, while most of the speakers have some experience of 
cancer, either through personal experience or via close relatives, the causal factors behind 
cancer are sufficiently complex that most of the causal knowledge people possess must 
be inferred through linguistic interactions. These features contribute to the suitability of 
the domain of genetic counselling as a basis for an investigation into the latent causal 
structures employed in language. 
     Our data consist of transcripts from a number of genetic counselling sessions provided 
by the Familial Cancer Unit of a large Australian hospital. The complete corpus contains 
over 30 sessions. Extracts are presented in ‘semi-sanitised’ form. That is, while all 
utterances are shown as they appear in the recording, fine grain details such as pauses and 
changes in pitch are omitted; punctuation has been added to enhance readability. All 
names appearing in the extracts are pseudonyms; however, gendered pronouns accurately 
indicate speakers’ gender. Parts of the transcript are underlined to draw attention to 
particular features. 
     Our approach is to present a number of different extracts from the corpus, each of 
which suggests one or more implicit causal maps of the phenomena under consideration. 
Our analysis focuses on examining the range of causal maps that are consistent with the 
information presented in the extract. Of course, there is an interpretive element to this 
analysis which is unavoidable given the nature of our approach. Accordingly, caution is 
required, particularly when considering the extent to which a listener would actually 
“receive” a causal model from the speaker. Nevertheless, while the literal transmission of 
a causal model seems highly unlikely, we suggest that the language used by a speaker 
acts to constrain the set of plausible causal models and, therefore, the range of 
interpretations available to a listener. 
 

Linking Events, Risks and People 
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Individual differences pose a complex statistical problem for psychological researchers. 

No two people are ever likely to possess precisely the same competences for a particular 

task, so any data they furnish are unlikely to be drawn from the same statistical 

distribution. One consequence of this issue, well-known in the literature (e.g., Estes, 

1956), is that averaging across observations of different people can sometimes produce 

data that are unrepresentative of any individual. Yet, without some way of aggregating 

information across people, it becomes impossible to draw any reasonable conclusions 

about data. While there are a number of sophisticated solutions (e.g., Rouder, Sun, 

Speckman, Lu & Zhou, 2003; Navarro, Griffiths, Steyvers & Lee, 2006), the issue can 

hardly be said to be resolved.  

     The same tension can be observed in the causal language used in genetic counselling 

sessions. The prior knowledge available to speakers (or at least to counsellors) is 

epidemiological in nature and aggregates data from a large number of people. However, 

this information is useful to the client only insofar as it relates to the question of whether 

they personally will develop cancer.  Naturally, the extent to which these data generalize 

to the individual depends heavily on the kinds of causal processes that actually govern 

cancer. However, there is a great deal of uncertainty about these processes and, in all 

likelihood, the correct causal model is exceedingly complex. Given this, it is interesting 

to examine the causal assumptions that are implicit in the spontaneous speech of clients 

and counsellors. 

     A good example is provided by the following extract. The client has sought genetic 

counselling due to an unknown condition for which she had already undergone surgery. 

The passage occurs near the end of a session and follows a discussion in which the 

geneticist indicated to the client that, although he is not able to give her any more 

knowledge regarding the nature of her condition, he is fairly certain that it is not cancer 

related. Present in this session were the geneticist, a genetic counsellor (‘Jane’), the client 

and the client’s husband. 

 

Extract 1 

Geneticist. Now, just to warn you that (inaudible) for me and Jane (the genetic 

counsellor) and others, the risk of developing cancer is of the order of 1 in 3. 

That’s the standard risk you run, I run, we all run. I’m suggesting that your risk 

of getting cancer is about 1 in 3 as well. So, it’s not zero but it’s not necessarily 

higher than for anyone else. And at this stage I do not think that we need to do 

anything special for your children or your brothers or sisters (inaudible) special 

tests or whatever on them, eh, because I don’t at this stage have evidence of 

something that places them at risk of problems.  

 

Extract 1 illustrates a prototypical explanation given to clients by geneticists and genetic 

counsellors for cases in which there are no indications of a genetic predisposition to 

cancer. Consistent with Gricean maxims (Grice, 1975), the talk is as minimal as required 

to convey the ‘appropriate’ intuition, and no explicit reference is made to any actual 

causes of cancer. The only data seen to be relevant are those that govern base rate or 
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‘background’ risk. However, there is some ambiguity in the way in which these base 

rates operate. Initially, the geneticist refers to the ‘standard’ or baseline risk, which is 

represented as affecting most people: “me and Jane and others … the standard risk you run, I 

run, we all run”. The universality and invariance implied by this use of three-part lists 

(Jefferson, 1990) suggests that this statement should be interpreted in a manner 

consistent with the shared risk model shown on the left of Figure 2a. In this case, we 

postulate a single fixed risk, corresponding to the universal probability of developing 

cancer. Since the risk is shared by all people, the epidemiological data are assumed to be 

directly relevant to the estimation of the risk facing the client (“your risk of getting cancer 

is about 1 in 3 as well”).  

