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Abstract

1. Objective

The objective of this research has been to develop more reliable models to predict the
miscibility and interactions between CO, or green-house gas (GHG) and oil (dead and live
oils) over a wider range of conditions, based on data from different site sources, considering
all the major variables affecting each modelled parameter, and for different injected gas
compositions. The Genetic algorithm (GA), an artificial intelligence technique based on the
Darwinian theory of evolution that mimics some of the natural processes in living organisms,
was used to develop these models, based on GA software that has been developed in this
work (as a modelling technique). While applications of GA have been used recently in the
mathematical and computer sciences, its applications in the petroleum engineering, especially

EOR research, have been limited.

2. Motivation to Investigate the Potential of GA-based Models

The detrimental effects of CO, and/or GHG emissions from various industrial and
human-activity sources on the environment are a major concern worldwide. This has resulted
in an intensive global R&D effort to lower or mitigate the damaging impact of GHG on the
environment. One potentially attractive and effective means of lowering the GHG emissions
could be to capture them from their major sources of emissions and then sequester them in
depleted oil and gas reservoirs while also enhancing oil recovery.

Typically, a GHG stream, also referred to as “flue gas”, contains high percentages of
CO; in addition to other gases, notably, N,, NOy and SOy. The presence of high CO, content
in the flue gas, in particular, could make this option potentially viable, provided the
miscibility and interaction properties between the injected gas and reservoir fluids are
favorable. Therefore, it is critical to ascertain the likely miscibility and interactions

parameters between the injected gas (CO, or flue gas) and oil at different conditions to
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determine the optimal miscibility and interaction conditions that contribute to oil viscosity
reduction and oil swelling. They in turn enhance oil recovery through improved gas flooding
process performance due to higher oil mobility, volumetric sweep efficiency, and relative
permeability to oil.

Often miscibility and interactions between injected gases and oils are established
through “experimental methods”, “new mathematical models” based on phase equilibria data
and equations of state (EOS), and available “published models”. Experimental methods are
time-consuming and costly. Moreover, they can handle only limited conditions. Mathematical
models require availability of a considerable amount of reservoir fluid composition data,
which may not be available most of the time. Although, the published models are simpler and
faster to use, one must however recognise that most of these models were developed and
validated based on limited data ranges from site-specific conditions. Therefore, their
applications cannot be generic. Another noteworthy point is that most of the interactions
models have been developed using dead oil data and pure CO; as an injected gas. Hence, they
do not perform well for a wider range of live oils, as well as injected flue gases, which contain
different components besides CO,.

Consequently, there is a need to have more reliable miscibility and interaction models,
which can handle a much wider range of conditions and different data sources. Also, these
models should be able to consider all the major variables, different injected gas compositions,

and live oil in addition to dead oil.

3. GA-based Models Developed in This Research

0 GA-based model for more reliable prediction of minimum miscibility pressure
(MMP) between reservoir oil and CO;: This model recognised the major variables
affecting MMP (reservoir temperature, MWcs,, and volatiles and intermediates
compositions). It has been successfully validated with published experimental data
and compared to common models in the literature. It is noted that GA-based CO;-oil
MMP offered the best match with the lowest error and standard deviation.

a GA-based flue gas-oil MMP model: For this model, the MMP was regarded as a
function of the injected gas solubility into oil, which in turn is related to the injected
gas critical properties (pseudocritical temperature and pressure) besides reservoir
temperature and oil composition. A critical temperature modification factor was also
used in developing this model. The GA-based model has also been successfully
validated against published experimental data and compared to several models in the

literature. It yielded the best match with the lowest average error and standard
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deviation. Moreover, unlike other models, it can be used more reliably for gases with
higher N, (up to 20 mole%) and different non-CO, components (e.g., H,S, N, SOy,
0O,, and C;-C,4) with higher ratio (up to 78 mole%).

a GA-based CO;-oil physical properties models: These models have been developed
to predict CO, solubility, impact on the oil swelling factor, CO,-oil density, and CO;-
oil viscosity for both dead and live oils. These models recognised the major variables
that affect each physical property and also properly address the effects of CO;
liquefaction pressure and oil molecular weight (MW). These models have been
successfully validated with published experimental data and have been compared
against several widely used models. The GA-based CO;-oil properties models yielded
more accurate predictions with lower errors than other models that have been tested.
Furthermore, unlike the other tested models, which are applicable to only limited data
ranges and conditions, GA-based models can be applied over a wider data range and
conditions.

0 GA-based flue gas-oil physical properties models: These models predict flue gas-
oil properties such as, flue gas solubility, impact on the oil swelling factor, and flue
gas-oil density and viscosity while recognising all the major variables affecting each
property. Also, the GA-based models recognised the different injected flue gas
compositions. These models have been successfully validated with published
experimental data and have also been compared against other commonly reported
COs-o1l models, which are often used for flue gas-oil physical properties prediction.
The GA-based models consistently yielded a lower prediction error than the models
that have been tested. Furthermore, unlike other models, which are applicable only
over limited data ranges and conditions, GA-based models can be valid over a wider

range of data under various conditions.

All the above-mentioned models, developed in this research, are particularly useful
when experimental data are lacking and the project financial situation is a concern. In
addition, these models can be useful as a fast track gas flooding project screening guide. Also,
they can easily be incorporated into a reservoir simulator for CO, or flue gas flooding design
and simulation. Furthermore, they can serve as yet another useful tool to design optimal and
economical experimental test protocols to determine the miscibility and interactions between

the injected CO; or flue gas and oils in gas flooding processes.
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CHAPTER 1

Introduction

1.1. Introduction

Due to the imbalance between the demand and available supply, and the high cost of
finding new reserves, it is very important for the oil industry to enhance recovery from
existing sources of oil. One of the important methods of enhancing oil recovery is gas
flooding (e.g., using CO,, hydrocarbon gases, methane, air, and nitrogen).

Among the various gas flooding processes, CO, flooding has been received much
attention in recent years. The detrimental effects of CO, and/or green-house gas (GHQG)
emissions from various industrial and human-activity sources on the environment are a major
concern worldwide. This has resulted in an intensive global R&D effort to lower or mitigate
the damaging impact of these gases on the environment. One potentially attractive and
effective means of lowering these gases emissions could be to capture them from their major
sources of emissions and then sequester them in depleted oil and gas reservoirs while also
enhancing the oil recovery. Typically, a GHG stream, also referred to as “flue gas”, contains
high percentages of CO, in addition to other gases (e.g., C;-C4, N, NOy, and SOy). The
presence of high CO, content in the flue gas, in particular, could make this option potentially
viable, provided the miscibility and interaction properties between the injected gas and
reservoir fluids are favorable.

CO, or flue gas can displace oil using three displacement mechanisms: immiscible
displacement, multi-contact miscibility, and first contact miscibility, as dictated by the
pressure and temperature conditions. At a specific temperature and low pressures (below the
gas-oil minimum miscibility pressure (MMP)), the displacement mechanism is immiscible

displacement. While at pressures above the specified pressure (MMP), the displacement
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mechanism is multi-contact miscible displacement. For impractically very high pressures,
CO, or flue gas displacement may be first contact miscible displacement (Jarrell et al. (2002)
and Rathmell et al. (1971)). Theoretically, CO, has the potential to recover all residual oil
provided CO; flood is carried out at or above the MMP at which CO; and oil are miscible
(Jarrell et al. (2002)).

For the multi-contact miscible displacement, CO, is enriched with intermediates (C, —
Ce) from the oil, where there is initially a period of immiscible displacement until multiple
contacts (mass transfers) enable some components of the oil and CO, to be exchanged until
the oil-enriched CO, cannot be distinguished from the CO,-enriched oil (Jarrell et al. (2002)
and Rathmell e al. (1971)). This process is described as a condensing/vaporizing mechanism

as shown in Fig.1-1 (Zick (1986), Johns and Orr (1996), and Jarrell et al. (2002)).

NOTE:
This figure is included on page 2
of the print copy of the thesis held in
the University of Adelaide Library.

Fig.1-1. CO; multi-contact miscibility process (after Jarrell et al. (2002).

Gas miscible flooding is among the more widely applied non-thermal EOR techniques.
Among gas injection processes, CO, or flue gas is preferred to hydrocarbon gases (HC)

because of its lower cost, as well as the high displacement efficiency, and potential for


a1172507
Text Box
 
                          NOTE:  
   This figure is included on page 2 
 of the print copy of the thesis held in 
   the University of Adelaide Library.
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concomitant environmental benefits through its disposal in the petroleum reservoir.
Conventional use of CO; or flue gas for improving oil recovery is mostly for miscible flood
applications where displacement of oil from reservoir pore volume is achieved by the injected
gas solvent action. This solvent action prevents formation of an interface between the driving
and driven fluids through the formation of a bank of liquid that is miscible with both the
reservoir and injected fluids.

Key factors that affect gas miscible flooding are reservoir temperature, oil
characteristics, reservoir pressure and the purity of injected gas itself. Field case histories
from CO; floods in the Permian Basin, West Texas suggest that CO, purity should not be
viewed as too rigid a constraint, as the use of low purity CO, streams could also be economic
and effective in enhancing oil recovery. In fact, certain impurities (e.g., H,S and SOy) could
contribute towards attaining gas-oil miscibility at lower pressures and these components
contribute to increased gas solubility in oil, which in turn increases oil mobility and relative
permeability. In contrast, the presence of other components (e.g., C;, N», O,) increases MMP
and is detrimental to the injected gas solubility in oil, which results in the decrease of its
effect on oil viscosity reduction and oil swelling factor and in turn causes less effect on the oil
mobility and relative permeability. However, from an operational perspective, it is often the
remaining low percentages of non-CO, gases that are more difficult and costly to remove,
requiring expensive gas separation facilities. Safety and compression cost considerations also
justify near-miscible gas flood applications for some reservoirs. Therefore, the potential of
injecting flue gases containing both CO, and non-CO, components (H,S, N, SOy, Oy, and C;-
C4) could be an attractive option, provided the flue gas composition does not affect the
process performance adversely and their overall impact on the miscibility and interactions
with oil, separation/purification at the surface, and subsequent re-injection is evaluated and

well understood.

1.2. Motivation to Investigate the Potential of GA-based Models

The knowledge of miscibility conditions and interactions between injected gas and
reservoir oil in addition to their effect on oil recovery are very important for any gas flooding
project. The major parameters that affect gas flooding are MMP and gas solubility in oil. Gas
solubility results in oil viscosity reduction and oil swelling increase, which in turn, enhance
the oil mobility and increase the oil recovery efficiency. A better understanding of these
parameters is vital to any successful gas flooding project. Therefore, it is critical to ascertain
the likely miscibility and interaction parameters between injected gas (CO, or flue gas) and

oil at different conditions to determine the optimal miscibility and interaction conditions that
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contribute to oil viscosity reduction and oil swelling. They, in turn, enhance the oil recovery
through improved gas flooding process performance due to higher oil mobility, volumetric
sweep efficiency, and relative permeability to oil.

Often the miscibility and interactions between the injected gas and oil are established
through “experimental methods”, “new mathematical models” based on phase equilibria data
and equations of state (EOS), and available “published models”. Experimental methods are
time-consuming and costly. Moreover, they can handle only limited conditions. Mathematical
models often demand the availability of a considerable amount of reservoir fluid composition
data, which may not be available most of the time. Although, the published models or
correlations are simpler and faster to use, however one must recognise that most of these
models are developed and validated based on limited data ranges from site-specific
conditions. Therefore, their applications cannot be generic. Another noteworthy point is that
most of the interactions models have been developed using dead oil data and pure CO; as an
injected gas. Hence, they do not perform well for a wider range of live oils and also when flue
gases are injected because such gases contain other components besides CO,.

Consequently, there is a need to have more reliable miscibility and interaction models,
which can handle a much wider range of conditions and different data sources. Also, these
models should be able to consider all the major variables, different injected gases

compositions, and live oil in addition to dead oil.



CHAPTER 2

Research Objective and Thesis Overview

2.1. Introduction

As discussed in Chapter 1, there is a need to have more reliable miscibility and
interaction models, which can handle a much wider range of conditions and different data
sources. Also, these models should be able to consider all the major variables, different
injected gas compositions, and live oil in addition to dead oil. Therefore, this research was
designed to satisfy this research gap and present more reliable models for miscibility and
interactions between injected gas (CO; or flue gas) and oil. This chapter explains the research

objective and also presents an overview on the thesis outline.

2.2. Research Objective

The objective of this research has been to develop more reliable models to predict the
miscibility and interactions between CO, or flue gas and oil (dead and live oils) over a wider
range of conditions, based on data from different site sources, considering all the major
variables affecting each modelled parameter, and for different injected gas compositions. The
proposed models are as follows:

1. For miscibility pressures (MMP):

o  (CO,-0il MMP for both dead and live oils,

¢ Flue gas-oil MMP, considering wider range of the injected gas composition.
2. For gas (CO; or flue gas)-oil interactions, for dead and live oils:

¢ (CO;-oil solubility,

¢ Impact on oil swelling factor due to CO,,

¢ (CO;-oil density,



2. Research Objective and Thesis Overview 6

¢ (CO;-oil viscosity,

¢ Flue gas-oil solubility,

e Impact on oil swelling factor due to flue gas,
® Flue gas-oil density,

® Flue gas-oil viscosity.

Genetic algorithm (GA), an artificial intelligence technique based on the Darwinian

theory of evolution that mimics some of the natural processes in living organisms, was used to

develop these models, based on GA software that has been developed in this work (as a

modelling technique). It is to be noted that applications of GA have been started recently in

the mathematical and computer sciences and its applications in the petroleum engineering,

especially EOR research, have been limited.

2.3. Thesis Overview

The outline of this thesis is as follows:

Literature review of the factors affecting miscibility and interaction parameters of
CO; or flue gas and oil are presented. In addition, an explanation is introduced of the
most widely used miscibility and interaction models (Chapter 3).

Literature review of GA and its characteristics and advantages are presented. Also,
the previous applications of this tool in petroleum engineering are reviewed
(Chapter 4).

Explanation about the GA modelling software that has been developed in this
research as an efficient modelling technique (Chapter 5).

Presentation of the developed models for MMP, CO,-oil MMP and flue gas-oil
MMP, is introduced (Chapter 6).

Presentation of the developed models for interactions between CO, and oil (dead
and live oils), notably, CO, solubility in oil, impact on oil swelling factor, CO,-oil
density, and CO;-oil viscosity is introduced. In addition, the models developed for
interactions between flue gas and oil (dead and live oils), notably, flue gas solubility
in oil, impact on oil swelling factor, flue gas-oil density, and flue gas-oil viscosity
are presented (Chapter 7).

The conclusions and recommendations developed based on this research are
presented (Chapter 8).

Appendices present the literature database used in this research for both miscibility

and interaction models are included together with the developed GA software code.



CHAPTER 3

Literature Review-1: Modelling of the Miscibility
and Interactions Between CO, or Flue Gas and Oil

in Gas Flooding Processes

3.1. Introduction

One potentially attractive and effective means of lowering CO, and flue gas emissions
could be to capture them from their major sources of emissions and then sequester them in
depleted oil and gas reservoirs while also enhancing oil recovery. This option is potentially
viable, provided the miscibility and other interactions between the injected gas and reservoir
oil are favorable. Therefore, a better understanding of interactions between CO, or flue gas
and reservoir oil in addition to their effect on oil recovery are very important for any gas
flooding project.

As an example, the presence of some components (e.g., C,-C4, HS, SOx) with CO; in
the flue gas is favorable for enhanced oil recovery because they contribute to increased gas
solubility in oil, which in turn increases oil mobility and relative permeability. In addition,
these components contribute towards reducing minimum miscibility pressure (MMP). In
contrast, the presence of other components (e.g., C;, Ny, O,) is detrimental to the injected gas
solubility in oil, resulting in the decrease of its effect on oil viscosity reduction and oil
swelling factor, and in turn resulting in less effect on oil mobility and relative permeability. In
addition, these components contribute towards increasing the MMP. Therefore, it is critical to
ascertain the likely interactions between injected CO, or flue gas (with different
compositions) and oil to determine the optimal conditions that contribute to the gas-oil MMP
reduction, viscosity reduction, and oil swelling to enhance oil recovery and increase the

efficiency of gas flooding processes.
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This chapter presents an overview on the available models for CO,-oil MMP and flue
gas-oil MMP. In addition, this chapter covers the available models for CO, and flue gas
interactions with oil (e.g., gas solubility, impact on oil swelling factor, and gas-oil density and
viscosity). An overview on the factors affecting the miscibility and interactions parameters is

also presented.

3.2. Modelling of CO,-Oil MMP and Flue Gas-Oil MMP

Often MMP is obtained by three methods: experimental tests, predicting of MMP using
commonly available models or correlations in the literature, and predicting of MMP by
equations of state (EOS) studies.

The most common experimental methods to determine MMP are slim tube and rising
bubble apparatus (RBA) experiments. Slim tube experiments are the most commonly used
experimental method in the oil industry. However, there are no standard and accurate test
conditions and interpretation procedures for the slim tube experiments, as different
organizations use different apparatus specifications and different interpretation procedures
(Green and Willhite (1998)). In addition to the slim tube, RBA experiments are also used to
determine MMP and their results correspond to those from the slim tube with less
experimental time (Eakin and Mitch (1988), Dong et al. (2001b), and Elsharkawy et al.
(1992)). In general, the experimental methods, especially slim tube tests, are expensive, time
consuming, or may not be readily available. Thus, efforts are also made to predict gas-oil
MMP using various methods such as the mathematical studies and the commonly available
models in the literature.

The mathematical studies are developed based on using phase equilibria data and an
EOS to determine the MMP (Jarrell er al. (2002)). This approach requires availability of a
considerable amount of reservoir fluid composition data, which may not be readily available
most of the time and hence is a tedious approach. Furthermore, the calculations are not easy
and require the application of certain algorithms and computer modelling, which is not
commonly available in many of the situations. Also, for the EOS calculations, the equilibrium
constants should be determined accurately to provide an accurate prediction, which could be
difficult to achieve where the EOS may not be adequately accurate. Therefore, the EOS
calculations must be calibrated using experimental PVT data, which can be difficult (Green
and Willhite (1998)). As examples of the mathematical determination of MMP, Johns and Orr
(1996) developed a multi-component phase equilibrium approach using the method of
characteristics in absence of dispersion. They presented an approach that can be used to find

the key tie line that controls miscibility and predicts MMP from an EOS. Also, Wang and Orr
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(1998) presented a method to determine the MMP for displacements with an arbitrary number
of components and two phase flow that is based on an analytical theory for one-dimension
and dispersion free flow of a multi-component mixture. Furthermore, Ahmed (1997)
presented a generalized method to determine MMP for a multi-component miscible
displacement of oil by CO, and other different gas injection (hydrocarbon gas and nitrogen)
by using the modified Peng Robinson EOS (PR-EOS) in conjunction with a miscibility
function.

