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Abstract 

 

 

 

 

 

1. Objective 

The objective of this research has been to develop more reliable models to predict the 

miscibility and interactions between CO2 or green-house gas (GHG) and oil (dead and live 

oils) over a wider range of conditions, based on data from different site sources, considering 

all the major variables affecting each modelled parameter, and for different injected gas 

compositions. The Genetic algorithm (GA), an artificial intelligence technique based on the 

Darwinian theory of evolution that mimics some of the natural processes in living organisms, 

was used to develop these models, based on GA software that has been developed in this 

work (as a modelling technique). While applications of GA have been used recently in the 

mathematical and computer sciences, its applications in the petroleum engineering, especially 

EOR research, have been limited. 

 

2. Motivation to Investigate the Potential of GA-based Models 

The detrimental effects of CO2 and/or GHG emissions from various industrial and 

human-activity sources on the environment are a major concern worldwide. This has resulted 

in an intensive global R&D effort to lower or mitigate the damaging impact of GHG on the 

environment. One potentially attractive and effective means of lowering the GHG emissions 

could be to capture them from their major sources of emissions and then sequester them in 

depleted oil and gas reservoirs while also enhancing oil recovery.  

Typically, a GHG stream, also referred to as “flue gas”, contains high percentages of 

CO2 in addition to other gases, notably, N2, NOx and SOx. The presence of high CO2 content 

in the flue gas, in particular, could make this option potentially viable, provided the 

miscibility and interaction properties between the injected gas and reservoir fluids are 

favorable. Therefore, it is critical to ascertain the likely miscibility and interactions 

parameters between the injected gas (CO2 or flue gas) and oil at different conditions to 
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determine the optimal miscibility and interaction conditions that contribute to oil viscosity 

reduction and oil swelling. They in turn enhance oil recovery through improved gas flooding 

process performance due to higher oil mobility, volumetric sweep efficiency, and relative 

permeability to oil.  

Often miscibility and interactions between injected gases and oils are established 

through “experimental methods”, “new mathematical models” based on phase equilibria data 

and equations of state (EOS), and available “published models”. Experimental methods are 

time-consuming and costly. Moreover, they can handle only limited conditions. Mathematical 

models require availability of a considerable amount of reservoir fluid composition data, 

which may not be available most of the time. Although, the published models are simpler and 

faster to use, one must however recognise that most of these models were developed and 

validated based on limited data ranges from site-specific conditions. Therefore, their 

applications cannot be generic. Another noteworthy point is that most of the interactions 

models have been developed using dead oil data and pure CO2 as an injected gas. Hence, they 

do not perform well for a wider range of live oils, as well as injected flue gases, which contain 

different components besides CO2.  

Consequently, there is a need to have more reliable miscibility and interaction models, 

which can handle a much wider range of conditions and different data sources. Also, these 

models should be able to consider all the major variables, different injected gas compositions, 

and live oil in addition to dead oil.  

 

3. GA-based Models Developed in This Research 

� GA-based model for more reliable prediction of minimum miscibility pressure 

(MMP) between reservoir oil and CO2: This model recognised the major variables 

affecting MMP (reservoir temperature, MWC5+, and volatiles and intermediates 

compositions). It has been successfully validated with published experimental data 

and compared to common models in the literature. It is noted that GA-based CO2-oil 

MMP offered the best match with the lowest error and standard deviation.  

� GA-based flue gas-oil MMP model:  For this model, the MMP was regarded as a 

function of the injected gas solubility into oil, which in turn is related to the injected 

gas critical properties (pseudocritical temperature and pressure) besides reservoir 

temperature and oil composition. A critical temperature modification factor was also 

used in developing this model. The GA-based model has also been successfully 

validated against published experimental data and compared to several models in the 

literature. It yielded the best match with the lowest average error and standard 
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deviation. Moreover, unlike other models, it can be used more reliably for gases with 

higher N2 (up to 20 mole%) and different non-CO2 components (e.g., H2S, N2, SOx, 

O2, and C1-C4) with higher ratio (up to 78 mole%). 

� GA-based CO2-oil physical properties models: These models have been developed 

to predict CO2 solubility, impact on the oil swelling factor, CO2-oil density, and CO2-

oil viscosity for both dead and live oils. These models recognised the major variables 

that affect each physical property and also properly address the effects of CO2 

liquefaction pressure and oil molecular weight (MW). These models have been 

successfully validated with published experimental data and have been compared 

against several widely used models. The GA-based CO2-oil properties models yielded 

more accurate predictions with lower errors than other models that have been tested. 

Furthermore, unlike the other tested models, which are applicable to only limited data 

ranges and conditions, GA-based models can be applied over a wider data range and 

conditions.  

� GA-based flue gas-oil physical properties models:  These models predict flue gas-

oil properties such as, flue gas solubility, impact on the oil swelling factor, and flue 

gas-oil density and viscosity while recognising all the major variables affecting each 

property. Also, the GA-based models recognised the different injected flue gas 

compositions. These models have been successfully validated with published 

experimental data and have also been compared against other commonly reported 

CO2-oil models, which are often used for flue gas-oil physical properties prediction. 

The GA-based models consistently yielded a lower prediction error than the models 

that have been tested. Furthermore, unlike other models, which are applicable only 

over limited data ranges and conditions, GA-based models can be valid over a wider 

range of data under various conditions. 

 

All the above-mentioned models, developed in this research, are particularly useful 

when experimental data are lacking and the project financial situation is a concern. In 

addition, these models can be useful as a fast track gas flooding project screening guide. Also, 

they can easily be incorporated into a reservoir simulator for CO2 or flue gas flooding design 

and simulation. Furthermore, they can serve as yet another useful tool to design optimal and 

economical experimental test protocols to determine the miscibility and interactions between 

the injected CO2 or flue gas and oils in gas flooding processes. 
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Introduction 

 

  

 

 

 

 

 

 

 

1.1. Introduction 

 

Due to the imbalance between the demand and available supply, and the high cost of 

finding new reserves, it is very important for the oil industry to enhance recovery from 

existing sources of oil. One of the important methods of enhancing oil recovery is gas 

flooding (e.g., using CO2, hydrocarbon gases, methane, air, and nitrogen). 

Among the various gas flooding processes, CO2 flooding has been received much 

attention in recent years. The detrimental effects of CO2 and/or green-house gas (GHG) 

emissions from various industrial and human-activity sources on the environment are a major 

concern worldwide. This has resulted in an intensive global R&D effort to lower or mitigate 

the damaging impact of these gases on the environment. One potentially attractive and 

effective means of lowering these gases emissions could be to capture them from their major 

sources of emissions and then sequester them in depleted oil and gas reservoirs while also 

enhancing the oil recovery. Typically, a GHG stream, also referred to as “flue gas”, contains 

high percentages of CO2 in addition to other gases (e.g., C1-C4, N2, NOx, and SOx). The 

presence of high CO2 content in the flue gas, in particular, could make this option potentially 

viable, provided the miscibility and interaction properties between the injected gas and 

reservoir fluids are favorable. 

CO2 or flue gas can displace oil using three displacement mechanisms: immiscible 

displacement, multi-contact miscibility, and first contact miscibility, as dictated by the 

pressure and temperature conditions. At a specific temperature and low pressures (below the 

gas-oil minimum miscibility pressure (MMP)), the displacement mechanism is immiscible 

displacement. While at pressures above the specified pressure (MMP), the displacement 
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mechanism is multi-contact miscible displacement. For impractically very high pressures, 

CO2 or flue gas displacement may be first contact miscible displacement (Jarrell et al. (2002) 

and Rathmell et al. (1971)). Theoretically, CO2 has the potential to recover all residual oil 

provided CO2 flood is carried out at or above the MMP at which CO2 and oil are miscible 

(Jarrell et al. (2002)). 

For the multi-contact miscible displacement, CO2 is enriched with intermediates (C2 –

C6) from the oil, where there is initially a period of immiscible displacement until multiple 

contacts (mass transfers) enable some components of the oil and CO2 to be exchanged until 

the oil-enriched CO2 cannot be distinguished from the CO2-enriched oil (Jarrell et al. (2002) 

and Rathmell et al. (1971)). This process is described as a condensing/vaporizing mechanism 

as shown in Fig.1-1 (Zick (1986), Johns and Orr (1996), and Jarrell et al. (2002)). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1-1. CO2 multi-contact miscibility process (after Jarrell et al. (2002). 
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concomitant environmental benefits through its disposal in the petroleum reservoir. 

Conventional use of CO2 or flue gas for improving oil recovery is mostly for miscible flood 

applications where displacement of oil from reservoir pore volume is achieved by the injected 

gas solvent action. This solvent action prevents formation of an interface between the driving 

and driven fluids through the formation of a bank of liquid that is miscible with both the 

reservoir and injected fluids.  

Key factors that affect gas miscible flooding are reservoir temperature, oil 

characteristics, reservoir pressure and the purity of injected gas itself. Field case histories 

from CO2 floods in the Permian Basin, West Texas suggest that CO2 purity should not be 

viewed as too rigid a constraint, as the use of low purity CO2 streams could also be economic 

and effective in enhancing oil recovery. In fact, certain impurities (e.g., H2S and SOx) could 

contribute towards attaining gas-oil miscibility at lower pressures and these components 

contribute to increased gas solubility in oil, which in turn increases oil mobility and relative 

permeability. In contrast, the presence of other components (e.g., C1, N2, O2) increases MMP 

and is detrimental to the injected gas solubility in oil, which results in the decrease of its 

effect on oil viscosity reduction and oil swelling factor and in turn causes less effect on the oil 

mobility and relative permeability. However, from an operational perspective, it is often the 

remaining low percentages of non-CO2 gases that are more difficult and costly to remove, 

requiring expensive gas separation facilities. Safety and compression cost considerations also 

justify near-miscible gas flood applications for some reservoirs. Therefore, the potential of 

injecting flue gases containing both CO2 and non-CO2 components (H2S, N2, SOx, O2, and C1-

C4) could be an attractive option, provided the flue gas composition does not affect the 

process performance adversely and their overall impact on the miscibility and interactions 

with oil, separation/purification at the surface, and subsequent re-injection is evaluated and 

well understood.  

 

1.2. Motivation to Investigate the Potential of GA-based Models 

 The knowledge of miscibility conditions and interactions between injected gas and 

reservoir oil in addition to their effect on oil recovery are very important for any gas flooding 

project. The major parameters that affect gas flooding are MMP and gas solubility in oil. Gas 

solubility results in oil viscosity reduction and oil swelling increase, which in turn, enhance 

the oil mobility and increase the oil recovery efficiency. A better understanding of these 

parameters is vital to any successful gas flooding project. Therefore, it is critical to ascertain 

the likely miscibility and interaction parameters between injected gas (CO2 or flue gas) and 

oil at different conditions to determine the optimal miscibility and interaction conditions that 
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contribute to oil viscosity reduction and oil swelling. They, in turn, enhance the oil recovery 

through improved gas flooding process performance due to higher oil mobility, volumetric 

sweep efficiency, and relative permeability to oil.  

Often the miscibility and interactions between the injected gas and oil are established 

through “experimental methods”, “new mathematical models” based on phase equilibria data 

and equations of state (EOS), and available “published models”. Experimental methods are 

time-consuming and costly. Moreover, they can handle only limited conditions. Mathematical 

models often demand the availability of a considerable amount of reservoir fluid composition 

data, which may not be available most of the time. Although, the published models or 

correlations are simpler and faster to use, however one must recognise that most of these 

models are developed and validated based on limited data ranges from site-specific 

conditions. Therefore, their applications cannot be generic. Another noteworthy point is that 

most of the interactions models have been developed using dead oil data and pure CO2 as an 

injected gas. Hence, they do not perform well for a wider range of live oils and also when flue 

gases are injected because such gases contain other components besides CO2.  

Consequently, there is a need to have more reliable miscibility and interaction models, 

which can handle a much wider range of conditions and different data sources. Also, these 

models should be able to consider all the major variables, different injected gases 

compositions, and live oil in addition to dead oil.  
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2.1. Introduction 

As discussed in Chapter 1, there is a need to have more reliable miscibility and 

interaction models, which can handle a much wider range of conditions and different data 

sources. Also, these models should be able to consider all the major variables, different 

injected gas compositions, and live oil in addition to dead oil. Therefore, this research was 

designed to satisfy this research gap and present more reliable models for miscibility and 

interactions between injected gas (CO2 or flue gas) and oil. This chapter explains the research 

objective and also presents an overview on the thesis outline. 

 

2.2. Research Objective 

The objective of this research has been to develop more reliable models to predict the 

miscibility and interactions between CO2 or flue gas and oil (dead and live oils) over a wider 

range of conditions, based on data from different site sources, considering all the major 

variables affecting each modelled parameter, and for different injected gas compositions. The 

proposed models are as follows: 

1. For miscibility pressures (MMP): 

• CO2-oil MMP for both dead and live oils, 

• Flue gas-oil MMP, considering wider range of the injected gas composition. 

2. For gas (CO2 or flue gas)-oil interactions, for dead and live oils: 

• CO2-oil solubility, 

• Impact on oil swelling factor due to CO2, 

• CO2-oil density, 
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• CO2-oil viscosity, 

• Flue gas-oil solubility, 

• Impact on oil swelling factor due to flue gas, 

• Flue gas-oil density, 

• Flue gas-oil viscosity. 

Genetic algorithm (GA), an artificial intelligence technique based on the Darwinian 

theory of evolution that mimics some of the natural processes in living organisms, was used to 

develop these models, based on GA software that has been developed in this work (as a 

modelling technique). It is to be noted that applications of GA have been started recently in 

the mathematical and computer sciences and its applications in the petroleum engineering, 

especially EOR research, have been limited. 

 

2.3. Thesis Overview 

The outline of this thesis is as follows: 

• Literature review of the factors affecting miscibility and interaction parameters of 

CO2 or flue gas and oil are presented. In addition, an explanation is introduced of the 

most widely used miscibility and interaction models (Chapter 3). 

• Literature review of GA and its characteristics and advantages are presented. Also, 

the previous applications of this tool in petroleum engineering are reviewed 

(Chapter 4). 

• Explanation about the GA modelling software that has been developed in this 

research as an efficient modelling technique (Chapter 5). 

• Presentation of the developed models for MMP, CO2-oil MMP and flue gas-oil 

MMP, is introduced (Chapter 6). 

• Presentation of the developed models for interactions between CO2 and oil (dead 

and live oils), notably, CO2 solubility in oil, impact on oil swelling factor, CO2-oil 

density, and CO2-oil viscosity is introduced. In addition, the models developed for 

interactions between flue gas and oil (dead and live oils), notably, flue gas solubility 

in oil, impact on oil swelling factor, flue gas-oil density, and flue gas-oil viscosity 

are presented (Chapter 7). 

• The conclusions and recommendations developed based on this research are 

presented (Chapter 8). 

• Appendices present the literature database used in this research for both miscibility 

and interaction models are included together with the developed GA software code. 



 

 

 

CHAPTER 3 

Literature Review-1: Modelling of the Miscibility 

and Interactions Between CO2 or Flue Gas and Oil 

in Gas Flooding Processes 

 

 

 

 

 

3.1. Introduction 

One potentially attractive and effective means of lowering CO2 and flue gas emissions 

could be to capture them from their major sources of emissions and then sequester them in 

depleted oil and gas reservoirs while also enhancing oil recovery. This option is potentially 

viable, provided the miscibility and other interactions between the injected gas and reservoir 

oil are favorable. Therefore, a better understanding of interactions between CO2 or flue gas 

and reservoir oil in addition to their effect on oil recovery are very important for any gas 

flooding project. 

As an example, the presence of some components (e.g., C2-C4, H2S, SOX) with CO2 in 

the flue gas is favorable for enhanced oil recovery because they contribute to increased gas 

solubility in oil, which in turn increases oil mobility and relative permeability. In addition, 

these components contribute towards reducing minimum miscibility pressure (MMP). In 

contrast, the presence of other components (e.g., C1, N2, O2) is detrimental to the injected gas 

solubility in oil, resulting in the decrease of its effect on oil viscosity reduction and oil 

swelling factor, and in turn resulting in less effect on oil mobility and relative permeability. In 

addition, these components contribute towards increasing the MMP. Therefore, it is critical to 

ascertain the likely interactions between injected CO2 or flue gas (with different 

compositions) and oil to determine the optimal conditions that contribute to the gas-oil MMP 

reduction, viscosity reduction, and oil swelling to enhance oil recovery and increase the 

efficiency of gas flooding processes. 
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This chapter presents an overview on the available models for CO2-oil MMP and flue 

gas-oil MMP. In addition, this chapter covers the available models for CO2 and flue gas 

interactions with oil (e.g., gas solubility, impact on oil swelling factor, and gas-oil density and 

viscosity). An overview on the factors affecting the miscibility and interactions parameters is 

also presented. 

 

3.2.  Modelling of CO2-Oil MMP and Flue Gas-Oil MMP 

Often MMP is obtained by three methods: experimental tests, predicting of MMP using 

commonly available models or correlations in the literature, and predicting of MMP by 

equations of state (EOS) studies.  

The most common experimental methods to determine MMP are slim tube and rising 

bubble apparatus (RBA) experiments. Slim tube experiments are the most commonly used 

experimental method in the oil industry. However, there are no standard and accurate test 

conditions and interpretation procedures for the slim tube experiments, as different 

organizations use different apparatus specifications and different interpretation procedures 

(Green and Willhite (1998)). In addition to the slim tube, RBA experiments are also used to 

determine MMP and their results correspond to those from the slim tube with less 

experimental time (Eakin and Mitch (1988), Dong et al. (2001b), and Elsharkawy et al. 

(1992)). In general, the experimental methods, especially slim tube tests, are expensive, time 

consuming, or may not be readily available. Thus, efforts are also made to predict gas-oil 

MMP using various methods such as the mathematical studies and the commonly available 

models in the literature.  

The mathematical studies are developed based on using phase equilibria data and an 

EOS to determine the MMP (Jarrell et al. (2002)). This approach requires availability of a 

considerable amount of reservoir fluid composition data, which may not be readily available 

most of the time and hence is a tedious approach. Furthermore, the calculations are not easy 

and require the application of certain algorithms and computer modelling, which is not 

commonly available in many of the situations. Also, for the EOS calculations, the equilibrium 

constants should be determined accurately to provide an accurate prediction, which could be 

difficult to achieve where the EOS may not be adequately accurate. Therefore, the EOS 

calculations must be calibrated using experimental PVT data, which can be difficult (Green 

and Willhite (1998)). As examples of the mathematical determination of MMP, Johns and Orr 

(1996) developed a multi-component phase equilibrium approach using the method of 

characteristics in absence of dispersion. They presented an approach that can be used to find 

the key tie line that controls miscibility and predicts MMP from an EOS. Also, Wang and Orr 
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(1998) presented a method to determine the MMP for displacements with an arbitrary number 

of components and two phase flow that is based on an analytical theory for one-dimension 

and dispersion free flow of a multi-component mixture. Furthermore, Ahmed (1997) 

presented a generalized method to determine MMP for a multi-component miscible 

displacement of oil by CO2 and other different gas injection (hydrocarbon gas and nitrogen) 

by using the modified Peng Robinson EOS (PR-EOS) in conjunction with a miscibility 

function.  

In addition to the mathematical calculations, the available published models also could 

be used to predict the MMP. Table 3-1 summarizes along with brief corresponding remarks, 

some of the commonly used MMP models available in the literature. As these models are 

used to predict CO2-oil MMP and flue gas-oil MMP, a brief overview of these properties 

follows. 