 

---- Figure 2 about here ---- 

 

In contrast, consider the phrasing that follows immediately after, suggesting that the 

probability that the client will develop cancer is “not zero, but it’s not necessarily higher 

than for anyone else”. This statement is not consistent with the shared risk model, which 

does not allow any variation in risks across people. If the speaker genuinely intended to 

convey an intuition that accorded with a shared risk model, this statement conveys no 

information. For the statement to serve a pragmatic purpose, the “implicit model” under 

consideration must allow for the possibility of individual differences in risk, a feature 

not present in the shared risk model. In order to do so, the causal map needs to be 

expanded, to cover the i.i.d. risk scenario illustrated in Figure 2b. In this model, people 

do not share risks: instead, everyone has their own unique cancer probability. However, 

without any other information specified, the counsellor suggests that the client faces a 

risk that is drawn from the same distribution as the rest of the population. In other 

words, the risks are independent and identically distributed (i.i.d.).  

     The shift from shared risk to identically distributed risks is seamless in everyday 

language, but highly significant in statistical terms. Firstly, it requires a shift in the 

notion of probability (O’Doherty, 2006; 2007). In the shared risk case it is simple to 

interpret the latent probability θ as a long-run frequency, as advocated by a number of 

authors (e.g., Von Mises, 1957). Once individual differences are introduced, this 

interpretation is unsustainable, since replications of once-off events are no longer 

possible. Rather, it now seems most natural to think of this probability as a state of 

uncertain knowledge (e.g., Jaynes, 2003). Indeed, after shifting to the i.i.d model, it is 

implied in this extract that ‘evidence’ can contribute to an individual having a different 

(increased) risk: increased or more certain knowledge can change the probability of 

cancer. This feature can be seen particularly in the use of the phrase “at this stage” which 

is repeated twice in the extract: the risk for the client (and their family) is represented as 

being reflective of the baseline risk until some ‘evidence’ changes their risk (“I don’t at 

this stage have evidence of something that places them at risk”). This notion of cumulative 

knowledge changing risks – the epistemic nature of risk – appears frequently in genetic 

counselling sessions and is certainly linked with the causal models implicit in the talk.  
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     Secondly, the shift from shared to i.i.d. risk models is significant because the ‘link’ 

between people is now somewhat more abstract. Rather than having a shared risk θ  that 

links a collection of outcomes x, we have some (unarticulated) background factors that 

link a collection of individual risks θ, each associated with only a single outcome. Under 

this elaborated view, the counsellor indicates that 1 in 3 is a kind of average risk, which 

will be expected to vary from case to case. 

     Curiously, the intuitive concept of risk appears to cover this shift with little difficulty. 

Thus, when considering this transition, it should be noted that the two accounts shown 

in Figure 2 are not really competitors. If the true causal structure for cancer is as complex 

as we suspect it is, everyday reasoning must rely on useful approximations to this 

(unknown) structure. The shift from a shared risk account to an i.i.d. risk account should 

thus be interpreted not as a change in belief about the true nature of cancer but as a shift 

in the level of description relevant to the discussion. This can be seen by considering the 

final sentence in the extract, in which the counsellor refers to the possibility of correlated 

risks faced by client's siblings. Implicit in this shift is the recognition that risks are not 

independently distributed when there is covariation in background causal factors (e.g., 

genes).  It is to this topic that we now turn. 

 

Linking Genes, Risks and Cancer 
 

In the analysis of the first extract, our aim was to illustrate the implied relationships 

between individual risk and population data, shown most clearly in a case where no 

apparent risk factors exist. However, in the context of genetic counselling it is common 

for explanations to invoke the genetic inheritance of risk. By doing so, speakers are able 

to elaborate on the models discussed earlier. By introducing genetic factors to the causal 

models, it becomes possible to allow structured relationships between people to emerge 

in the talk: shared genes lead to similar risks. Although this level of explanation is 

implicit in Extract 1 (in the reference to the possibility of suggesting ‘special tests’ for 

brothers and sisters), the following two extracts illustrate this more clearly. 

     Extract 2 comes from a session in which a client seeks advice about her chances of 

developing breast cancer. The extract is taken from early on in the session and follows a 

discussion about the process of medical surveillance (which would become relevant 

should the client be diagnosed as being at increased risk of breast cancer). Extract 3 

comes from a session involving a genetic counsellor, a client and her husband. The 

extract follows a discussion about the implications should the client test positive for a 

genetic mutation known to predispose the carrier to developing cancer. 

 

Extract 2 

Counsellor. We wouldn’t know if you’re going to get breast cancer in your lifetime. 