In addition to the mathematical calculations, the available published models also could
be used to predict the MMP. Table 3-1 summarizes along with brief corresponding remarks,
some of the commonly used MMP models available in the literature. As these models are
used to predict CO,-0il MMP and flue gas-oil MMP, a brief overview of these properties

follows.

3.2.1. CO,-0il MMP

CO»-0il MMP is a function of oil composition and reservoir temperature (Holm and
Josendal (1974), Alston et al. (1985), and Johnson and Pollin (1981)). All the previous studies
and models stated that the reservoir temperature has a significant impact on the CO»-oil
MMP. With regard to the oil composition, Rathmell e al. (1971) indicated that the presence
of volatiles (e.g., C;) increases the MMP, while the presence of intermediates (e.g., C,-Co)
decreases the MMP. Metcalfe and Yarborough (1974) suggested that a model should take into
consideration the presence of both the volatiles and intermediates in oil as well as the
reservoir temperature for it to be considered a general model for MMP prediction. Alston et
al. (1985), too, had conducted a series of slim tube tests to prove that the MMP is affected by
the presence of C; and other volatile components (e.g., N) in the oil. They found that the
presence of these components increases the MMP, however, the MMP is lowered by the
presence of the intermediates in reservoir oil (e.g., C>-Cy4, H,S, and CO,). Furthermore, they
stated that consideration of Cs, molecular weight (MWcs,) is more important than the oil API
gravity. Cronquist (1978), too, used the MWcs, as a model variable in addition to the volatiles
mole percentage (C; and N;) and temperature. Moreover, Enick et al. (1988) developed their

model using the MWcs, to present the effect of oil composition on the MMP.

3.2.2. Flue Gas-Oil MMP
The factors that affect flue gas-oil MMP are reservoir temperature, oil composition, and

injected gas composition. As stated before for CO,-0il MMP, the flue gas-oil MMP is also
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affected similarly by the reservoir temperature, MWcs,, and oil volatiles and intermediates
components.

In addition, the existence of non-CO, components (e.g., H,S, SOy, and C,-C4) whose
critical temperatures are higher than that of CO, (31.1°C) causes an improvement in the flue
gas solubility in reservoir oil (Dong (1999) and Zhang et al. (2004)). This results in an
increased injected gas pseudocritical temperature and a lower MMP. On the other hand, the
existence of the components (e.g., N, O,, and C;) with lower critical temperatures causes a
reduction in the flue gas solubility in reservoir oil and has the opposite effect.

Wilson (1960) stated that the pseudocritical temperature of the injected gas affects the
MMP and it could be used as a variable in a miscibility model. Likewise, Rutherford (1962)
found, empirically, that the hydrocarbon gas (HC)-oil MMP in HC miscible floods is a
function of the pseudocritical temperature of the injected gas. Jacobson (1972) also suggested
a similar scheme using the pseudocritical temperature as a model variable for acid gases (CO
with H,S)-0il MMP prediction. However, instead of using actual values, apparent critical
temperatures were used for non-HC components as model variables. Alston et al. (1985)
followed a similar approach to model the flue gas-oil MMP using the injected gas
pseudocritical temperature, where apparent critical temperatures for C, and H,S components
(equal to 51.67°C for both of them) were also used to determine the pseudocritical
temperature using the weight-fraction mixing rule. They found that the weight-fraction
mixing rule gave better results than the mole-fraction method.

Similarly, Kovarik (1985) presented a model that was developed also based on the
pseudocritical temperature. In addition to the weight-fraction mixing rule, the mole-fraction
rule was used to determine the pseudocritical temperature and the author found that the two
methods presented similar results. Moreover, Sebastian et al. (1985) also used the mole-
fraction mixing rule to determine the injected gas pseudocritical temperature in developing
their flue gas-oil MMP model. They also used an apparent critical temperature for H,S
(51.67°C). Dong (1999) presented an approach similar to that of Sebastian et al. (1985) but
instead of using apparent critical temperatures, a factor with non-CO;, components (H,S, SO»,
0,, Ny, and C;) was used in determining the injected gas pseudocritical temperature to
represent the strength of these components in changing the apparent critical temperature of the
injected flue gas relative to pure CO,.

Eakin and Mitch (1988) used the injected gas pseudocritical pressure and the
pseudocritical temperature in developing their model. They argued that the change of the
rising bubbles’ shape in the RBA and also the low value of the interfacial tension between the

injected gas and oil would occur only near the critical point.
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3.3. Modelling of CO,-Oil Physical Properties

As has been emphasized earlier, the properties of the CO,-o0il mixtures play a critical
role in the success (or failure) of a CO; flood. Therefore, it is important that they are obtained
as reliably and accurately as possible. These properties are usually obtained through some
experimental studies or by employing some sort of modelling or correlation techniques.
However, in many instances, an approach that combines both experimental and theoretical
means is employed.

The experimental approach involves a set of high-pressure volumetric and vapour liquid
equilibrium tests such as the constant composition expansion (or the flash test), the constant
volume depletion, the differential liberation, the separator tests, and some special laboratory
tests such as the swelling tests (Klins (1984) and Ahmed (1989)).

Mathematical studies derived by matching the experimental data and equations of state
(EOS) provide more general PVT data and physical properties over a wider range of
conditions (Dong and Paddock (1999) and Ahmed (1989)). The mathematical model
efficiency depends on both the quality and quantity of the data, and the computation often
require the use of certain algorithms and numerical modelling (Green and Willhite (1998)).

The available correlations or models can only be used to predict the gas-oil mixture
physical properties within their validity ranges. Table 3-2 summarises, along with brief
remarks, some commonly used models available in the literature. As these models take into
account the following CO»-oil physical properties, a brief overview of these properties is

warranted here.

3.3.1. CO; Solubility

CO; solubility is basically affected by the saturation pressure (P), temperature (Tr), and
oil API gravity (Welker and Dunlop (1963), Simon and Graue (1965), Chung et al. (1988),
and Srivastava et al. (1995)). As the solubility increases with the pressure and oil API gravity,
its value decreases with the temperature. The other factors affecting CO, solubility are oil
composition and CO, liquefaction pressure, where gaseous CO; is more soluble in oil than the
liquid CO;, (Dyer and Farouq Ali (1989), Chung et al. (1986), Kokal and Sayegh (1993), and
DeRuiter et al. (1994)). Therefore, for temperatures less than the CO; critical temperature
(Tc.co2), the CO; solubility increases with the pressure up to the liquefaction pressure, then
levels off at pressures higher than the liquefaction pressure and becomes less sensitive to the

pressure.
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3.3.2. Oil Swelling Factor Due to CO; Injection

Oil swelling factor is defined as the ratio of CO,-sarurated oil volume at the reservoir
temperature and pressure to the oil volume at the reservoir temperature and oil bubble point
pressure. The swelling factor is mainly a function of CO, solubility (Welker and Dunlop
(1963), Simon and Graue (1965), Sankur e al. (1986), and Briggs and Puttagunta (1984)).
Hence, the liquefaction pressure affects the swelling factor. Furthermore, as CO, solubility in
light oil is higher than that in heavy oil, the lighter oil swells more than the heavier oil
(Srivastava et al. (1995)). Besides CO, solubility, the swelling factor is also a function of the

molecular size of oil molecules (Simon and Graue (1965)).

3.3.3. CO,-0il Density
The effect of CO; solubility on oil density is generally small and is more apparent in
lighter oils than in heavier oils (Holm and Josendal (1974), Grigg (1995), and Sayegh et al.
(1990)). Srivastava et al. (1995) stated that CO;-oil density changes linearly with the
temperature. DeRuiter et al. (1994) also found that the oil exhibits an increased density due to
CO; solubility increase. However, they stated that this density increase might be a result of an
increase in the system pressure as the density was apparently not impacted by the change in

the solubility above the CO, liquefaction pressure (at temperature less than T¢ cop).

3.3.4. CO,-0il Viscosity

Oil viscosity decreases severely with increasing CO; solubility, resulting in increasing
oil mobility, consequently causing an increase in the oil recovery. At temperatures less than
T..coz, CO,-oil viscosity decreases with the saturation pressure up to the liquefaction pressure,
then levels off and decreases slightly at pressures higher than liquefaction pressure. At higher
pressures, the viscosity returns to increase again because of the effect of the pressure and oil
compressibility (Srivastava et al. (1995), DeRuiter et al. (1994), and Sayegh et al. (1990)). It
is also noted that the oil viscosity reduction due to CO; is higher at lower temperatures than at
higher ones. Also, the reduction in the CO,-oil mixture viscosity is higher for more viscous
oil (heavier oil) than for lower viscous oil (lighter oil) (Welker and Dunlop (1963), Srivastava
et al. (1995), and Rojas and Farouq Ali (1985)). For the composition effect on the CO;-oil
viscosity, many studies reported that the mixture viscosity is generally a function of its

composition (Chung et al. (1986) and Kokal and Sayegh (1993)).
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3.4. Modelling of Flue Gas-Qil Physical Properties

Like the CO»-oil physical properties, flue gas-oil properties could also be determined

through the experimental methods and the prediction methods (Mathematical calculations and
available models).

Most of the available models (as shown in Table 3-2) are developed essentially for the
COs-o0il physical properties but are still used for flue gas-oil physical properties.
Consequently, they are unable to give an accurate prediction for flue gas-oil properties,
especially for the flue gases, which contain higher ratios (more than 5-10 mole%) of non-CO,
components (Monger (1987)). As these models are used to predict the flue gas-oil physical

properties, a brief overview of these properties follows.

3.4.1. Flue Gas-Qil Solubility

Monger (1987) stated that the change in flue gas solubility is connected to the change in
gas critical temperature. The flue gas solubility increases when the flue gas streams contain
intermediate hydrocarbons, such as C,-C4, besides SOx and H,S (cause higher flue gas critical
temperature) (Zhang et al. (2004), Dong and Paddock (1999), and Monger (1987)). On the
other hand, volatile gases such as C;, N;, and O, reduce the flue gas solubility (cause lower
flue gas critical temperature) (Zhang et al. (2004), Graue and Zana (1981), and Dong and
Paddock (1999)). In addition, as stated before for CO, solubility, the flue gas solubility is
affected by the saturation pressure, temperature, and oil API gravity (Welker and Dunlop
(1963), Simon and Graue (1965), Chung et al. (1988), and Srivastava et al. (1995)).

The other factors affecting flue gas solubility are oil composition and flue gas
liquefaction pressure. Gaseous flue gas is more soluble in the oil than the liquid flue gas as the
solubility becomes less sensitive to the pressure effect (Dyer and Farouq Ali (1989), Chung et
al. (1986), Kokal and Sayegh (1993), and DeRuiter et al. (1994)).

3.4.2. Oil Swelling Factor Due to Flue Gas Injection

Oil swelling factor is principally a function of the flue gas solubility (Welker and
Dunlop (1963), Simon and Graue (1965), Sankur et al. (1986), and Briggs and Puttagunta
(1984)). Thus, the existence of volatile gases (e.g., C;, N,, and O;) in the flue gas streams
causes lower oil swelling due to the lower gas solubility in oil (Sankur et al. (1986) and
Nguyen and Farouq Ali (1998)). On the other hand, the existence of other components (e.g.,
C,-C4, SOx, and H,S) causes higher oil swelling due to the higher gas solubility. Besides flue
gas solubility, the swelling factor is a function also of the molecular size of oil molecules as

stated above for the oil swelling due to CO, injection (Simon and Graue (1965)).
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3.4.3. Flue Gas-Oil Density
With respect to flue gas-oil density, although the flue gas injection effect on the oil
density is small, it is more pronounced in lighter oils than in heavier oils (Holm and Josendal
(1974), Grigg (1995), and Sayegh et al. (1990)). Srivastava et al. (1995) stated that the flue
gas-oil density is a function of the temperature. DeRuiter et al. (1994) also found that the oil
density increases due to the flue gas solubility increase. However, they stated that this density

increase might be a result of an increase in the system pressure.

3.4.4. Flue Gas-Oil Viscosity

Oil viscosity decreases severely with increasing flue gas solubility, resulting in
increasing oil mobility, consequently causing an increase in oil recovery. Thus, the existence
of volatile gases (e.g., C;, N,, and O,) in the flue gas streams causes less reduction in the flue
gas-oil viscosity, while the existence of C,-Cy4, SOx, and H,S in the flue gas streams causes a
greater reduction in the mixture viscosity due to the higher solubility of this stream in oil
(Sankur et al. (1986), Frimodig et al. (1983), and Nguyen and Farouq Ali (1998)). The flue
gas-oil viscosity is also a function of the temperature and saturation pressure (Srivastava et al.
(1995), DeRuiter et al. (1994), and Sayegh et al. (1990)). Furthermore, the mixture viscosity
reduction is higher for more viscous oil than for less viscous oil (Welker and Dunlop (1963),
Srivastava et al. (1995), and Rojas and Farouq Ali (1985)). Also, many studies reported that
the gas-oil mixture viscosity is generally a function of its composition (Chung et al. (1986)

and Kokal and Sayegh (1993)).
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3.5. Summary

This chapter presents an overview of the available models, which were developed to
predict the miscibility and interactions between CO, or flue gas and oil (MMP and other
interactions such as gas solubility, oil swelling factor, gas-oil density and viscosity). Most of
these models can be applied over a small range of conditions and most of them ignored some
of the basic variables affecting the modelled parameters. In addition, some of these models
were developed based on dead oil rather than live oil data. Therefore, their predictions,
especially for the live oil, are not adequate. For example, the Alston et al. (1985) flue gas-oil
MMP model performance for flue gas streams that contain N, is inadequate; especially for
injected gas streams containing more than 8 mole% of N,. Furthermore, their model is unable
to deal with the existence of SO, in the flue gas. For the Sebastian et al. (1985) flue gas-oil
MMP model, its prediction accuracy was overly sensitive to the existence of N, and/or SO; in
the injected flue gas. Also, the existence of high fractions of non-CO, components (more than
55 mole%) in the injected flue gas caused a lower accuracy in its prediction.

For gas-oil physical properties models, most of the available models are developed
basically for CO, injection, and the majority of them have been developed for CO,-dead oil
physical properties. Also, these models are limited in their application within certain data
ranges and they are unable to accurately predict the effect of the injected gas on the live oil
properties. The Simon and Graue (1965) models, for example, are limited to saturation
pressure of 15.86 MPa and oil viscosity up to 1300 mPa.s and they predict mixture viscosity
incorrectly, especially for lighter oils. The Emanuel (1985) model yields significant errors in
the prediction of CO;-oil viscosity and it has been developed basically for heavy oils. Chung
et al (1986) models also are limited to a saturation pressure of 20.7 MPa. Welker and Dunlop
(1963) models are limited to an oil gravity range from 20 to 40°API for temperature limited to
26.67°C. In particular, the preceding models do not adequately address the liquefaction
pressure (at the specified temperature) effect on the solubility. Also, because these models
have been developed for CO;-oil physical properties, they are unable to give an accurate
prediction for the flue gas-oil physical properties, especially for the flue gases, which contain

a higher ratio of non-CO, components (more than 5-10 mole%).



CHAPTER 4

Literature Review-2: Genetic Algorithm (GA)- One

of the Artificial Intelligence Techniques

4.1. Introduction

The genetic algorithm (GA), one of the artificial intelligence techniques, was invented
by John Holland (1975) to mimic some of the natural processes observed in natural evolution.
It is an example of the random method of optimisation and search. The random method is
more popular because it allows to search, randomly, about the optimum value at many points
on the search space at a time and to save the best values (Goldberg (1989)).

Other optimisation and search methods are calculus-based and enumerative (Goldberg
(1989)). The calculus-based method that search for a local optimum is subdivided into two
main classes: direct, which moves in the direction related to the local gradient and explore the
function to get the local optimum (hill climbing) and indirect, which depends on putting the
objective function gradient as equal to zero and then solving the non-linear group of equations
resulting from it. Both of these subclasses of the calculus-based method show lack in
robustness because they are local in searching for optimum values and they search for the
optimum in the near neighbourhood of a current position in the search space. Furthermore,
they depend on the existence of derivatives. The enumerative method starts to search the
objective function value at each point on the search space, going from one point to the other.
This method also is not robust because of the lack of its efficiency, as many practical search
spaces are too large to search point by point (one at a time).

Compared to the preceding optimisation methods, the GA shows a higher robustness
and efficiency as an optimisation technique. Therefore, GA applications in petroleum

engineering have been introduced recently as an optimisation tool. An overview is presented
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to give an idea about GA, its advantages, a description of the GA tool, how to enhance its

performance, and its previous applications in petroleum engineering, as follows.

4.2. Whatis the GA?

GA is a computer based stochastic search procedure that was developed based on the
Darwinian theory of evolution. The GA depends on the mechanics of natural selection,
natural genetics, and rule of survival of the fittest (Goldberg (1989)). It can be used over
wider ranges of optimisation and search procedures, including those that are difficult to
handle by most of the conventional techniques (Jefferys (1993)). This tool involves a random
generation of potential design solutions encoded on a string similar to the chromosomes of the
biological system. This procedure accompanied by an evaluation method according to an
objective function and constraints. Then, a refinement of the solution is applied using
reproduction operators (e.g., crossover and mutation) to get the best solution of the problem
comparable to which occur in nature. This refinement process is repeated until a stopping

criterion is met, indicating the optimum solution (Goldberg (1989)).

4.3. The Advantages of the GA

The GA offers the following advantageous features over the traditional optimisation
methods:

1. The GA can deal with all types of objective and constraint functions (e.g., linear-non-
linear, convex-concave, continuous-discrete, differentiable-non differentiable
functions, etc). On the other hand, some traditional methods are restricted to specific
objective functions (e.g., Newton’s methods need the objective function to be
differentiable) (Mostafa (2000)).

2. The GA maintains a population of points and manipulates them to get better
populations. Hence, the GA can explore many positions on the search space at the
same time, which increases the chance of global optimum discovery, instead of going
from point to the other (one point at each time) on the search space (traditional
methods) (Goldberg (1989) and Mostafa (2000)).

3. The GA works by exploration (search for population of points not single point) and
exploitation (search on the optimum at each position) of the search space, in contrast
to most traditional optimisation methods, which are based on exploitation (Goldberg

(1989) and Mostafa (2000)).
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4. It works on encoding of the problem parameters on strings (not with the parameters
themselves), which increases the GA robustness (Goldberg (1989) and Mostafa
(2000)).

5. It performs very well for complicated and large optimisation problems (Badru (2003)
and Abourayya (2001)).

6. This algorithm is computationally uncomplicated and powerful in its search for
optimum values (Stender (1993)).

7. The GA solutions are less likely to be untruthful, as the problem does not need to be
“bowed” to fit the solution method (Jefferys (1993) and Goldberg (1989)).