 

3.2.1. CO2-Oil MMP 

CO2-oil MMP is a function of oil composition and reservoir temperature (Holm and 

Josendal (1974), Alston et al. (1985), and Johnson and Pollin (1981)). All the previous studies 

and models stated that the reservoir temperature has a significant impact on the CO2-oil 

MMP. With regard to the oil composition, Rathmell et al. (1971) indicated that the presence 

of volatiles (e.g., C1) increases the MMP, while the presence of intermediates (e.g., C2-C6) 

decreases the MMP. Metcalfe and Yarborough (1974) suggested that a model should take into 

consideration the presence of both the volatiles and intermediates in oil as well as the 

reservoir temperature for it to be considered a general model for MMP prediction. Alston et 

al. (1985), too, had conducted a series of slim tube tests to prove that the MMP is affected by 

the presence of C1 and other volatile components (e.g., N2) in the oil. They found that the 

presence of these components increases the MMP, however, the MMP is lowered by the 

presence of the intermediates in reservoir oil (e.g., C2-C4, H2S, and CO2). Furthermore, they 

stated that consideration of C5+ molecular weight (MWc5+) is more important than the oil API 

gravity. Cronquist (1978), too, used the MWc5+ as a model variable in addition to the volatiles 

mole percentage (C1 and N2) and temperature. Moreover, Enick et al. (1988) developed their 

model using the MWc5+ to present the effect of oil composition on the MMP. 

 

3.2.2. Flue Gas-Oil MMP 

The factors that affect flue gas-oil MMP are reservoir temperature, oil composition, and 

injected gas composition. As stated before for CO2-oil MMP, the flue gas-oil MMP is also 
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affected similarly by the reservoir temperature, MWC5+, and oil volatiles and intermediates 

components.  

In addition, the existence of non-CO2 components (e.g., H2S, SOx, and C2-C4) whose 

critical temperatures are higher than that of CO2 (31.1°C) causes an improvement in the flue 

gas solubility in reservoir oil (Dong (1999) and Zhang et al. (2004)). This results in an 

increased injected gas pseudocritical temperature and a lower MMP. On the other hand, the 

existence of the components (e.g., N2, O2, and C1) with lower critical temperatures causes a 

reduction in the flue gas solubility in reservoir oil and has the opposite effect.  

Wilson (1960) stated that the pseudocritical temperature of the injected gas affects the 

MMP and it could be used as a variable in a miscibility model. Likewise, Rutherford (1962) 

found, empirically, that the hydrocarbon gas (HC)-oil MMP in HC miscible floods is a 

function of the pseudocritical temperature of the injected gas. Jacobson (1972) also suggested 

a similar scheme using the pseudocritical temperature as a model variable for acid gases (CO2 

with H2S)-oil MMP prediction. However, instead of using actual values, apparent critical 

temperatures were used for non-HC components as model variables. Alston et al. (1985) 

followed a similar approach to model the flue gas-oil MMP using the injected gas 

pseudocritical temperature, where apparent critical temperatures for C2 and H2S components 

(equal to 51.67°C for both of them) were also used to determine the pseudocritical 

temperature using the weight-fraction mixing rule. They found that the weight-fraction 

mixing rule gave better results than the mole-fraction method.  

Similarly, Kovarik (1985) presented a model that was developed also based on the 

pseudocritical temperature. In addition to the weight-fraction mixing rule, the mole-fraction 

rule was used to determine the pseudocritical temperature and the author found that the two 

methods presented similar results. Moreover, Sebastian et al. (1985) also used the mole-

fraction mixing rule to determine the injected gas pseudocritical temperature in developing 

their flue gas-oil MMP model. They also used an apparent critical temperature for H2S 

(51.67°C). Dong (1999) presented an approach similar to that of Sebastian et al. (1985) but 

instead of using apparent critical temperatures, a factor with non-CO2 components (H2S, SO2, 

O2, N2, and C1) was used in determining the injected gas pseudocritical temperature to 

represent the strength of these components in changing the apparent critical temperature of the 

injected flue gas relative to pure CO2.  

Eakin and Mitch (1988) used the injected gas pseudocritical pressure and the 

pseudocritical temperature in developing their model. They argued that the change of the 

rising bubbles’ shape in the RBA and also the low value of the interfacial tension between the 

injected gas and oil would occur only near the critical point. 
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3.3. Modelling of CO2-Oil Physical Properties 

As has been emphasized earlier, the properties of the CO2-oil mixtures play a critical 

role in the success (or failure) of a CO2 flood. Therefore, it is important that they are obtained 

as reliably and accurately as possible. These properties are usually obtained through some 

experimental studies or by employing some sort of modelling or correlation techniques. 

However, in many instances, an approach that combines both experimental and theoretical 

means is employed.  

The experimental approach involves a set of high-pressure volumetric and vapour liquid 

equilibrium tests such as the constant composition expansion (or the flash test), the constant 

volume depletion, the differential liberation, the separator tests, and some special laboratory 

tests such as the swelling tests (Klins (1984) and Ahmed (1989)).  

Mathematical studies derived by matching the experimental data and equations of state 

(EOS) provide more general PVT data and physical properties over a wider range of 

conditions (Dong and Paddock (1999) and Ahmed (1989)). The mathematical model 

efficiency depends on both the quality and quantity of the data, and the computation often 

require the use of certain algorithms and numerical modelling (Green and Willhite (1998)). 

The available correlations or models can only be used to predict the gas-oil mixture 

physical properties within their validity ranges. Table 3-2 summarises, along with brief 

remarks, some commonly used models available in the literature. As these models take into 

account the following CO2-oil physical properties, a brief overview of these properties is 

warranted here. 

 

3.3.1. CO2 Solubility 

CO2 solubility is basically affected by the saturation pressure (Ps), temperature (TR), and 

oil API gravity (Welker and Dunlop (1963), Simon and Graue (1965), Chung et al. (1988), 

and Srivastava et al. (1995)). As the solubility increases with the pressure and oil API gravity, 

its value decreases with the temperature. The other factors affecting CO2 solubility are oil 

composition
 
and CO2 liquefaction pressure, where gaseous CO2 is more soluble in oil than the 

liquid CO2
 
(Dyer and Farouq Ali (1989), Chung et al. (1986), Kokal and Sayegh (1993), and 

DeRuiter et al. (1994)). Therefore, for temperatures less than the CO2 critical temperature 

(Tc,CO2), the CO2 solubility increases with the pressure up to the liquefaction pressure, then 

levels off at pressures higher than the liquefaction pressure and becomes less sensitive to the 

pressure. 
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3.3.2. Oil Swelling Factor Due to CO2 Injection 

Oil swelling factor is defined as the ratio of CO2-sarurated oil volume at the reservoir 

temperature and pressure to the oil volume at the reservoir temperature and oil bubble point 

pressure. The swelling factor is mainly a function of CO2 solubility (Welker and Dunlop 

(1963), Simon and Graue (1965), Sankur et al. (1986), and Briggs and Puttagunta (1984)). 

Hence, the liquefaction pressure affects the swelling factor. Furthermore, as CO2 solubility in 

light oil is higher than that in heavy oil, the lighter oil swells more than the heavier oil 

(Srivastava et al. (1995)). Besides CO2 solubility, the swelling factor is also a function of the 

molecular size of oil molecules (Simon and Graue (1965)). 

 

3.3.3. CO2-Oil Density 

The effect of CO2 solubility on oil density is generally small and is more apparent in 

lighter oils than in heavier oils (Holm and Josendal (1974), Grigg (1995), and Sayegh et al. 

(1990)). Srivastava et al. (1995) stated that CO2-oil density changes linearly with the 

temperature. DeRuiter et al. (1994) also found that the oil exhibits an increased density due to 

CO2 solubility increase. However, they stated that this density increase might be a result of an 

increase in the system pressure as the density was apparently not impacted by the change in 

the solubility above the CO2 liquefaction pressure (at temperature less than Tc,CO2). 

 

3.3.4. CO2-Oil Viscosity 

Oil viscosity decreases severely with increasing CO2 solubility, resulting in increasing 

oil mobility, consequently causing an increase in the oil recovery. At temperatures less than 

Tc,CO2, CO2-oil viscosity decreases with the saturation pressure up to the liquefaction pressure, 

then levels off and decreases slightly at pressures higher than liquefaction pressure. At higher 

pressures, the viscosity returns to increase again because of the effect of the pressure and oil 

compressibility (Srivastava et al. (1995), DeRuiter et al. (1994), and Sayegh et al. (1990)). It 

is also noted that the oil viscosity reduction due to CO2 is higher at lower temperatures than at 

higher ones. Also, the reduction in the CO2-oil mixture viscosity is higher for more viscous 

oil (heavier oil) than for lower viscous oil (lighter oil) (Welker and Dunlop (1963), Srivastava 

et al. (1995), and Rojas and Farouq Ali (1985)). For the composition effect on the CO2-oil 

viscosity, many studies reported that the mixture viscosity is generally a function of its 

composition (Chung et al. (1986) and Kokal and Sayegh (1993)). 
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3.4. Modelling of Flue Gas-Oil Physical Properties 

Like the CO2-oil physical properties, flue gas-oil properties could also be determined 

through the experimental methods and the prediction methods (Mathematical calculations and 

available models).  

Most of the available models (as shown in Table 3-2) are developed essentially for the 

CO2-oil physical properties but are still used for flue gas-oil physical properties. 

Consequently, they are unable to give an accurate prediction for flue gas-oil properties, 

especially for the flue gases, which contain higher ratios (more than 5-10 mole%) of non-CO2 

components (Monger (1987)). As these models are used to predict the flue gas-oil physical 

properties, a brief overview of these properties follows. 

 

3.4.1. Flue Gas-Oil Solubility 

Monger (1987) stated that the change in flue gas solubility is connected to the change in 

gas critical temperature. The flue gas solubility increases when the flue gas streams contain 

intermediate hydrocarbons, such as C2-C4, besides SOX and H2S (cause higher flue gas critical 

temperature) (Zhang et al. (2004), Dong and Paddock (1999), and Monger (1987)). On the 

other hand, volatile gases such as C1, N2, and O2 reduce the flue gas solubility (cause lower 

flue gas critical temperature) (Zhang et al. (2004), Graue and Zana (1981), and Dong and 

Paddock (1999)). In addition, as stated before for CO2 solubility, the flue gas solubility is 

affected by the saturation pressure, temperature, and oil API gravity (Welker and Dunlop 

(1963), Simon and Graue (1965), Chung et al. (1988), and Srivastava et al. (1995)). 

The other factors affecting flue gas solubility are oil composition
 

and flue gas 

liquefaction pressure. Gaseous flue gas is more soluble in the oil than the liquid flue gas as the 

solubility becomes less sensitive to the pressure effect (Dyer and Farouq Ali (1989), Chung et 

al. (1986), Kokal and Sayegh (1993), and DeRuiter et al. (1994)). 

 

3.4.2. Oil Swelling Factor Due to Flue Gas Injection 

Oil swelling factor is principally a function of the flue gas solubility (Welker and 

Dunlop (1963), Simon and Graue (1965), Sankur et al. (1986), and Briggs and Puttagunta 

(1984)).
 
Thus, the existence of volatile gases (e.g., C1, N2, and O2) in the flue gas streams 

causes lower oil swelling due to the lower gas solubility in oil (Sankur et al. (1986) and 

Nguyen and Farouq Ali (1998)). On the other hand, the existence of other components (e.g., 

C2-C4, SOX, and H2S) causes higher oil swelling due to the higher gas solubility. Besides flue 

gas solubility, the swelling factor is a function also of the molecular size of oil molecules as 

stated above for the oil swelling due to CO2 injection (Simon and Graue (1965)). 
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3.4.3. Flue Gas-Oil Density 

With respect to flue gas-oil density, although the flue gas injection effect on the oil 

density is small, it is more pronounced in lighter oils than in heavier oils (Holm and Josendal 

(1974), Grigg (1995), and Sayegh et al. (1990)). Srivastava et al. (1995) stated that the flue 

gas-oil density is a function of the temperature. DeRuiter et al. (1994) also found that the oil 

density increases due to the flue gas solubility increase. However, they stated that this density 

increase might be a result of an increase in the system pressure. 

 

3.4.4. Flue Gas-Oil Viscosity 

Oil viscosity decreases severely with increasing flue gas solubility, resulting in 

increasing oil mobility, consequently causing an increase in oil recovery. Thus, the existence 

of volatile gases (e.g., C1, N2, and O2) in the flue gas streams causes less reduction in the flue 

gas-oil viscosity, while the existence of C2-C4, SOX, and H2S in the flue gas streams causes a 

greater reduction in the mixture viscosity due to the higher solubility of this stream in oil 

(Sankur et al. (1986), Frimodig et al. (1983), and Nguyen and Farouq Ali (1998)). The flue 

gas-oil viscosity is also a function of the temperature and saturation pressure (Srivastava et al. 

(1995), DeRuiter et al. (1994), and Sayegh et al. (1990)). Furthermore, the mixture viscosity 

reduction is higher for more viscous oil than for less viscous oil (Welker and Dunlop (1963), 

Srivastava et al. (1995), and Rojas and Farouq Ali (1985)). Also, many studies reported that 

the gas-oil mixture viscosity is generally a function of its composition (Chung et al. (1986) 

and Kokal and Sayegh (1993)). 
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3.5. Summary 

This chapter presents an overview of the available models, which were developed to 

predict the miscibility and interactions between CO2 or flue gas and oil (MMP and other 

interactions such as gas solubility, oil swelling factor, gas-oil density and viscosity). Most of 

these models can be applied over a small range of conditions and most of them ignored some 

of the basic variables affecting the modelled parameters. In addition, some of these models 

were developed based on dead oil rather than live oil data. Therefore, their predictions, 

especially for the live oil, are not adequate. For example, the Alston et al. (1985)
 
flue gas-oil 

MMP model performance for flue gas streams that contain N2 is inadequate; especially for 

injected gas streams containing more than 8 mole% of N2. Furthermore, their model is unable 

to deal with the existence of SO2 in the flue gas. For the Sebastian et al. (1985) flue gas-oil 

MMP model, its prediction accuracy was overly sensitive to the existence of N2 and/or SO2 in 

the injected flue gas. Also, the existence of high fractions of non-CO2 components (more than 

55 mole%) in the injected flue gas caused a lower accuracy in its prediction. 

For gas-oil physical properties models, most of the available models are developed 

basically for CO2 injection, and the majority of them have been developed for CO2-dead oil 

physical properties. Also, these models are limited in their application within certain data 

ranges and they are unable to accurately predict the effect of the injected gas on the live oil 

properties. The Simon and Graue (1965) models, for example, are limited to saturation 

pressure of 15.86 MPa and oil viscosity up to 1300 mPa.s and they predict mixture viscosity 

incorrectly, especially for lighter oils. The Emanuel (1985) model yields significant errors in 

the prediction of CO2-oil viscosity and it has been developed basically for heavy oils. Chung 

et al (1986) models also are limited to a saturation pressure of 20.7 MPa. Welker and Dunlop 

(1963) models are limited to an oil gravity range from 20 to 40°API for temperature limited to 

26.67°C. In particular, the preceding models do not adequately address the liquefaction 

pressure (at the specified temperature) effect on the solubility. Also, because these models 

have been developed for CO2-oil physical properties, they are unable to give an accurate 

prediction for the flue gas-oil physical properties, especially for the flue gases, which contain 

a higher ratio of non-CO2 components (more than 5-10 mole%). 

 

 



 

 

 

CHAPTER 4 

Literature Review-2: Genetic Algorithm (GA)- One 

of the Artificial Intelligence Techniques 

 

  

 

 

 

4.1. Introduction 

The genetic algorithm (GA), one of the artificial intelligence techniques, was invented 

by John Holland (1975) to mimic some of the natural processes observed in natural evolution. 

It is an example of the random method of optimisation and search. The random method is 

more popular because it allows to search, randomly, about the optimum value at many points 

on the search space at a time and to save the best values (Goldberg (1989)).  

Other optimisation and search methods are calculus-based and enumerative (Goldberg 

(1989)). The calculus-based method that search for a local optimum is subdivided into two 

main classes: direct, which moves in the direction related to the local gradient and explore the 

function to get the local optimum (hill climbing) and indirect, which depends on putting the 

objective function gradient as equal to zero and then solving the non-linear group of equations 

resulting from it. Both of these subclasses of the calculus-based method show lack in 

robustness because they are local in searching for optimum values and they search for the 

optimum in the near neighbourhood of a current position in the search space. Furthermore, 

they depend on the existence of derivatives. The enumerative method starts to search the 

objective function value at each point on the search space, going from one point to the other. 

This method also is not robust because of the lack of its efficiency, as many practical search 

spaces are too large to search point by point (one at a time). 

Compared to the preceding optimisation methods, the GA shows a higher robustness 

and efficiency as an optimisation technique. Therefore, GA applications in petroleum 

engineering have been introduced recently as an optimisation tool. An overview is presented 
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to give an idea about GA, its advantages, a description of the GA tool, how to enhance its 

performance, and its previous applications in petroleum engineering, as follows. 

 

4.2. What is the GA? 

GA is a computer based stochastic search procedure that was developed based on the 

Darwinian theory of evolution. The GA depends on the mechanics of natural selection, 

natural genetics, and rule of survival of the fittest (Goldberg (1989)). It can be used over 

wider ranges of optimisation and search procedures, including those that are difficult to 

handle by most of the conventional techniques (Jefferys (1993)). This tool involves a random 

generation of potential design solutions encoded on a string similar to the chromosomes of the 

biological system. This procedure accompanied by an evaluation method according to an 

objective function and constraints. Then, a refinement of the solution is applied using 

reproduction operators (e.g., crossover and mutation) to get the best solution of the problem 

comparable to which occur in nature. This refinement process is repeated until a stopping 

criterion is met, indicating the optimum solution (Goldberg (1989)). 

 

4.3. The Advantages of the GA 

The GA offers the following advantageous features over the traditional optimisation 

methods: 

1. The GA can deal with all types of objective and constraint functions (e.g., linear-non-

linear, convex-concave, continuous-discrete, differentiable-non differentiable 

functions, etc). On the other hand, some traditional methods are restricted to specific 

objective functions (e.g., Newton’s methods need the objective function to be 

differentiable) (Mostafa (2000)). 

2. The GA maintains a population of points and manipulates them to get better 

populations. Hence, the GA can explore many positions on the search space at the 

same time, which increases the chance of global optimum discovery, instead of going 

from point to the other (one point at each time) on the search space (traditional 

methods) (Goldberg (1989) and Mostafa (2000)). 

3. The GA works by exploration (search for population of points not single point) and 

exploitation (search on the optimum at each position) of the search space, in contrast 

to most traditional optimisation methods, which are based on exploitation (Goldberg 

(1989) and Mostafa (2000)). 
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4. It works on encoding of the problem parameters on strings (not with the parameters 

themselves), which increases the GA robustness (Goldberg (1989) and Mostafa 

(2000)). 

5. It performs very well for complicated and large optimisation problems (Badru (2003) 

and Abourayya (2001)). 

6. This algorithm is computationally uncomplicated and powerful in its search for 

optimum values (Stender (1993)). 

7. The GA solutions are less likely to be untruthful, as the problem does not need to be 

“bowed” to fit the solution method (Jefferys (1993) and Goldberg (1989)). 