We know that this gene might place you at increased risk but we don’t have any 

magic way of working out whether you’re going to get breast cancer, though. 
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Extract 3 

Counsellor. And so in a short period of time information changes and that will be the 

same for the future. We know this much today but in a few years time we’ll know 

even more. So it is dependent on the day, to a degree. If there is things that we learn 

in the future that are important for you we always try and keep in touch. So, if you 

move again always let us know. Put us on your regular mailing list for change of 

address so that we can keep in touch down the track. tsk. If we find an abnormality 

in that gene it would mean that there is a risk further problems happening to you 

and that we can get a bit more specific about that whereas at the moment I haven’t 

told you anything. And that’s why it would be important that we see you again.  

 

When genes are used in causal explanations for the potential development of cancer 

there are at least three alternative mechanisms that can be attributed to them, illustrated 

in Figure 3. We refer to the model on the left as the strictly causal explanation, in which 

the individual’s genes are treated as an indirect cause of cancer: the presence of a 

particular genetic factor leads directly to an increased risk. An obvious alternative to this 

is a strictly symptomatic model, in which risks and genes share a common cause. This 

explanation, illustrated in the middle panel, implies that the observed genetic 

abnormality is caused by a set of latent factors f that also contributes to cause cancer. The 

third alternative is the correlational model illustrated on the right, in which risks are 

assumed to be correlated with genetic abnormalities, with no causal relationships 

represented between the two. Note that while these three are by no means exhaustive, 

they are fairly illustrative of the class of models we wish to consider: we assume that 

people’s domain theories do not allow a cancer outcome to cause a genetic profile, for 

instance. 

 

---- Figure 3 about here ---- 

 

Examining the data presented in Extracts 2 and 3 allows us to consider whether, and in 

which ways, such causal representations may appear in talk. For example, Extract 2 

provides a good example of an explicitly causal statement, through the suggestion that 

“this gene might place you at increased risk”. In a purely correlational or common cause 

context, it would seem strange to use this kind of language. One does not suggest that 

“yellowed finger tips might place you at increased risk of lung cancer” (since both are caused 

by smoking), or that “the year in which you took this IQ test might place you at risk of a lower 

score” (the “Flynn effect” correlation). It is not that either statement is difficult to 

understand, but both seem to violate basic pragmatics of everyday English. To be “placed 

at risk” by some factor (e.g., “this gene”) tends to imply direct causality and agency on the 

part of the factor. This causal representation in the talk would thus seem to best reflect 

the strictly causal model in Figure 3a. Contrast this language with the rather more 

noncommittal remark in Extract 3, in which the presence of “that gene … would mean that 

there is a risk of further problems.” In this context, the speaker does not suggest any 

noticeable causality, only implication. Similarly, when discussing the Flynn effect, it 
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seems appropriate to remark that “the fact that you took the test a long time ago might mean 

that you scored lower than the current norms would predict”. In this case, the phrase “would 

mean that” carries nothing stronger than the logical implication that might be suggested 

by a simple statement about conditional probability (Figure 3c).  

     One of the problems in learning causal structures through verbal communication is 

that the causal relationships between events and variables are rarely the explicit subjects 

of communication. Thus, causal structures are more often implicitly embedded in 

discourse, rather than overtly claimed. There is therefore an inherent ambiguity in many 

statements containing causal information. This ambiguity is particularly evident in talk 

about genes and cancer in genetic counselling sessions. Indeed, in both the extracts 

presented above the claims that could be understood as related to causation are often 

hedged (e.g., “this gene might place you at increased risk”). However, although speakers’ 

causal claims may be ambiguous (or even explicitly limited - “at the moment I haven’t told 

you anything”), their talk frames the causal representations that are subsequently 

available to the listener. Our claim, therefore, is not that particular statements literally 

encode a causal explanation, but that the pragmatic aspects of the conversation will tend 

to favour one version over another.  

 

Causal Interventions, Counterfactuals, and Repeated Outcomes 
 

The previous sections deal with some of the basic notions that appear to pervade even 

‘simple’ discussions of genes, risks and cancer. In a number of situations, the 

conversation becomes much subtler, and invokes some interesting counterfactual 

reasoning about the effect of medical treatments and the way that events might unfold 

over time. For example, certain events and interventions may change the probability of 

future events, while leaving the causal structure of variables unchanged. In other 

instances the structure of causal connections may be altered by an event or intervention. 

The discussion in this section considers some of these issues and is based on the 

exchange reproduced in Extract 4. The extract involves a counsellor and two clients, 

Karen and Terry, who are sisters. Terry has had breast cancer, which was treated 

successfully through non-surgical means.  

 

Extract 4 

Karen. As Terry has still, you know, she hasn’t had the [prophylactic] surgery, and 

she still has both breasts and that sort of thing, can it reappear in both, obviously 

she can have that gene in the other breast as well. But can it reappear in the same 

one? 