8. The GA uses probabilistic rules not deterministic rules (Goldberg (1989)).

4.4. The GA Tool Description

The operation of the GA starts with a population of random chromosomes to present
different random solutions of a specific problem. It then starts to test and evaluate these
chromosomes based on a certain evaluation function. By applying certain reproduction
techniques, the GA continues to improve the population of solutions until a stopping criterion
is reached, indicating the optimum solution. These general steps in performing the GA
operation are shown in Fig. 4-1. A detailed overview on different components of the general

steps of the GA tool is presented as follows.

4.4.1. Initial Population

The initial population is a set of random solutions for a specified problem represented as
strings of chromosomes. There are different types of chromosomes (single dimension or
multidimensional chromosomes) and each chromosome contains a number of genes, which
encode the problem parameters on the chromosome string. As shown in Fig. 4-2, the common
approaches to encode the problem parameters are binary strings, real numbers, and letters or
characters (Marczyk (2004)). For the binary encoding system, a sequence of 1’s and 0’s
encodes the solution parameters on the chromosome. This method is simple to generate and
manipulate and easy for reproduction operators applications. On the other hand, this method
is not efficient for large-scale problems with large search space, as these problems will need
too large binary strings. In addition, there may be a precision loss in the parameters values
because of the conversion to the binary system. For the other encoding methods (real number,
letters, or characters), the solution is encoded on the chromosome with real numbers, letters,
or characters, respectively. These methods, especially the real encoding method, are more

efficient as they need less computer memory and there is no loss in precision due to the
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conversion to binary numbers or other values. In addition, they are simple and easy to apply,

especially, for large-scale problems with large search space, as long strings will not be

required in this case (Michalewicz (1992)).

Generate initial random population

1L

Evaluate each chromosome (determine fitness value)
(Evaluation Function)

>l

Select two parent chromosomes
(Parent Selection)

~

Produce new offspring chromosomes (children)
(Crossover & Mutation)

JL

Evaluate each offspring (determine fitness value)
(Evaluation Function)

U

Return certain chromosomes of the parents and
children chromosomes to the population
(Deletion Process)

Stopping Criterion

Yes | The fittest

—P chromosome in the
population presents
the solution

Fig. 4-1. A standard flow chart of the GA (after Cvetkovic (2000) and Mostafa (2000)).
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After designing and encoding the specified problem parameters on the GA
chromosome, the population size should be selected. If the population size is too small, the
reproduction operators will have low opportunity to be applied and only a limited part of the
search space will be explored. On the other hand, if the population size is too large, there will
be unnecessary slow performance of the GA (Mostafa (2000)). The typical population size is
between 30 to 100 individual chromosomes (Karr (1991)).

Parameter encoding methods on GA

chromosomes
Binary strings Real numbers Letters Characters
10101010101 1.2,0.44,3.2 A,B,C Red, Pink, Green

Fig. 4-2. The parameter encoding methods on the GA chromosome (After Abourayya (2001)
and Marczyk (2004)).

4.4.2. Evaluation

The evaluation function plays the same role of the environment “Survival of the fittest”,
ranking the problem solutions in terms of their fitness, as each chromosome is assigned a
value called the fitness value according to the problem objective function. The closer the
chromosome to the optimum, the higher is the fitness value (Cvetkovic (2000)). There are
three fitness methods: fitness as evaluation (converting the chromosome evaluation into
fitness values), windowing (assign each chromosome a fitness value equal to the amount that
it exceeds the minimum chromosome evaluation value in the population), and linear

normalisation (order chromosomes in a descending evaluation) (Davis (1991)).
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4.4.3. Selection Techniques

The selection process provides the chromosomes, which are chosen from the population
to produce the new offspring for the next generation (using the reproduction operators) to
improve the population fitness (make the problem solution move in the direction of the
optimum solution). Individual chromosomes are chosen according to their fitness values and
the fittest chromosomes have the higher probability to be chosen (Davis (1991)). The most
common selection methods are roulette wheel selection, tournament selection, scaling
selection, elitist selection, rank selection, generational selection, steady state selection, and

hierarchical selection (Marczyk (2004)). A brief overview of these methods follows.

4.4.3.1. Roulette Wheel Selection

Roulette wheel method is a random selection method that depends on the selection of
each parent (selected chromosome) according to its fitness. Thus, the chance of a
chromosome to be selected from the population is proportional to the amount by which its
fitness is different than the other population chromosomes. The fittest chromosome has a
higher probability, but there is no certainty to be selected. On the other hand, there is a low
probability for the lower fitness chromosomes to be selected, as these chromosomes may
contain some useful features (genes). Over a number of generations, the lower fitness
chromosomes will be driven out and the fittest chromosomes will survive (Marczyk (2004),
Abourayya (2001), and Mostafa (2000)).

Hypothetically, this method can be presented as a roulette wheel game, as each
chromosome has a slice area on the wheel proportional to its fitness (the higher fitness
chromosomes has the higher slice area, as shown in Fig. 4-3). From Fig. 4-3, Chromosome 5
is the fittest chromosome and occupies the largest slice on the roulette wheel, whereas
chromosomes 1 and 4 have the lowest fitness and have correspondingly smaller slices within
the roulette wheel. In this selection technique, the chromosome that roulette wheel spinner
lands on its slice is chosen as the parent to produce the next offspring. Therefore, the higher
slice area of the chromosome, the higher is the probability for the wheel spinner to land on its
slice, and consequently, to be chosen as a parent to produce the next offspring (Marczyk

(2004), Abourayya (2001), and Mostafa (2000)).
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NOTE:
Thisfigureisincluded on page 38
of the print copy of the thesisheld in
the University of Adelaide Library.

Fig. 4-3. Roulette wheel showing the proportional of each chromosome slice area with its

fitness value (after Abourayya (2001)).

4.4.3.2. Tournament Selection
In the tournament selection method, the population is divided into subgroups randomly
without duplication of the chromosomes between these groups. The chromosomes from each
group compete against each other and the fittest chromosome is chosen to reproduce the next
generation offspring (Marczyk (2004)). This selection method is slower than other methods
(e.g., roulette wheel method) because of executing many random selections (Abourayya

(2001)).

4.4.3.3. Scaling Selection
When the average population fitness is high and the selection pressure increases (when
all chromosomes have high fitness values and there are a small differences between them,
after applying the reproduction process to many generations), the scaling method can be
helpful in making the best selection. Therefore, this method could be used in combination

with other selection methods (Marczyk (2004)).

4.4.3 4. Elitist Selection
Elitist selection method confirms the selection of the fittest chromosomes from each

generation. This method is not purely used in most of the situations, but instead a modified
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form is used, as the best or few of the best chromosomes from each generation are selected as

a back up (if there is no better chromosomes are produced) (Marczyk (2004)).

4.4.3.5. Rank Selection
In the rank selection method, a numerical ranking is appointed to each population
chromosome based on its fitness. Thus, the selection procedure is applied based on the
chromosomes ranking, not on their fitness differences. This technique helps in preventing
fittest chromosomes from dominance early at the expense of the less fit chromosomes, which

may have a good genes on them (Marczyk (2004)).

4.4.3.6. Generational Selection
In the generational selection method, the selected chromosomes from each generation
become the whole next generation. Hence, no chromosomes are preserved between

generations (Marczyk (2004)).

4.4.3.7. Steady-State Selection
For steady-state selection method, the selected chromosomes from each generation
return back to the previous generation replacing some of the lower fitness chromosomes to

form the next generation. Hence, some chromosomes are preserved between generations

(Marczyk (2004)).

4.4.3.8. Hierarchical Selection
In the hierarchical selection method, the chromosomes pass through multiple selection
criteria in each generation. Hence, it uses faster and lower level evaluation for the majority of
chromosomes that show little or no promise and only uses more rigorous and more
computationally expensive fitness evaluation for the fittest chromosomes who survive to the

higher levels (Marczyk (2004)).

4.4.4. Reproduction Operators
After the selection process and selecting the fittest chromosomes to produce the new
generation, reproduction operators start to work on the selected chromosomes to produce the
new offspring. The purpose of the reproduction operators is to allow the possibility of
producing new and fittest chromosomes to improve the population fitness (the group of
solutions). The most common reproduction operators are: crossover, mutation, deletion, and

inversion operators. An overview on these operators follows.
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4.4.4.1.Crossover

Crossover operator is defined as producing new chromosomes (offspring) from the
current generation (population) through selecting two chromosomes (parents) and exchanges
some of the genes between each parent and the other. Thus, the new offspring takes its
features from its parents with a probability that the new offspring will get good parts from its
parents and have higher fitness to improve the solution (Cunha (1999)). The crossover is
applied with a certain probability (crossover rate), which determine how often the crossover
will be performed. For crossover probability equal to one, all the new offspring will be
produced by crossover. On the other hand, if this probability is equal to zero, whole new
offspring will be produced from exact copies of the parents’ chromosomes (Abourayya

(2001)). There are different types of the crossover operator as follows.

4.4.4.1.1. One-Point Crossover
In this type of crossover, a random point is selected on the two parent chromosomes and
then an exchange in the genes between the two parents occurs between this point and the end
of each parent chromosome to produce two new offspring (Cunha (1999) and Marczyk
(2004)). An example of the one-point crossover method is presented in Fig. 4-4, as two
parents’ chromosomes are swapped after a randomly selected point (e.g., between the third
gene and fourth gene), creating two new offspring that hold mixture of properties (genes)

from each parent.

Parent 1

Parent 2

Child 1
Child 2

Fig. 4-4. One-point crossover operator example (after Marczyk (2004) and Cunha (1999)).
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4.4.4.1.2. Two-Points Crossover
The difference between two-points crossover and the one-point crossover operator is
that instead of selecting one point on each parent chromosome (as in the one-point crossover),
two points are selected randomly and the genes between these two points are swapped
between the two parents to produce two new chromosomes (children) (Davis (1991)). An
example of the two-points crossover method is presented in Fig. 4-5, as two parents’
chromosomes are swapped between randomly selected two points, creating two new offspring

that hold mixture of properties from each parent.

Parent 1

Parent 2

Child 1

Child 2

Fig. 4-5. Two-points crossover operator example (after Davis (1991) and Cunha (1999)).

4.4.4.1.3. Uniform Crossover
For uniform crossover operator, each gene on the two children (offspring) is chosen
randomly from one of the two parents analogous position genes (Davis (1991), Cunha (1999),

and Marczyk (2004)). Fig. 4-6 presents an example of the uniform crossover operator.
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Fig. 4-6. Uniform crossover operator example (after Cunha (1999)).

4.4.4.2 Mutation

In the mutation reproduction operator, one chromosome gene is selected randomly and
then its value is changed. The change in the gene value also occurs randomly. The benefit of
the mutation technique is to prevent the GA from falling into local optimum positions by
destruction of one gene on the chromosome and change its value randomly. The mutation
occurs with a certain probability, which should be a low probability to prevent the GA from
losing the good solutions. This probability is determined based upon experimental evaluation
(Cunha (1999)). Fig. 4-7 presents an example of the mutation operator.

For real number coded chromosomes, genes values could be replaced using a memory
factor. This is different than the binary coding in which the gene value will be 0’s or 1’s.

Hence, for the real number coding methods, the new gene value could be:

New Value = AxOld Value + Bx Random Value, 0 <A<1and 0<B <1 (4-1)

4.4.4.3 Deletion
After producing the new offspring, chromosomes have a probability of being inserted
back inside the population. There are many methods to reinsert the chromosomes (parents

and/or offspring) in the population as follows.
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Fig. 4-7. Mutation operator example (after Cunha (1999)).

4.4.4.3.1. Generation Replacement
In this deletion method, the new offspring replaces the old population (parents)
(Fonseca (1995) and Davis (1991)). Therefore, many of the best individuals may be lost
(Mostafa (2000)).

4.4.4.3.2. Steady State Replacement
In this method, the new offspring has the opportunity to compete with its parents. A
lower number of offspring (typically, one or two) has the possibility to be inserted into the
population replacing: random members from the population, their own parents, the oldest
members in the population, or the lower fitness members in the population. This replacement
occurs unconditionally or only if the offspring is better than the replaced chromosomes

(Fonseca (1995)).

4.4.4.3.3. Steady State without Duplicates
This method is similar to steady state replacement, except that the offspring, which is a

duplicate of any chromosome in the population, is removed (Davis (1991)).

4.4.4.4. Inversion Operator
Inversion operators swap the information inside the chromosome. This operator is used

to reorder the genes inside the chromosome to increase the potential for evolution especially
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when the objective function changes with time. In this operator, two points are randomly
selected and the genes between them are interchanged (Cunha (1999)). Fig. 4-8 presents an

example of the inversion operator.

NOTE:
Thisfigureisincluded on page 44
of the print copy of the thesis held in
the University of Adelaide Library.

Fig. 4-8. Inversion operator example (after Cunha (1999)).

4.5. Performance Enhancement of the GA Tool

There are several methods to enhance GA performance. This enhancement can be made
through adapting the GA operator probabilities (e.g., crossover and mutation probabilities),
selecting a suitable encoding technique for each problem, and/or using hybrid algorithms (GA
with other optimisation techniques) to take advantages of both of them.

Because the crossover and mutation are the most important operators in the GA, thus
adapting their execution by controlling their probabilities is vital to enhance the GA
performance. One method to do this is through using higher crossover and mutation
probabilities for lower fitness chromosomes and lower probabilities for higher fitness ones.
This method will help improve the exploration (exploring different area on the search space)
and exploitation (get the optimum value in the selected area) performance in the GA. Also, to
adapt the crossover and mutation operators, the GA can start its run with a higher value of the
crossover probability to explore a wider area on the search space while starting with a lower
mutation probability. This happens because the mutation is not very useful at the start of the
GA run, as the algorithm needs to explore wider area on the search space. As the GA run

proceeds, the crossover probability starts to be lower and mutation probability starts to be
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higher, resulting in gradual convergence of the best solutions in the explored regions. Then,
the GA can find the optimum solution from these regions (Mostafa (2000)).

When selecting the suitable encoding schemes, the binary encoding method is useful for
certain problems but, on the other hand, it has some disadvantages that increase with large
search space problems. The real number encoding method is also useful for some problems
like those problems with large search space, but may be not the best option for other
problems. Therefore, selecting the convenient encoding scheme for each problem can enhance
the GA performance (Mostafa (2000)).

To enhance the GA performance using a hybrid algorithm of GA and other optimisation
techniques, a quick algorithm, which can be applied to the specified problem, can be used to
present its results as initial results for the GA population instead of using a random
population. This can enhance the GA convergence rate. On the other hand, the GA can start
the search process to explore the search space and determine the area, which contains the
optimum solution. Then, a local optimisation method (e.g., gradient method), which can be
applied to the specified problem, can be used to find the optimum solution in this explored

area. This method also can enhance the convergence rate of the GA (Mostafa (2000)).

4.6. GA Applications in Petroleum Engineering

GA applications in petroleum engineering have started recently as an optimisation tool
in the production engineering, reservoir engineering, drilling, stimulation, logging, and gas
storage. This section presents an overview on some of the GA applications in petroleum

engineering as follows.

4.6.1. Use of GA in Production Engineering

GA was used, as an efficient optimisation technique, to develop an optimisation model
for the Kuparuk River field production, located on the North Slope of Alaska. The GA-based
model included well performance, surface lines, and facility models. This model was used to
compute the oil rate and to optimise the wells and gas lift allocations to production (Stoisits e?
al. (1999)). In addition, the GA was used to optimise a gas lift process in the oil wells to
increase the quantity of the produced liquid. This tool was used to optimise the gas injection
rate distribution for every well considering a restriction of the gas supply for the field
(Martinez et al. (1994)). Also, Palke and Horne (1997) used the GA to optimise the net
present value (NPV) of the flow streams by optimising the wellbore configuration considering

the gas lift configuration and change of the parameters with time.
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Furthermore, the GA was used to optimise the oil and gas condensate production system
through selection of the optimum size of the well tubing (single size or dual size), the depth at
which the tubing size should change (in case of dual size tubing), choke size, number of

separators, and separator pressures (Tavakkolian et al. (2004)).

4.6.2. Use of GA in Gas Storage
GA was used to provide an optimum treatment design for the stimulation processes in a
gas storage field in Ohio. Also, it presented an optimum stimulation combination of the
candidate wells using several economic parameters (Mohaghegh et al. (1998)). In addition,
the GA was used in combination with reservoir simulation for a natural gas storage field

development-planning problem (Johnson et al. (2000)).

4.6.3. Use of GA in Hydraulic Fracturing

To maximise post fracture production, GA was used to optimise the fracture treatment.
A combination of data mining with GA, as a fracture optimisation tool, was used to provide
the optimum fracture design (Oberwinkler et al. (2004)). Also, GA was used to select
fracturing materials and optimise fracturing treatment parameters (e.g., proppant volume and
concentration, pumping rate, and pad percentage) in low permeability and complex reservoirs
in China (Wang et al. (2004)). In addition, Rahman et al. (2002) used the GA to find optimum
values for fracture treatment parameters and fracture geometry that are formation friendly, in

order to achieve the maximum possible NPV from a gas reservoir.

4.6.4. Use of GA in Well Test Interpretation

GA was used to select the appropriate reservoir model between the candidate models
based on a given set of pressure transient data. In addition, it has been used to determine the
unknown model parameters (permeability, skin, etc.). The GA was applied, as a hybrid
algorithm with conventional gradient-based algorithms, to a number of noisy pressure
transient tests and demonstrated to be robust and competent (Guyaguler et al. (2001)).
Furthermore, the GA was used to determine the optimum interpretation for early-time
transient pressure data, influenced by wellbore storage effects. Based on this optimum

interpretation, the optimum reservoir parameters can be obtained (Yin and Zhai (1998)).

4.6.5. Use of GA in Reservoir History Matching and Reservoir Description
GA was used to perform reservoir characterisation by matching the reservoir simulation

model to production data (history matching). This method used GA combined with geo-
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statistical modelling to present multiple reservoir descriptions to the reservoir team for further
analysis (Romero et al. (2000)). Also, to recognise the reservoir characteristics, tracer
breakthrough profiles were used besides numerical techniques, which combined the GA,
finite element methods, and a streamline approach (Guerreiro et al. (1998)). Furthermore, a
hybrid algorithm of GA and the simulated annealing (SA) method was applied to the history
matching of a typical multi-layer cross sectional reservoir model and a field multi-layer and
multi-well model. This algorithm proved to be less sensitive to the starting point and more
robust and efficient than other optimisation methods (Tongchun and Sezgin (1997)).