8. The GA uses probabilistic rules not deterministic rules (Goldberg (1989)). 

 

4.4. The GA Tool Description 

The operation of the GA starts with a population of random chromosomes to present 

different random solutions of a specific problem. It then starts to test and evaluate these 

chromosomes based on a certain evaluation function. By applying certain reproduction 

techniques, the GA continues to improve the population of solutions until a stopping criterion 

is reached, indicating the optimum solution. These general steps in performing the GA 

operation are shown in Fig. 4-1. A detailed overview on different components of the general 

steps of the GA tool is presented as follows. 

 

4.4.1. Initial Population 

The initial population is a set of random solutions for a specified problem represented as 

strings of chromosomes. There are different types of chromosomes (single dimension or 

multidimensional chromosomes) and each chromosome contains a number of genes, which 

encode the problem parameters on the chromosome string. As shown in Fig. 4-2, the common 

approaches to encode the problem parameters are binary strings, real numbers, and letters or 

characters (Marczyk (2004)). For the binary encoding system, a sequence of 1’s and 0’s 

encodes the solution parameters on the chromosome. This method is simple to generate and 

manipulate and easy for reproduction operators applications. On the other hand, this method 

is not efficient for large-scale problems with large search space, as these problems will need 

too large binary strings. In addition, there may be a precision loss in the parameters values 

because of the conversion to the binary system. For the other encoding methods (real number, 

letters, or characters), the solution is encoded on the chromosome with real numbers, letters, 

or characters, respectively. These methods, especially the real encoding method, are more 

efficient as they need less computer memory and there is no loss in precision due to the 
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conversion to binary numbers or other values. In addition, they are simple and easy to apply, 

especially, for large-scale problems with large search space, as long strings will not be 

required in this case (Michalewicz (1992)). 

 

 

 

 

 

Generate initial random population 
 

 

Evaluate each chromosome (determine fitness value)  

(Evaluation Function) 
 

 

 

Select two parent chromosomes 

(Parent Selection) 
 

 

 

Produce new offspring chromosomes (children) 

(Crossover & Mutation) 
 

 

 

Evaluate each offspring (determine fitness value)  

(Evaluation Function) 

 
 

Return certain chromosomes of the parents and 

children chromosomes to the population 

 (Deletion Process) 

 

 

 

 

                                  No                                     Stopping Criterion              Yes    The fittest 

                                                                                                                                           chromosome in the 

                                                                                                                                           population presents 

                                                                                                                                           the solution                                                                              
                                                                                                                         

                                                                                                                        

 

Fig. 4-1. A standard flow chart of the GA (after Cvetkovic (2000) and Mostafa (2000)). 
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After designing and encoding the specified problem parameters on the GA 

chromosome, the population size should be selected. If the population size is too small, the 

reproduction operators will have low opportunity to be applied and only a limited part of the 

search space will be explored. On the other hand, if the population size is too large, there will 

be unnecessary slow performance of the GA (Mostafa (2000)). The typical population size is 

between 30 to 100 individual chromosomes (Karr (1991)). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4-2. The parameter encoding methods on the GA chromosome (After Abourayya (2001) 

and Marczyk (2004)). 

 

 

 

4.4.2. Evaluation 

The evaluation function plays the same role of the environment “Survival of the fittest”, 

ranking the problem solutions in terms of their fitness, as each chromosome is assigned a 

value called the fitness value according to the problem objective function. The closer the 

chromosome to the optimum, the higher is the fitness value (Cvetkovic (2000)). There are 

three fitness methods: fitness as evaluation (converting the chromosome evaluation into 

fitness values), windowing (assign each chromosome a fitness value equal to the amount that 

it exceeds the minimum chromosome evaluation value in the population), and linear 

normalisation (order chromosomes in a descending evaluation) (Davis (1991)).  

 

 

 

 

Parameter encoding methods on GA 

chromosomes 

Binary strings  

10101010101 
Real numbers  

1.2, 0.44, 3.2 

Letters  

A, B, C 

Characters   

Red, Pink, Green 
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4.4.3. Selection Techniques 

The selection process provides the chromosomes, which are chosen from the population 

to produce the new offspring for the next generation (using the reproduction operators) to 

improve the population fitness (make the problem solution move in the direction of the 

optimum solution). Individual chromosomes are chosen according to their fitness values and 

the fittest chromosomes have the higher probability to be chosen (Davis (1991)).  The most 

common selection methods are roulette wheel selection, tournament selection, scaling 

selection, elitist selection, rank selection, generational selection, steady state selection, and 

hierarchical selection (Marczyk (2004)).  A brief overview of these methods follows. 

 

4.4.3.1. Roulette Wheel Selection 

Roulette wheel method is a random selection method that depends on the selection of 

each parent (selected chromosome) according to its fitness. Thus, the chance of a 

chromosome to be selected from the population is proportional to the amount by which its 

fitness is different than the other population chromosomes. The fittest chromosome has a 

higher probability, but there is no certainty to be selected. On the other hand, there is a low 

probability for the lower fitness chromosomes to be selected, as these chromosomes may 

contain some useful features (genes). Over a number of generations, the lower fitness 

chromosomes will be driven out and the fittest chromosomes will survive (Marczyk (2004), 

Abourayya (2001), and Mostafa (2000)).  

Hypothetically, this method can be presented as a roulette wheel game, as each 

chromosome has a slice area on the wheel proportional to its fitness (the higher fitness 

chromosomes has the higher slice area, as shown in Fig. 4-3). From Fig. 4-3, Chromosome 5 

is the fittest chromosome and occupies the largest slice on the roulette wheel, whereas 

chromosomes 1 and 4 have the lowest fitness and have correspondingly smaller slices within 

the roulette wheel. In this selection technique, the chromosome that roulette wheel spinner 

lands on its slice is chosen as the parent to produce the next offspring. Therefore, the higher 

slice area of the chromosome, the higher is the probability for the wheel spinner to land on its 

slice, and consequently, to be chosen as a parent to produce the next offspring (Marczyk 

(2004), Abourayya (2001), and Mostafa (2000)). 
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Chromosome 5

 

Fig. 4-3. Roulette wheel showing the proportional of each chromosome slice area with its 

fitness value (after Abourayya (2001)). 

 

 

4.4.3.2. Tournament Selection 

In the tournament selection method, the population is divided into subgroups randomly 

without duplication of the chromosomes between these groups. The chromosomes from each 

group compete against each other and the fittest chromosome is chosen to reproduce the next 

generation offspring (Marczyk (2004)). This selection method is slower than other methods 

(e.g., roulette wheel method) because of executing many random selections (Abourayya 

(2001)).   

 

4.4.3.3. Scaling Selection  

When the average population fitness is high and the selection pressure increases (when 

all chromosomes have high fitness values and there are a small differences between them, 

after applying the reproduction process to many generations), the scaling method can be 

helpful in making the best selection. Therefore, this method could be used in combination 

with other selection methods (Marczyk (2004)). 

 

4.4.3.4. Elitist Selection 

Elitist selection method confirms the selection of the fittest chromosomes from each 

generation. This method is not purely used in most of the situations, but instead a modified 

a1001984
Text Box

a1172507
Text Box
 
                          NOTE:  
   This figure is included on page 38 
 of the print copy of the thesis held in 
   the University of Adelaide Library.



4. Literature Review-2: Genetic Algorithm (GA)- One of the Artificial Intelligence Techniques 

 

39

 

form is used, as the best or few of the best chromosomes from each generation are selected as 

a back up (if there is no better chromosomes are produced) (Marczyk (2004)).  

 

4.4.3.5. Rank Selection 

In the rank selection method, a numerical ranking is appointed to each population 

chromosome based on its fitness. Thus, the selection procedure is applied based on the 

chromosomes ranking, not on their fitness differences. This technique helps in preventing 

fittest chromosomes from dominance early at the expense of the less fit chromosomes, which 

may have a good genes on them (Marczyk (2004)).  

 

4.4.3.6. Generational Selection  

In the generational selection method, the selected chromosomes from each generation 

become the whole next generation. Hence, no chromosomes are preserved between 

generations (Marczyk (2004)). 

 

4.4.3.7. Steady-State Selection 

For steady-state selection method, the selected chromosomes from each generation 

return back to the previous generation replacing some of the lower fitness chromosomes to 

form the next generation. Hence, some chromosomes are preserved between generations 

(Marczyk (2004)). 

 

4.4.3.8. Hierarchical Selection 

In the hierarchical selection method, the chromosomes pass through multiple selection 

criteria in each generation. Hence, it uses faster and lower level evaluation for the majority of 

chromosomes that show little or no promise and only uses more rigorous and more 

computationally expensive fitness evaluation for the fittest chromosomes who survive to the 

higher levels (Marczyk (2004)). 

 

4.4.4. Reproduction Operators 

After the selection process and selecting the fittest chromosomes to produce the new 

generation, reproduction operators start to work on the selected chromosomes to produce the 

new offspring. The purpose of the reproduction operators is to allow the possibility of 

producing new and fittest chromosomes to improve the population fitness (the group of 

solutions). The most common reproduction operators are: crossover, mutation, deletion, and 

inversion operators. An overview on these operators follows. 
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4.4.4.1.Crossover 

Crossover operator is defined as producing new chromosomes (offspring) from the 

current generation (population) through selecting two chromosomes (parents) and exchanges 

some of the genes between each parent and the other. Thus, the new offspring takes its 

features from its parents with a probability that the new offspring will get good parts from its 

parents and have higher fitness to improve the solution (Cunha (1999)). The crossover is 

applied with a certain probability (crossover rate), which determine how often the crossover 

will be performed. For crossover probability equal to one, all the new offspring will be 

produced by crossover. On the other hand, if this probability is equal to zero, whole new 

offspring will be produced from exact copies of the parents’ chromosomes (Abourayya 

(2001)). There are different types of the crossover operator as follows. 

 

4.4.4.1.1. One-Point Crossover 

In this type of crossover, a random point is selected on the two parent chromosomes and 

then an exchange in the genes between the two parents occurs between this point and the end 

of each parent chromosome to produce two new offspring (Cunha (1999) and Marczyk 

(2004)). An example of the one-point crossover method is presented in Fig. 4-4, as two 

parents’ chromosomes are swapped after a randomly selected point (e.g., between the third 

gene and fourth gene), creating two new offspring that hold mixture of properties (genes) 

from each parent. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4-4. One-point crossover operator example (after Marczyk (2004) and Cunha (1999)). 

 

0 1 1 1 0 1 1 

1 0 1 0 1 0 1 

1 0 1 0 0 1 1 

0 1 1 1 1 0 1 

Parent 1 

Parent 2 

Child 1 

 Child 2 
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4.4.4.1.2. Two-Points Crossover 

The difference between two-points crossover and the one-point crossover operator is 

that instead of selecting one point on each parent chromosome (as in the one-point crossover), 

two points are selected randomly and the genes between these two points are swapped 

between the two parents to produce two new chromosomes (children) (Davis (1991)). An 

example of the two-points crossover method is presented in Fig. 4-5, as two parents’ 

chromosomes are swapped between randomly selected two points, creating two new offspring 

that hold mixture of properties from each parent.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4-5. Two-points crossover operator example (after Davis (1991) and Cunha (1999)). 

 

 

 

 

 

 

 

4.4.4.1.3. Uniform Crossover 

For uniform crossover operator, each gene on the two children (offspring) is chosen 

randomly from one of the two parents analogous position genes (Davis (1991), Cunha (1999), 

and Marczyk (2004)). Fig. 4-6 presents an example of the uniform crossover operator.  

 

 

 

0 1 1 1 0 1 1 

1 0 1 0 1 0 1 

0 0 1 0 0 1 1 

1 1 1 1 1 0 1 

Parent 1 

Parent 2 

Child 1 

Child 2 
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Fig. 4-6. Uniform crossover operator example (after Cunha (1999)). 

 

 

 

 

 

 

4.4.4.2.Mutation 

In the mutation reproduction operator, one chromosome gene is selected randomly and 

then its value is changed.  The change in the gene value also occurs randomly. The benefit of 

the mutation technique is to prevent the GA from falling into local optimum positions by 

destruction of one gene on the chromosome and change its value randomly. The mutation 

occurs with a certain probability, which should be a low probability to prevent the GA from 

losing the good solutions. This probability is determined based upon experimental evaluation 

(Cunha (1999)). Fig. 4-7 presents an example of the mutation operator.  

For real number coded chromosomes, genes values could be replaced using a memory 

factor. This is different than the binary coding in which the gene value will be 0’s or 1’s. 

Hence, for the real number coding methods, the new gene value could be: 

 

New Value = λ×Old Value + β× Random Value, 0 ≤ λ ≤ 1 and 0 ≤ β ≤ 1                          (4-1) 

 

4.4.4.3.Deletion 

After producing the new offspring, chromosomes have a probability of being inserted 

back inside the population. There are many methods to reinsert the chromosomes (parents 

and/or offspring) in the population as follows. 

Parent 1 

Parent 2 
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Fig. 4-7. Mutation operator example (after Cunha (1999)). 

 

 

 

 

4.4.4.3.1. Generation Replacement 

In this deletion method, the new offspring replaces the old population (parents) 

(Fonseca (1995) and Davis (1991)). Therefore, many of the best individuals may be lost 

(Mostafa (2000)). 

 

4.4.4.3.2. Steady State Replacement 

In this method, the new offspring has the opportunity to compete with its parents. A 

lower number of offspring (typically, one or two) has the possibility to be inserted into the 

population replacing: random members from the population, their own parents, the oldest 

members in the population, or the lower fitness members in the population. This replacement 

occurs unconditionally or only if the offspring is better than the replaced chromosomes 

(Fonseca (1995)). 

 

4.4.4.3.3. Steady State without Duplicates 

This method is similar to steady state replacement, except that the offspring, which is a 

duplicate of any chromosome in the population, is removed (Davis (1991)).  

 

4.4.4.4. Inversion Operator 

Inversion operators swap the information inside the chromosome. This operator is used 

to reorder the genes inside the chromosome to increase the potential for evolution especially 
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when the objective function changes with time. In this operator, two points are randomly 

selected and the genes between them are interchanged (Cunha (1999)). Fig. 4-8 presents an 

example of the inversion operator. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4-8. Inversion operator example (after Cunha (1999)). 

 

 

 

4.5. Performance Enhancement of the GA Tool 

There are several methods to enhance GA performance. This enhancement can be made 

through adapting the GA operator probabilities (e.g., crossover and mutation probabilities), 

selecting a suitable encoding technique for each problem, and/or using hybrid algorithms (GA 

with other optimisation techniques) to take advantages of both of them.  

Because the crossover and mutation are the most important operators in the GA, thus 

adapting their execution by controlling their probabilities is vital to enhance the GA 

performance. One method to do this is through using higher crossover and mutation 

probabilities for lower fitness chromosomes and lower probabilities for higher fitness ones. 

This method will help improve the exploration (exploring different area on the search space) 

and exploitation (get the optimum value in the selected area) performance in the GA. Also, to 

adapt the crossover and mutation operators, the GA can start its run with a higher value of the 

crossover probability to explore a wider area on the search space while starting with a lower 

mutation probability. This happens because the mutation is not very useful at the start of the 

GA run, as the algorithm needs to explore wider area on the search space. As the GA run 

proceeds, the crossover probability starts to be lower and mutation probability starts to be 

Old chromosome 
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higher, resulting in gradual convergence of the best solutions in the explored regions. Then, 

the GA can find the optimum solution from these regions (Mostafa (2000)). 

When selecting the suitable encoding schemes, the binary encoding method is useful for 

certain problems but, on the other hand, it has some disadvantages that increase with large 

search space problems. The real number encoding method is also useful for some problems 

like those problems with large search space, but may be not the best option for other 

problems. Therefore, selecting the convenient encoding scheme for each problem can enhance 

the GA performance (Mostafa (2000)). 

To enhance the GA performance using a hybrid algorithm of GA and other optimisation 

techniques, a quick algorithm, which can be applied to the specified problem, can be used to 

present its results as initial results for the GA population instead of using a random 

population. This can enhance the GA convergence rate. On the other hand, the GA can start 

the search process to explore the search space and determine the area, which contains the 

optimum solution. Then, a local optimisation method (e.g., gradient method), which can be 

applied to the specified problem, can be used to find the optimum solution in this explored 

area. This method also can enhance the convergence rate of the GA (Mostafa (2000)). 

 

4.6. GA Applications in Petroleum Engineering 

GA applications in petroleum engineering have started recently as an optimisation tool 

in the production engineering, reservoir engineering, drilling, stimulation, logging, and gas 

storage. This section presents an overview on some of the GA applications in petroleum 

engineering as follows.   

 

4.6.1. Use of GA in Production Engineering 

GA was used, as an efficient optimisation technique, to develop an optimisation model 

for the Kuparuk River field production, located on the North Slope of Alaska. The GA-based 

model included well performance, surface lines, and facility models. This model was used to 

compute the oil rate and to optimise the wells and gas lift allocations to production (Stoisits et 

al. (1999)). In addition, the GA was used to optimise a gas lift process in the oil wells to 

increase the quantity of the produced liquid. This tool was used to optimise the gas injection 

rate distribution for every well considering a restriction of the gas supply for the field 

(Martinez et al. (1994)). Also, Palke and Horne (1997) used the GA to optimise the net 

present value (NPV) of the flow streams by optimising the wellbore configuration considering 

the gas lift configuration and change of the parameters with time.  
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Furthermore, the GA was used to optimise the oil and gas condensate production system 

through selection of the optimum size of the well tubing (single size or dual size), the depth at 

which the tubing size should change (in case of dual size tubing), choke size, number of 

separators, and separator pressures (Tavakkolian et al. (2004)).  

 

4.6.2. Use of GA in Gas Storage 

GA was used to provide an optimum treatment design for the stimulation processes in a 

gas storage field in Ohio. Also, it presented an optimum stimulation combination of the 

candidate wells using several economic parameters (Mohaghegh et al. (1998)). In addition, 

the GA was used in combination with reservoir simulation for a natural gas storage field 

development-planning problem (Johnson et al. (2000)). 

 

4.6.3. Use of GA in Hydraulic Fracturing 

To maximise post fracture production, GA was used to optimise the fracture treatment. 

A combination of data mining with GA, as a fracture optimisation tool, was used to provide 

the optimum fracture design (Oberwinkler et al. (2004)). Also, GA was used to select 

fracturing materials and optimise fracturing treatment parameters (e.g., proppant volume and 

concentration, pumping rate, and pad percentage) in low permeability and complex reservoirs 

in China (Wang et al. (2004)). In addition, Rahman et al. (2002) used the GA to find optimum 

values for fracture treatment parameters and fracture geometry that are formation friendly, in 

order to achieve the maximum possible NPV from a gas reservoir.   

 

4.6.4. Use of GA in Well Test Interpretation 

GA was used to select the appropriate reservoir model between the candidate models 

based on a given set of pressure transient data. In addition, it has been used to determine the 

unknown model parameters (permeability, skin, etc.). The GA was applied, as a hybrid 

algorithm with conventional gradient-based algorithms, to a number of noisy pressure 

transient tests and demonstrated to be robust and competent (Guyaguler et al. (2001)). 

Furthermore, the GA was used to determine the optimum interpretation for early-time 

transient pressure data, influenced by wellbore storage effects. Based on this optimum 

interpretation, the optimum reservoir parameters can be obtained (Yin and Zhai (1998)).  