Counsellor. The inherited, I guess, that is the very real difference between inherited 

cancer and cancer that just occurs by chance. The chance of it occurring is quite 

small but once you start looking at these higher risk levels, you’re looking at an 

error, or that first step, being copied into all the cells in your body, ‘cause we 

assume that it’s made out of that single cell that you started from, it gets passed 
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down through the family, then it’s a part of every cell in your body. So, it means 

that the other breast cells also have that same increased risk for going on to 

develop into cancer. So, yes. That’s where the story of your Aunt Belinda, having 

breast cancer in two, you know, raises the stakes a bit for your father’s side of the 

family. Coz yes, the other breast cells have that increased risk. Now I should say 

as well though, if we’re talking about this error being copied into all the cells in 

the body, the cancer risk isn’t everywhere. The increased risk isn’t everywhere. 

You know, different genes function in different cells. Other cells have other genes 

that are expressed in them. So we are talking about quite specific risks. And so 

yes, that increased risk is there for breast cancer. I guess at this moment in time 

that’s of the smallest concern for, for you at this time. The largest concern is 

being able to stomp on those cells that are there. And get control of them. 

 

One interesting feature of this extract is that the counsellor appears to find Karen’s 

question very difficult to answer. The reason for this difficulty seems to be that, upon 

examination, the question turns out to be remarkably complex in terms of implied 

models of causality. Our discussion will therefore focus primarily on aspects of Karen’s 

question and possible underlying causal models, and will begin by clarifying some 

features of the question. 

     Initially, the question seems to be about whether it is possible for Terry, subsequent to 

treatment for her first cancer, to develop cancer in either of her breasts: “can it reappear in 

both”. That is, if we take ‘it’ to refer to cancer, the question can be read as relating to the 

possibility of the reoccurrence of cancer, and to the impact of the previous treatment on 

any possible future development of cancer. However, Karen proceeds (whether 

accurately or not) to answer her own initial question (“obviously she can have that gene in 

the other breast as well”), and to re-ask a slightly different question: “can it reappear in the 

same one?” Her response to her own question thus incorporates the assumption that 

Terry may still develop cancer in the breast that has, so far, been unaffected and changes 

the focus of the question on whether it is possible for cancer to reoccur at a previously 

affected site. 

     Given the complexity of Karen’s question, the underlying causal representations are 

also very complicated and need to incorporate a range of interrelated elements. These 

include: the causal relationship between genes and cancer; whether two distinct 

locations (i.e., both breasts) can have different risks of the same outcome (cancer); the 

potential for causal models to change over time with the incorporation of interventions 

(i.e., the effect of a treatment intervention on the subsequent risk of cancer in either 

breast, and the potential impact of a future prophylactic intervention); and 

conceptualizing cancer as a discrete series of potential event as opposed to a single 

event. We will introduce these various elements piecewise. 

     The first aspect we will consider is time, illustrated in Figure 4. In previous extracts in 

which the outcome under consideration is simply whether cancer develops (rather than 

when it develops) time has not been made explicitly relevant in the causal maps (see, for 

example, Figure 3a). If we now incorporate it, time can be accounted for by a simple 
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causal representation like that in Figure 4a. In this model, the outcome can be different 

at different times, however the causal structure (including the probability of the 

outcome occurring) remains unchanged across time. (Note that for the sake of simplicity 

we show only two points in time, with the variables x1 and x2 denoting the presence or 

absence of cancer at each point.) However, Karen’s question suggests that the risk of a 

new cancer in the same location at a different time may have changed over time (not just 

the outcome). The causal representation is thus expanded as shown in Figure 4b. 

 

---- Figure 4 about here ----  

 

The second elaboration required is location. The question requires differentiation 

between the risks associated with the left breast and the right breast, so the simplest 

(time-dependent) model for this is the one shown in Figure 5a. In this model, each breast 

is associated with a single risk, on the assumption that these risks are both shaped by 

genetic factors. The model thus allows for different outcomes for each breast across time. 

However, since the question implies the possibility that the risk for each breast can 

change over time, we need to elaborate on this model, and assume the existence of some 

unspecified breast-specific factor φ. Thus, in Figure 5b, each breast has some unique 

factor φ, which is influenced by genetic factors g, but with a risk of cancer θ, that can 

change over time. In other words, the expansion of the model from 5a to 5b captures the 

possibility not only of variation in outcomes over time, but also of variation in (breast-

specific) risks over time. 

 

---- Figure 5 about here ---- 

 

Although not a focus here, it is worth mentioning that the distinction between genetic 

factors, the breast-specific factor, and the risk of developing cancer may function to 

allow a causal representation that makes sense of the concepts of genetic abnormalities, 

genes, and genetic expression: although a gene exists in every cell, the expression varies 

as a function of cell type, and a specific abnormality might be highly localized. It seems 

to be this confusion that leads the counsellor to remark initially that “the other breast cells 

have that increased risk” (due to an inherited allele) but that “the increased risk isn’t 

everywhere” (due to differential expression), while holding to the distinction between 

“inherited cancer and cancer that just occurs by chance”.  