Also, GA was used to develop an automated history-matching program for core
flooding simulation model to interpret water displacement experiments. This program was
used to optimise several coefficients for normalized K;./K;y and capillary pressure curves for
each litho-facies (Tokuda et al. (2004)). In 2003, Sun and Mohanty also used the GA to get
the optimum match between the simulation data and experimental data for low injection rate

primary drainage.

4.6.6. Use of GA in Directional Drilling and Well Placement Optimisation
GA was used to determine the optimum (minimum) drilling depth of directional and
horizontal wells in 3D. This depth was determined at the optimum values of kick-point,
inclination angle, angle build-up, and drop-off rate (Shokir et al. (2004)). Also, GA was used
to optimise well type (vertical, horizontal, or multilateral), location, and trajectory to
maximise reservoir performance in a giant oil field located in Saudi Arabia (Yeten (2003)).
Furthermore, to determine optimum well locations, GA in combination with a quality map

and other algorithms was successfully used (Badru (2003)).

4.6.7. Use of GA in Field Development
To find the best strategy for a field development problem, reservoir simulation and GA
in combination with other methods (e.g., Polytope, Tabu search, and memory strategy) were
used. The objective function consisted of a cash flow analysis for production profiles
determined from the simulation runs considering a particular set of parameters. This approach
can speed up the field development plan and consider a wider range of hypotheses (Filho

(1997)).



4. Literature Review-2: Genetic Algorithm (GA)- One of the Artificial Intelligence Techniques 48

4.7. Summary

Based on the Darwinian theory of evolution, the GA is a computer based stochastic
search procedure, which depends on the mechanics of natural selection, natural genetics, and
the rule of survival of the fittest. The GA involves a random generation of potential design
solutions encoded on a string comparable to chromosomes of the biological system. This
procedure is accompanied by an evaluation method according to the objective function and
constraints. An evaluation function, which depends on the problem objective, is used in this
technique. Also, some reproduction operators (e.g., crossover and mutation) are used to
explore a wider area on the search space in order to find the best solution for the specified
problem. By controlling the crossover and mutation probabilities, modifying the encoding
technique based on the solved problem, and using a hybrid algorithm of the GA with other
suitable optimisation methods, the GA performance and convergence rate can be enhanced.

Recently, the GA has been used in many applications in petroleum engineering as an
efficient optimisation tool. For example, it has been used in the production engineering, gas
storage, hydraulic fracturing, well test interpretation, reservoir engineering, drilling
engineering, and field development applications. However, its applications in the EOR

techniques are rather scant.



CHAPTER 5

Methodology: Genetic Algorithm (GA) Software
Design

5.1. Introduction

As discussed in Chapter 4, GA is one of the artificial intelligence techniques with the
ability to mimic some of the processes observed in natural evolution. GA is particularly suited
to problems with non-linearity, variables discontinuity, large search space and all kinds of
objective and constraint functions. Recently, this tool is used as an optimisation engine to
solve different scientific problems. Also, GA has been used in petroleum engineering
applications, mainly, as an optimisation tool to solve different problems in reservoir
engineering, production engineering, logging, stimulation, and drilling engineering. The GA
applications in the petroleum engineering have been started in the last two decades.

In this research, new GA modelling software was designed to present a more reliable
technique to model the minimum miscibility pressure (MMP) and other physical properties of
CO, or flue gas mixtures with oil during gas injection processes. The objective was that if a
robust and efficient modelling method was used, as well as considering major variables
affecting each modelled parameter, the produced models could be more reliable with a higher
accuracy. An overview of the GA software design methodology is presented in this chapter,

as follows.

5.2. Using the GA as a Modelling Technique

Many fitting models can be solved analytically, without using iterative methods. For
example, the analytical solution is obvious in some cases like the simple linear regression
model (Y=A+BX). However, in most cases the model is more complicated and the analytical

solution is indistinct or the problem becomes non-analytical. In such cases, the iterative
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methods should be used even if they are not strictly needed. From the available iterative
methods to develop correlations or models, multiple regression analysis is most common. For
example, the model (type of equation) is proposed, and then by using the regression analysis
method the coefficients of this model can be determined by minimizing the misfit function,
which is a function of the difference between observed and model predicted values. Thus, this
process is an optimisation process of the model coefficients to determine the best coefficients
that can give an accurate model (Chambers (2001)).

GA can usefully be used for two more common distinct purposes. One of them is
selection of parameters to optimise the performance of a system. Most published work has
been concerned with this use of the GA for optimisation processes. The second potential use
is testing and fitting of quantitative models. This second use of the GA has received much less

attention.

5.3. GA Software Design

The GA modelling technique is an iterative process, where a descriptive model is built
and literature data is collected and used to test the model. In this technique, the parameters of
the model are determined to minimise the misfit between the model predicted data and the
experimental data (optimise the fitness function).

In this study, the GA software was designed using FORTRAN language. It contained a
main body and six functions and subroutines, as follows:

1. Main software body,
Randomisation function,
Evaluation subroutine,
Selection subroutine,
Reproduction subroutine,

Reinsertion (Deletion) subroutine,

Nk » D

Maximum chromosome fitness subroutine.

Fig. 5-1 presents the flowchart in developing the GA software followed by an

overview on each segment. The GA software code is presented in Appendix-11.
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Initialise a population of randomly
real-coded chromosomes (with different number
of genes based on the model parameters)
Population size (n)= 100
(Initial Population)

L

Evaluate each chromosome (Evaluation Function)
PFit (i,j) = C, / (C, +(| Value . i,j) ~Value o, (irj) |))

Fit(i) = (f: PFit(i, j))/ nn

J=1

Select two parents’ chromosomes
(using roulette wheel method)
(Selection)
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Produce new offspring chromosomes (two children)
(Crossover (One-Point Crossover) & Mutation)
For mutation, New Value = AxOld Value + fx Random Value
where, 0<A<I and 0<B<1
(Reproduction)
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Evaluate each offspring (Evaluation Function)
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(When the difference between Yes
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The best
chromosome in the

) population presents
the solution

Fig. 5-1. Flowchart of the developed GA software design.
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5.3.1. Initial Population

Real-coded two-dimension chromosomes were used to encode the model’s coefficients
(model’s structure were assumed for the GA software based on the relationship between
dependent and independent variables, as well as testing some of the standard model’s types
that can adequately represent the relationship between the variables such as the power—law
type model). This encoding method is efficient and has many advantages (e.g., needs less
computer memory, no loss in precision by converting to binary or other values, simple, and
easy to apply, especially for large scale problems with large search space). Then, each gene
(model coefficient) takes a random value to build an initial random population with a
population size equal to 100 chromosomes. This population size was determined based on an
experimental evaluation and it was consistent with the range reported in the literature (30 to
100 chromosomes in the population). A number of iterative runs of the software were carried
out using the historical optimum coefficients values as an initial population for the next GA
run to enhance the accuracy of the optimal values. This approach is termed as a hybrid
genetic-genetic algorithm. The initial chromosome design, including the number of genes for

each chromosome, was different for each application based on the specified model.

5.3.2. Evaluation Function
After building the initial population, each chromosome (solution) in the population was
evaluated according to a fitness function value that depended on the objective function (e.g.,
minimise the misfit between the predicted and the experimental values). This fitness method

is called “fitness is evaluation” and its value was calculated as follows:
PFit (i,j) = Cg / (Cg +( | Valuee (i.j) —~Valueey. (i) 1)) (5-1)

where,

i=1, n (population size), j=1,nn (number of the used data)

Fit(i) = (i PFit(i, j))/nn (5-2)

=l

If any variable had a value that was out of its limits (non logical value, such as a
negative MMP, or out of the pre-specified constraints), the fitness value was reduced by a

certain amount called a penalty function, as follows:
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PFit (i,j) (new) = PFit (i,j) (old) X (1- pen) (5-3)
where,
pen= penalty value
PFit (i,j) (new)= fitness value after applying the penalty function
PFit (i,j) (old)= fitness value before applying the penalty function

The evaluation function mapping was modified for each application based on the

specified model.

5.3.3. Selection Technique
To produce a new offspring (new chromosomes or solutions to discover new area on the
search space), two parents (chromosomes from the old population) were selected based on
certain criteria. To produce two new children (offspring) by the reproduction operators, the
selection technique used was the roulette wheel parent selection method. This method was
selected because it is faster than other methods (e.g., tournament parent selection) and also it
gives a probability for lower fitness chromosomes (proportional to their fitness values) to be
selected as parents, as these chromosomes may have some good features (genes) on them. The
roulette wheel selection algorithm was as follows.
1. Determine the total fitness of the entire population members (add all the
population chromosomes fitness),
2. Generate a random number (n) between zero and the total population fitness value,
3. Choose the first chromosome whose fitness, added to the fitness of the preceding

population members, is greater than or equal to n.

5.3.4. Reproduction Operators
After the parents’ selection, the GA reproduction operators start to produce the new
offspring. The most important operators are the crossover and mutation. Then, after the
offspring production, reinsertion of some of the chromosomes from the offspring and their
parents were decided based on a selected deletion method. The selected reproduction

operators were applied as follows:

5.3.4.1. Crossover
Crossover is very useful as an exploration method to explore different areas on the
search space in searching for the global optimum. A one-point crossover with probability
(P(c)) equal to 100% has been used as a simple and faster crossover method. This probability

means that every offspring chromosome was produced after a crossover operation to produce
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new chromosomes, which have different characteristics than their parents (not duplicates of
their parents to explore new areas on the search space). There are two new chromosomes were

produced, which have mixtures of their parents’ features.

5.3.4.2. Mutation
After the crossover and production of two children (new) chromosomes, one gene was
selected from each child chromosome to mutate its value by adding a random value to its old
one, in the course of searching for better population convergence (mutation probability (P(m))
was selected to be equal to 100 %, which means that from every produced chromosome, one
gene was subject to the mutation process). The change in the gene value (by mutation) was

developed as follows:

New Value = AxOld Value + Bx Random Value, 0 <A<land0<B<1 (5-4)

where,

B and A are the mutation coefficients (had different values based on the specified model)

The values of B and A were selected based on the GA software performance
(experimental evaluation), where [ was increased and A was decreased to detect any
improvement in the population fitness value. Otherwise, the process was reversed.
Furthermore, this technique enabled the use of a part of the last reached solution.

The mutation operator is expected to find the best solution in a certain area (hill
climbing), which was explored by the crossover. In addition, it is also expected to prevent the

GA from falling into local optimum positions.

5.3.4.3. Deletion
After producing the two children chromosomes, they were evaluated, prior to being
used, to obtain their fitness values (using the evaluation function). Then, the best two
chromosomes (e.g., the most fit two chromosomes) from the two parents and the two children
were reinserted back into the population to improve the group of solutions. This deletion
technique is called “steady state replacement”, as the two offspring chromosomes competed

with their parents’ chromosomes.
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5.3.5. Stopping Criterion
The stopping criterion was set when the difference between the best chromosome
fitness in the population and the average population fitness is less than or equal to a certain
accuracy and the best chromosome in the population (the chromosome that has the highest
fitness) gives the problem solution (the best model that minimise the misfit between the
predicted and experimental data).
The software run was repeated to confirm that there was no better solution than the

produced one, when the new run starts with different random initial population.

5.4. Summary

The GA can be used for two distinct purposes: (i) selection of parameters to optimise
the performance of a system, and (ii) testing and fitting of quantitative models. Although the
former has been widely addressed, the latter has received much less attention. GA software
was developed as a stochastic modelling technique in the course of this research. The
objective function of this software was to find the optimum models that minimise the misfit
between predicted and experimental values (optimise the fitness function). Thus, using such
an efficient modelling technique, and considering the major variables affecting each model,

can result in optimum models with better accuracy.



CHAPTER 6

GA-based Minimum Miscibility Pressure (MMP)
Models for CO, and Flue Gases

6.1. Introduction

MMP is defined as the minimum pressure that is required to attain the miscibility
between an injected gas (e.g., CO; or flue gas) and oil at reservoir conditions. The MMP is
the single most important parameter in the design of a miscible gas flood. A reliable
estimation of the MMP helps the operator to develop injection conditions and to plan suitable
surface facilities. In view of its importance, the operator is strongly advised to determine the
MMP for site-specific candidate gas-oil system under representative reservoir conditions. The
injected CO, could be a pure gas or a mixture of CO, and other impurities (non-CO;
components), which is referred to in this work as “flue gas”. From an operational perspective,
the existence of non-CO, components in the injected flue gas should not be treated as a rigid
impediment, as the separation of such components from the gas is difficult and costly. Thus,
the current trend is to use the flue gas stream as it is, provided such impurities are below
certain optimum levels, which determine the amount of the contaminants (non-CO;
components) in CO; that can be allowed for miscible displacement of the oil reservoirs. In
addition, some of these non-CO, components are useful to decrease the MMP.

There is a need for more reliable CO,-0il MMP and flue gas-oil MMP models, which
consider effects of all major variables on the MMP of the CO;, or flue gas in oil. In this
research, more reliable models developed using the GA modelling software are presented.
Also, this research presents a comparison of the efficiency of these models against that of
other commonly used models, which are presented in Table 3-1. In addition, a sensitivity
analysis, using @Risk™ (commercial software from the Palisade Company), is presented to

explore the major variables affecting the MMP.
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6.2. CO,-Oil MMP

For CO,-0il MMP, the main factors affecting this value are reservoir temperature and
oil composition. How these factors affect the MMP is presented in the developed GA-based
CO,-0il MMP model which follows. In addition, a discussion of the model results and a

comparison between this model and other available models in the literature is presented.

6.2.1. GA-based CO,-Oil MMP Model
Metcalfe and Yarborough (1974) stated that any model to be considered as a general
model for CO,-o0il MMP prediction should take into consideration the effect of the volatiles
and intermediates besides the reservoir temperature effect. Moreover, Alston et al. (1985)
stated that the MW s, is better for the modelling purpose than the oil API gravity.
Therefore, the proposed GA-based CO;-0il MMP model addressed both arguments and
used the following variables:
1. Reservoir temperature (Tr),
2. MWcs,,
3. Oil volatiles mole fraction (C; and N»),
4. Oil intermediates mole fraction (C,-Cy4, H,S, and CO»).

Many models structures were tested, but the power—law type model proved to be

better in expressing the relationship between the CO;-oil MMP and the major affecting

variables. The GA-based model was presented as follows:

1. For oil with bubble point pressure (Py) >0.345 MPa:

MMP = 7.43497x10 ™ x (1.8Tg +32)1 10695 (mw g 1201 w (Yolatiles 0.109 (6-1)
Interm.

2. For stock tank oil with P, <0.345 MPa (for oil with zero volatiles fraction and non-

zero intermediates fraction):

MMP = 7.43497x107 x (1.8Tg +32)1106% 5 (mw g 1201 (L0023 (6-2)
Interm.
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3. For stock tank oil with Py £0.345 MPa (for oil with zero volatiles and intermediates

fractions):

1.1669

MMP =7.43497x10 ™ x(1.8Tg +32) X (MW !201 (6-3)

If the predicted MMP is less than Py, the Py, is taken as the MMP, because the slim
tube experiments cannot be done at pressures less than P, as CO, will be mixed with the free
gas that exists below Py; this will be detrimental to the miscibility process and the MMP
determination.

The GA-based model to predict CO,-0il MMP was tested against the available
literature experimental data and commonly used models. It was found that this GA-based
model yielded the best prediction of the MMP. After the application of P, modification
(applied for two data points of Rathmell ef al. (1971)), the GA-based model presented an
average error equal to 5.5% and standard deviation equal to 7.4%. On the other hand, Alston
et al. (1985) model presented 8.34% average error and 10.2% standard deviation. For Glaso
(1985) model, it presented 12.6% average error and 18.0% standard deviation. Fig. 6-1
presents the GA-based CO,-0il MMP model prediction results, while Table 6-1 and Fig. 6-2
present a comparison between GA-based, Alston et al., and Glaso models (the higher
accuracy models).

Table 6-2 presents the data range that used to develop and validate the GA-based
CO»-0il MMP model. The literature experimental data, the model prediction results, and the
comparison between GA-based model and all other commonly used CO;-0il MMP models are

presented in Appendix-1.

6.2.2. Discussion for the GA-based CQO,-0il MMP

In order of their effects, this model was developed based on the reservoir temperature,
MWcs,, volatiles (C; and N»), and intermediates (C,-C4, H,S, and CO,). This order of
importance is shown in Fig. 6-3, which presents the sensitivity analysis for the CO,-oil MMP
and describes its dependence on each variable. The reservoir temperature gives the highest
impact, as the MMP increases with the temperature increase. Following the reservoir
temperature, MW s, causes an increase in the MMP as its value increases. From this figure, it
can be seen that effects of the volatiles and intermediates components are equal and in the
opposite directions, where the volatiles cause an increase in the MMP, while the intermediates

effect is the same but they cause a decrease in the MMP. Hence, based on the sensitivity
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analysis that is presented in Fig. 6-3, the intermediates effect on the MMP cannot be ignored
for zero volatiles oils or generally for stock tank oils with Py, less than 0.345 MPa. For stock
tank oils with zero volatiles and intermediates, the MMP model was developed based on the

TR and MWC5+.
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Fig. 6-1. GA-based CO,-0il MMP model prediction results within 90 % accuracy.

Table 6-1. Comparison between the GA-based CO;-0il MMP model and other commonly

used literature models.

Model Average Error, % | Standard Deviation, %

GA-based 5.47 7.4

Alston et al. (1985) 8.34 10.2
Glaso (1985) 12.6 18

Cronquist (1978) 14.32 16.27

Yellig and Metcalfe (1980) 14.9 19.53

Holm and Josendal (1974) 15.37 18.9

Lee (1979) 16.8 24.6
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Fig. 6-2. Comparison between GA-based CO;-0il MMP model, Alston et al. (1985), and

Glaso (1985) models results within 90% accuracy.

Table 6-2. Data range used to develop and validate of the GA-based CO;-0il MMP model.

Variables Data range
Temperature, °C 32.2-137.22
MWoes, 136.17-247.8
Volatiles, mole fraction 0-0.5336
Intermediates, mole fraction 0.002-0.3937
Experimental MMP, MPa 6.9-34.49
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TR/ES 0.814
MWc5+/E6
Intm/E8 -0.276
Vol./E7
-1 -(;.5 6 ois 1
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Fig. 6-3. Sensitivity analysis presents effect of each parameter (Tr, MWcs,, volatiles (Vol.),

and intermediates (Intm)) on the CO,-0il MMP.