 

4.6.5. Use of GA in Reservoir History Matching and Reservoir Description 

GA was used to perform reservoir characterisation by matching the reservoir simulation 

model to production data (history matching). This method used GA combined with geo-
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statistical modelling to present multiple reservoir descriptions to the reservoir team for further 

analysis (Romero et al. (2000)). Also, to recognise the reservoir characteristics, tracer 

breakthrough profiles were used besides numerical techniques, which combined the GA, 

finite element methods, and a streamline approach (Guerreiro et al. (1998)). Furthermore, a 

hybrid algorithm of GA and the simulated annealing (SA) method was applied to the history 

matching of a typical multi-layer cross sectional reservoir model and a field multi-layer and 

multi-well model. This algorithm proved to be less sensitive to the starting point and more 

robust and efficient than other optimisation methods (Tongchun and Sezgin (1997)).  

Also, GA was used to develop an automated history-matching program for core 

flooding simulation model to interpret water displacement experiments. This program was 

used to optimise several coefficients for normalized Kro/Krw and capillary pressure curves for 

each litho-facies (Tokuda et al. (2004)). In 2003, Sun and Mohanty also used the GA to get 

the optimum match between the simulation data and experimental data for low injection rate 

primary drainage.  

 

4.6.6. Use of GA in Directional Drilling and Well Placement Optimisation 

GA was used to determine the optimum (minimum) drilling depth of directional and 

horizontal wells in 3D. This depth was determined at the optimum values of kick-point, 

inclination angle, angle build-up, and drop-off rate (Shokir et al. (2004)). Also, GA was used 

to optimise well type (vertical, horizontal, or multilateral), location, and trajectory to 

maximise reservoir performance in a giant oil field located in Saudi Arabia (Yeten (2003)).  

Furthermore, to determine optimum well locations, GA in combination with a quality map 

and other algorithms was successfully used (Badru (2003)). 

 

4.6.7. Use of GA in Field Development 

To find the best strategy for a field development problem, reservoir simulation and GA 

in combination with other methods (e.g., Polytope, Tabu search, and memory strategy) were 

used. The objective function consisted of a cash flow analysis for production profiles 

determined from the simulation runs considering a particular set of parameters. This approach 

can speed up the field development plan and consider a wider range of hypotheses (Filho 

(1997)).   
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4.7. Summary 

Based on the Darwinian theory of evolution, the GA is a computer based stochastic 

search procedure, which depends on the mechanics of natural selection, natural genetics, and 

the rule of survival of the fittest. The GA involves a random generation of potential design 

solutions encoded on a string comparable to chromosomes of the biological system. This 

procedure is accompanied by an evaluation method according to the objective function and 

constraints. An evaluation function, which depends on the problem objective, is used in this 

technique. Also, some reproduction operators (e.g., crossover and mutation) are used to 

explore a wider area on the search space in order to find the best solution for the specified 

problem. By controlling the crossover and mutation probabilities, modifying the encoding 

technique based on the solved problem, and using a hybrid algorithm of the GA with other 

suitable optimisation methods, the GA performance and convergence rate can be enhanced.  

Recently, the GA has been used in many applications in petroleum engineering as an 

efficient optimisation tool. For example, it has been used in the production engineering, gas 

storage, hydraulic fracturing, well test interpretation, reservoir engineering, drilling 

engineering, and field development applications. However, its applications in the EOR 

techniques are rather scant. 

 

 



 

 

 

CHAPTER 5 

Methodology: Genetic Algorithm (GA) Software 

Design 

 

  

 

 

 

5.1. Introduction 

As discussed in Chapter 4, GA is one of the artificial intelligence techniques with the 

ability to mimic some of the processes observed in natural evolution. GA is particularly suited 

to problems with non-linearity, variables discontinuity, large search space and all kinds of 

objective and constraint functions. Recently, this tool is used as an optimisation engine to 

solve different scientific problems. Also, GA has been used in petroleum engineering 

applications, mainly, as an optimisation tool to solve different problems in reservoir 

engineering, production engineering, logging, stimulation, and drilling engineering. The GA 

applications in the petroleum engineering have been started in the last two decades.   

In this research, new GA modelling software was designed to present a more reliable 

technique to model the minimum miscibility pressure (MMP) and other physical properties of 

CO2 or flue gas mixtures with oil during gas injection processes. The objective was that if a 

robust and efficient modelling method was used, as well as considering major variables 

affecting each modelled parameter, the produced models could be more reliable with a higher 

accuracy. An overview of the GA software design methodology is presented in this chapter, 

as follows. 

 

5.2. Using the GA as a Modelling Technique 

Many fitting models can be solved analytically, without using iterative methods. For 

example, the analytical solution is obvious in some cases like the simple linear regression 

model (Y=A+BX). However, in most cases the model is more complicated and the analytical 

solution is indistinct or the problem becomes non-analytical. In such cases, the iterative 
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methods should be used even if they are not strictly needed. From the available iterative 

methods to develop correlations or models, multiple regression analysis is most common. For 

example, the model (type of equation) is proposed, and then by using the regression analysis 

method the coefficients of this model can be determined by minimizing the misfit function, 

which is a function of the difference between observed and model predicted values. Thus, this 

process is an optimisation process of the model coefficients to determine the best coefficients 

that can give an accurate model (Chambers (2001)). 

GA can usefully be used for two more common distinct purposes. One of them is 

selection of parameters to optimise the performance of a system. Most published work has 

been concerned with this use of the GA for optimisation processes. The second potential use 

is testing and fitting of quantitative models. This second use of the GA has received much less 

attention.  

 

5.3. GA Software Design 

The GA modelling technique is an iterative process, where a descriptive model is built 

and literature data is collected and used to test the model. In this technique, the parameters of 

the model are determined to minimise the misfit between the model predicted data and the 

experimental data (optimise the fitness function).  

In this study, the GA software was designed using FORTRAN language. It contained a 

main body and six functions and subroutines, as follows:    

1. Main software body, 

2. Randomisation function, 

3. Evaluation subroutine, 

4. Selection subroutine, 

5. Reproduction subroutine, 

6. Reinsertion (Deletion) subroutine, 

7. Maximum chromosome fitness subroutine. 

 

  Fig. 5-1 presents the flowchart in developing the GA software followed by an 

overview on each segment. The GA software code is presented in Appendix-11. 
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Initialise a population of randomly 

real-coded chromosomes (with different number 

of genes based on the model parameters) 

Population size (n)= 100 

(Initial Population) 

 

 

Evaluate each chromosome (Evaluation Function) 

PFit (i,j) = Cg / (Cg +(Value cal.(i,j) –Value exp.(i,j))) 
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Select two parents’ chromosomes 

(using roulette wheel method) 

(Selection) 

 

 

 

Produce new offspring chromosomes (two children) 

(Crossover (One-Point Crossover) & Mutation) 

For mutation, New Value = λ×Old Value + β× Random Value 

where, 0≤λ≤1 and  0≤β≤1 

(Reproduction) 

 

 

 

Evaluate each offspring (Evaluation Function) 

PFit (i,j) = Cg / (Cg +(Value cal.(i,j) –Value exp.(i,j))) 
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Return the two chromosomes that have 

highest fitness between the parents and 

children chromosomes to the population 

 (Deletion) 

 

 

 

 

                                                                             Stopping Criterion                                  The best 

                                   No                              (When the difference between             Yes      chromosome in the 

                                                                      best chromosome fitness and                           population presents 

                                                                      average population fitness is                            the solution                                                                              

                                                                         ≤ the specified accuracy)                                       

                                                                                                                        

 

 

 

Fig. 5-1. Flowchart of the developed GA software design. 
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5.3.1. Initial Population 

Real-coded two-dimension chromosomes were used to encode the model’s coefficients 

(model’s structure were assumed for the GA software based on the relationship between 

dependent and independent variables, as well as testing some of the standard model’s types 

that can adequately represent the relationship between the variables such as the power–law 

type model). This encoding method is efficient and has many advantages (e.g., needs less 

computer memory, no loss in precision by converting to binary or other values, simple, and 

easy to apply, especially for large scale problems with large search space). Then, each gene 

(model coefficient) takes a random value to build an initial random population with a 

population size equal to 100 chromosomes. This population size was determined based on an 

experimental evaluation and it was consistent with the range reported in the literature (30 to 

100 chromosomes in the population). A number of iterative runs of the software were carried 

out using the historical optimum coefficients values as an initial population for the next GA 

run to enhance the accuracy of the optimal values. This approach is termed as a hybrid 

genetic-genetic algorithm. The initial chromosome design, including the number of genes for 

each chromosome, was different for each application based on the specified model. 

 

5.3.2. Evaluation Function 

After building the initial population, each chromosome (solution) in the population was 

evaluated according to a fitness function value that depended on the objective function (e.g., 

minimise the misfit between the predicted and the experimental values). This fitness method 

is called “fitness is evaluation” and its value was calculated as follows: 

 

             PFit (i,j) = Cg / (Cg +(Valuecal.(i,j) –Valueexp.(i,j)))                                            (5-1) 

 

where,  

i=1, n (population size), j=1,nn (number of the used data)   

 

             )/nnj)PFit(i,(Fit(i)
nn

1j

∑
=

=                                                                                          (5-2) 

 

If any variable had a value that was out of its limits (non logical value, such as a 

negative MMP, or out of the pre-specified constraints), the fitness value was reduced by a 

certain amount called a penalty function, as follows: 
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        PFit (i,j) (new) = PFit (i,j) (old) × (1- pen)                                                                  (5-3)      

where, 

pen= penalty value    

PFit (i,j) (new)= fitness value after applying the penalty function 

PFit (i,j) (old)= fitness value before applying the penalty function 

 

The evaluation function mapping was modified for each application based on the 

specified model. 

 

5.3.3. Selection Technique 

To produce a new offspring (new chromosomes or solutions to discover new area on the 

search space), two parents (chromosomes from the old population) were selected based on 

certain criteria. To produce two new children (offspring) by the reproduction operators, the 

selection technique used was the roulette wheel parent selection method. This method was 

selected because it is faster than other methods (e.g., tournament parent selection) and also it 

gives a probability for lower fitness chromosomes (proportional to their fitness values) to be 

selected as parents, as these chromosomes may have some good features (genes) on them. The 

roulette wheel selection algorithm was as follows. 

1. Determine the total fitness of the entire population members (add all the 

population chromosomes fitness), 

2. Generate a random number (n) between zero and the total population fitness value, 

3. Choose the first chromosome whose fitness, added to the fitness of the preceding 

population members, is greater than or equal to n. 

 

5.3.4. Reproduction Operators 

After the parents’ selection, the GA reproduction operators start to produce the new 

offspring. The most important operators are the crossover and mutation. Then, after the 

offspring production, reinsertion of some of the chromosomes from the offspring and their 

parents were decided based on a selected deletion method. The selected reproduction 

operators were applied as follows:  

 

5.3.4.1. Crossover 

Crossover is very useful as an exploration method to explore different areas on the 

search space in searching for the global optimum. A one-point crossover with probability 

(P(c)) equal to 100% has been used as a simple and faster crossover method. This probability 

means that every offspring chromosome was produced after a crossover operation to produce 
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new chromosomes, which have different characteristics than their parents (not duplicates of 

their parents to explore new areas on the search space). There are two new chromosomes were 

produced, which have mixtures of their parents’ features. 

 

5.3.4.2. Mutation 

After the crossover and production of two children (new) chromosomes, one gene was 

selected from each child chromosome to mutate its value by adding a random value to its old 

one, in the course of searching for better population convergence (mutation probability (P(m)) 

was selected to be equal to 100 %, which means that from every produced chromosome, one 

gene was subject to the mutation process). The change in the gene value (by mutation) was 

developed as follows: 

 

         New Value = λ×Old Value + β× Random Value, 0 ≤ λ ≤ 1 and 0 ≤ β ≤ 1                 (5-4)     

 

where, 

β and λ are the mutation coefficients (had different values based on the specified model) 

 

The values of β and λ were selected based on the GA software performance 

(experimental evaluation), where β was increased and λ was decreased to detect any 

improvement in the population fitness value. Otherwise, the process was reversed. 

Furthermore, this technique enabled the use of a part of the last reached solution. 

The mutation operator is expected to find the best solution in a certain area (hill 

climbing), which was explored by the crossover. In addition, it is also expected to prevent the 

GA from falling into local optimum positions. 

 

5.3.4.3. Deletion 

After producing the two children chromosomes, they were evaluated, prior to being 

used, to obtain their fitness values (using the evaluation function). Then, the best two 

chromosomes (e.g., the most fit two chromosomes) from the two parents and the two children 

were reinserted back into the population to improve the group of solutions. This deletion 

technique is called “steady state replacement”, as the two offspring chromosomes competed 

with their parents’ chromosomes. 
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5.3.5. Stopping Criterion 

The stopping criterion was set when the difference between the best chromosome 

fitness in the population and the average population fitness is less than or equal to a certain 

accuracy and the best chromosome in the population (the chromosome that has the highest 

fitness) gives the problem solution (the best model that minimise the misfit between the 

predicted and experimental data).  

The software run was repeated to confirm that there was no better solution than the 

produced one, when the new run starts with different random initial population.  

 

5.4. Summary 

The GA can be used for two distinct purposes: (i) selection of parameters to optimise 

the performance of a system, and (ii) testing and fitting of quantitative models. Although the 

former has been widely addressed, the latter has received much less attention. GA software 

was developed as a stochastic modelling technique in the course of this research. The 

objective function of this software was to find the optimum models that minimise the misfit 

between predicted and experimental values (optimise the fitness function). Thus, using such 

an efficient modelling technique, and considering the major variables affecting each model, 

can result in optimum models with better accuracy.  

 

 



 

 

 

CHAPTER 6 

GA-based Minimum Miscibility Pressure (MMP) 

Models for CO2 and Flue Gases  

 

  

 

 

 

6.1. Introduction 

MMP is defined as the minimum pressure that is required to attain the miscibility 

between an injected gas (e.g., CO2 or flue gas) and oil at reservoir conditions. The MMP is 

the single most important parameter in the design of a miscible gas flood. A reliable 

estimation of the MMP helps the operator to develop injection conditions and to plan suitable 

surface facilities. In view of its importance, the operator is strongly advised to determine the 

MMP for site-specific candidate gas-oil system under representative reservoir conditions. The 

injected CO2 could be a pure gas or a mixture of CO2 and other impurities (non-CO2 

components), which is referred to in this work as “flue gas”. From an operational perspective, 

the existence of non-CO2 components in the injected flue gas should not be treated as a rigid 

impediment, as the separation of such components from the gas is difficult and costly. Thus, 

the current trend is to use the flue gas stream as it is, provided such impurities are below 

certain optimum levels, which determine the amount of the contaminants (non-CO2 

components) in CO2 that can be allowed for miscible displacement of the oil reservoirs. In 

addition, some of these non-CO2 components are useful to decrease the MMP.  

There is a need for more reliable CO2-oil MMP and flue gas-oil MMP models, which 

consider effects of all major variables on the MMP of the CO2 or flue gas in oil. In this 

research, more reliable models developed using the GA modelling software are presented. 

Also, this research presents a comparison of the efficiency of these models against that of 

other commonly used models, which are presented in Table 3-1. In addition, a sensitivity 

analysis, using @Risk
TM

 (commercial software from the Palisade Company), is presented to 

explore the major variables affecting the MMP. 
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6.2. CO2-Oil MMP 

For CO2-oil MMP, the main factors affecting this value are reservoir temperature and 

oil composition. How these factors affect the MMP is presented in the developed GA-based 

CO2-oil MMP model which follows. In addition, a discussion of the model results and a 

comparison between this model and other available models in the literature is presented. 

 

6.2.1. GA-based CO2-Oil MMP Model 

 Metcalfe and Yarborough (1974) stated that any model to be considered as a general 

model for CO2-oil MMP prediction should take into consideration the effect of the volatiles 

and intermediates besides the reservoir temperature effect. Moreover, Alston et al. (1985) 

stated that the MWC5+ is better for the modelling purpose than the oil API gravity.  

Therefore, the proposed GA-based CO2-oil MMP model addressed both arguments and 

used the following variables:  

1. Reservoir temperature (TR), 

2. MWC5+, 

3. Oil volatiles mole fraction (C1 and N2), 

4. Oil intermediates mole fraction (C2-C4, H2S, and CO2). 

 

 Many models structures were tested, but the power–law type model proved to be 

better in expressing the relationship between the CO2-oil MMP and the major affecting 

variables. The GA-based model was presented as follows: 

 

1. For oil with bubble point pressure (Pb) >0.345 MPa: 

 

109.0)
.Interm

Volatiles
(201.1)5CMW(1669.1)32RT8.1(51043497.7MMP ×+×+×−×=                              (6-1) 

 

2. For stock tank oil with Pb ≤0.345 MPa (for oil with zero volatiles fraction and non-

zero intermediates fraction): 

 

023.0)
.Interm

1
(201.1)5CMW(1669.1)32RT8.1(51043497.7MMP ×+×+×−×=                                (6-2) 
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3. For stock tank oil with Pb ≤0.345 MPa (for oil with zero volatiles and intermediates 

fractions): 

 

201.1
)5CMW(

1669.1
)32RT8.1(

5
1043497.7MMP +×+×−×=                                                       (6-3) 

 

 If the predicted MMP is less than Pb, the Pb is taken as the MMP, because the slim 

tube experiments cannot be done at pressures less than Pb as CO2 will be mixed with the free 

gas that exists below Pb; this will be detrimental to the miscibility process and the MMP 

determination.   

   The GA-based model to predict CO2-oil MMP was tested against the available 

literature experimental data and commonly used models. It was found that this GA-based 

model yielded the best prediction of the MMP. After the application of Pb modification 

(applied for two data points of Rathmell et al. (1971)), the GA-based model presented an 

average error equal to 5.5% and standard deviation equal to 7.4%. On the other hand, Alston 

et al. (1985) model presented 8.34% average error and 10.2% standard deviation. For Glaso  

(1985) model, it presented 12.6% average error and 18.0% standard deviation. Fig. 6-1 

presents the GA-based CO2-oil MMP model prediction results, while Table 6-1 and Fig. 6-2 

present a comparison between GA-based, Alston et al., and Glaso models (the higher 

accuracy models). 

 Table 6-2 presents the data range that used to develop and validate the GA-based 

CO2-oil MMP model. The literature experimental data, the model prediction results, and the 

comparison between GA-based model and all other commonly used CO2-oil MMP models are 

presented in Appendix-1. 

 

6.2.2. Discussion for the GA-based CO2-oil MMP 

 In order of their effects, this model was developed based on the reservoir temperature, 

MWC5+, volatiles (C1 and N2), and intermediates (C2-C4, H2S, and CO2). This order of 

importance is shown in Fig. 6-3, which presents the sensitivity analysis for the CO2-oil MMP 

and describes its dependence on each variable. The reservoir temperature gives the highest 

impact, as the MMP increases with the temperature increase. Following the reservoir 

temperature, MWC5+ causes an increase in the MMP as its value increases. From this figure, it 

can be seen that effects of the volatiles and intermediates components are equal and in the 

opposite directions, where the volatiles cause an increase in the MMP, while the intermediates 

effect is the same but they cause a decrease in the MMP. Hence, based on the sensitivity 
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analysis that is presented in Fig. 6-3, the intermediates effect on the MMP cannot be ignored 

for zero volatiles oils or generally for stock tank oils with Pb less than 0.345 MPa. For stock 

tank oils with zero volatiles and intermediates, the MMP model was developed based on the 

TR and MWC5+. 
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Fig. 6-1. GA-based CO2-oil MMP model prediction results within 90 % accuracy. 