     Note that all of the discussion up to this point has served mainly to introduce 

sufficient conceptual machinery to allow us to make sense of Karen’s question. Using the 

six models shown in Figure 6, we attempt more specifically to illustrate the complex 

reasoning implicit in the question. The first panel (Figure 6a) aims to provide a rough 

approximation to the state of the world at the time of Terry’s initial diagnosis (assuming 

the cancer was in the left breast). At this stage, we have cancer in the left breast (x11=1) 

but not in the right (x21=0). Subsequent to that diagnosis, an intervention was staged in 

the form of some treatment, denoted T. Karen’s ultimate question can be seen as relating 

to whether it is possible for cancer to reappear in this same location (the left breast) 
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subsequent to it already having occurred and being treated. In part then, she is asking 

about the effect of the intervention T on the existing causal structure. 

      One simple possibility would be that T intervenes at the most local level, removing 

the cancer but doing nothing else. In this case, the intervention disconnects x11 from θ11, 

and resets x11 to 0. The future risk of developing cancer in this breast (or the other) is, 

therefore, not affected. This possibility is illustrated in Figure 6b, and would probably be 

the most likely candidate had the previous treatment been very local surgery. However, 

from all appearances, the treatment was something more abstract (probably 

chemotherapy or radiotherapy), and it is quite possible that Karen was uncertain about 

the precise effects of this kind of intervention. For example, a second possibility is that 

the treatment affected the current state of both breasts (chemotherapy would have just 

such an effect, though obviously real treatments are uncertain interventions), as 

illustrated in Figure 6c. In this case, T sets both x11 and x21 to 0, disconnecting the (past) 

state of both breasts from their usual causes. Again, in this case, the future risk of cancer 

for either breast is not changed by the intervention. 

     These two are not the only possibilities at hand. Figures 6b and 6c differ in terms of 

whether the intervention T is location-specific, but both assume that it is time-specific, in 

the sense that it does not affect the probabilities of future cancers in either location. An 

alternative way of conceptualizing the intervention is to assume that it alters the breast-

specific factors and, therefore, the future risk of cancer, which gives us the two models 

shown in 6d and 6e. The model in Figure 6d assumes that the treatment has a permanent 

(or maybe just persistent) effect, localized to the left breast. In contrast, the model in 

Figure 6e assumes that T makes a persistent change to both breasts. Although we know 

that Terry did not have surgery, a mastectomy (unilateral for Figure 6d, and bilateral for 

Figure 6e) is an example of an intervention that would affect breast-specific factors and 

change the future risk of developing cancer. (Please note that we have oversimplified 

this issue somewhat in Figures 6d and 6e by setting all probabilities to zero; even with 

prophylactic mastectomies there is still a small chance of breast cancer occurring.) 

 

---- Figure 6 about here ---- 

 

At this stage, based on Karen’s question, we have four possible means to think about the 

way in which Terry’s previous cancer was successfully treated. Understanding these 

causal models, and the variations between them, could have important consequences for 

the ways in which any future preventive act (such as prophylactic surgery) is 

considered. Importantly though, unless one has a clear understanding of the science 

underlying the treatment T, it will not be clear which of these four provides the best 

account of the situation that Terry faces when making the decision about whether to 

have prophylactic surgery (S). Clearly, if model 6e is correct, then there is no need for 

the preventative surgery at all, since Terry’s risk of future cancer in either breast is 

effectively removed, and any discussion of such surgery would be highly irresponsible. 

Returning to Karen’s question and, in particular, considering her statement that 

“obviously she can have the gene in the other breast as well”, provides some further framing 
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to understand the context in which preventive surgery might be considered. By 

presenting “the gene” as a (possibly location-specific) risk factor, this statement acts to 

rule out model 6e. That is, the statement serves the pragmatic purpose of restricting the 

latent causal structure to those possibilities that would be consistent with other models. 

However, models 6b and 6c allow future cancers to affect the original breast, while 

model 6d does not. Naturally, the potential benefits of the surgery S are dependent on 

which of these possibilities holds, as illustrated in Figure 6f. From the sisters’ 

perspective, the distinction between 6b and 6c is irrelevant, and so does not enter into 

Karen’s question. However, if either of these is the case, then a bilateral mastectomy is 

“required”, whereas 6d only “needs” a unilateral mastectomy to reduce all risks to 

(near) zero. This tension is illustrated in 6f, which uses dotted lines to illustrate possible 

effects of the interventions T and S (note that the past risk θ21 is disconnected from its 

usual cause, since the intervention S clearly cannot influence the past: strictly, the model 

should differentiate between the value of φ2 pre-S and post-S, but this would add yet 

another complexity to an already difficult concept). In summary, Karen’s question can 

be seen to reflect uncertainty about how to understand the causal role of a past 

treatment of breast cancer. Consideration of the uncertainties regarding various causal 

relationships implicit in her question is highly relevant to decisions about both her and 

her sister’s ongoing management of increased breast cancer risk. 