In developing the CO;-0il MMP model, the developed GA modelling software has
proved to be an efficient tool for testing and fitting of the quantitative models. For example,
the GA software was used to redevelop the Glaso model using the same equation model and
conditions that were presented by Glaso (1985), and the GA-based Glaso model was

presented as follows:
®* When Fr (mole percentage of intermediates, C,-C¢) =18-mole %:

=11\ pw3.023

MMP = 0.474265308 - 0.018174974 x MW, 7+

7.4 +(278.6388x10
803.9><Mw(—:17.189 6-4)

X e + )x(1.8Tp +32)
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® When Fr <18-mole %:

MMP =9.690285 - 0.018174974x MW, +(278.6388x1071 I x MW 2023
803.9xMW L 189 (6-5)
xe t)x(1.8Tpy +32)-0.44796015% Fyy

The GA-based Glaso model presented an average error equal to 7.86% (compared to
12.6% average error by the original Glaso model) with a standard deviation of 11.15%
(compared to 18% standard deviation by the original Glaso model). Thus, among these
models (GA-based, Glaso, and GA-based Glaso), the GA-based model gave the best
accuracy.

However, it must be recognised that an error in any model could result from two
sources: an error in the modelling process and/or an error in the data itself. The GA-based
model developed in this study honoured all the data as reported, without any filtering or
massaging as Alston et al. (1985) have done, where they interpreted the data to satisfy their
miscibility criterion of 90 % recovery at the solvent breakthrough. As a general observation,
caution must be applied with regard to the uncertainties and accuracies in the data gathered
from the literature and experiments. In particular, the following common points are
highlighted:

1. Slim tube data: As no standard slim tube test methodology and apparatus were used in
data reported in the literature, reliable comparison of results becomes a challenge.

2. While there are different experimental procedures and interpretations, consequently,
there is no standard definition of the miscibility criterion. Different definitions of the
miscibility criterion are used by different authors, and also by different organisations.
Furthermore, it could be not correct to simply take a minimum recovery value at 1.2
pore volume (PV) gas injection as a criterion to determine the MMP because the shape
of the recovery curve with injection pressure is a function of the test temperature. For
that matter, it is also not correct to take for example 90% or 94% recovery value as a
criterion for miscibility.

3. CO, compressibility factor is a strong function of the pressure and temperature values.
Therefore, any errors in maintaining these values will result in errors in the volumetric
calculation of the CO, injection. This, in turn, will result in uncertainty in determining

the MMP.
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4. Slim tube experiments are often conducted in steps of pressure increment exceeding
one MPa (even 3.45 MPa in some experiments) to obtain the recovery curve as a
function of the pressure. This obviously precludes a more accurate inference of the

MMP from the recovery curve.

Notwithstanding above general observations and shortcomings in the literature data
used in this study, the GA-based CO;-oil MMP was successful in yielding the best prediction
of the CO,-0il MMP among all the available models tested during the course of this study.

6.3. Flue Gas-Oil MMP
Flue gas-oil MMP is affected by the same factors affecting CO,-oil MMP, as well as the

injected gas purity (existence of non-CO, components). The existence of these non-CO,
components may cause a decrease or increase in the MMP based on their nature and
composition. The following subsections present a more reliable GA-based flue gas-oil MMP
model that considers the effect of existence of different non-CO, components in the injected
flue gas. In addition, a discussion of the model results and a comparison between this model

and other available models in the literature are also presented.

6.3.1. GA-based Flue Gas-Oil MMP Model

As stated earlier in Chapter 3, the existence of certain non-CO, gas components (e.g.,
H,S, SOy, and C,-Cy4), whose critical temperatures are higher than that of CO,, in the injected
flue gas causes an improvement in the flue gas miscibility in reservoir oil. This results in a
lower MMP and higher injected gas pseudocritical temperature. On the other hand, the
existence of other components (e.g., C; and N,), whose critical temperatures are lower than
that of CO», has a reverse effect and causes an increase in the MMP. Furthermore, many
studies reported that the injected gas pseudocritical temperature affects the flue gas-oil MMP
and it could be used as a variable in the miscibility models.

In this study, the proposed GA-based flue gas-oil MMP model was regarded as a
function of the injected flue gas solubility in oil, which in turn is based on the injected gas
pseudocritical properties (temperature and pressure), CO, critical properties (temperature and
pressure), and CO;-0il MMP (which could be determined from laboratory work or from
available models including the GA-based CO»-0il MMP model). The weight fraction method
was used in developing of this model. In addition, a critical temperature modification factor
(MF;) was used to modify the injected gas pseudocritical temperature to present the best fit

among the pseudocritical properties and the MMP. This factor was used, with different
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values, for the components: SO,, H,S, C,, C;, and N,. The GA-based flue gas-oil MMP model

and the MF, values are as follows:

P 1.8T g +32 1.8T gy +32 1.8T g +32
M = 6.606—29.69><(18TC+32)+109.5><(18TC+32)2 —213.363><(18TC+32 3
r,CO2 ©lc co2 °lc co2* °lc co2*
1.8T g +32 1.8T g +32 1.8T g +32
+ 208.366><(%)4 —98.46x(18TC+32)5 +18.009><(18TC+32 6
°lc,co2* °lc,co2t °lc,co2t
(6-6)
where,
MMP
P:. flue gas = _ flue gas
Pew

n
Pew= T wiPq;

P: corx =
Pc.coz

n
Tcw= XMEw.T
i=1 !

ici

P, modification was applied, also, for this model.

Values of MF; were as below:

Components MF;

SO, 0.3
H,S 0.59

CO, 1.0

G 1.1

C 1.6

N, 1.9

All other injected gas components 1.0

Compared to all other commonly used models, the GA-based flue gas-oil MMP model
presented the best match (excellent accuracy) with the experimental data. As evident from
Table 6-3, the GA-based model gave an average error equal to 4.6% and standard deviation

equal to 6.2%. Alston et al. (1985) model gave a 14.1% average error and 43.3% standard
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deviation, while Sebastian et al. (1985) model gave a 13.1% average error and 22.0%
standard deviation. The GA-based flue gas-oil MMP model results are shown in Fig. 6-4 and
a comparison between this study, Alston ef al., and the Sebastian ef al. model is presented in
Fig. 6-5.

From Fig. 6-5 and Appendix-2, it is found that the maximum error of Alston et al.
model was 311.6% (for the injected flue gas composed of 80 mole% of CO, and 20 mole% of
N»). Even after ignoring this data point from the model’s validation (because Alston et al.
model should not be used when N, concentration in the flue gas exceeds 8 mole%), the GA-
based model presented the best prediction with nearly the same average error and standard
deviation, which proved that the GA-based model was not sensitive to the existence of higher
concentrations of N; (tested up to 20 mole% of N;). Fig. 6-6 and Table 6-4 present the
comparison between GA-based, Alston et al., and Sebastian et al. model predictions after
excluding this data point, which is identified within the ellipse in Fig. 6-5.

Table 6-5 presents the data range that was used to develop and validate the GA-based
flue gas-oil MMP model. The literature experimental data, the model prediction results, and
the comparison between the GA-based model and all other commonly used flue gas-oil MMP

models are presented in Appendix-2.

6.3.2. Discussion for the GA-based Flue Gas-Oil MMP

Based on the above results and noting the caveat that must be applied with regard to the
uncertainties in data accuracy gathered from various literature sources and experiments, the
GA-based flue gas-oil MMP model was successful in yielding the best prediction of the flue
gas-oil MMP among the models tested during the course of this study.

Based on the sensitivity analysis that is presented in Fig. 6-7, it was shown that the
pseudocritical temperature has a major impact on the MMP, as any increase in the
pseudocritical temperature causes a decrease in the MMP. On the other hand, the injected gas
pseudocritical pressure, also, has a significant impact on the MMP, as any increase in the
pseudocritical pressure causes an increase in the MMP.

A critical-temperature modification factor was used in developing the GA-based flue
gas-oil MMP model to present a better relationship between the MMP and the pseudocritical
properties of the injected flue gas and CO,. The difference between this relationship before
and after using this factor in the model development is explained in Fig. 6-8 and Fig. 6-9,
respectively. With the exception of C,, the critical temperature modification factor was
qualitatively proportional to the equilibrium constants of the injected gas non-CO,

components (SO,, H,S, Cy, and N»).
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Furthermore, it was evident that the GA-based flue gas-oil MMP model gave a better
prediction accuracy with different types of non-CO, components that may co-exist with CO,
in the flue gas streams (e.g., H,S, Nj, SOy, O, and C;-C4). This model was successfully
tested, with higher prediction accuracy, for the presence of up to 78 mole% of non-CO,
components and up to 20 mole% of N in the injected gas. On the other hand, the Alston et al.
(1985) model performance for flue gas streams that contain N, was inadequate; especially for
injected gas streams containing more than 8 mole% of N,. Furthermore, the Alston et al.
model was unable to deal with the existence of SOy in the flue gas. For the Sebastian et al.
model, its prediction accuracy was overly sensitive to the existence of N, and/or SOy in the
injected flue gas. Also, the existence of high fractions of non-CO, components (more than 55
mole%) caused a lower accuracy in its prediction. For the other tested models, their average
errors were much higher than the foregoing models (GA-based, Alston et al., and Sebastian et

al. models).

Table 6-3. Comparison between the GA-based flue gas-oil MMP model and other commonly

used literature models for all the data.

Model Average Error, % | Standard Deviation, %
GA-based 4.6 6.16
Alston et al. (1985) 14.1 43.26
Sebastian et al. (1985) 13.1 22.1
Dong (1999) 29.6 55
Kovarik (1985) 34.6 54
Eakin and Mitch (1988) 60.8 74
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Fig. 6-5. Comparison between the GA-based flue gas-oil MMP model, Alston et al. (1985),

and Sebastian et al. (1985) models results within 95% accuracy.
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Fig. 6-6. Comparison between the GA-based flue gas-oil MMP, Alston et al. (1985), and

Sebastian et al. (1985) models within 95% accuracy for all the data except the identified data

point within the ellipse in Fig. 6-5 (composed of 80 mole% of CO, and 20 mole% of N»).

Table 6-4. Comparison between the GA-based flue gas-oil MMP model and other commonly

used models for all the data except the identified data point within the ellipse in Fig. 6-5

(composed of 80 mole% of CO, and 20 mole% of N,).

Model Average Error, % | Standard Deviation, %
GA-based 4.64 6.21
Alston et al. (1985) 94 18.23
Sebastian ef al. (1985) 12.7 21.66
Dong (1999) 29.8 55
Kovarik (1985) 35 54
Eakin and Mitch (1988) 60.8 74




6. GA-based Minimum Miscibility Pressure (MMP) Models for CO, and Flue Gases 69

Table 6-5. Data range used to develop and validate of the GA-based flue gas-oil MMP model.

Variables Data range
Temperature, °C 40.8-112.2
MWcs., 166.2-267.5
Volatiles, mole fraction 0-0.486
Intermediates, mole fraction 0.0131-0.403
Tew, °C -9.26-55.1
Pcw, MPa 5.27-8.1
Experimental CO,-o0il MMP, MPa 8.28-30.2
Experimental flue gas-oil MMP, MPa 6.55-34.01
Non-CO, components H>S, N, SOy, O, and
Ci-Cy
Non-CO, components, mole fraction 0.03-0.78
N,, mole fraction 0-0.2
H,S, mole fraction 0-0.5
SOy, mole fraction 0-0.3

Tew/Te, co2/F4 -0.931

Pcw, flue gas/Pc,

co2/F5 0.315

MMP+ e gas/MMP o correlation coefficients

Fig. 6-7. Sensitivity analysis presents the effect of each variable (Tcw/Tc, co, and

Pew, fiue gas/ Pc, co2) on the MMP ratio (flue gas-oil MMP/CO,-0il MMP).
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6.4. Summary

Two new GA-based models were proposed for more reliable prediction of the minimum
miscibility pressure (MMP) between the reservoir oil and CO; or flue gas.

The key input parameters in the GA-based CO;-oil MMP model, in order of their
impact, were the reservoir temperature, MWcs,, and volatiles (C; and N,) to intermediates
(Cy-C4, HyS, and CO,) mole ratio. For stock tank oils with Py less than 0.345 MPa and zero
volatiles composition, the model considered the effect of the reservoir temperature, MWcs,,
and the intermediates (C,-C4, H,S, and CO;) mole fraction. In case of stock tank oils (P}, less
than 0.345 MPa) that contain no volatiles or intermediates in their compositions, the MMP
was regarded as a function of the reservoir temperature and MWcs,. This model, which has
been successfully validated with published experimental data and compared to common
models in the literature, offered the best match with the lowest error (5.5%) and standard
deviation (7.4%).

For the GA-based flue gas-oil MMP model, the MMP was regarded as a function of the
injected gas solubility into the oil, which in turn is related to the injected gas pseudocritical
properties (pseudocritical pressure and temperature). A critical temperature modification
factor was used with some components (C;, C,, N, HyS, and SO,) to present the best fit
among the pseudocritical properties and the MMP. The weight fraction method was used in
developing of this model. The GA-based model has also been successfully validated against
published experimental data and compared to several models in the literature. It yielded the
best match with the lowest average error (4.6%) and standard deviation (6.2%). Moreover,
unlike the other models, it can be used more reliably for gases with high N, (up to 20 mole%)

and non-CO, components up to 78 mole% (e.g., H,S, Na, SOy, O,, and C;-Cy).



CHAPTER 7
GA-Based Physical Properties Models for CO,-oil

and Flue Gas-oil Mixtures

7.1. Introduction

Knowledge of the physical and chemical interactions between CO; or flue gas and
reservoir oil in addition to their effect on oil recovery are very important for any gas flooding
project. The major parameter that affects gas flooding is gas solubility in oil because it results
in oil viscosity reduction and an increase in oil swelling, which in turn, enhances the oil
mobility and increases the oil recovery efficiency. Therefore, a better understanding of this
parameter and its effects on oil physical properties is vital to any successful CO; or flue gas
flooding project.

The injected gas effects on oil physical properties are determined by laboratory
studies and available modelling packages. Laboratory studies are expensive and time
consuming, particularly when one needs to cover a wider range of data. On the other hand,
the available modelling packages can only be used in certain situations, and hence, may not
be applicable in many situations.

The objective of this chapter is to develop more reliable models to predict the effects
of CO, and flue gas on oil properties (gas solubility in oil, oil swelling factor, and gas-oil
mixture density and viscosity) for both dead and live oils using the GA software. Also, this
chapter presents a comparison between these models and the available models in the

literature, which were presented in Chapter 3 (Table 3-2).
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7.2. CO,-0il Physical Properties

The available models for CO;-oil physical properties in the literature were developed
based on a limited data conditions. The majority of them do not consider all major variables
that affect each parameter model. Furthermore, most of the available packages were
developed based on the dead oil data and there are no reliable models to predict the CO,
effects on the live oil physical properties. Therefore, more reliable GA-based CO,-oil physical
properties models were developed to predict the CO,-oil physical properties for both dead and
live oils over a wider range of conditions. The physical properties accounted for in the models
developed in this study are the CO, solubility, oil swelling factor, and CO,-oil density and
viscosity. This section presents the GA-based models developed in this study together with a
comparison of their accuracy with the available models reported in the literature. Also, a
sensitivity analysis using @Risk™ software (Palisade Company) for the major factors

affecting each physical property is also presented.

7.2.1. GA-based CO,-Oil Physical Properties

The GA-based models were presented as follows.

7.2.1.1.GA-based CO; Solubility in Oil
GA-based models for CO, solubility in oil (dead and live oils) were proposed as a
function of the saturation pressure, temperature, oil specific gravity, oil composition (through
oil MW), and CO, liquefaction pressure. Each model (for solubility in dead and live oils) was
categorised based on the CO, state (liquid or gaseous). The GA-based models proposed for

CO; solubility in dead and live oils were presented as follows:

7.2.1.1.1. GA-based CO; Solubility in Dead Oil Model
For a more reliable prediction of the CO, solubility in dead oil, a GA-based model is

presented as follows:

1. When CO; is in the gaseous state, for temperatures greater than T.coz (for all
pressures) and temperatures less than T.cop (for pressures less than the CO;

liquefaction pressure):

Sol (mole fraction) = 2.238 —0.33y +3.235y-0474 _ 4 8,,0.25656 (7-1)
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where,

(18T, +32)98 exp L)
y =7 (0.006897 x )y MW

S

For this model, the CO, solubility at P}, (equal to 1 atm for the dead oil case) is taken to be

equal to zero.

The GA-based CO, solubility model for the dead oil depends, primarily, on the
saturation pressure and temperature. The solubility increases with an increase in saturation
pressure. On the other hand, it increases with a decrease in temperature. Also, the solubility
depends, to a lesser degree, on the oil specific gravity and oil molecular weight. Fig. 7-1

presents the sensitivity analysis of the factors that affect CO, solubility in dead oil.

2. When CO; is in the liquid state, for temperatures less than T.co, and pressures

greater than the CO; liquefaction pressure:

2 4

Sol (mole fraction) = 0.033+1.14y —0.7716y +0.2176y3 —0.02183y (7-2)
where,
1.8T, +32
P exp(—L)
y=y(=>- Mw

The GA-based solubility model in this case depends on the ratio between the saturation
pressure and the CO; liquefaction pressure, temperature, oil molecular weight, and oil specific
gravity. Because the solubility of CO, when it is in the liquid state is less sensitive to the
saturation pressure effect and the CO, becomes less soluble in oil, the GA-based model used
the ratio between the saturation pressure and the CO, liquefaction pressure as a variable
instead of using the saturation pressure.

As shown in Table 7-1, Fig. 7-2, and Fig. 7-3, the GA-based CO, solubility in dead oil
model offered a better accuracy compared to models of Simon and Graue (1965), Mehrotra
and Svrcek (1982) (their models have been developed for bitumen), and Chung et al. (1986).
In addition to the higher accuracy and compared to the other available models, the GA-based
model could be applied over a wider range of conditions. Table 7-2 presents a summary of

the experimental data range used in this study for developing and testing of the CO; solubility
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in dead oil model. The experimental data details of the CO, solubility in dead oil and the
prediction results from the GA-based CO; solubility model are presented in Appendix-3.

Table 7-1. Comparison between the GA-based CO, solubility in dead oil model and other

CO; solubility literature models.

No. of | Average Error, STDEV, 2
Model data % % R
GA-based 106 4.0 5.6 0.985
Simon and Graue (1965) 49 5.7 10.8 0.97
Mehrotra and Svrcek (1982) 106 32.6 36.6 0.756
Chung et al. (1986) 106 83.7 150.3 0.0096
CO2 Solubility in dead oil
Ps
Tr
Y
MW
-1 !;)8 —6.6 04 02 0 (;.2 (;.4 (;.6 6.8 1
Correlation Coefficients

Fig. 7-1. Sensitivity analysis of the factors affecting CO; solubility in dead oil.
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Fig. 7-2. GA-based CO, solubility in dead oil model prediction results.
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Table 7-2. Experimental data range used in this study for developing and testing of the GA-
based CO; solubility in dead oil model.