 

 

 

 

Table 6-1. Comparison between the GA-based CO2-oil MMP model and other commonly 

used literature models. 

Model Average Error, % Standard Deviation, % 

GA-based 

Alston et al. (1985) 

Glaso  (1985) 

Cronquist (1978) 

Yellig and Metcalfe (1980) 

Holm and Josendal (1974) 

Lee (1979) 

5.47 

8.34 

12.6 

14.32 

14.9 

15.37 

16.8 

7.4 

10.2 

18 

16.27 

19.53 

18.9 

24.6 
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Fig. 6-2. Comparison between GA-based CO2-oil MMP model, Alston et al. (1985), and 

Glaso (1985) models results within 90% accuracy. 

 

 

 

 

 

 

Table 6-2. Data range used to develop and validate of the GA-based CO2-oil MMP model. 

Variables Data range 

Temperature, °C 

MWC5+ 

Volatiles, mole fraction 

Intermediates, mole fraction 

Experimental MMP, MPa 

32.2-137.22 

136.17-247.8 

0-0.5336 

0.002-0.3937 

6.9-34.49 
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Fig. 6-3. Sensitivity analysis presents effect of each parameter (TR, MWC5+, volatiles (Vol.), 

and intermediates (Intm)) on the CO2-oil MMP. 

 

 

 

 

 In developing the CO2-oil MMP model, the developed GA modelling software has 

proved to be an efficient tool for testing and fitting of the quantitative models. For example, 

the GA software was used to redevelop the Glaso model using the same equation model and 

conditions that were presented by Glaso (1985), and the GA-based Glaso model was 

presented as follows: 

 

• When FR  (mole percentage of intermediates, C2-C6) ≥18-mole %:  

 

32)
R
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• When FR <18-mole %:  

 

R
F0.4479601532)
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                (6-5)            

 

The GA-based Glaso model presented an average error equal to 7.86% (compared to 

12.6% average error by the original Glaso model) with a standard deviation of 11.15% 

(compared to 18% standard deviation by the original Glaso model). Thus, among these 

models (GA-based, Glaso, and GA-based Glaso), the GA-based model gave the best 

accuracy. 

However, it must be recognised that an error in any model could result from two 

sources: an error in the modelling process and/or an error in the data itself. The GA-based 

model developed in this study honoured all the data as reported, without any filtering or 

massaging as Alston et al. (1985) have done, where they interpreted the data to satisfy their 

miscibility criterion of 90 % recovery at the solvent breakthrough. As a general observation, 

caution must be applied with regard to the uncertainties and accuracies in the data gathered 

from the literature and experiments. In particular, the following common points are 

highlighted: 

1. Slim tube data: As no standard slim tube test methodology and apparatus were used in 

data reported in the literature, reliable comparison of results becomes a challenge.  

2. While there are different experimental procedures and interpretations, consequently, 

there is no standard definition of the miscibility criterion. Different definitions of the 

miscibility criterion are used by different authors, and also by different organisations. 

Furthermore, it could be not correct to simply take a minimum recovery value at 1.2 

pore volume (PV) gas injection as a criterion to determine the MMP because the shape 

of the recovery curve with injection pressure is a function of the test temperature. For 

that matter, it is also not correct to take for example 90% or 94% recovery value as a 

criterion for miscibility. 

3. CO2 compressibility factor is a strong function of the pressure and temperature values. 

Therefore, any errors in maintaining these values will result in errors in the volumetric 

calculation of the CO2 injection. This, in turn, will result in uncertainty in determining 

the MMP. 
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4. Slim tube experiments are often conducted in steps of pressure increment exceeding 

one MPa (even 3.45 MPa in some experiments) to obtain the recovery curve as a 

function of the pressure. This obviously precludes a more accurate inference of the 

MMP from the recovery curve. 

 

Notwithstanding above general observations and shortcomings in the literature data 

used in this study, the GA-based CO2-oil MMP was successful in yielding the best prediction 

of the CO2-oil MMP among all the available models tested during the course of this study.  

 

6.3. Flue Gas-Oil MMP 

Flue gas-oil MMP is affected by the same factors affecting CO2-oil MMP, as well as the 

injected gas purity (existence of non-CO2 components). The existence of these non-CO2 

components may cause a decrease or increase in the MMP based on their nature and 

composition. The following subsections present a more reliable GA-based flue gas-oil MMP 

model that considers the effect of existence of different non-CO2 components in the injected 

flue gas. In addition, a discussion of the model results and a comparison between this model 

and other available models in the literature are also presented. 

 

6.3.1. GA-based Flue Gas-Oil MMP Model 

As stated earlier in Chapter 3, the existence of certain non-CO2 gas components (e.g., 

H2S, SOx, and C2-C4), whose critical temperatures are higher than that of CO2, in the injected 

flue gas causes an improvement in the flue gas miscibility in reservoir oil. This results in a 

lower MMP and higher injected gas pseudocritical temperature. On the other hand, the 

existence of other components (e.g., C1 and N2), whose critical temperatures are lower than 

that of CO2, has a reverse effect and causes an increase in the MMP. Furthermore, many 

studies reported that the injected gas pseudocritical temperature affects the flue gas-oil MMP 

and it could be used as a variable in the miscibility models.  

In this study, the proposed GA-based flue gas-oil MMP model was regarded as a 

function of the injected flue gas solubility in oil, which in turn is based on the injected gas 

pseudocritical properties (temperature and pressure), CO2 critical properties (temperature and 

pressure), and CO2-oil MMP (which could be determined from laboratory work or from 

available models including the GA-based CO2-oil MMP model). The weight fraction method 

was used in developing of this model. In addition, a critical temperature modification factor 

(MFi) was used to modify the injected gas pseudocritical temperature to present the best fit 

among the pseudocritical properties and the MMP. This factor was used, with different 
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values, for the components: SO2, H2S, C2, C1, and N2. The GA-based flue gas-oil MMP model 

and the MFi values are as follows: 
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Pb modification was applied, also, for this model. 

 

 

Values of MFi were as below: 

Components MFi 

SO2 

H2S 

CO2 

C2 

C1 

N2 

All other injected gas components 

0.3 

0.59 

1.0 

1.1 

1.6 

1.9 

1.0 

 

 

 

 Compared to all other commonly used models, the GA-based flue gas-oil MMP model 

presented the best match (excellent accuracy) with the experimental data. As evident from 

Table 6-3, the GA-based model gave an average error equal to 4.6% and standard deviation 

equal to 6.2%. Alston et al. (1985) model gave a 14.1% average error and 43.3% standard 
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deviation, while Sebastian et al. (1985) model gave a 13.1% average error and 22.0% 

standard deviation. The GA–based flue gas-oil MMP model results are shown in Fig. 6-4 and 

a comparison between this study, Alston et al., and the Sebastian et al. model is presented in 

Fig. 6-5. 

From Fig. 6-5 and Appendix-2, it is found that the maximum error of Alston et al. 

model was 311.6% (for the injected flue gas composed of 80 mole% of CO2 and 20 mole% of 

N2). Even after ignoring this data point from the model’s validation (because Alston et al. 

model should not be used when N2 concentration in the flue gas exceeds 8 mole%), the GA-

based model presented the best prediction with nearly the same average error and standard 

deviation, which proved that the GA-based model was not sensitive to the existence of higher 

concentrations of N2 (tested up to 20 mole% of N2). Fig. 6-6 and Table 6-4 present the 

comparison between GA-based, Alston et al., and Sebastian et al. model predictions after 

excluding this data point, which is identified within the ellipse in Fig. 6-5. 

 Table 6-5 presents the data range that was used to develop and validate the GA-based 

flue gas-oil MMP model. The literature experimental data, the model prediction results, and 

the comparison between the GA-based model and all other commonly used flue gas-oil MMP 

models are presented in Appendix-2. 

 

6.3.2. Discussion for the GA-based Flue Gas-Oil MMP 

Based on the above results and noting the caveat that must be applied with regard to the 

uncertainties in data accuracy gathered from various literature sources and experiments, the 

GA-based flue gas-oil MMP model was successful in yielding the best prediction of the flue 

gas-oil MMP among the models tested during the course of this study.  

Based on the sensitivity analysis that is presented in Fig. 6-7, it was shown that the 

pseudocritical temperature has a major impact on the MMP, as any increase in the 

pseudocritical temperature causes a decrease in the MMP. On the other hand, the injected gas 

pseudocritical pressure, also, has a significant impact on the MMP, as any increase in the 

pseudocritical pressure causes an increase in the MMP. 

 A critical-temperature modification factor was used in developing the GA-based flue 

gas-oil MMP model to present a better relationship between the MMP and the pseudocritical 

properties of the injected flue gas and CO2. The difference between this relationship before 

and after using this factor in the model development is explained in Fig. 6-8 and Fig. 6-9, 

respectively. With the exception of C2, the critical temperature modification factor was 

qualitatively proportional to the equilibrium constants of the injected gas non-CO2 

components (SO2, H2S, C1, and N2). 
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 Furthermore, it was evident that the GA-based flue gas-oil MMP model gave a better 

prediction accuracy with different types of non-CO2 components that may co-exist with CO2 

in the flue gas streams (e.g., H2S, N2, SOx, O2, and C1-C4). This model was successfully 

tested, with higher prediction accuracy, for the presence of up to 78 mole% of non-CO2 

components and up to 20 mole% of N2 in the injected gas. On the other hand, the Alston et al. 

(1985)
 
model performance for flue gas streams that contain N2 was inadequate; especially for 

injected gas streams containing more than 8 mole% of N2. Furthermore, the Alston et al. 

model was unable to deal with the existence of SOx in the flue gas. For the Sebastian et al. 

model, its prediction accuracy was overly sensitive to the existence of N2 and/or SOx in the 

injected flue gas. Also, the existence of high fractions of non-CO2 components (more than 55 

mole%) caused a lower accuracy in its prediction. For the other tested models, their average 

errors were much higher than the foregoing models (GA-based, Alston et al., and Sebastian et 

al. models). 

 

 

 

 

Table 6-3. Comparison between the GA-based flue gas-oil MMP model and other commonly 

used literature models for all the data. 

Model Average Error, % Standard Deviation, % 

GA-based 

Alston et al. (1985) 

Sebastian et al. (1985) 

Dong (1999) 

Kovarik (1985) 

Eakin and Mitch (1988) 

4.6 

14.1 

13.1 

29.6 

34.6 

60.8 

6.16 

43.26 

22.1 

55 

54 

74 
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Fig. 6-4. GA-based flue gas-oil MMP model prediction results within 90 % accuracy. 
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Fig. 6-5. Comparison between the GA-based flue gas-oil MMP model, Alston et al. (1985), 

and Sebastian et al. (1985) models results within 95% accuracy. 
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Fig. 6-6. Comparison between the GA-based flue gas-oil MMP, Alston et al. (1985), and 

Sebastian et al. (1985) models within 95% accuracy for all the data except the identified data 

point within the ellipse in Fig. 6-5 (composed of 80 mole% of CO2 and 20 mole% of N2). 

 

 

 

Table 6-4. Comparison between the GA-based flue gas-oil MMP model and other commonly 

used models for all the data except the identified data point within the ellipse in Fig. 6-5 

(composed of 80 mole% of CO2 and 20 mole% of N2). 

Model Average Error, % Standard Deviation, % 

GA-based 

Alston et al. (1985) 

Sebastian et al. (1985) 

Dong (1999) 

Kovarik (1985) 

Eakin and Mitch (1988) 

4.64 

9.4 

12.7 

29.8 

35 

60.8 

6.21 

18.23 

21.66 

55 

54 

74 
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Table 6-5. Data range used to develop and validate of the GA-based flue gas-oil MMP model. 

Variables Data range 

Temperature, °C 

MWC5+ 

Volatiles, mole fraction 

Intermediates, mole fraction 

TCW, °C 

PCW, MPa 

Experimental CO2-oil MMP, MPa 

Experimental flue gas-oil MMP, MPa 

Non-CO2 components 

 

Non-CO2 components, mole fraction 

N2, mole fraction 

H2S, mole fraction 

SOx, mole fraction 

40.8-112.2 

166.2-267.5 

0-0.486 

0.0131-0.403 

-9.26-55.1 

5.27-8.1 

8.28-30.2 

6.55-34.01 

H2S, N2, SOx, O2, and 

C1-C4 

0.03-0.78 

0-0.2 

0-0.5 

0-0.3 

 

 

 

-0.931

0.315
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 Tcw/Tc, co2/F4

 Pcw, flue gas/Pc,
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MMPf lue gas/MMPCO2 correlation coefficients

 

 

Fig. 6-7. Sensitivity analysis presents the effect of each variable (TCW/TC, CO2 and              

PCW, flue gas/ PC, CO2) on the MMP ratio (flue gas-oil MMP/CO2-oil MMP). 
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Fig. 6-8. The relationship between reduced MMPs ratio (reduced flue gas-oil MMP to 

reduced CO2-oil MMP) and the weight average pseudocritical temperature before using the 

critical temperature modification factor (MFi). 
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Fig. 6-9. The relationship between reduced MMPs ratio (reduced flue gas-oil MMP to 

reduced CO2-oil MMP) and the weight average pseudocritical temperature after using the 

critical temperature modification factor (MFi). 
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6.4. Summary 

Two new GA-based models were proposed for more reliable prediction of the minimum 

miscibility pressure (MMP) between the reservoir oil and CO2 or flue gas.  

The key input parameters in the GA-based CO2-oil MMP model, in order of their 

impact, were the reservoir temperature, MWC5+, and volatiles (C1 and N2) to intermediates 

(C2-C4, H2S, and CO2) mole ratio. For stock tank oils with Pb less than 0.345 MPa and zero 

volatiles composition, the model considered the effect of the reservoir temperature, MWC5+, 

and the intermediates (C2-C4, H2S, and CO2) mole fraction. In case of stock tank oils (Pb less 

than 0.345 MPa) that contain no volatiles or intermediates in their compositions, the MMP 

was regarded as a function of the reservoir temperature and MWC5+. This model, which has 

been successfully validated with published experimental data and compared to common 

models in the literature, offered the best match with the lowest error (5.5%) and standard 

deviation (7.4%).  

For the GA-based flue gas-oil MMP model, the MMP was regarded as a function of the 

injected gas solubility into the oil, which in turn is related to the injected gas pseudocritical 

properties (pseudocritical pressure and temperature). A critical temperature modification 

factor was used with some components (C1, C2, N2, H2S, and SO2) to present the best fit 

among the pseudocritical properties and the MMP. The weight fraction method was used in 

developing of this model. The GA-based model has also been successfully validated against 

published experimental data and compared to several models in the literature. It yielded the 

best match with the lowest average error (4.6%) and standard deviation (6.2%). Moreover, 

unlike the other models, it can be used more reliably for gases with high N2 (up to 20 mole%) 

and non-CO2 components up to 78 mole% (e.g., H2S, N2, SOx, O2, and C1-C4). 

 

 

 

 



 

 

 

CHAPTER 7 

GA-Based Physical Properties Models for CO2-oil 

and Flue Gas-oil Mixtures 

 

  

 

 

 

7.1. Introduction 

 Knowledge of the physical and chemical interactions between CO2 or flue gas and 

reservoir oil in addition to their effect on oil recovery are very important for any gas flooding 

project. The major parameter that affects gas flooding is gas solubility in oil because it results 

in oil viscosity reduction and an increase in oil swelling, which in turn, enhances the oil 

mobility and increases the oil recovery efficiency. Therefore, a better understanding of this 

parameter and its effects on oil physical properties is vital to any successful CO2 or flue gas 

flooding project. 

 The injected gas effects on oil physical properties are determined by laboratory 

studies and available modelling packages. Laboratory studies are expensive and time 

consuming, particularly when one needs to cover a wider range of data. On the other hand, 

the available modelling packages can only be used in certain situations, and hence, may not 

be applicable in many situations.  

 The objective of this chapter is to develop more reliable models to predict the effects 

of CO2 and flue gas on oil properties (gas solubility in oil, oil swelling factor, and gas-oil 

mixture density and viscosity) for both dead and live oils using the GA software. Also, this 

chapter presents a comparison between these models and the available models in the 

literature, which were presented in Chapter 3 (Table 3-2). 
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7.2. CO2-Oil Physical Properties 

The available models for CO2-oil physical properties in the literature were developed 

based on a limited data conditions. The majority of them do not consider all major variables 

that affect each parameter model. Furthermore, most of the available packages were 

developed based on the dead oil data and there are no reliable models to predict the CO2 

effects on the live oil physical properties. Therefore, more reliable GA-based CO2-oil physical 

properties models were developed to predict the CO2-oil physical properties for both dead and 

live oils over a wider range of conditions. The physical properties accounted for in the models 

developed in this study are the CO2 solubility, oil swelling factor, and CO2-oil density and 

viscosity. This section presents the GA-based models developed in this study together with a 

comparison of their accuracy with the available models reported in the literature. Also, a 

sensitivity analysis using @Risk
TM

 software (Palisade Company) for the major factors 

affecting each physical property is also presented. 

 

7.2.1. GA-based CO2-Oil Physical Properties 

The GA-based models were presented as follows. 

 

7.2.1.1.GA-based CO2 Solubility in Oil 

GA-based models for CO2 solubility in oil (dead and live oils) were proposed as a 

function of the saturation pressure, temperature, oil specific gravity, oil composition (through 

oil MW), and CO2 liquefaction pressure. Each model (for solubility in dead and live oils) was 

categorised based on the CO2 state (liquid or gaseous). The GA-based models proposed for 

CO2 solubility in dead and live oils were presented as follows: 

 

7.2.1.1.1. GA-based CO2 Solubility in Dead Oil Model 

For a more reliable prediction of the CO2 solubility in dead oil, a GA-based model is 

presented as follows: 

 

1. When CO2 is in the gaseous state, for temperatures greater than Tc,CO2 (for all 

pressures) and temperatures less than Tc,CO2 (for pressures less than the CO2 

liquefaction pressure): 

0.256564.8y0.64743.235y0.33y2.238fraction) (mole Sol −+−=                                    (7-1) 
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For this model, the CO2 solubility at Pb (equal to 1 atm for the dead oil case) is taken to be 

equal to zero.  

 

The GA-based CO2 solubility model for the dead oil depends, primarily, on the 

saturation pressure and temperature. The solubility increases with an increase in saturation 

pressure. On the other hand, it increases with a decrease in temperature. Also, the solubility 

depends, to a lesser degree, on the oil specific gravity and oil molecular weight. Fig. 7-1 

presents the sensitivity analysis of the factors that affect CO2 solubility in dead oil. 

 

2. When CO2 is in the liquid state, for temperatures less than Tc,CO2 and pressures 

greater than the CO2 liquefaction pressure: 

40.02183y30.2176y20.7716y1.14y0.033fraction) (mole Sol −+−+=                           (7-2) 
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The GA-based solubility model in this case depends on the ratio between the saturation 

pressure and the CO2 liquefaction pressure, temperature, oil molecular weight, and oil specific 

gravity. Because the solubility of CO2 when it is in the liquid state is less sensitive to the 

saturation pressure effect and the CO2 becomes less soluble in oil, the GA-based model used 

the ratio between the saturation pressure and the CO2 liquefaction pressure as a variable 

instead of using the saturation pressure. 