     In light of this discussion, it is not surprising that the counsellor’s response is difficult 

to follow, and appears not to address the content of Karen’s question very well. There 

are a range of variations and adaptations to the complicated causal models we have 

already considered implicit in the counsellor’s talk, which we will not consider here. 

Focusing only on Karen’s question, however, has allowed us to demonstrate some of the 

ways in which causal representations may be implicit in natural talk, and to consider 

briefly how such representations may act to frame or constrain subsequent talk and 

action (e.g., preventive health decisions).  

 

Inferring Causes from Effects 
 

The final extract we present illustrates a more explicit engagement with causation on the 

part of the speakers. That is, the speakers explicitly attempt to ‘model’ the cause of a 

particular occurrence of cancer in an individual. As mentioned previously, explicit 

engagement with the causal relationship between events and variables is relatively rare 

and often needs to be inferred from talk. When such explicit engagement does occur, it is 

clearly of interest in an examination of the causal reasoning apparent in natural 

language. Extract 5 comes from a session involving a counsellor, a geneticist, and the 

client. The exchange occurs in the context of a discussion about the difficulties inherent 

in attempting to definitively assign genetic causes to the occurrence of cancer and the 

potential benefits of genetic testing. 
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Extract 5 

Geneticist. Tsk. Thee, when we look at cancer overall, maybe 5 to 10% of the people 

with cancer have an inherited tendency or predisposition. It means that 90 to 

95% of people with cancer had bad luck. If you regard something as inevitable as 

bad luck 

Client. mm 

Geneticist. and Jane (the counsellor) will go through that (inaudible). Ehm, we 

recognize that there are some families where there’s this inherited tendency to 

develop certain cancers, and that that is what, we recognise that clinically by 

looking at family histories. So, there are guidelines if you have three close 

relatives who have breast or ovarian cancer, the chances are that there is some 

inherited tendency. The difficulty is that breast and ovarian cancer is sufficiently 

common that by chance you will come across the occasional family where three 

women have had those sorts of cancers and there is no genetic tendency. And we 

have great difficulty in that situation of sorting it out, who has a genetic inherited 

tendency that we might potentially find out about. Or that we might not. And 

who has really bad luck but not a bad gene. And the dilemma for us is that we 

can go down certain paths and do certain genetic studies that might confirm an 

inherited tendency, but we have no means of excluding an inherited tendency. 

There’s no genetic test for luck.  

… 

Geneticist. There may be a familial component, {mm} there may be an environmental 

component, there’s certainly a, well, (inaudible) there is a familial component, I 

just don’t know what it is {mm} or how strong it is {mm}. There’s a familial 

component to breaking your leg because you have genes that dictate how strong 

your bones are. There will be an environmental component, I just have no idea of 

what it is. And there will be a chance component. And we can’t measure that. 

Client. So if it was a positive result, a definite positive result 

Geneticist. Yes 

Client. Would you then talk about testing the children? 

Geneticist. Absolutely. Because then we’ve got something that, you know, we can 

provide usable information 

 

The nature of the causal models underlying the reasoning in this extract is 

fundamentally different from that examined in previous extracts. In previous extracts, 

causal reasoning was concerned with determining what outcome (either cancer or not) 

will result from various factors (genes, risk, previous cancer, etc.). In contrast, in Extract 

5, the causal explanation is concerned with outlining the particular processes (bad luck 

or bad gene) that may have led to a known outcome (cancer).  

 

---- Figure 7 about here ---- 
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Figure 7a captures the causal framework implied by the geneticist in the earlier part of 

the extract. It is important to observe here that c (chance or luck) and g (individual 

genetic factors) are not denoting two factors contributing to a particular (known) 

outcome but, rather, that they represent two alternative, mutually exclusive causal 

pathways whereby the outcome may have been achieved. That is, cancer is depicted in 

this causal model as being a result of either genes or luck, not a combination of the two. 

Which pathway is the correct one, however, is uncertain and is the subject of the debate. 

     In contrast, in the latter part of the extract, the geneticist shifts to an additive model in 

which the outcome is assumed to be the result of a combination of three known factors. 

Here, in addition to chance and genes, an environmental component (e) is introduced 

into the causal process. In this model (Figure 7b), rather than the pathway being 

uncertain, the weighting of each factor in contributing to the occurrence of cancer is 

unknown (i.e., how much each factor contributes to the eventual outcome of cancer). 

 

In summary, one of the uncertainties commonly dealt with in genetic counselling for 

cancer relates to the causal mechanisms that have led to particular instances of cancer. 