Variable Experimental data range
Oil API gravity, °API Wider range (12-37.0)
P, MPa Upto27.4
Tg, °C Up to 140
MW Up to 490

7.2.1.1.2. GA-based CO; Solubility in Live Oil
For a reliable prediction of the CO, solubility in live oils, a GA-based model was

presented as follows:

1. When CO; is in the gaseous state, for temperatures greater than T.co (for all
pressures) and temperatures less than T.co; (for pressures less than the CO;

liquefaction pressure):

Sol (mole fraction) =1.748—0.5632y +3.273y0-704 _ 4 3y0.4425 (7-3)
where,
(18T, +32)1125 ey L
y =7 (0.006897 x Mw
Ps B Pb

For this model, it is considered that the CO; solubility at Py, is equal to zero.
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As shown in Fig. 7-4, the GA-based CO; solubility in live oil model also depends on
the difference between the saturation pressure and Py, temperature, oil specific gravity, and oil
molecular weight. However, as noted in this figure, the saturation pressure effect on the CO,
solubility in live oil is higher than that in dead oil. The temperature effect, on the other hand,

is lower in the live oil case.

2. When CO; is in the liquid state, for temperatures less than T.co, and pressures

greater than the CO; liquefaction pressure:

The same model that developed for the solubility in dead oil when CO; is in the liquid
state (as given in Equation 7-2) was also used for the solubility in live oil.

As shown in Table 7-3, Fig. 7-5, and Fig. 7-6, the GA-based CO, solubility in live oil
model offered a much better accuracy compared to the models of Simon and Graue (1965),
Mehrotra and Svrcek (1982), and Chung et al. (1986), as these models were developed
basically based on dead or heavy oils data. In addition, the GA-based model could be applied
over a wider range of conditions. Table 7-4 presents a summary of the experimental data
range used in this study for developing and testing of the CO, solubility in live oil model. The
experimental data details of the CO, solubility in live oil and the prediction results from the

GA-based CO; solubility in live oil model are presented in Appendix-3.

Table 7-3. Comparison between the GA-based CO, solubility in live oil and other CO,

solubility literature models.

Model No. of | Average Error, STDEV, % R?
data %0
GA-based 74 4.0 55 0.98
Simon and Graue (1965) 45 24.7 26.5 0.956
Mehrotra and Svrcek (1982) 74 36.7 46.3 0.3616
Chung et al. (1986) 74 76.4 127.87 0.0471
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Fig. 7-4. Sensitivity analysis of the factors affecting CO, solubility in live oil.
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Fig. 7-5. GA-based CO; solubility in live oil model prediction results.
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Fig. 7-6. Comparison results between the GA-based CO, solubility in live oil, Simon and

Graue (1965), and Mehrotra and Svrcek (1982) models.

Table 7-4. Experimental data range used in this study for developing and testing of the GA-

based CO; solubility in live oil model.

Variable Experimental data range
Oil API gravity, °API Wider range (15-70)
P;, MPa Up to 32.75
Tg, °C Up to 123.9
MW Up to 391.55

7.2.1.2. GA-based Oil (Dead and Live Oils) Swelling Factor Due to CO; Injection

A GA-based oil swelling factor (SF) model (for dead and live oils) was proposed as a

function of the CO, solubility and oil molecular size (equal to ratio between oil MW and oil

density at 15.56°C (oil specific gravity)). The oil was classified based on its molecular weight

to two groups: heavier oil (for MW2>300) and lighter oil (for MW<300).
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7.2.1.2.1. Heavier Oil (MW 2300)

SF=1+0.3302Y —0.8417Y 2 +1.5804Y> —1.074Y% —0.0318Y° +0.21755Y°® (7-4)

where,

y 2 P ry
Y =1000.0x| ((7)Sol (mole fraction)) MW

As shown in Fig. 7-7, the GA-based oil swelling factor for the heavier oil is affected
primarily by the CO; solubility, increasing with the CO, solubility increase. On the other
hand, there is a lesser impact of the oil molecular size as the swelling factor decreases with

the oil molecular size increase.

7.2.1.2.2. Lighter Oil (MW<300)

SF=1+0.48411Y —0.9928Y 2 +1.6019Y> —1.2773Y* +0.48267Y° —0.06671Y®  (7-5)

Also, from Fig. 7-8, the GA-based oil swelling factor for the lighter oil (oil MW<300)
is, basically, affected by the CO, solubility, but the effect of the solubility is less than its
effect on the heavier oil. On the other hand, there is a lesser impact also of the oil molecular

size, although its effect is higher on lighter oil than on heavier oil.

7.2.1.2.3. GA-based Oil Swelling Factor Model Test

For the dead oil swelling factor, Table 7-5, Fig. 7-9, and Fig. 7-10 present a
comparison between the GA-based oil swelling factor model accuracy for the dead oil
swelling factor and the model by Simon and Graue (1965). As shown, the GA-based model
offered a better accuracy than that of Simon and Graue model. Also, it could be applied over a
wider range of conditions. Table 7-6 presents a summary of the experimental data range used
in this study for developing and testing of the GA-based oil swelling factor (due to CO,
injection) model for dead oil. The experimental data details of the dead oil swelling factor and
the prediction results from the GA-based oil swelling factor model for dead oil are presented

in Appendix-4.
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Fig. 7-7. Sensitivity analysis of the factors affecting dead and live oils swelling factor (due to

COy) for oils with MW >300.
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Fig. 7-8. Sensitivity analysis of the factors affecting dead and live oil swelling factor (due to

COy) for oils with MW <300.
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Table 7-5. Comparison between the GA-based and Simon and Graue (1965) oil swelling

models prediction results for dead oil.

No. of | Average Error, | STDEV, 2
Model data % % R

GA-based 85 0.61 0.94 0.994

Simon and Graue (1965) 83 1.0 1.7 0.970
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Fig. 7-9. GA-based oil swelling factor (due to CO;) model prediction results for dead oil.
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Fig. 7-10. Comparison results between the GA-based and Simon and Graue (1965) oil

swelling factor (due to CO;) models prediction results for dead oil.

Table 7-6. Experimental data range used in this study for developing and testing of the GA-
based oil swelling factor (due to CO;) model for dead oil.

Variable Experimental data range
Oil API gravity, °API Wider range (12-37)
P, MPa Upto27.4
Tg, °C Upto 121.1
MW Up to 463
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For the live oil swelling factor, Table 7-7, Fig. 7-11, and Fig. 7-12 present a
comparison between the GA-based oil swelling factor model and the model by Simon and
Graue (1965). As shown, the GA-based model gave a better accuracy than that of Simon and
Graue model. In addition, this model could be applied over a wider range of conditions. Table
7-8 presents a summary of the experimental data range used in this study for testing of the
GA-based oil swelling factor (due to CO; injection) model for the live oil. The experimental

data details for the live oil swelling factor and the prediction results from the GA-based oil

swelling factor model for the live oil are presented in Appendix-4.

Table 7-7. Comparison between the GA-based and Simon and Graue (1965) oil swelling

models prediction results for live oil.

No. of Average STDEYV, 2

Model data Error, % Yo R
GA-based 52 0.866 1.29 0.99
Simon and Graue (1965) 35 1.2 2.0 0.98

GA-based oil swelling factor, fraction

Fig. 7-11. GA-based oil swelling factor (due to CO;) model prediction results for live oil.
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Fig. 7-12. Comparison results between the GA-based and Simon and Graue (1965) oil

swelling factor (due to CO,) models prediction results for live oil.

Table 7-8. Experimental data range used in this study for testing of the GA-based oil swelling

factor (due to CO,) model for live oil.

Variable Experimental data range
Oil API gravity, °API Wider range (15-50)
P,, MPa Up to 30.72
Tg, °C Up to 137.22
MW Up to 391.55

7.2.1.3.GA-based CO,-0Oil (Dead and Live Oils) Density
The GA-based CO;-oil density model for dead and live oils considered the effects of the
saturation pressure, temperature, oil specific gravity, and initial oil density at the specified
temperature on the mixture density. The following is the proposed GA-based CO;-oil density

model for both dead oil and live oils:
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p=p; —0.10276y0-008 10,1407y 0-6133 (7-6)

where,

1.2
yp, (@ —P )1
I.STR + 32

y

As evident from the sensitivity analysis presented in Fig. 7-13, the GA-based CO,-oil
density increases with the initial oil density and saturation pressure increase, and
consequently, with the CO, solubility increase. On the other hand, there is a lower impact of
the temperature and nearly no impact of the oil specific gravity.

For the CO,-dead oil density, as evident from Table 7-9, Fig. 7-14, and Fig. 7-15, the
GA-based model yielded a much lower error than the Quail et al. (1988) model. In addition,
this model could be applied over a wider range of conditions. Table 7-10 presents a summary
of the experimental data range used in this study for developing and testing of the GA-based
CO»-oil density model for CO,-dead oil density. The details of the experimental CO,-dead oil
density data and the prediction results of the GA-based CO;-oil density model for the CO,-

dead oil density are presented in Appendix-5.

Table 7-9. Comparison between the GA-based and Quail ef al. (1988) models results for the
CO»-dead oil density prediction.

No. of Average 2
Model data Error, % STDEV, % R

GA-based 136 0.29 0.43 0.9952
Quail et al. (1988) 129 3.0 4.8 0.293




7. GA-Based Physical Properties Models for CO,-oil and Flue Gas-oil Mixtures

CO2-0il (dead and live oil) density

0, 0.983
PP,
-0.06
Tr
Y

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Correlation Coefficients

Fig. 7-13. Sensitivity analysis of the factors affecting CO,-oil (dead and live oils) density.
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Fig. 7-14. GA-based CO;-oil density model prediction results for CO,-dead oil density.
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Fig. 7-15. Comparison results between the GA-based and Quail et al. (1988) CO,-oil density

models prediction results for CO,-dead oil density.

Table 7-10. Experimental data range used in this study for developing and testing of the GA-

based CO;-oil density model for CO,-dead oil density.

Variable Experimental data range
Oil API gravity, °API Wider range (10-41)
P, MPa Up to 34.5
Tk, °C Up to 140
MW Up to 490
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Also, for the CO»-live oil density, as evident from Table 7-11, Fig. 7-16, and Fig. 7-17,
the GA-based model yielded a much lower error than the Quail et al. (1988) model. Also, this
model could be applied over a much wider range of conditions. Table 7-12 presents a
summary of the experimental data range used in this study for testing of the GA-based CO,-
oil density model for the CO,-live oil density. The details of the experimental CO,-live oil

density data and the prediction results of the GA-based CO,-oil density model for CO;-live oil

density are presented in Appendix-5.

Table 7-11. Comparison between the GA-based and Quail et al. (1988) CO;-oil density

models prediction results for CO,-live oil density.

No. of Average 2
Model data Error, % STDEV, % R
GA-based 50 1.05 1.76 0.9932
Quail ez al. (1988) 50 17.0 22.5 0.6465
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Fig. 7-16. GA-based CO;-oil density model prediction results for CO,-live oil density.
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Fig. 7-17. Comparison results between the GA-based and Quail ef al. (1988) CO,-oil density

models prediction results for CO,-live oil density.

Table 7-12. Experimental data range used in this study for testing of the GA-based CO,-oil
density model for CO,-live oil density.

Variable Experimental data range
Oil API gravity, °API Wider range (14.9-70)
P, MPa Up to 32.92
TR, °C Up to 96.1
MW Up to 391.55
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7.2.1.4. GA-based CO,-0Oil (Dead and Live Oils) Viscosity
A GA-based CO;-0il (dead and live oils) viscosity model was developed based on the
CO, solubility, initial oil viscosity, saturation pressure, temperature, and oil specific gravity.
The effect of the CO, liquefaction pressure was included in this model through the CO,
solubility variable. The proposed GA-based CO;-oil (dead and live oils) viscosity model was

presented as follows:

Sol (mole fraction)

p=yu; +A( ) -7

B

where,
y= xB &
Cxup.( S

11.8T +32)

(yxSol(mole fraction))
P D
R

The coefficients of this model for dead and live oils were presented as follows:

A B C D
Dead oil -9.5 | -0.732 | 3.14129 | 0.23
Live oil 0 -0.587 | 305.873 | 1.15

Based on the sensitivity analysis presented in Fig. 7-18 (for dead oil) and Fig. 7-19 (for
live oil), the GA-based viscosity reduction (CO,-oil viscosity/initial oil viscosity) depends,
basically, on the CO, solubility, as well as the initial oil viscosity, saturation pressure, oil
specific gravity, and temperature. The impact of the CO; solubility, saturation pressure, oil
specific gravity, and temperature on the viscosity reduction is higher on live oil than on dead

oil. However, the initial oil viscosity impact is lower for live oil than for dead oil.
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For CO,-dead oil viscosity, compared to other models (Beggs and Robinson (1975) and
Mehrotra and Svrcek (1982)), the GA-based CO;-dead oil viscosity model appeared to yield
more accurate results (see Table 7-13 and Figs. 7-20 and 7-21). Also, it could be used
successfully for a wider range of conditions (e.g., has been applied for up to 12086 mPa.s).
Table 7-14 presents a summary of the experimental data range used in this study for
developing and testing of the CO,-dead oil viscosity model. The details of the experimental

CO»-dead oil viscosity data and the prediction results from the GA-based CO,-dead oil

viscosity model are presented in Appendix-6.

Table 7-13. Comparison between the GA-based and other CO,-dead oil viscosity literature

models.
No. of Average 2
data Error, % STDEV, % R
GA-based 130 6.0 8.8 0.9998
Beggs and Robinson (1975) 130 56.8 62.7 0.8743
Mehrotra and Svrcek (1982) 130 94.3 95.2 0.18

CO; solubility

CO.-dead oil viscosity/initial oil viscosity

-0.936

0.036

-1 -0.8 -0.6 -0.4

-0.2 0 0.2

Correlation Coefficients

0.4 0.6

0.8

Fig. 7-18. Sensitivity analysis of the factors affecting dead oil viscosity reduction due to CO,

injection.
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Fig. 7-19. Sensitivity analysis of the factors affecting live oil viscosity reduction due to CO,

injection.
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Fig. 7-20. GA-based CO;-dead oil viscosity model prediction results.
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Table 7-14. Experimental data range used in this study for developing and testing of the CO,-

dead oil viscosity model.

Variable Experimental data range
Oil API gravity, °API Wider range (10-37)
Py, MPa Up to 34.5
Tg, °C Up to 140
MW Up to 530
Oil viscosity, mPa.s Up to 12086
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For CO,-live oil viscosity, again, compared to other models (Beggs and Robinson
(1975) and Mehrotra and Svrcek (1982)), the GA-based CO;-live oil viscosity model
appeared to yield more accurate results (see Table 7-15 and Figs. 7-22 and 7-23). Also, it
could be used successfully for a wider range of conditions. Table 7-16 presents a summary of
the experimental data range used in this study for developing and testing of the GA-based
CO»-live oil viscosity model. The details of the experimental CO;-live oil viscosity data and

the prediction results from the GA-based CO,-live oil viscosity model are presented in

Appendix-6.

Table 7-15. Comparison between the GA-based and other CO,-live oil viscosity literature

models.
No.of | Average | STDEV, 2
Model data Error, % Yo R
GA-based 52 6.6 9.75 0.9996
Beggs and Robinson (1975) 52 56.25 914 0.8734
Mehrotra and Svrcek (1982) 52 65.1 79.5 0.4387
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Fig. 7-22. GA-based CO;-live oil viscosity model prediction results.
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Table 7-16. Experimental data range used in this study for developing and testing of the CO,-

live oil viscosity model.

Variable Experimental data range
Oil API gravity, °API Wider range (15-50)
P, MPa Up to 24.34
Tg, °C Up to 137.22
MW Up to 391.55
Oil viscosity, mPa.s Up to 941
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7.2.2. Discussion For the GA-based CO,-Oil Physical Properties

It was obvious that although various models in the literature were applicable in some
conditions, they could not be applied universally because of their data and application
limitations. Also, most of the available models in the literature were developed based on dead
and/or heavy oil data and they presented unreliable prediction for live oil data. The Simon and
Graue (1965) models, for example, were developed based on dead oil data and were limited to
a saturation pressure of 15.9 MPa and oil viscosity up to 1300 mPa.s, and they predicted CO,-
oil viscosity incorrectly, especially for lighter oils. The Chung et al. (1986) models also were
developed based on heavy and dead oil data, and were limited to a saturation pressure of 20.7
MPa and oil gravities from 10 to 20°APIL. The Emanuel (1985) model yielded significant
errors in the prediction of CO;-oil viscosity, and it has been developed basically for heavy
oils. Although the Lohrenz-Bray-Clark (1964) viscosity model has been proposed for light
oils, it was sensitive to density calculation, in which it used the 4 power of reduced density.
Welker and Dunlop (1963) models were limited to 20-40°API oil for temperature equal to
26.67°C. Furthermore, the preceding models do not account for the effects of the CO,
liquefaction pressure on the CO, solubility, in particular.

Unlike other models, the GA-based models proposed in this study predicted CO,-oil
physical properties (CO; solubility, oil swelling factor, and CO,-oil density and viscosity) for
both dead and live oils with a higher accuracy. These models, also, could be applied over a
wider range of oil gravities, pressures up to 34.5 MPa, oil MW>490, oil viscosities up to
12000 mPa.s and temperatures up to 140°C. Furthermore, the GA-based models considered
all major variables that affect each physical property.

For CO; solubility prediction, the GA-based CO, solubility models used saturation
pressure, temperature, oil gravity, oil MW, and CO; liquefaction pressure. The GA-based oil-
swelling factor model used oil molecular size (e.g., ratio between oil molecular weight and
original oil density at 15.56°C) and CO; solubility. For prediction of CO,-dissolved oil
density, the GA-based model used saturation pressure, temperature, oil specific gravity, and
initial oil density at the specified temperature. Furthermore, for prediction of CO»-oil
viscosity, the initial oil viscosity, CO, solubility, saturation pressure, temperature, and oil
specific gravity were used.

The GA-based models have been validated with published experimental dead and live
oils data and available models in the literature. Each GA-based model presented in this study
(for dead and live oils) has demonstrated superior performance in terms of its accuracy and

covered wider ranges of data. In particular, the GA-based models for live oils presented a
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higher accuracy with a higher difference between their predictions and other literature models
predictions. Furthermore, these models could be integrated, easily, into a reservoir simulator

for CO, flooding design and simulation.