As shown in Table 7-1, Fig. 7-2, and Fig. 7-3, the GA-based CO2 solubility in dead oil 

model offered a better accuracy compared to models of Simon and Graue (1965), Mehrotra 

and Svrcek (1982) (their models have been developed for bitumen), and Chung et al. (1986). 

In addition to the higher accuracy and compared to the other available models, the GA-based 

model could be applied over a wider range of conditions. Table 7-2 presents a summary of 

the experimental data range used in this study for developing and testing of the CO2 solubility 
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in dead oil model. The experimental data details of the CO2 solubility in dead oil and the 

prediction results from the GA-based CO2 solubility model are presented in Appendix-3. 

 

 

 

 

Table 7-1. Comparison between the GA-based CO2 solubility in dead oil model and other 

CO2 solubility literature models. 

Model 
No. of 

data 

Average Error, 

% 

STDEV, 

% 
R

2
 

GA-based 

Simon and Graue (1965)
 

Mehrotra and Svrcek (1982) 

Chung et al. (1986) 

106 

49 

106 

106 

4.0 

5.7 

32.6 

83.7 

5.6 

10.8 

36.6 

150.3 

0.985 

0.97 

0.756 

0.0096 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7-1. Sensitivity analysis of the factors affecting CO2 solubility in dead oil. 
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Fig. 7-2. GA-based CO2 solubility in dead oil model prediction results. 
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Fig. 7-3. Comparison results between the GA-based CO2 solubility in dead oil, Simon and 

Graue (1965), and Mehrotra and Svrcek (1982) models. 

 

 

 

 



7. GA-Based Physical Properties Models for CO2-oil and Flue Gas-oil Mixtures 77

 

 

Table 7-2. Experimental data range used in this study for developing and testing of the GA-

based CO2 solubility in dead oil model. 

 

Variable Experimental data range  

Oil API gravity, °API 

Ps, MPa 

TR, °C 

MW 

Wider range (12-37.0)  

Up to 27.4  

Up to 140  

Up to 490 

 

 

 

 

7.2.1.1.2. GA-based CO2 Solubility in Live Oil 

For a reliable prediction of the CO2 solubility in live oils, a GA-based model was 

presented as follows: 

 

1. When CO2 is in the gaseous state, for temperatures greater than Tc,CO2 (for all 

pressures) and temperatures less than Tc,CO2 (for pressures less than the CO2 

liquefaction pressure): 

 

0.44254.3y0.7043.273y0.5632y748.1fraction) (mole Sol −+−=                                      (7-3) 

 

where, 

)
MW

1exp(
)

b
P

s
P

1.12532)
R

(1.8T
(0.006897 γy

−

+
×=  

For this model, it is considered that the CO2 solubility at Pb is equal to zero.  
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As shown in Fig. 7-4, the GA-based CO2 solubility in live oil model also depends on 

the difference between the saturation pressure and Pb, temperature, oil specific gravity, and oil 

molecular weight. However, as noted in this figure, the saturation pressure effect on the CO2 

solubility in live oil is higher than that in dead oil. The temperature effect, on the other hand, 

is lower in the live oil case.  

 

2. When CO2 is in the liquid state, for temperatures less than Tc,CO2 and pressures 

greater than the CO2 liquefaction pressure:  

 

The same model that developed for the solubility in dead oil when CO2 is in the liquid 

state (as given in Equation 7-2) was also used for the solubility in live oil. 

As shown in Table 7-3, Fig. 7-5, and Fig. 7-6, the GA-based CO2 solubility in live oil 

model offered a much better accuracy compared to the models of Simon and Graue (1965), 

Mehrotra and Svrcek (1982), and Chung et al. (1986), as these models were developed 

basically based on dead or heavy oils data. In addition, the GA-based model could be applied 

over a wider range of conditions. Table 7-4 presents a summary of the experimental data 

range used in this study for developing and testing of the CO2 solubility in live oil model. The 

experimental data details of the CO2 solubility in live oil and the prediction results from the 

GA-based CO2 solubility in live oil model are presented in Appendix-3. 

 

 

 

Table 7-3. Comparison between the GA-based CO2 solubility in live oil and other CO2 

solubility literature models. 

Model 
No. of 

data 

Average Error, 

% 
STDEV, % R

2
 

GA-based 

Simon and Graue (1965)
 

Mehrotra and Svrcek (1982) 

Chung et al. (1986)
 

74 

45 

74 

74 

4.0 

24.7 

36.7 

76.4 

5.5 

26.5 

46.3 

127.87 

0.98 

0.956 

0.3616 

0.0471 
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Fig. 7-4. Sensitivity analysis of the factors affecting CO2 solubility in live oil. 
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Fig. 7-5. GA-based CO2 solubility in live oil model prediction results. 
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Fig. 7-6. Comparison results between the GA-based CO2 solubility in live oil, Simon and 

Graue (1965), and Mehrotra and Svrcek (1982) models. 

 

 

 

 

Table 7-4. Experimental data range used in this study for developing and testing of the GA-

based CO2 solubility in live oil model. 

 

Variable Experimental data range  

Oil API gravity, °API 

Ps, MPa 

TR, °C 

MW 

Wider range (15-70) 

Up to 32.75  

Up to 123.9  

Up to 391.55 

 

 

 

 

7.2.1.2. GA-based Oil (Dead and Live Oils) Swelling Factor Due to CO2 Injection 

A GA-based oil swelling factor (SF) model (for dead and live oils) was proposed as a 

function of the CO2 solubility and oil molecular size (equal to ratio between oil MW and oil 

density at 15.56°C (oil specific gravity)). The oil was classified based on its molecular weight 

to two groups: heavier oil (for MW≥300) and lighter oil (for MW<300).  
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7.2.1.2.1. Heavier Oil (MW ≥300) 

6
0.21755Y

5
0.0318Y

4
1.074Y

3
1.5804Y

2
0.8417Y0.3302Y1SF +−−+−+=             (7-4) 

where, 






























××= MW
γ

exp
)2fraction) (mole Sol)

MW

γ
(( 1000.0Y  

 

As shown in Fig. 7-7, the GA-based oil swelling factor for the heavier oil is affected 

primarily by the CO2 solubility, increasing with the CO2 solubility increase. On the other 

hand, there is a lesser impact of the oil molecular size as the swelling factor decreases with 

the oil molecular size increase.  

 

7.2.1.2.2. Lighter Oil (MW<300) 

6
0.06671Y

5
0.48267Y

4
1.2773Y

3
1.6019Y

2
0.9928Y0.48411Y1SF −+−+−+=       (7-5) 

 

Also, from Fig. 7-8, the GA-based oil swelling factor for the lighter oil (oil MW<300) 

is, basically, affected by the CO2 solubility, but the effect of the solubility is less than its 

effect on the heavier oil. On the other hand, there is a lesser impact also of the oil molecular 

size, although its effect is higher on lighter oil than on heavier oil.  

 

7.2.1.2.3. GA-based Oil Swelling Factor Model Test 

For the dead oil swelling factor, Table 7-5, Fig. 7-9, and Fig. 7-10 present a 

comparison between the GA-based oil swelling factor model accuracy for the dead oil 

swelling factor and the model by Simon and Graue (1965). As shown, the GA-based model 

offered a better accuracy than that of Simon and Graue model. Also, it could be applied over a 

wider range of conditions. Table 7-6 presents a summary of the experimental data range used 

in this study for developing and testing of the GA-based oil swelling factor (due to CO2 

injection) model for dead oil. The experimental data details of the dead oil swelling factor and 

the prediction results from the GA-based oil swelling factor model for dead oil are presented 

in Appendix-4.  
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Fig. 7-7. Sensitivity analysis of the factors affecting dead and live oils swelling factor (due to 

CO2) for oils with MW ≥300. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7-8. Sensitivity analysis of the factors affecting dead and live oil swelling factor (due to 

CO2) for oils with MW <300. 
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Table 7-5. Comparison between the GA-based and Simon and Graue (1965) oil swelling 

models prediction results for dead oil. 

Model 
No. of 

data 

Average Error, 

% 

STDEV, 

% 
R

2
 

GA-based 

Simon and Graue (1965)
 

85 

83 

0.61 

1.0 

0.94 

1.7 

0.994 

0.970 
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Fig. 7-9. GA-based oil swelling factor (due to CO2) model prediction results for dead oil. 
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Fig. 7-10. Comparison results between the GA-based and Simon and Graue (1965) oil 

swelling factor (due to CO2) models prediction results for dead oil. 

 

 

 

 

Table 7-6. Experimental data range used in this study for developing and testing of the GA-

based oil swelling factor (due to CO2) model for dead oil. 

Variable Experimental data range  

Oil API gravity, °API 

Ps, MPa 

TR, °C 

MW 

Wider range (12-37) 

Up to 27.4  

Up to 121.1  

Up to 463 
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For the live oil swelling factor, Table 7-7, Fig. 7-11, and Fig. 7-12 present a 

comparison between the GA-based oil swelling factor model and the model by Simon and 

Graue (1965). As shown, the GA-based model gave a better accuracy than that of Simon and 

Graue model. In addition, this model could be applied over a wider range of conditions. Table 

7-8 presents a summary of the experimental data range used in this study for testing of the 

GA-based oil swelling factor (due to CO2 injection) model for the live oil. The experimental 

data details for the live oil swelling factor and the prediction results from the GA-based oil 

swelling factor model for the live oil are presented in Appendix-4.  

 

 

 

Table 7-7. Comparison between the GA-based and Simon and Graue (1965) oil swelling 

models prediction results for live oil. 

Model 
No. of 

data 

Average 

Error, % 

STDEV, 

% 
R

2
 

GA-based 

Simon and Graue (1965)
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1.2 

1.29 

2.0 
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0.98 
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Fig. 7-11. GA-based oil swelling factor (due to CO2) model prediction results for live oil. 
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Fig. 7-12. Comparison results between the GA-based and Simon and Graue (1965) oil 

swelling factor (due to CO2) models prediction results for live oil. 

 

 

 

Table 7-8. Experimental data range used in this study for testing of the GA-based oil swelling 

factor (due to CO2) model for live oil. 

Variable Experimental data range  

Oil API gravity, °API 

Ps, MPa 

TR, °C 

MW 

Wider range (15-50) 

Up to 30.72  

Up to 137.22 

Up to 391.55 

 

 

 

 

7.2.1.3.GA-based CO2-Oil (Dead and Live Oils) Density 

The GA-based CO2-oil density model for dead and live oils considered the effects of the 

saturation pressure, temperature, oil specific gravity, and initial oil density at the specified 

temperature on the mixture density. The following is the proposed GA-based CO2-oil density 

model for both dead oil and live oils: 
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0.61330.1407y0.6080.10276y
i
ρρ +−=                                                                             (7-6) 

 

where, 

32
R

1.8T

1.25)
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P
s
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γρ
y

+

−
=  

 

As evident from the sensitivity analysis presented in Fig. 7-13, the GA-based CO2-oil 

density increases with the initial oil density and saturation pressure increase, and 

consequently, with the CO2 solubility increase. On the other hand, there is a lower impact of 

the temperature and nearly no impact of the oil specific gravity. 

For the CO2-dead oil density, as evident from Table 7-9, Fig. 7-14, and Fig. 7-15, the 

GA-based model yielded a much lower error than the Quail et al. (1988) model. In addition, 

this model could be applied over a wider range of conditions. Table 7-10 presents a summary 

of the experimental data range used in this study for developing and testing of the GA-based 

CO2-oil density model for CO2-dead oil density. The details of the experimental CO2-dead oil 

density data and the prediction results of the GA-based CO2-oil density model for the CO2-

dead oil density are presented in Appendix-5.  

 

 

 

 

Table 7-9. Comparison between the GA-based and Quail et al. (1988) models results for the 

CO2-dead oil density prediction. 

Model 
No. of 

data 

Average 

Error, % 
STDEV, % R

2
 

GA-based 

Quail et al. (1988)
 

136 

129 

0.29 

3.0 

0.43 

4.8 

0.9952 

0.293 
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Fig. 7-13. Sensitivity analysis of the factors affecting CO2-oil (dead and live oils) density.  
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Fig. 7-14. GA-based CO2-oil density model prediction results for CO2-dead oil density. 
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Fig. 7-15. Comparison results between the GA-based and Quail et al. (1988) CO2-oil density 

models prediction results for CO2-dead oil density. 

 

 

 

 

 

 

 

Table 7-10. Experimental data range used in this study for developing and testing of the GA-

based CO2-oil density model for CO2-dead oil density. 

 

Variable Experimental data range  

Oil API gravity, °API 

Ps, MPa 

TR, °C 

MW 

Wider range (10-41) 

Up to 34.5 

Up to 140 

Up to 490 
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Also, for the CO2-live oil density, as evident from Table 7-11, Fig. 7-16, and Fig. 7-17, 

the GA-based model yielded a much lower error than the Quail et al. (1988) model. Also, this 

model could be applied over a much wider range of conditions. Table 7-12 presents a 

summary of the experimental data range used in this study for testing of the GA-based CO2-

oil density model for the CO2-live oil density. The details of the experimental CO2-live oil 

density data and the prediction results of the GA-based CO2-oil density model for CO2-live oil 

density are presented in Appendix-5.  

 

 

 

Table 7-11. Comparison between the GA-based and Quail et al. (1988) CO2-oil density 

models prediction results for CO2-live oil density.  

Model 
No. of 

data 

Average 

Error, % 
STDEV, % R

2
 

GA-based 

Quail et al. (1988)
 

50 

50 

1.05 

17.0 

1.76 

22.5 

0.9932 

0.6465 
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Fig. 7-16. GA-based CO2-oil density model prediction results for CO2-live oil density. 

 

 



7. GA-Based Physical Properties Models for CO2-oil and Flue Gas-oil Mixtures 91

 

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4 0.5 0.6 0.7 0.8 0.9 1

Experimental CO2-live oil density, g/cm
3

P
re

d
ic

te
d

 C
O

2
-l

iv
e
 o

il
 d

e
n

s
it

y
, 
g

/c
m

3

GA-

based

prediction

Quail et

al. (1988)

prediction

 

Fig. 7-17. Comparison results between the GA-based and Quail et al. (1988) CO2-oil density 

models prediction results for CO2-live oil density. 

 

 

 

 

 

 

 

Table 7-12. Experimental data range used in this study for testing of the GA-based CO2-oil 

density model for CO2-live oil density. 

 

Variable Experimental data range  

Oil API gravity, °API 

Ps, MPa 

TR, °C 

MW 

Wider range (14.9-70) 

Up to 32.92  

Up to 96.1 

Up to 391.55 
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7.2.1.4. GA-based CO2-Oil (Dead and Live Oils) Viscosity 

A GA-based CO2-oil (dead and live oils) viscosity model was developed based on the 

CO2 solubility, initial oil viscosity, saturation pressure, temperature, and oil specific gravity. 

The effect of the CO2 liquefaction pressure was included in this model through the CO2 

solubility variable. The proposed GA-based CO2-oil (dead and live oils) viscosity model was 

presented as follows: 

 

)
i
µ

fraction) (mole Sol
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i
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The coefficients of this model for dead and live oils were presented as follows: 

 A B C D 

Dead oil -9.5 -0.732 3.14129 0.23 

Live oil 0 -0.587 305.873 1.15 

 

 

 

Based on the sensitivity analysis presented in Fig. 7-18 (for dead oil) and Fig. 7-19 (for 

live oil), the GA-based viscosity reduction (CO2-oil viscosity/initial oil viscosity) depends, 

basically, on the CO2 solubility, as well as the initial oil viscosity, saturation pressure, oil 

specific gravity, and temperature. The impact of the CO2 solubility, saturation pressure, oil 

specific gravity, and temperature on the viscosity reduction is higher on live oil than on dead 

oil. However, the initial oil viscosity impact is lower for live oil than for dead oil. 
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For CO2-dead oil viscosity, compared to other models (Beggs and Robinson (1975) and 

Mehrotra and Svrcek (1982)), the GA-based CO2-dead oil viscosity model appeared to yield 

more accurate results (see Table 7-13 and Figs. 7-20 and 7-21). Also, it could be used 

successfully for a wider range of conditions (e.g., has been applied for up to 12086 mPa.s). 

Table 7-14 presents a summary of the experimental data range used in this study for 

developing and testing of the CO2-dead oil viscosity model. The details of the experimental 

CO2-dead oil viscosity data and the prediction results from the GA-based CO2-dead oil 

viscosity model are presented in Appendix-6. 

 

 

 

Table 7-13. Comparison between the GA-based and other CO2-dead oil viscosity literature 

models.  

Model 
No. of 

data 

Average 

Error, % 
STDEV, % R

2
 

GA-based 

Beggs and Robinson (1975)
 

Mehrotra and Svrcek (1982) 

130 

130 

130 

6.0 

56.8 

94.3 

8.8 

62.7 

95.2 

0.9998 

0.8743 

0.18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7-18. Sensitivity analysis of the factors affecting dead oil viscosity reduction due to CO2 

injection.  
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Fig. 7-19. Sensitivity analysis of the factors affecting live oil viscosity reduction due to CO2 

injection.  
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Fig. 7-20. GA-based CO2-dead oil viscosity model prediction results. 
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Fig. 7-21. Comparison results between the GA-based and Beggs and Robinson (1975) CO2-

dead oil viscosity models. 

 

 

 

 

 

Table 7-14. Experimental data range used in this study for developing and testing of the CO2-

dead oil viscosity model. 

 

Variable Experimental data range  

Oil API gravity, °API 

Ps, MPa 

TR, °C 

MW 

Oil viscosity, mPa.s 

Wider range (10-37) 

Up to 34.5  

Up to 140 

Up to 530 

Up to 12086  
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For CO2-live oil viscosity, again, compared to other models (Beggs and Robinson 

(1975) and Mehrotra and Svrcek (1982)), the GA-based CO2-live oil viscosity model 

appeared to yield more accurate results (see Table 7-15 and Figs. 7-22 and 7-23). Also, it 

could be used successfully for a wider range of conditions. Table 7-16 presents a summary of 

the experimental data range used in this study for developing and testing of the GA-based 

CO2-live oil viscosity model. The details of the experimental CO2-live oil viscosity data and 

the prediction results from the GA-based CO2-live oil viscosity model are presented in 

Appendix-6. 

 

 

 

 

Table 7-15. Comparison between the GA-based and other CO2-live oil viscosity literature 

models.  

Model 
No. of 

data 

Average 

Error, % 

STDEV, 

% 
R

2
 

GA-based 

Beggs and Robinson (1975)
 

Mehrotra and Svrcek (1982)
 

52 

52 

52 

6.6 

56.25 

65.1 

9.75 

91.4 

79.5 

0.9996 

0.8734 

0.4387 
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Fig. 7-22. GA-based CO2-live oil viscosity model prediction results. 
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Fig. 7-23. Comparison results between the GA-based and Beggs and Robinson (1975) CO2-

live oil viscosity models. 

 

 

 

 

 

 

Table 7-16. Experimental data range used in this study for developing and testing of the CO2-

live oil viscosity model. 