Extract 5 illustrates the construction of two similar causal frameworks for this situation: 

1) cancer is caused either by a genetic predisposition or by bad luck; 2) cancer has a 

genetic, an environmental, and a chance component, all of which interact to lead to 

cancer in a particular individual. These causal maps (Figure 7) are very distinct from 

those examined previously as the concept of ‘risk’ has disappeared entirely. In addition, 

it appears that the stochastic components that were previously bundled into the 

‘manifestation’ part of the chain (ө → x) have been extracted and postulated as an 

alternative causal process (‘chance’ or ‘luck’). It is also worth noting that although the 

models represented in 7a and 7b are conceptually quite distinct, the speaker in Extract 5 

was able to move between them without much difficulty (i.e., no conversational tension 

or ‘trouble’ is evident in the transcripts). Thus, the two implied models should not 

necessarily be seen as contradictory, but as complementary to the larger purpose of 

communicating an adequate level of understanding of familial cancer risk to clients. 

 

Discussion 

 

This paper has been concerned with illustrating some of the complex ways in which 

causal reasoning is embedded in natural language. Causal language provides people 

with a powerful tool with which to engage with questions about the relations between 

events, people and ideas. In a recent review, Sloman (2005, p21) notes that “In everyday 

language, causes and effects assume various roles. We say drugs cause addiction, sparks 

cause fire, and guns cause death”. In order to attach meaning to this kind of statement, 

he suggests (p24) that    

 

To say that A caused B seems to mean something like the following: A and B 

both occurred, but if event A had not occurred (and B had no other sufficient 
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causes), B would not have occurred either. The critical point is that a causal 

relation doesn't merely imply that events happened together but that there's 

some generating mechanism that produces an event of one time when engaged 

by an event of another type. So in some other world in which the mechanism 

had not been engaged by the cause, the effect would not have resulted. This is 

what distinguishes a causal relation from a mere correlation. 

 

There is a great deal of evidence suggesting that people learn such causal relations in the 

environment through both ‘pure’ observation and planned interventions (e.g., Steyvers 

et al, 2003). Indeed, most formal models of causal reasoning developed so far, such as 

Cheng’s causal power model (Cheng, 1997), are essentially restricted to cases of direct 

observation and intervention. However, broader discussions about causal reasoning 

(e.g., Sloman, 2005) suggest that we undergo similar learning processes in purely 

linguistic interactions. It thus seems desirable to complement existing knowledge of 

causal reasoning derived from experimental studies with analyses of how causal 

structures are expressed in naturalistic language (i.e., in settings not contrived by the 

researcher). To this end, this study has served to present an analysis of real-world causal 

talk. It is also interesting to note that while our methodological approach to causal 

reasoning differs significantly from typical quantitative experimental studies, our 

analysis shows that there is much similarity in the central ideas utilised in more 

traditional studies investigating causal reasoning (e.g., constraints of domain theory, 

reasoning based on interventions, etc.). One of our hopes is therefore that, beyond being 

interesting in their own right, studies of the kind we presented here can help to motivate 

further developments in experiments and theories about causal reasoning. 

     Although we have not yet explicitly investigated the way in which individuals take 

up causal relations latent in language, we argue that such causal models constrain (or, at 

very least, frame) subsequent ways of understanding causal relationships, as well as 

decisions and actions. That is, one of our central claims is that people learn from the 

causal representations of the world that are implicit in talk. We suggest that this is 

particularly so for those causal relationships between events, objects and outcomes 

about which it is impossible for most people to learn explicitly through observation (e.g., 

the link between genes and cancer). Our approach to studying causal reasoning, 

therefore, contributes to the literature on causal reasoning by demonstrating that: (1) 

complex causal relationships can be found in naturally occurring talk; (2) the 

representations implicit in talk are often varied and even contradictory; and (3) 

qualitative data constitute a valuable source of information about how individuals use 

causal models in naturalistic settings and it is possible to analyse such data with a high 

degree of rigour. One important shortcoming of the present study is that we do not yet 

know how and to what degree causal models embedded in language are taken up by 

listeners, or how their causal beliefs are modified as a result. One way in which this 

could be studied in the context of the domain of familial cancer is to apply our approach, 

which we illustrated through analysis of counsellors’ talk, to clients’ talk. Thus, to study 

the uptake of causal reasoning by clients, it is simply a matter of conducting a systematic 
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mapping of causal models implicit in clients’ talk and comparing these to the causal 

structures implicit in the health professionals’ talk. As it was our purpose in this paper 

to illustrate the principles of our analysis, space constraints made a more systematic 

study of this kind infeasible. However, we see the uptake of causal structures embedded 

in naturally occurring talk as an important area of future research. 

     A number of additional observations can be made of this study and our approach to 

causal reasoning. First, we should point out that the extracts presented in this paper do 

not represent a comprehensive treatment of the kinds of causal structures implied or 

conveyed to clients in this setting. Rather, they represent a ‘sample of convenience’ that 

we selected to illustrate a range of causal maps that can be inferred from spoken 

language. The reason for this approach is that our aim was not to document the process 

of genetic counselling, but to illustrate a novel approach to the study of causal 

reasoning. The domain of familial cancer is too complex for us to be able to provide an 

exhaustive catalogue of the causal structures employed in this setting in just one paper.   