7.3. Flue Gas-Oil Physical Properties
The available model packages that have been developed basically for CO,-oil physical

properties prediction may not be appropriate for flue gas-oil physical properties, and as a
consequence, yield inaccurate predictions in most cases. Therefore, there is a need for more
accurate models, which consider the effects of different non-CO, components on the flue gas-
oil physical properties. The GA software developed in this study was used as a modelling tool
to determine reliable models for the flue gas-oil physical properties prediction. The following
subsections discuss the GA-based models developed in this study, notably, flue gas solubility,
impact on oil swelling factor, and flue gas-oil density and viscosity. They also present a
comparison between GA-based models and the other commonly used models in the literature
(as presented in Table 3-2), which were developed basically for the CO;-oil physical
properties and tested here for the flue gas-oil properties. In addition, these subsections also
present a sensitivity analysis using @Risk'™ software for major factors affecting each

physical property.

7.3.1. GA-based Flue Gas-Oil Physical Properties

The GA-based models are as follows:

7.3.1.1.GA-based Flue Gas Solubility in Oil
GA-based flue gas-oil solubility models have been developed based on the saturation
pressure, temperature, oil specific gravity, oil composition (through oil MW), flue gas
composition (through flue gas MW), and injected flue gas critical properties (pseudocritical
pressure and temperature). Hence, these models took into account the effect of non-CO,
components on the flue gas solubility. These models also considered the effect of the flue gas
liquefaction pressure. GA-based models proposed for the flue gas solubility in dead and live

oils are as follows.

7.3.1.1.1. GA-based Flue Gas Solubility in Dead Oil
For a reliable prediction of the flue gas solubility in dead oil, the following GA-based

model is proposed:
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1. When flue gas is in the gaseous state, for temperatures greater than T.pue ¢as (for all
pressures) and temperatures less than T fue qus (for pressures less than the flue gas

liquefaction pressure):

Sol (molefraction)=1.2357—12.866y +65.48y2 —159.5y> +192.39y% —109.74y° +23.17y°®

(7-8)
where,
0.4 exp( L )
(1.8T, +32)™ ((1.8T L, +32)XMW)
_ Y R Cw
y=( ) ( ® /P )
flue gas s CW
where,

n

Tew= XMEw.T
i=1 1 1c
n

Pew= T wiPg;

n
MWiiue gas or oil = El yiMW;

MF, is the critical temperature modification factor for the gas components as presented before

in Chapter 6.

For this model, the flue gas solubility at Py, (equal to 1 atm for the dead oil case) was
considered to be equal to zero.

The GA-based flue gas solubility model for the dead oil depends, primarily, on the
saturation pressure, temperature, flue gas liquefaction pressure, flue gas critical properties
(pseudocritical temperature and pressure), and oil specific gravity. Also, it depends, to a lesser
degree, on the flue gas molecular weight and oil molecular weight. Fig. 7-24 presents the

sensitivity analysis of the factors that affect flue gas solubility in dead oil.

2. When flue gas is in the liquid state, for temperatures less than T, e g5 and pressures

greater than the flue gas liquefaction pressure:

The model proposed for the CO, solubility when COs; is in the liquid state (Equation 7-
2) could be also used for the flue gas solubility as the saturation pressure effect on the

solubility when flue gas or CO; are in the liquid state is less pronounced. Hence, the GA-
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based flue gas solubility model depended on the ratio between the saturation pressure and the

flue gas liquefaction pressure, temperature, oil molecular weight, and oil specific gravity.

Flue gas solubility in dead oil

Ps 0.984
Tr -0.122
Pcw -0.066
Y -0.062
Tcw 0.032
MW fye gas 0.003
MW | 0.002
-1 -ot5 ‘o 015 1

Correlation Coefficients

Fig. 7-24. Sensitivity analysis of the factors affecting flue gas solubility in dead oil.

7.3.1.1.2. GA-based Flue Gas Solubility in Live Oil
For a reliable prediction of the flue gas solubility in live oil, the following GA-based

model is proposed:

1. When flue gas is in the gaseous state, for temperatures greater than T fue gas (for all
pressures) and temperatures less than T pe qas (for pressures less than the flue gas

liquefaction pressure):

Sol (mole fraction) =0.8521—5.89y +21.5y2 —35.32y3 +4.57y% +52.1y> —40.79y®

(7-9)
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where,
0.2 1
(145.04xP,.. ) (1.8T, +32) exXp(ror)
Y =100X X (o fg) K R MW
Olow MW gas X (145.04x (P P, ))

For this model, the flue gas solubility at P, was considered to be equal to zero.

As shown in Fig. 7-25, the GA-based flue gas solubility in live oil model also depends
on the saturation pressure, temperature, flue gas liquefaction pressure, flue gas critical
properties (pseudocritical temperature and pressure), oil specific gravity, flue gas molecular
weight, and oil molecular weight. However, the flue gas critical properties effect is higher for

the gas solubility in live oil than for the solubility in dead oil.

2. When flue gas is in the liquid state, for temperatures less than T, fie ¢as and pressures

greater than the flue gas liquefaction pressure:

The same model used for the CO; solubility in dead oil when CO; is in the liquid state

(as given in Equation 7-2) can also be used for the flue gas solubility in live oil.

7.3.1.1.3. GA-based Flue Gas Solubility Models Test

As shown in Table 7-17, Fig. 7-26, and Fig. 7-27, the GA-based flue gas solubility in
dead and live oil models offered a much better accuracy compared to models of Simon and
Graue (1965), Mehrotra and Svrcek (1982) (have been developed for bitumen), and Chung et
al. (1986). In addition they could be applied over a wider range of conditions. Table 7-18
presents a summary of the experimental data range used in this study for developing and
testing of the flue gas solubility in dead and live oils models. The details of the experimental
flue gas solubility data and the prediction results from the GA-based flue gas solubility in oil

models are presented in Appendix-7.
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Fig. 7-25. Sensitivity analysis of the factors affecting flue gas solubility in live oil.
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Fig. 7-26. GA-based flue gas solubility models prediction results for dead and live oils.
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Fig. 7-27. Comparison results among the GA-based flue gas solubility in oil (dead and live

oils), Simon and Graue (1965), Chung et al. (1986), and Mehrotra and Svrcek (1982) models.

Table 7-17. Comparison between the GA-based flue gas solubility in oil (dead and live oils)

and other literature solubility models.

Model Average Error, | STDEV, R?
% %
GA-based 6.2 8.8 0.9504
Simon and Graue (1965) 35.9 46.3 0.3914
Mehrotra and Svrcek (1982) 36.3 51.4 0.3068
Chung et al (1986) 98.6 167.6 0.0007

Table 7-18. Experimental data range used in this study for developing and testing of the flue

gas solubility (in dead and live oils) models.

Flue gas composition

Variable Experimental data range
Oil API gravity, °API Wider range (14-55)
P, MPa Up to 41.37
Tg, °C Upto 141.1
MW Up to 450

CO,, Ny, C4-Cs,, for up to 20
mole% N,, and non-CO,
components up to 40 mole%
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7.3.1.2. GA-based Oil (Dead and Live Oils) Swelling Factor Due to Flue Gas Injection

The previous model that was developed for oil swelling factor due to CO; injection
(Equations 7-4 and 7-5) was used also for the oil swelling factor due to flue gas injection.
The effect of the injected gas composition (including the existence of non-CO, components)
was implicitly included in this model in the gas solubility variable.

For the sensitivity analysis of the GA-based oil swelling factor model, as shown in Fig.
7-28, the oil swelling factor for the heavier oil (oil MW=2=300) depends primarily on the flue
gas solubility, increasing as the flue gas solubility increases. On the other hand, there is a
lesser impact of the oil molecular size as the swelling factor decreases with the higher oil
molecular size. Also, from Fig. 7-29, the oil swelling factor for the lighter oil (oil MW<300)

depends basically on the flue gas solubility with a lesser impact of the oil molecular size.

Swelling Factor due to flue gas (oil MW > 300)

Solubility 0.996
MW /y -0.102
-1 -0.5 0 0.5 1

Correlation Coefficients

Fig. 7-28. Sensitivity analysis of the factors affecting dead and live oils swelling factor for

oils with MW=300.
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Swelling Factor due to flue gas (oil MW <300)

Correlation Coefficients

Solubility 0.995
MW /y -0.087
-1 0.5 0.5 1

Fig. 7-29. Sensitivity analysis of the factors affecting dead and live oils swelling factor for

oils with MW<300.

Table 7-19, Fig. 7-30, and Fig. 7-31 present a comparison between the GA-based oil

swelling factor (for dead and live oils) model and the model by Simon and Graue (1965). The

GA-based model offered a higher accuracy and could also be applied over a wider range of

conditions. Table 7-20 presents a summary of the experimental data range used in this study

for testing of the GA-based swelling factor model for dead and live oils. The details of the

experimental oil swelling factor (due to flue gas injection) data and the prediction results are

presented in Appendix-8.

Table 7-19. Comparison between the GA-based model and Simon and Graue (1965) oil

swelling factor models (for dead and live oils).

Model Average | crnpv % R?
Error, %
GA-based 0.48 0.77 0.992
Simon and Graue (1965) 0.68 0.95 0.992
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Fig. 7-30. GA-based oil swelling factor (due to flue gas) model prediction results (for dead

and live oils).
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Fig. 7-31. Comparison results between GA-based and Simon and Graue (1965) oil swelling

factor (due to flue gas) models (for dead and live oils).
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Table 7-20. Experimental data range used in this study for testing of the GA-based oil (dead

and live oils) swelling factor (due to flue gas) model.

Flue gas composition

Variable Experimental data range
Oil API gravity, °API Wider range (14-42)
P,, MPa Upto31.72
Tg, °C Upto 110
MW Up to 450

CO,, Ny, Cy, forup to 84.4
mole% N,, for non-CO,
components up to 85.1 mole%

Flue gas-oil density, gm/cc

-1

0.997

0.076
-0.023

0.011
-o‘.5 6 0.15

Correlation Coefficients

Fig. 7-32. Sensitivity analysis of the factors affecting flue gas-oil (dead and live oils) density.



7. GA-Based Physical Properties Models for CO,-oil and Flue Gas-oil Mixtures 109

7.3.1.3. GA-based Flue Gas-Oil (Dead and Live Oils) Density

The previous model that was developed for the CO»-oil density (Equation 7-6) was
used also for the flue gas-oil density, as the effect of the gas solubility is less pronounced on
the gas-oil density. From the sensitivity analysis presented in Fig. 7-32, the flue gas-oil
density increases with the increase in initial oil density and saturation pressure. Also, there is
a lesser impact of the temperature and oil specific gravity.

From the comparison in Table 7-21, Fig. 7-33, and Fig. 7-34, the GA-based model
yielded a much lower error than Quail et al. (1988) model. Also, it appeared to be valid over a
wider range of conditions. Table 7-22 presents a summary of the experimental data range
used in this study for testing of the GA-based flue gas-oil (dead and live oils) density model.
The data details of the experimental flue gas-oil density and the prediction results from the

GA-based gas-oil density model for the flue gas-oil density are presented in Appendix-9.

Table 7-21. Comparison between the GA-based model and Quail et al. (1988) model for the

flue gas-oil density prediction.

Average | STDEV, 2
Model Error, % %0 R
GA-based 0.6 0.8 0.9963
Quail et al. (1988) 10.5 15.2 0.9366

Table 7-22. Experimental data range used in this study for testing of the GA-based flue gas-

oil (dead and live oils) density model.

Variable Experimental data range
Oil API gravity, °API Wider range (14-42)
P, MPa Up to 22.41
Tg, °C Upto 76.7
MW Up to 440

Flue gas composition | COz, Na, Cy, Cy, for up to 34.4
mole% N,, for non-CO,
components up to 85.1 mole%
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Fig. 7-33. GA-based flue gas-oil density model prediction results.
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Fig. 7-34. Comparison results between the GA-based and Quail et al. (1988) flue gas-oil

density models.
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7.3.1.4. GA-based Flue Gas-Oil (Dead and Live Oils) Viscosity
For a reliable prediction of the flue gas-oil viscosity, a GA-based flue gas-oil viscosity
model (for dead and live oils) was developed based on the flue gas solubility, saturation
pressure, temperature, initial oil viscosity, oil specific gravity, and flue gas composition. The

GA-based model was presented as follows:

Sol (mole fraction)
Hy

H=yp +A( ) (7-10)

where,
y=x5

C 145.04xP_ (yxSol(mole fraction))
X = (M ) s )

Wﬂuegas *Yeo2) 1M X((l.STR +32)

The model coefficients for dead and live oils were developed as follows:

A B C D
Dead oil -9.5 -0.732 0.45 0.23
Live oil 0 -0.587 0.1 1.15

Based on the sensitivity analysis presented in Fig. 7-35 (for dead oil) and Fig. 7-36 (for
live oil), the GA-based viscosity reduction (flue gas-oil viscosity/initial oil viscosity) depends,
basically, on the flue gas solubility, as well as the initial oil viscosity, saturation pressure, oil
specific gravity, flue gas composition, and temperature. The impact of the flue gas solubility
on the viscosity reduction is much greater for dead oil than for live oil.

For the model test, compared to other models (Mehrotra and Svrcek (1982) and Beggs
and Robinson (1975)), the GA-based flue gas-oil viscosity model appeared to yield more
accurate results (see Table 7-23, Fig. 7-37, and Fig. 7-38). Table 7-24 presents a summary of
the experimental data range used in this study for developing and testing of the flue gas-oil

(dead and live oils) viscosity model. The details of the experimental flue gas-oil viscosity data
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and the prediction results from the GA-based flue gas-oil viscosity model are presented in

Appendix-10.

Table 7-23. Comparison between the GA-based model and other flue gas-oil viscosity

literature models.

Average | STDEV, 2
Model Error, % Yo R
GA-based 2.7 5.0 0.997
Beggs and Robinson (1975) 12.8 18.0 0.991
Mehrotra and Svrcek (1982) 96.6 110.63 0.516

Flue gas-dead oil viscosity/initial oil viscosity

Solubility .0.993
Wi -0.057
y(C0O2) -0.056
Ps -0.056
v -0.019

Tr 0.015
MW e gas -0.008

-1 -O‘.5 ‘O 6.5 1

Correlation Coefficients

Fig. 7-35. Sensitivity analysis of the factors affecting dead oil viscosity reduction due to flue

gas injection.
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Flue gas-live oil viscosity/initial oil viscosity

Solubility
Wi
Ps
TR
Y
MW fiue gas

y(CO2)

Correlation Coefficients

Fig. 7-36. Sensitivity analysis of the factors affecting live oil viscosity reduction due to flue

gas injection.
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Fig. 7-37. GA-based flue gas-oil (dead and live oils) viscosity model prediction results.
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Fig. 7-38. Comparison results between the GA-based and Beggs and Robinson (1975) flue

gas-oil (dead and live oils) viscosity models.

Table 7-24. Experimental data range used in this study for developing and testing of the GA-

based flue gas-oil (dead and live oils) viscosity model.

Flue gas composition

Variable Experimental data range
Oil API gravity, °API Wider range (14-50)
P;, MPa Upto21.4
Tg, °C Up to 137.22
MW Up to 450
Oil viscosity, mPa.s Up to 1677

CO,, Ny, C;-Cs,, for up to 30
mole% N,, for non-CO,
components up to 85.1 mole%
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7.3.2. Discussion for the GA-based Flue Gas-Qil Physical Properties

It is evident that the environmental considerations in favour of reducing GHG (flue gas)
emissions have given a greater impetus on utilizing (or disposing) flue gases through EOR
processes. In addition, gas flood operators, too, are increasingly putting a greater emphasis on
using flue gases for EOR, because the experience in the West Texas region has shown that the
cost of CO, separation and compression could be significant and it has been found that too
much emphasis on the CO, purity is disproportionate to the overall economic benefits.
Therefore, it is of significant interest to study the interactions between the flue gas and oil to
determine the effect of the flue gas injection on the oil physical properties.

As noted earlier, all of the available models were developed, basically, for CO,
injection and the majority of them have been developed for CO,-dead oil physical properties.
Also, these models are limited in their application to certain data ranges (as presented above
in Section 7.2.2) and they are unable to accurately predict the effect of the injected gas on the
live oil properties. Furthermore, these models do not adequately address the effect of the
liquefaction pressure (at the specified temperature) on the solubility, in particular. Also,
because these models have been developed based on CO»-o0il physical properties, they are
unable to give an accurate prediction for the flue gas-oil physical properties, especially when
the flue gas contains higher non-CO, content (more than 5-10 mole%) and N, content higher
than Smole %.

This study presents reliable models to predict flue gas-oil physical properties and
investigate the interactions between the flue gas and oil taking into consideration all major
variables affecting the flue gas-oil mixture physical properties. For the flue gas solubility
prediction, the GA-based model considered the effects of the saturation pressure, temperature,
oil specific gravity, oil and flue gas compositions, and injected flue gas critical properties.
The GA-based oil swelling factor model considered the effects of the oil molecular size and
the flue gas solubility, which implicitly took into account the effects of the flue gas
composition. To predict the mixture density, the GA-based flue gas-oil density model
considered the effects of the saturation pressure, temperature, oil specific gravity, and initial
oil density at the specified temperature. For the flue gas-oil viscosity model, the effects of the
initial oil viscosity, saturation pressure, temperature, flue gas solubility, oil specific gravity,
and flue gas composition were included.

The GA-based models have been validated with published experimental dead and live
oils data and compared with available models in the literature. Each GA-based model
presented in this study has demonstrated superior performance in terms of its accuracy and

covers wider ranges of conditions. In particular, the GA-based models have consistently
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presented higher accuracy for flue gases with higher content of non-CO, components and for

flue gas-live oils mixture properties.

7.4. Summary

A key parameter in a gas (CO, or flue gas) flooding process is the gas solubility; for, it
contributes to oil viscosity reduction and oil swelling, which together, in turn, enhance the oil
mobility and oil relative permeability. Often injected gas-oil mixture physical properties
parameters are established through time-consuming experimental means or using models
available in the literature. However, one must recognise that such models for predicting the
injected gas-oil physical properties are valid usually for certain data ranges or site-specific
conditions. Furthermore, it is to be noted that there is no reliable model available to predict
injected gas-live oil physical properties, as most of the available models were developed
based on dead oil data. Also, the commonly used literature models do not adequately address
the effect of the liquefaction pressure (at the specified temperature) on the solubility, in
particular. In addition, because these models have been developed based on the CO»-oil
physical properties, they were unable to give an accurate prediction of the flue gas-oil
physical properties, especially for flue gases, which contain higher amounts of non-CO,
components.

In this study, a GA-based technique has been used to develop more reliable models to
predict CO, solubility, oil swelling factor, CO,-oil density, and CO,-oil viscosity for both
dead and live oils. These models recognised not only all major variables that affect each
physical property, but also considered the effect of the CO, liquefaction pressure. The GA-
based models have been successfully validated with published experimental data and
compared with several widely used models. The GA-based models have yielded more
accurate predictions with lower errors than the other tested models. Furthermore, unlike the
literature models, which were applicable to only limited data ranges and conditions, the GA-
based models could be applied over a wider range and conditions.