 

Variable Experimental data range  

Oil API gravity, °API 

Ps, MPa 

TR, °C 

MW 

Oil viscosity, mPa.s 

Wider range (15-50) 

Up to 24.34  

Up to 137.22 

Up to 391.55 

Up to 941  
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7.2.2. Discussion For the GA-based CO2-Oil Physical Properties 

It was obvious that although various models in the literature were applicable in some 

conditions, they could not be applied universally because of their data and application 

limitations. Also, most of the available models in the literature were developed based on dead 

and/or heavy oil data and they presented unreliable prediction for live oil data. The Simon and 

Graue (1965) models, for example, were developed based on dead oil data and were limited to 

a saturation pressure of 15.9 MPa and oil viscosity up to 1300 mPa.s, and they predicted CO2-

oil viscosity incorrectly, especially for lighter oils. The Chung et al. (1986) models also were 

developed based on heavy and dead oil data, and were limited to a saturation pressure of 20.7 

MPa and oil gravities from 10 to 20°API. The Emanuel (1985) model yielded significant 

errors in the prediction of CO2-oil viscosity, and it has been developed basically for heavy 

oils. Although the Lohrenz-Bray-Clark (1964) viscosity model has been proposed for light 

oils, it was sensitive to density calculation, in which it used the 4
th

 power of reduced density. 

Welker and Dunlop (1963) models were limited to 20-40°API oil for temperature equal to 

26.67°C. Furthermore, the preceding models do not account for the effects of the CO2 

liquefaction pressure on the CO2 solubility, in particular. 

Unlike other models, the GA-based models proposed in this study predicted CO2-oil 

physical properties (CO2 solubility, oil swelling factor, and CO2-oil density and viscosity) for 

both dead and live oils with a higher accuracy. These models, also, could be applied over a 

wider range of oil gravities, pressures up to 34.5 MPa, oil MW>490, oil viscosities up to 

12000 mPa.s and temperatures up to 140°C. Furthermore, the GA-based models considered 

all major variables that affect each physical property.  

For CO2 solubility prediction, the GA-based CO2 solubility models used saturation 

pressure, temperature, oil gravity, oil MW, and CO2 liquefaction pressure. The GA-based oil-

swelling factor model used oil molecular size (e.g., ratio between oil molecular weight and 

original oil density at 15.56°C) and CO2 solubility. For prediction of CO2-dissolved oil 

density, the GA-based model used saturation pressure, temperature, oil specific gravity, and 

initial oil density at the specified temperature. Furthermore, for prediction of CO2-oil 

viscosity, the initial oil viscosity, CO2 solubility, saturation pressure, temperature, and oil 

specific gravity were used.   

The GA-based models have been validated with published experimental dead and live 

oils data and available models in the literature. Each GA-based model presented in this study 

(for dead and live oils) has demonstrated superior performance in terms of its accuracy and 

covered wider ranges of data. In particular, the GA-based models for live oils presented a 
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higher accuracy with a higher difference between their predictions and other literature models 

predictions. Furthermore, these models could be integrated, easily, into a reservoir simulator 

for CO2 flooding design and simulation.   

 

7.3. Flue Gas-Oil Physical Properties 

The available model packages that have been developed basically for CO2-oil physical 

properties prediction may not be appropriate for flue gas-oil physical properties, and as a 

consequence, yield inaccurate predictions in most cases. Therefore, there is a need for more 

accurate models, which consider the effects of different non-CO2 components on the flue gas-

oil physical properties. The GA software developed in this study was used as a modelling tool 

to determine reliable models for the flue gas-oil physical properties prediction. The following 

subsections discuss the GA-based models developed in this study, notably, flue gas solubility, 

impact on oil swelling factor, and flue gas-oil density and viscosity. They also present a 

comparison between GA-based models and the other commonly used models in the literature 

(as presented in Table 3-2), which were developed basically for the CO2-oil physical 

properties and tested here for the flue gas-oil properties. In addition, these subsections also 

present a sensitivity analysis using @Risk
TM

 software
 
for major factors affecting each 

physical property. 

 

7.3.1. GA-based Flue Gas-Oil Physical Properties 

The GA-based models are as follows: 

 

7.3.1.1.GA-based Flue Gas Solubility in Oil 

GA-based flue gas-oil solubility models have been developed based on the saturation 

pressure, temperature, oil specific gravity, oil composition (through oil MW), flue gas 

composition (through flue gas MW), and injected flue gas critical properties (pseudocritical 

pressure and temperature). Hence, these models took into account the effect of non-CO2 

components on the flue gas solubility. These models also considered the effect of the flue gas 

liquefaction pressure. GA-based models proposed for the flue gas solubility in dead and live 

oils are as follows. 

 

7.3.1.1.1. GA-based Flue Gas Solubility in Dead Oil 

For a reliable prediction of the flue gas solubility in dead oil, the following GA-based 

model is proposed: 
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1. When flue gas is in the gaseous state, for temperatures greater than Tc,flue gas (for all 

pressures) and temperatures less than Tc,flue gas (for pressures less than the flue gas 

liquefaction pressure): 

 

6y17.235y74.1094y39.1923y5.1592y48.65y866.122357.1fraction) (mole Sol +−+−+−=  

                                                                                                                                              (7-8)                             
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MFi is the critical temperature modification factor for the gas components as presented before 

in Chapter 6. 

 

For this model, the flue gas solubility at Pb (equal to 1 atm for the dead oil case) was 

considered to be equal to zero. 

The GA-based flue gas solubility model for the dead oil depends, primarily, on the 

saturation pressure, temperature, flue gas liquefaction pressure, flue gas critical properties 

(pseudocritical temperature and pressure), and oil specific gravity. Also, it depends, to a lesser 

degree, on the flue gas molecular weight and oil molecular weight. Fig. 7-24 presents the 

sensitivity analysis of the factors that affect flue gas solubility in dead oil. 

 

2. When flue gas is in the liquid state, for temperatures less than Tc,flue gas and pressures 

greater than the flue gas liquefaction pressure: 

 

The model proposed for the CO2 solubility when CO2 is in the liquid state (Equation 7-

2) could be also used for the flue gas solubility as the saturation pressure effect on the 

solubility when flue gas or CO2 are in the liquid state is less pronounced. Hence, the GA-
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based flue gas solubility model depended on the ratio between the saturation pressure and the 

flue gas liquefaction pressure, temperature, oil molecular weight, and oil specific gravity. 

 

 

Fig. 7-24. Sensitivity analysis of the factors affecting flue gas solubility in dead oil. 

 

 

 

7.3.1.1.2. GA-based Flue Gas Solubility in Live Oil 

For a reliable prediction of the flue gas solubility in live oil, the following GA-based 

model is proposed: 

 

1. When flue gas is in the gaseous state, for temperatures greater than Tc,flue gas (for all 

pressures) and temperatures less than Tc,flue gas (for pressures less than the flue gas 

liquefaction pressure): 

 

6y79.405y1.524y57.43y32.352y5.21y89.58521.0fraction) (mole Sol −++−+−=      

                                                                                                                                            (7-9) 
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For this model, the flue gas solubility at Pb was considered to be equal to zero.  

 

As shown in Fig. 7-25, the GA-based flue gas solubility in live oil model also depends 

on the saturation pressure, temperature, flue gas liquefaction pressure, flue gas critical 

properties (pseudocritical temperature and pressure), oil specific gravity, flue gas molecular 

weight, and oil molecular weight. However, the flue gas critical properties effect is higher for 

the gas solubility in live oil than for the solubility in dead oil.  

 

2. When flue gas is in the liquid state, for temperatures less than Tc,flue gas and pressures 

greater than the flue gas liquefaction pressure:  

 

The same model used for the CO2 solubility in dead oil when CO2 is in the liquid state 

(as given in Equation 7-2) can also be used for the flue gas solubility in live oil. 

 

7.3.1.1.3. GA-based Flue Gas Solubility Models Test 

As shown in Table 7-17, Fig. 7-26, and Fig. 7-27, the GA-based flue gas solubility in 

dead and live oil models offered a much better accuracy compared to models of Simon and 

Graue (1965), Mehrotra and Svrcek (1982) (have been developed for bitumen), and Chung et 

al. (1986). In addition they could be applied over a wider range of conditions. Table 7-18 

presents a summary of the experimental data range used in this study for developing and 

testing of the flue gas solubility in dead and live oils models. The details of the experimental 

flue gas solubility data and the prediction results from the GA-based flue gas solubility in oil 

models are presented in Appendix-7. 
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Fig. 7-25. Sensitivity analysis of the factors affecting flue gas solubility in live oil. 
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Fig. 7-26. GA-based flue gas solubility models prediction results for dead and live oils. 
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Fig. 7-27. Comparison results among the GA-based flue gas solubility in oil (dead and live 

oils), Simon and Graue (1965), Chung et al. (1986), and Mehrotra and Svrcek (1982) models. 

 

 

 

Table 7-17. Comparison between the GA-based flue gas solubility in oil (dead and live oils) 

and other literature solubility models. 

Model 
Average Error, 

% 

STDEV, 

% 
R

2
 

GA-based 

Simon and Graue (1965)
 
 
 

Mehrotra and Svrcek (1982) 

Chung et al
 
(1986) 

6.2 

35.9 

36.3 

98.6 

8.8 

46.3 

51.4 

167.6 

0.9504 

0.3914 

0.3068 

0.0007 

 

 

Table 7-18. Experimental data range used in this study for developing and testing of the flue 

gas solubility (in dead and live oils) models. 

 

Variable Experimental data range  

Oil API gravity, °API 

Ps, MPa 

TR, °C 

MW 

Flue gas composition 

 

 

Wider range (14-55) 

Up to 41.37  

Up to 141.1  

Up to 450 

CO2, N2, C1-C5+, for up to 20 

mole% N2, and non-CO2 

components up to 40 mole% 
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7.3.1.2. GA-based Oil (Dead and Live Oils) Swelling Factor Due to Flue Gas Injection 

The previous model that was developed for oil swelling factor due to CO2 injection 

(Equations 7-4 and 7-5) was used also for the oil swelling factor due to flue gas injection. 

The effect of the injected gas composition (including the existence of non-CO2 components) 

was implicitly included in this model in the gas solubility variable. 

For the sensitivity analysis of the GA-based oil swelling factor model, as shown in Fig. 

7-28, the oil swelling factor for the heavier oil (oil MW≥300) depends primarily on the flue 

gas solubility, increasing as the flue gas solubility increases. On the other hand, there is a 

lesser impact of the oil molecular size as the swelling factor decreases with the higher oil 

molecular size. Also, from Fig. 7-29, the oil swelling factor for the lighter oil (oil MW<300) 

depends basically on the flue gas solubility with a lesser impact of the oil molecular size. 

 

 

 

Fig. 7-28. Sensitivity analysis of the factors affecting dead and live oils swelling factor for 

oils with MW≥300. 
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Fig. 7-29. Sensitivity analysis of the factors affecting dead and live oils swelling factor for 

oils with MW<300. 

 

 

 

Table 7-19, Fig. 7-30, and Fig. 7-31 present a comparison between the GA-based oil 

swelling factor (for dead and live oils) model and the model by Simon and Graue (1965). The 

GA-based model offered a higher accuracy and could also be applied over a wider range of 

conditions. Table 7-20 presents a summary of the experimental data range used in this study 

for testing of the GA-based swelling factor model for dead and live oils. The details of the 

experimental oil swelling factor (due to flue gas injection) data and the prediction results are 

presented in Appendix-8. 

 

 

 

Table 7-19. Comparison between the GA-based model and Simon and Graue (1965) oil 

swelling factor models (for dead and live oils). 

Model  
Average 

Error, % 
STDEV, % R

2
 

GA-based 

Simon and Graue (1965)
 

0.48 

0.68 

0.77 

0.95 

0.992 

0.992 
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Fig. 7-30. GA-based oil swelling factor (due to flue gas) model prediction results (for dead 

and live oils). 
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Fig. 7-31. Comparison results between GA-based and Simon and Graue (1965) oil swelling 

factor (due to flue gas) models (for dead and live oils). 
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Table 7-20. Experimental data range used in this study for testing of the GA-based oil (dead 

and live oils) swelling factor (due to flue gas) model. 

 

Variable Experimental data range  

Oil API gravity, °API 

Ps, MPa 

TR, °C 

MW 

Flue gas composition 

 

 

Wider range (14-42) 

Up to 31.72  

Up to 110  

Up to 450 

CO2, N2, C1, for up to 84.4 

mole% N2, for non-CO2 

components up to 85.1 mole% 

 

 

 

 

 

 

Fig. 7-32. Sensitivity analysis of the factors affecting flue gas-oil (dead and live oils) density. 

 

 

 

 

 
F lu e  g a s -o il  d e n s ity , g m /c c  

 

 0 .0 7 6  

-0 .0 2 3  

 0 .0 1 1  

 0 .9 9 7  

-1  -0 .5  0  0 .5  1  

 ρρρρ i 

P s -P b  

 T R  

 γγγγ  

  

C o rre la t io n  C o e ff ic ie n ts  



7. GA-Based Physical Properties Models for CO2-oil and Flue Gas-oil Mixtures 109

 

7.3.1.3. GA-based Flue Gas-Oil (Dead and Live Oils) Density 

The previous model that was developed for the CO2-oil density (Equation 7-6) was 

used also for the flue gas-oil density, as the effect of the gas solubility is less pronounced on 

the gas-oil density. From the sensitivity analysis presented in Fig. 7-32, the flue gas-oil 

density increases with the increase in initial oil density and saturation pressure. Also, there is 

a lesser impact of the temperature and oil specific gravity.  

From the comparison in Table 7-21, Fig. 7-33, and Fig. 7-34, the GA-based model 

yielded a much lower error than Quail et al. (1988) model. Also, it appeared to be valid over a 

wider range of conditions. Table 7-22 presents a summary of the experimental data range 

used in this study for testing of the GA-based flue gas-oil (dead and live oils) density model. 

The data details of the experimental flue gas-oil density and the prediction results from the 

GA-based gas-oil density model for the flue gas-oil density are presented in Appendix-9. 

 

 

 

Table 7-21. Comparison between the GA-based model and Quail et al. (1988) model for the 

flue gas-oil density prediction. 

 

Model  
Average 

Error, % 

STDEV, 

% 
R

2
 

GA-based 

Quail et al. (1988)
 

0.6 

10.5 

0.8 

15.2 

0.9963 

0.9366 

 

 

 

 

Table 7-22. Experimental data range used in this study for testing of the GA-based flue gas-

oil (dead and live oils) density model. 

 

Variable Experimental data range  

Oil API gravity, °API 

Ps, MPa 

TR, °C 

MW 

Flue gas composition 

 

 

Wider range (14-42) 

Up to 22.41  

Up to 76.7 

Up to 440 

CO2, N2, C1, C4, for up to 84.4 

mole% N2, for non-CO2 

components up to 85.1 mole% 
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Fig. 7-33. GA-based flue gas-oil density model prediction results. 
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Fig. 7-34. Comparison results between the GA-based and Quail et al. (1988) flue gas-oil 

density models. 
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7.3.1.4. GA-based Flue Gas-Oil (Dead and Live Oils) Viscosity 

For a reliable prediction of the flue gas-oil viscosity, a GA-based flue gas-oil viscosity 

model (for dead and live oils) was developed based on the flue gas solubility, saturation 

pressure, temperature, initial oil viscosity, oil specific gravity, and flue gas composition. The 

GA-based model was presented as follows:  
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The model coefficients for dead and live oils were developed as follows: 

 A B C D 

Dead oil -9.5 -0.732 0.45 0.23 

Live oil 0 -0.587 0.1 1.15 

 

 

 

 

Based on the sensitivity analysis presented in Fig. 7-35 (for dead oil) and Fig. 7-36 (for 

live oil), the GA-based viscosity reduction (flue gas-oil viscosity/initial oil viscosity) depends, 

basically, on the flue gas solubility, as well as the initial oil viscosity, saturation pressure, oil 

specific gravity, flue gas composition, and temperature. The impact of the flue gas solubility 

on the viscosity reduction is much greater for dead oil than for live oil. 

For the model test, compared to other models (Mehrotra and Svrcek (1982) and Beggs 

and Robinson (1975)), the GA-based flue gas-oil viscosity model appeared to yield more 

accurate results (see Table 7-23, Fig. 7-37, and Fig. 7-38). Table 7-24 presents a summary of 

the experimental data range used in this study for developing and testing of the flue gas-oil 

(dead and live oils) viscosity model. The details of the experimental flue gas-oil viscosity data 
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and the prediction results from the GA-based flue gas-oil viscosity model are presented in 

Appendix-10. 

 

 

 

 

Table 7-23. Comparison between the GA-based model and other flue gas-oil viscosity 

literature models.  

Model 
Average 

Error, % 

STDEV, 

% 
R

2
 

GA-based 

Beggs and Robinson (1975)
 

Mehrotra and Svrcek (1982) 

2.7 

12.8 

96.6 

5.0 

18.0 

110.63 

0.997 

0.991 

0.516 
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Fig. 7-35. Sensitivity analysis of the factors affecting dead oil viscosity reduction due to flue 

gas injection.  
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Fig. 7-36. Sensitivity analysis of the factors affecting live oil viscosity reduction due to flue 

gas injection.  
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Fig. 7-37. GA-based flue gas-oil (dead and live oils) viscosity model prediction results. 
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Fig. 7-38. Comparison results between the GA-based and Beggs and Robinson (1975) flue 

gas-oil (dead and live oils) viscosity models. 

 

 

 

 

 

 

Table 7-24. Experimental data range used in this study for developing and testing of the GA-

based flue gas-oil (dead and live oils) viscosity model. 

 

Variable Experimental data range  

Oil API gravity, °API 

Ps, MPa 

TR, °C 

MW 

Oil viscosity, mPa.s 

Flue gas composition 

 

 

Wider range (14-50) 

Up to 21.4  

Up to 137.22 

Up to 450 

Up to 1677  

CO2, N2, C1-C5+, for up to 30 

mole% N2, for non-CO2 

components up to 85.1 mole% 
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7.3.2. Discussion for the GA-based Flue Gas-Oil Physical Properties 

It is evident that the environmental considerations in favour of reducing GHG (flue gas) 

emissions have given a greater impetus on utilizing (or disposing) flue gases through EOR 

processes. In addition, gas flood operators, too, are increasingly putting a greater emphasis on 

using flue gases for EOR, because the experience in the West Texas region has shown that the 

cost of CO2 separation and compression could be significant and it has been found that too 

much emphasis on the CO2 purity is disproportionate to the overall economic benefits. 

Therefore, it is of significant interest to study the interactions between the flue gas and oil to 

determine the effect of the flue gas injection on the oil physical properties.    

As noted earlier, all of the available models were developed, basically, for CO2 

injection and the majority of them have been developed for CO2-dead oil physical properties. 

Also, these models are limited in their application to certain data ranges (as presented above 

in Section 7.2.2) and they are unable to accurately predict the effect of the injected gas on the 

live oil properties. Furthermore, these models do not adequately address the effect of the 

liquefaction pressure (at the specified temperature) on the solubility, in particular. Also, 

because these models have been developed based on CO2-oil physical properties, they are 

unable to give an accurate prediction for the flue gas-oil physical properties, especially when 

the flue gas contains higher non-CO2 content (more than 5-10 mole%) and N2 content higher 

than 5mole %. 

This study presents reliable models to predict flue gas-oil physical properties and 

investigate the interactions between the flue gas and oil taking into consideration all major 

variables affecting the flue gas-oil mixture physical properties. For the flue gas solubility 

prediction, the GA-based model considered the effects of the saturation pressure, temperature, 

oil specific gravity, oil and flue gas compositions, and injected flue gas critical properties. 