     Second, we take a descriptive approach to the study of causal reasoning processes. 

We agree with Ahn and Kalish (2000) who maintain that normative models cannot 

account for everyday causal reasoning processes as most naturalistic domains are 

simply too complex. In addition, our approach to causal reasoning also emphasises the 

degree of ambiguity inherent in the stimuli that underlie the formation of causal beliefs. 

In particular, there is a degree of subjectivity in identifying causal structures that are 

implicit in language (particularly spoken language). This element of subjectivity is 

reflected in our own analysis. Not everyone might agree, for instance, that the speaker in 

Extract 3 favours a symptomatic over a causal model connecting genes and cancer. 

However, we see this subjectivity as supporting, rather than detracting from our 

argument. If even careful analysis of these conversations cannot determine one 

definitive model that is being implied, then how can clients, who have to make up their 

minds during the course of the conversation, be expected to infer the ‘correct’ model?  

     Third, although our focus was less on genetic counselling than on promoting a new 

approach to causal reasoning, there are practical implications to this kind of analysis for 

clinical practice. Causal reasoning has been shown to be an important factor in responses 

to risks. In a study by Senior, Marteau and Peters (1999) on familial 

hypercholesterolaemia (FH), it was shown that responses to screening varied depending 

on whether a positive test result was perceived as detecting raised cholesterol or 

detecting a genetic problem. In particular, parents of children who tested positive for FH 

were found to cope much better when the cause of the problem was seen to be high 

cholesterol, rather than genetic. Since these perceptions are formed through 

communication (and not ‘direct’ observation), studies of causal reasoning in naturalistic 

settings may also have significant practical benefits to offer. 

     Finally, we do not present our case as a way of arguing against conducting laboratory 

experiments on causal reasoning. Rather, our point is simply that everyday causal 

reasoning is far more complex than many experimental studies imply. Many people 

hold causal beliefs about domains in which they have had no direct experiences of 

causes and effects. These causal beliefs are formed as the result of some form of 
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communication. It stands to reason, therefore, that to understand causal reasoning, these 

processes of communication need to be studied. While we maintain that our approach 

adds another dimension to existing studies on the topic, we have not yet attempted to 

generate a more comprehensive theoretical account of causal reasoning. We are very far 

from being able to do so. However, we do believe that we have presented certain 

complexities that cannot be ignored and we present our arguments as a starting point to 

further discussion. 
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Figure 1: A directed acyclic graph that represents two competing explanations for Homer 

Simpson’s poor driving. 

 
 

  

 

 

 

 

 

 

                        (a)                                     (b) 

Figure 2: A shared risk model (a) versus an i.i.d. risk model (b). In both graphs, α denotes some 

shared background (implicitly corresponding to a “normal” genetic condition and environment), 

θ denotes a risk of developing cancer, and x denotes the eventual (binary) outcome. In both 

panels, the different subscripts indicate different people or ‘instances’. 

 
 

 

 

 

 

 

 

 

          (a)                              (b)                          (c) 

 

Figure 3: Elaborating the causally relevant background, using three simple models for genetic 

covariance. In all models g denotes the state of the “genetic condition”, f denotes unknown (or 

unspecified) causal factors, and as before θ and x denote risks and outcomes. In a strictly causal 

model (a), the genetic condition is explicitly viewed as the cause of the risk. In a strictly 

symptomatic model (b), the genes and risks share a common cause. Finally, in a correlational model 

(c), the causal connection between genes and risks is left deliberately ambiguous.  
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         (a)                                         (b) 

 
Figure 4: Two potential causal models for the appearance of cancer at different points in time, 

though expressed at the same location. Here, g represents underlying genetic factors, and θ and x 

denote risks and outcomes. Subscripts indicate specific outcomes (and, in panel (b), risks) at 

discrete points in time. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

                                   (a)                                                                                             (b) 

 

Figure 5: A richer representation of multiple risks and multiple cancers within a single 

individual. In the subscripts ij, i denotes location (left or right breast), j denotes outcomes (and 

risks for panel (b)) at different points in time. The left panel thus incorporates differential risks for 

multiple locations, but not multiple time points. That is, while the model allows for different 

outcomes over time, risk remains constant over multiple time points. In contrast, the right panel 

allows the risk to change over time in each breast, according to some (unspecified) breast-specific 

factor φ.  
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Figure 6: Developing a model to cover Karen’s question. 
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  (a)   (b) 

 
Figure 7: Gene or chance? Or an additive model? Panel (a) illustrates the representation of g 

(genetic factors; “bad gene”) and c (chance; “bad luck”) as competing causal pathways for the 

occurrence of cancer. Panel (b) illustrates an additive model in which g, c, and e (environmental 

factors) all contribute to the outcome. 
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