The GA-based oil swelling factor model considered the effects of the oil molecular size and 

the flue gas solubility, which implicitly took into account the effects of the flue gas 

composition. To predict the mixture density, the GA-based flue gas-oil density model 

considered the effects of the saturation pressure, temperature, oil specific gravity, and initial 

oil density at the specified temperature. For the flue gas-oil viscosity model, the effects of the 

initial oil viscosity, saturation pressure, temperature, flue gas solubility, oil specific gravity, 

and flue gas composition were included.    

The GA-based models have been validated with published experimental dead and live 

oils data and compared with available models in the literature. Each GA-based model 

presented in this study has demonstrated superior performance in terms of its accuracy and 

covers wider ranges of conditions. In particular, the GA-based models have consistently 
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presented higher accuracy for flue gases with higher content of non-CO2 components and for 

flue gas-live oils mixture properties.  

 

7.4. Summary 

A key parameter in a gas (CO2 or flue gas) flooding process is the gas solubility; for, it 

contributes to oil viscosity reduction and oil swelling, which together, in turn, enhance the oil 

mobility and oil relative permeability. Often injected gas-oil mixture physical properties 

parameters are established through time-consuming experimental means or using models 

available in the literature. However, one must recognise that such models for predicting the 

injected gas-oil physical properties are valid usually for certain data ranges or site-specific 

conditions. Furthermore, it is to be noted that there is no reliable model available to predict 

injected gas-live oil physical properties, as most of the available models were developed 

based on dead oil data. Also, the commonly used literature models do not adequately address 

the effect of the liquefaction pressure (at the specified temperature) on the solubility, in 

particular. In addition, because these models have been developed based on the CO2-oil 

physical properties, they were unable to give an accurate prediction of the flue gas-oil 

physical properties, especially for flue gases, which contain higher amounts of non-CO2 

components. 

In this study, a GA-based technique has been used to develop more reliable models to 

predict CO2 solubility, oil swelling factor, CO2-oil density, and CO2-oil viscosity for both 

dead and live oils. These models recognised not only all major variables that affect each 

physical property, but also considered the effect of the CO2 liquefaction pressure. The GA-

based models have been successfully validated with published experimental data and 

compared with several widely used models. The GA-based models have yielded more 

accurate predictions with lower errors than the other tested models. Furthermore, unlike the 

literature models, which were applicable to only limited data ranges and conditions, the GA-

based models could be applied over a wider range and conditions.  

This study also proposed new models to predict the flue gas-oil physical properties. In 

particular, these models developed for the flue gas-oil properties such as flue gas solubility, 

impact on the oil swelling factor, and flue gas-oil density and viscosity. These GA-based 

models utilised all major variables affecting each parameter model including the injected flue 

gas composition and the flue gas critical properties. In addition, the critical temperature 

modification factor (MFi) was also used in developing these models. The GA-based flue gas-

oil physical properties models have been successfully validated with published experimental 

data and have also been compared against other commonly reported CO2-oil models that are 
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often used for the flue gas-oil processes. The GA-based models consistently yielded a lower 

prediction error than the tested models. Furthermore, unlike the other models, which were 

applicable only over limited data ranges and conditions, the GA-based models could be valid 

over a much wider range of conditions. They also can be used, successfully, for a wide range 

of the injected flue gas compositions. 

 

 



 

 

 

CHAPTER 8 

Conclusions and Recommendations  

 

  

 

 

 

 

 

8.1. Introduction 

GA software was developed in this study and was successfully used as a modelling 

technique. This software has been tested and validated for developing models that minimise 

the misfit between the experimental and predicted values and has been proved to be an 

efficient modelling technique within the range of conditions examined. 

Using the GA software, two more reliable models for CO2-oil MMP and flue gas-oil 

MMP have been developed, and then, their predicted values have been compared against 

those obtained by the commonly used models in the literature. Experimental data available in 

the public domain were used in development and validation of these models. Furthermore, a 

package of GA-based models has been developed and successfully validated using data 

available in the public domain to predict the CO2 flooding effects on the oil physical 

properties (for dead and live oils properties), notably, CO2 solubility, oil swelling factor, CO2-

oil density, and CO2-oil viscosity. Another package of GA-based models has been developed 

and successfully validated using data available in the public domain to predict the flue gas 

flooding effects on the oil physical properties (for dead and live oils properties), notably, flue 

gas solubility, oil-swelling factor, flue gas-oil density, and flue gas-oil viscosity.  

Based on the data used in this study and keeping in mind the limitations of this data, the 

following conclusions and recommendations are made. 

 

 

 

 



8. Conclusions and Recommendations  119

 

8.2. Conclusions 

1. The GA technique proved to be an efficient method in testing and developing of the 

quantitative models. 

2. The factors that affect CO2-oil MMP were in the following order, in terms of their 

impact, the reservoir temperature, MWC5+, and ratio between the volatiles and 

intermediates. When there are no volatiles fractions in the oil, the intermediates effect 

on the MMP cannot be ignored. 

3. The GA-based CO2-oil MMP model yielded the best prediction with the lowest 

average error among all other tested models.  

4. The flue gas-oil MMP model was a function of the injected flue gas solubility into 

reservoir oil. The injected gas solubility, in turn, depends on the gas critical properties 

(pseudocritical temperature and pressure).  

5. Compared to other commonly used models, the GA-based flue gas-oil MMP model 

offered the best prediction with excellent accuracy. 

6. GA-based flue gas-oil MMP model could be used for higher N2 content (tested up to 

20 mole%) and for different non-CO2 components (e.g., H2S, N2, SOx, O2, and C1-C4) 

with higher fractions (tested up to 78 mole%).  

7. Use of the critical temperature modification factor (MFi) in developing the flue gas-oil 

MMP model improved the relationship between the flue gas-oil MMP, CO2-oil MMP, 

and the pseudocritical properties of the injected flue gas and pure CO2.  

8. The GA-based package of models developed in this study for CO2-oil mixture 

physical properties prediction presented a more reliable prediction with higher 

accuracy than the other literature models tested in this study. 

9. This study presented high-accuracy models to predict the CO2-live oil mixture 

properties that based directly on the CO2-live oil mixture data. In contrast, many of the 

currently available models were based on dead and/or heavy oil properties and they 

are still used for live oils. 

10. Unlike most of the other models, the GA-based models account for all major variables 

that affect CO2-oil physical properties, including the CO2 liquefaction pressure effect.  

11. Besides the higher prediction results with outstanding accuracy, the GA-based models 

were capable of covering a wider range of oil properties, with regard to oil gravities, 

pressures up to 34.5 MPa, oil MW>490, oil viscosities up to 12000 mPa.s, and 

temperatures up to 140°C. 
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12. This study presented new models developed basically to study the effects of injected 

flue gas on the oil physical properties, and consequently on enhanced oil recovery 

process performance. 

13. The GA-based package of models developed in this study presented a more reliable 

prediction of the flue gas-oil mixture physical properties with higher accuracy than the 

other literature models, which were developed basically for CO2 and tested in this 

study for the flue gas-oil properties. 

14. Unlike most of the other models, the GA-based models account for all major variables 

that affect the flue gas-oil physical properties, including the effects of the oil and 

injected flue gas compositions and the injected gas liquefaction pressure.  

15. Besides the higher prediction results with outstanding accuracy than other models, the 

GA-based models are capable of covering a wider range of oil properties for dead and 

live oils and also for different flue gas compositions. 

16. When data from standard or similar experimental procedures are used, the accuracy of 

the GA-based models could be further enhanced.  

17. In the absence of any measured site-specific miscibility and interactions data and 

when the project financial situation is a concern, the GA-based models could be used 

as an effective and convenient predictive tool to guesstimate the miscibility and 

interaction parameters for initial design calculations. They can be used as a fast track 

gas flooding project screening guide. In addition, they could contribute towards 

designing a more efficient and economical experimental programs. Also, they can 

easily be incorporated into a reservoir simulator for CO2 or flue gas flooding design 

and simulation.  

 

8.3. Recommendations 

The GA-based models proposed in this study to predict the miscibility and interactions 

between the injected gas (CO2 or flue gas) and oils (dead and live oils) are based on data in 

the public domain. There is a scarcity of data for certain cases, for example, there is a need for 

more data especially in cases where the injected flue gas has higher N2 content and also for 

flue gas-oil mixture viscosity. In view of this, it is envisaged that: 

1. The flue gas-oil viscosity model could be improved further with a larger database and 

more reliable data for it to be applied over a wider range of data and conditions. 

2. There is a need for flue gas-oil miscibility and interactions models for injected gas 

with higher fraction of N2 (more than 20 mole%), as the displacement process 
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changes from a condensing-vaporizing drive to a vaporizing drive as the N2 

concentration is increased.  

3. Improvement of the GA software by using different operators, (e.g., two-point 

crossover or uniform crossover, testing different parent selection techniques, etc) to 

get better performance in developing of the quantitative models should be attempted. 

4.  Based on its many advantages indicated in Chapter 4, the applications of the GA 

technique could also be extended forward developing of the quantitative models. 

5. Where possible, standardised data or data from similar experimental setup should be 

used; for example, currently the MMP data reported in the literature and used in this 

study came from various sources using different experimental protocols, and hence, 

the inconsistencies among them are unavoidable.  

6. The GA-based models results can be tested/confirmed, experimentally, using one 

experimental run (especially, for MMP). 
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The following appendices present the literature database used in this research for 

developing and testing of the GA-based models and also the GA software code is presented:  

Appendix-1: for CO2-oil MMP experimental data validation. 

Appendix -2: for flue gas-oil MMP experimental data validation. 

Appendix -3: for CO2 solubility experimental data validation. 

Appendix -4: for oil swelling factor (due to CO2) experimental data validation. 

Appendix -5: for CO2-oil density experimental data validation. 

Appendix -6: for CO2-oil viscosity experimental data validation. 

Appendix -7: for flue gas solubility experimental data validation. 

Appendix -8: for oil swelling factor (due to flue gas) experimental data validation. 

Appendix -9: for flue gas-oil density experimental data validation. 

Appendix -10: for flue gas-oil viscosity experimental data validation. 

Appendix -11: the GA software code. 
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Appendix-11 

The GA Software Code 

 

 

c         GA software code developed in this study for developing of the quantitative models 

c************************************************************************** 

           dimension (put the dimensions based on the number of data points and the population   

           size) 

           common k,n,kk,y,nn 

           call seed(2.0) 

c ************************************************************************** 

c         Open input file (to enter the experimental data and other input data) and output file (for   

c         the results). 

           open(unit=1,file=file.inp') 

           open(unit=2,file='file.out') 

c************************************************************************** 

c         The software input section: 

c         Enter number of the proposed model coefficients (k), number of the model variables   

c         (kk), and the number of the data available (nn)     

           read(1,*) k,kk,nn  

           write(*,*)'enter the population size' 

           read(*,*)n 

c         Read the experimental data model (from the input file) for the variables, which will be   

c         used to develop the model.           

c         Enter the initial population values based on random real coded numbers (building the   

c         chromosomes). 

           do 11 j=1,n 

           x(j,i)=(abs(rnd())) 

11       continue          

c         The end of software input section: 

c ************************************************************************** 

c         Evaluation function: to assign each chromosome an average fitness value based on the    

c         accuracy of its prediction  (the higher the fitness value, the higher the prediction   

c         accuracy. 

           k1=1 

           k2=n 

           call eval(x,k1,k2,nn,fit,dcal, and other affecting variables) 

c ************************************************************************** 

c         Parent selection technique: based on the roulette wheel selection method.   

2         call parent (p,k,n,q,u,fit,x,m) 

c ************************************************************************** 

c         Apply the reproduction operators (crossover and mutation) to produce a new offspring   

c         (two new children) from the two parents selected to improve the population fitness   

c         and consequently improve the group of the problem solutions (improve the model    

c         results). 

           call crmut(x,k,n) 

           k1=n+3   

           k2=n+4 
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c ************************************************************************** 

c         Evaluate the two produced two children (the new offspring). 

           call eval(x,k1,k2,nn,fit,dcal, and other affecting variables) 

c ************************************************************************* 

c         Get the best two chromosomes between the two parents and the two children to reinsert   

c         them back into the population. 

           call max1(fit,k,n,m,x) 

c ************************************************************************** 

c         Get the best chromosome’s average fitness in the population (the best solution). 

           call max2(fit,k,n,bav,x) 

c ************************************************************************** 

c         Get the average population fitness (the average fitness of all the population   

c         chromosomes). 

 sum=0.0 

 do 275 j=1,n 

 sum=sum+fit(j) 

275 continue 

 av=sum/n 

 write(*,*)'av fitness of the population=',av 

c ************************************************************************** 

c          Compare between the best chromosome’s average fitness and the average population    

c          fitness to test the stopping criterion.  

           diff=abs(bav-av) 

c ************************************************************************** 

c          If the difference between the best fitness and the average fitness is less than a certain   

c          accuracy (0.00001) then write the results and finish the software, otherwise return   

c          back to select more parents and produce more offspring to improve the problem   

c         solution.  

            if(diff.le.0.00001)go to 22 

 go to 2 

c ************************************************************************* 

c         The software output section: 

22 write(2,*)'The GA software output for GA-based model:' 

            write(2,*)'1. the best chromosome’s average fitness in the population is:',bav 

            write(2,*)'2. the coefficients of the proposed model, (for example, a,b,c)' 

 write(2,*)'a=',x(n,1) 

 write(2,*)'b=',x(n,2) 

 write(2,*)'c=',x(n,3) 

c          The end of output format section. 

c ************************************************************************* 

 stop 

 end  

c          End of the main software body.  

c ************************************************************************* 

c A function to develop the random values for the initial random population.     

            function rnd() 

            call random(g) 

            rnd=2.0*(g-0.5) 

c          This function was used to determine random values (between -1.0 to +1.0) 

           return 

           end    

c ************************************************************************ 

c          A subroutine to evaluate the population chromosomes (to determine the chromosome’s   



Appendix-11 192

c          average fitness value) using an objective function, which developed based on the   

c          proposed  model. 

           subroutine eval(x,k1,k2,nn,fit,dcal, and other affecting variables) 

 do 555 j=k1,k2 

 sum=0.0 

 do 88 l=1,nn  

 dcal(j,l)= “design the objective function and develop the model equation based on   

            the relationship between the modelled parameter and the major affecting variables” 

c          Determine the average fitness value for each chromosome based on the difference   

c          between the predicted value and the observed value. 

 fdiff=abs(dcal(j,l)-d(1,l)) 

 sfit(j,l)=Cg/( Cg +fdiff) 

c          Use penalty functions to prevent presentation of abnormal values (e.g., negative values   

c          for the MMP). 

 if(dcal(j,l).lt.0.0)sfit(j,l)=sfit(j,l)*(1-0.001) 

 if(fdiff.gt.0.02)sfit(j,l)=sfit(j,l)*(1-0.001) 

 sum=sum+sfit(j,l) 

88       continue 

c          Present the chromosome’s average fitness value.  

 fit(j)=sum/nn  

 write(*,*)'the value of fit(j)=' 

 write(*,*)fit(j)  

 555    continue 

           return 

           end 

c    ************************************************************************ 

c          This subroutine was used to determine two parents from the population by using   

c          roulette wheel parent selection technique (the parents chromosomes is used to   

c          determine a new offspring to improve the population fitness (improve the problem   

c          solution).   

           subroutine parent(p,k,n,q,u,fit,x,m) 

           dimension p(105),q(105),fit(105),x(105,30),m(2) 

           real u,prop,sum 

           sum1=0.0 

           do 133 j=1,n 

           sum=sum1+fit(j) 

           sum1=sum 

133     continue 

           prop=0.0 

           do 40 j=1,n 

           p(j)=fit(j)/sum 

40       continue 

           do 50 l=1,n 

           q(l)=prop+p(l) 

           prop=q(l) 

50       continue   

           do 80 iz=1,2 

202     u=0.5*(rnd()+1.0) 

           j=1 

           if(u.le.q(j))go to 99 

           do 100 j=2,n 

           if ((u.gt.q(j-1)) .and. (u.le.q(j)))go to 99 

100     continue 
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99       if((iz.eq.2.0).and.(j.eq.m(1)))go to 202 

           m(iz)=j 

           do 119 jj=1,k 

           x(n+iz,jj)=x(m(iz),jj) 

119     continue 

           fit(n+iz)=fit(m(iz))         

80       continue 

           return 

           end                 

c ************************************************************************** 

c         This subroutine was used to apply the reproduction operators (crossover and mutation)   

c         on the selected two parents to produce two children (new offspring). 

           subroutine crmut(x,k,n) 

           dimension x(105,30),anew(105) 

           do 29 jj=1,k 

           x(n+3,jj)=x(n+1,jj) 

           x(n+4,jj)=x(n+2,jj) 

29       continue 

           lrcf=k*abs(rnd())+1 

           do 47 lt=lrcf,k 

           x(n+3,lt)=x(n+2,lt) 

           x(n+4,lt)=x(n+1,lt)  

47       continue 

           do 3 j=n+3,n+4 

777     lrmt=k*abs(rnd())+1 

           anew(j)=rnd() 

           x(j,lrmt)= λ*x(j,lrmt)+ β*anew(j) 

c         λ and β values are between 0 and 1 and their values are selected based on the software   

c         performance (experimental evaluation). 

3         continue 

           return 

           end 

c    ************************************************************************ 

c         This subroutine was used to determine the best two chromosomes from the two  

c         selected parents and the two produced children chromosomes and reinsert the best two   

c         chromosomes to the population again. 

           subroutine max1(fit,k,n,m,x) 

           dimension fit(105),x(105,50),a(105,50),m(2) 

           nn=3 

           do 200 loop=1,nn 

     

           jj=n+4-loop 

           do 101 l=n+1, jj 

           if(fit(l).lt.fit(l+1))go to 101 

           temp=fit(l) 

           do 6 jj=1,k 

           a(l,jj)=x(l,jj) 

6         continue 

           fit(l)=fit(l+1)        

           do 11 jj=1,k 

           x(l,jj)=x(l+1,jj) 

11       continue 

           fit(l+1)=temp 
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           do 13 jj=1,k 

           x(l+1,jj)=a(l,jj) 

13       continue   

101     continue 

200     continue 

           do 9 iz=1,2 

           do 1 jj=1,k 

           x(m(iz),jj)=x(n+iz+2,jj) 

1         continue 

           fit(m(iz))=fit(n+iz+2) 

9         continue 

           return 

           end               

c    ***********************************************************************   

c          This subroutine was used to determine the best (max.) chromosome’s average fitness   

c          from the population and send this chromosome to test the stopping criteria.         

           subroutine max2(fit,k,n,bav,x) 

           dimension fit(105),a(105,30),x(105,30) 

           nn2=n-1 

           do 301 loop2=1,nn2 

           jj2=n-loop2 

           do 102 l=1,jj2 

           if(fit(l).lt.fit(l+1))go to 102 

           temp2=fit(l)  

           do 7676 jj=1,k   

           a(1,jj)=x(l,jj)    

7676   continue     

           fit(l)=fit(l+1)    

           do 8989 jj=1,k 

           x(l,jj)=x(l+1,jj) 

8989   continue     

           fit(l+1)=temp2   

           do 1234 jj=1,k 

           x(l+1,jj)=a(1,jj) 

1234   continue     

102     continue 

301     continue 

           bav=fit(n)  

c         bav=best chromosome average fitness(max. average fitness).           

           write(*,*)' best average fitness at end of max2= ',bav  

           write(*,*)' best average chromosome at end of max2= ',(x(n,jj),jj=1,k)                                                                                        

           return                                                                                   

           end   
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