This study also proposed new models to predict the flue gas-oil physical properties. In
particular, these models developed for the flue gas-oil properties such as flue gas solubility,
impact on the oil swelling factor, and flue gas-oil density and viscosity. These GA-based
models utilised all major variables affecting each parameter model including the injected flue
gas composition and the flue gas critical properties. In addition, the critical temperature
modification factor (MF;) was also used in developing these models. The GA-based flue gas-
oil physical properties models have been successfully validated with published experimental

data and have also been compared against other commonly reported CO,-oil models that are
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often used for the flue gas-oil processes. The GA-based models consistently yielded a lower
prediction error than the tested models. Furthermore, unlike the other models, which were
applicable only over limited data ranges and conditions, the GA-based models could be valid
over a much wider range of conditions. They also can be used, successfully, for a wide range

of the injected flue gas compositions.



CHAPTER S

Conclusions and Recommendations

8.1. Introduction

GA software was developed in this study and was successfully used as a modelling
technique. This software has been tested and validated for developing models that minimise
the misfit between the experimental and predicted values and has been proved to be an
efficient modelling technique within the range of conditions examined.

Using the GA software, two more reliable models for CO,-0il MMP and flue gas-oil
MMP have been developed, and then, their predicted values have been compared against
those obtained by the commonly used models in the literature. Experimental data available in
the public domain were used in development and validation of these models. Furthermore, a
package of GA-based models has been developed and successfully validated using data
available in the public domain to predict the CO, flooding effects on the oil physical
properties (for dead and live oils properties), notably, CO, solubility, oil swelling factor, CO,-
oil density, and CO,-oil viscosity. Another package of GA-based models has been developed
and successfully validated using data available in the public domain to predict the flue gas
flooding effects on the oil physical properties (for dead and live oils properties), notably, flue
gas solubility, oil-swelling factor, flue gas-oil density, and flue gas-oil viscosity.

Based on the data used in this study and keeping in mind the limitations of this data, the

following conclusions and recommendations are made.
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8.2
1.

10.

1.

Conclusions

The GA technique proved to be an efficient method in testing and developing of the
quantitative models.

The factors that affect CO,-0il MMP were in the following order, in terms of their
impact, the reservoir temperature, MWcs,, and ratio between the volatiles and
intermediates. When there are no volatiles fractions in the oil, the intermediates effect
on the MMP cannot be ignored.

The GA-based CO;-0il MMP model yielded the best prediction with the lowest
average error among all other tested models.

The flue gas-oil MMP model was a function of the injected flue gas solubility into
reservoir oil. The injected gas solubility, in turn, depends on the gas critical properties
(pseudocritical temperature and pressure).

Compared to other commonly used models, the GA-based flue gas-oil MMP model
offered the best prediction with excellent accuracy.

GA-based flue gas-oil MMP model could be used for higher N, content (tested up to
20 mole%) and for different non-CO, components (e.g., H,S, N;, SOy, O,, and C;-Cy4)
with higher fractions (tested up to 78 mole%).

. Use of the critical temperature modification factor (MF;) in developing the flue gas-oil

MMP model improved the relationship between the flue gas-oil MMP, CO,-o0il MMP,
and the pseudocritical properties of the injected flue gas and pure CO,.

The GA-based package of models developed in this study for CO,-oil mixture
physical properties prediction presented a more reliable prediction with higher
accuracy than the other literature models tested in this study.

This study presented high-accuracy models to predict the CO,-live oil mixture
properties that based directly on the CO,-live oil mixture data. In contrast, many of the
currently available models were based on dead and/or heavy oil properties and they
are still used for live oils.

Unlike most of the other models, the GA-based models account for all major variables
that affect CO;-oil physical properties, including the CO, liquefaction pressure effect.
Besides the higher prediction results with outstanding accuracy, the GA-based models
were capable of covering a wider range of oil properties, with regard to oil gravities,
pressures up to 34.5 MPa, oil MW>490, oil viscosities up to 12000 mPa.s, and

temperatures up to 140°C.
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12.

13.

14.

15

16.

17.

8.3.

This study presented new models developed basically to study the effects of injected
flue gas on the oil physical properties, and consequently on enhanced oil recovery
process performance.

The GA-based package of models developed in this study presented a more reliable
prediction of the flue gas-oil mixture physical properties with higher accuracy than the
other literature models, which were developed basically for CO, and tested in this
study for the flue gas-oil properties.

Unlike most of the other models, the GA-based models account for all major variables
that affect the flue gas-oil physical properties, including the effects of the oil and

injected flue gas compositions and the injected gas liquefaction pressure.

. Besides the higher prediction results with outstanding accuracy than other models, the

GA-based models are capable of covering a wider range of oil properties for dead and
live oils and also for different flue gas compositions.

When data from standard or similar experimental procedures are used, the accuracy of
the GA-based models could be further enhanced.

In the absence of any measured site-specific miscibility and interactions data and
when the project financial situation is a concern, the GA-based models could be used
as an effective and convenient predictive tool to guesstimate the miscibility and
interaction parameters for initial design calculations. They can be used as a fast track
gas flooding project screening guide. In addition, they could contribute towards
designing a more efficient and economical experimental programs. Also, they can
easily be incorporated into a reservoir simulator for CO, or flue gas flooding design

and simulation.

Recommendations

The GA-based models proposed in this study to predict the miscibility and interactions

between the injected gas (CO; or flue gas) and oils (dead and live oils) are based on data in

the public domain. There is a scarcity of data for certain cases, for example, there is a need for

more data especially in cases where the injected flue gas has higher N, content and also for

flue gas-oil mixture viscosity. In view of this, it is envisaged that:

1.

The flue gas-oil viscosity model could be improved further with a larger database and
more reliable data for it to be applied over a wider range of data and conditions.
There is a need for flue gas-oil miscibility and interactions models for injected gas

with higher fraction of N, (more than 20 mole%), as the displacement process
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changes from a condensing-vaporizing drive to a vaporizing drive as the N
concentration is increased.

3. Improvement of the GA software by using different operators, (e.g., two-point
crossover or uniform crossover, testing different parent selection techniques, etc) to
get better performance in developing of the quantitative models should be attempted.

4. Based on its many advantages indicated in Chapter 4, the applications of the GA
technique could also be extended forward developing of the quantitative models.

5. Where possible, standardised data or data from similar experimental setup should be
used; for example, currently the MMP data reported in the literature and used in this
study came from various sources using different experimental protocols, and hence,
the inconsistencies among them are unavoidable.

6. The GA-based models results can be tested/confirmed, experimentally, using one

experimental run (especially, for MMP).
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Appendices

The following appendices present the literature database used in this research for

developing and testing of the GA-based models and also the GA software code is presented:

Appendix-1: for CO,-oil MMP experimental data validation.

Appendix -2:
Appendix -3:
Appendix -4:
Appendix -5:
Appendix -6:
Appendix -7:
Appendix -8:
Appendix -9:

for flue gas-oil MMP experimental data validation.

for CO, solubility experimental data validation.

for oil swelling factor (due to CO,) experimental data validation.
for CO,-oil density experimental data validation.

for CO»-oil viscosity experimental data validation.

for flue gas solubility experimental data validation.

for oil swelling factor (due to flue gas) experimental data validation.

for flue gas-oil density experimental data validation.

Appendix -10: for flue gas-oil viscosity experimental data validation.

Appendix -11: the GA software code.
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Appendix-11
The GA Software Code

GA software code developed in this study for developing of the quantitative models

sk sk sk sk sk sk sk sk sk st sk sk sk sk sk sk sk sk sk sk st sk sk sk sk sk sk sk sk sk sk st sk sk st sk ste sk sk sk st sk s sk sk stk sk sieosko sk steoskeoskeoskeoskoskokoskeskosko sk stokeskeskoskoskokosk
dimension (put the dimensions based on the number of data points and the population
size)

common k,n,kk,y,nn

call seed(2.0)

sk sk st sk sk sk skeosie sk skeosie sk skeoste sk skeosie sk skeoste sk skeoste sk skt sk sk st sk sheoste st sheosie st sfeosie st sheoste st sfeoske st seoske st seoske st seoskeoste skt skt skoskoke skokok skokox
Open input file (to enter the experimental data and other input data) and output file (for
the results).

open(unit=1,file=file.inp")

open(unit=2,file='file.out’)

sk sk sk st s sk sk sk sk st sk s sk sk ske sk sk sk sk sk st sk sk sk sk s sk sk sk sk st sk sk st sk st sk sk sk st sk st sk sk st sk sk sieoskeo sk steoskeskeoskeoskoskokoskeskosko sk stokeskeskoskokokosk
The software input section:

Enter number of the proposed model coefficients (k), number of the model variables
(kk), and the number of the data available (nn)

read(1,*) k,kk,nn

write(*,*)'enter the population size'

read(*,*)n

Read the experimental data model (from the input file) for the variables, which will be
used to develop the model.

Enter the initial population values based on random real coded numbers (building the
chromosomes).

do 11j=1,n

x(j,1)=(abs(rnd()))

continue

The end of software input section:

skeoske st sk skt sk skt sk skeosie sk skeoste sk skeosie sk sheoste sk skeosie sk skeoste sk sk st st sheoste st sheoste st sheosie st sheoske st sheoske st seoske st seoske st seoskeoste skt skt skoskoke skokok skokox
Evaluation function: to assign each chromosome an average fitness value based on the
accuracy of its prediction (the higher the fitness value, the higher the prediction
accuracy.

kl=1

k2=n

call eval(x,k1,k2,nn,fit,dcal, and other affecting variables)

s sk sk sk sk sk sk sk sk sk st sk sk st sk sk sk sk sk st sk s sk sk sk sk sk sieoske sk st sk st sk sk skt ske sk sk sk stk st sk s skoske sk sk sk skt sk sk s sk skoskeosie st sk skoskoskeskeske sk ko
Parent selection technique: based on the roulette wheel selection method.

call parent (p,k,n,q,u,fit,x,m)

skskeoste sk skt sk skt sk skt sk skeoste sk skeosie sk sheosie sk sk st sk skt sk she st sk sheoste st sheosie st sheosie st sheoske st sheoske st sheoske st seoske st skt skt skt skoskokeoskokok skokox
Apply the reproduction operators (crossover and mutation) to produce a new offspring
(two new children) from the two parents selected to improve the population fitness

and consequently improve the group of the problem solutions (improve the model
results).

call crmut(x,k,n)

kl=n+3

k2=n+4
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C***

C

c Kk

C
C

c Kk

C***

275

c Kk

c Kk

o o o0

C***

22

c Kk

c Kk

c Kk

skt sk st sk sk sk sk ke skt sk sk sk sk sk sk sk sk sk skt skt s sk sk sk skt sk sk sk skt skt sk sk skt skoske sk sk skeosk skt skt skt sk skt sk skokosk skokeskokosk

Evaluate the two produced two children (the new offspring).

call eval(x,k1,k2,nn,fit,dcal, and other affecting variables)

skt sk st sk sk st skt sk sk sk sk st sk sk skeoske sk sk sk sk sk sk sk sk sk sk st stk skt sk sk st skeoske sk sk sk sk skeoste sk sk kst skeoste sk skeoskoske skt sk skokeoskokokokok
Get the best two chromosomes between the two parents and the two children to reinsert
them back into the population.

call max1(fit,k,n,m,x)

skt sk sk sk sk st sk sk sk sk sk sk st sk ke skeoske sk sk st sk sk sk sk sk sk sk st sk sk sk sk sk st sk sk sk sk sk st sk sk sk sk sk sk st sk sk kst skt sk skokokeoskotkeoskokosk
Get the best chromosome’s average fitness in the population (the best solution).

call max2(fit,k,n,bav,x)

s sk st sk st sk sk sk sk sk st sk sk st sk sk sk sk sk sk sk s sk sk sk sk sk sieske sk st sk st sk sk sk sk ske sk sk sk stk s sk sk sk sk sk sk sk skt sk sk sk sk skoskeoske st sk skoskoskeskeske sk ko
Get the average population fitness (the average fitness of all the population
chromosomes).

sum=0.0

do 275 j=1,n

sum=sum-+fit(j)

continue

av=sum/n

write(*,*)'av fitness of the population=',av

skt sk sk sk sk st sk ke sk sk sk sk st sk ke sk sk sk sk sk sk sk sk sk sk sk sk st sk sk skeosie sk s sk sk sk sk skeoste sk skt sk skeoste skt sk sk kst st sk skoskokeoskotkoskokesk
Compare between the best chromosome’s average fitness and the average population
fitness to test the stopping criterion.

diff=abs(bav-av)

skt sk st sk sk st sk sk sk st sk sk st sk ke sk sk sk sk st sk sk sk sk sk sk sk st sk sk sk sk sk st sk sk sk sk skeoste sk skt sk sk sk skt sk sk kst skeoste sk skokoskeoskoteskokesk
If the difference between the best fitness and the average fitness is less than a certain
accuracy (0.00001) then write the results and finish the software, otherwise return
back to select more parents and produce more offspring to improve the problem
solution.

if(diff.1e.0.00001)go to 22

go to 2

s sk st sk st sk sk sk sk sk sk sk sk st sk s sk sk sk sk sk sk sk sk st sk s sk sk sk sk ske sk sk sk st sk s sk sk skt ske sk sk sk stk ste sk sk sk sk sk s sk skoskeoskese sk skeoskeoskeskeske sk ko
The software output section:

write(2,*)'The GA software output for GA-based model:'

write(2,*)'l. the best chromosome’s average fitness in the population is:',bav
write(2,*)"2. the coefficients of the proposed model, (for example, a,b,c)’
write(2,*)'a=',x(n,1)

write(2,*)'b=",x(n,2)

write(2,*)'c=',x(n,3)

The end of output format section.

skt sk sk sk sk st sk sk skeoske sk sk st sk sk skeoske sk sk sk sk sk sk sk sk sk sk st stk skt sk st st skoske sk skeoskeoske skeoste sk sk skeoske sk st sk skeoskeoske skt sk skokeoskokokokok
stop

end

End of the main software body.

skt sk st sk sk st sk sk skeoske sk sk st sk sk skeoske sk sk sk sk sk sk sk sk sk sk st skeoske skt sk sk st skeoske sk sk skeoske skt sk skt sk skeoste sk skeoskoske skt sk skokoskokokokok
A function to develop the random values for the initial random population.

function rnd()

call random(g)

rnd=2.0%(g-0.5)

This function was used to determine random values (between -1.0 to +1.0)

return

end

skt sk st sk sk s sk sk sk sk sk sk st skt sk sk sk sk st skeoske st sk sk st sk sk sk sk sk sk st sk sk sk sk sk sk skt sk sk steoske skt sk sk kst skeoste sk skt skokeskokesk

A subroutine to evaluate the population chromosomes (to determine the chromosome’s
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88

555

o o0 o0 o o0

133

40

50

202

100

average fitness value) using an objective function, which developed based on the
proposed model.
subroutine eval(x,k1,k2,nn,fit,dcal, and other affecting variables)
do 555 j=k1,k2
sum=0.0
do 88 I=1,nn
dcal(j,1)= “design the objective function and develop the model equation based on
the relationship between the modelled parameter and the major affecting variables”
Determine the average fitness value for each chromosome based on the difference
between the predicted value and the observed value.
fdiff=abs(dcal(j,1)-d(1,1))
sfit(j,)=C,/( C, +{diff)
Use penalty functions to prevent presentation of abnormal values (e.g., negative values
for the MMP).
if(dcal(j,1).1t.0.0)sfit(j,1)=sfit(j,1) *(1-0.001)
if(fdiff.gt.0.02)sfit(j,1)=sfit(j,1) *(1-0.001)
sum=sum-+sfit(j,l)
continue
Present the chromosome’s average fitness value.
fit(j)=sum/nn
write(*,*)'the value of fit(j)='
write(*,*)fit(j)
continue
return
end
sk sk st st she st st she sk st she sk st she sk st sfe sk st sfeoske st sheoske st s skt seoskeoste seoskeosie s skt sk skt sk skt sk skeosie sk skeoste sk st sk skoste sk st sk skt sk skotkeoskoskokokoskok
This subroutine was used to determine two parents from the population by using
roulette wheel parent selection technique (the parents chromosomes is used to
determine a new offspring to improve the population fitness (improve the problem
solution).
subroutine parent(p,k,n,q,u,fit,x,m)
dimension p(105),q(105),fit(105),x(105,30),m(2)
real u,prop,sum
sum1=0.0
do 133 j=1,n
sum=sum 1+{it(j)
suml=sum
continue
prop=0.0
do 40 j=1,n
p()=fit(j)/sum
continue
do 501=1,n
q(D)=prop+p(1)
prop=q(l)
continue
do 80 iz=1,2
u=0.5*(rnd()+1.0)
j=1
if(u.le.q(j))go to 99
do 100 j=2,n
if ((u.gt.q(j-1)) .and. (u.le.q(j)))go to 99
continue
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if((iz.eq.2.0).and.(j.eq.m(1)))go to 202

m(iz)=j

do 119 jj=1.k

X(n+iz,jj)=x(m(i2) )

continue

fit(n+iz)=fit(m(iz))

continue

return

end

skeskeoste sk skt sk skeosie sk skeosie sk skeoste sk skeosie sk skeoste sk skeoste sk skt sk sk st sk sheoste st sheosie st sheoske st sheoste st sfeoske st seoske st seoske st skt skt skt skoskoke skokok skokox
This subroutine was used to apply the reproduction operators (crossover and mutation)
on the selected two parents to produce two children (new offspring).

subroutine crmut(x,k,n)

dimension x(105,30),anew(105)

do 29 jj=1,k

x(n43,i)=x(n+1,jj)

x(n+4,j)=x(n+2,jj)

continue

Ircf=k*abs(rnd())+1

do 47 It=Ircf k

x(n+3,1t)=x(n+2,1t)

x(n+4,1t)=x(n+1,1t)

continue

do 3 j=n+3,n+4

Irmt=k*abs(rnd())+1

anew(j)=rnd()

x(j,Irmt)= A*x(j,Irmt)+ B*anew(j)

A and P values are between 0 and 1 and their values are selected based on the software
performance (experimental evaluation).

continue

return

end

st she st st she st st she st st she sk st she sk st she sk st sheoske st sheoske st s skt s skt seoskeosie sk skt sk skeosie sk skeosie sk sk sk skt sk st sk skt sk st sk st sk skotkeoskoskokokoskok
This subroutine was used to determine the best two chromosomes from the two
selected parents and the two produced children chromosomes and reinsert the best two
chromosomes to the population again.

subroutine max 1 (fit,k,n,m,x)

dimension fit(105),x(105,50),a(105,50),m(2)

nn=3

do 200 loop=1,nn

jj=n+4-loop

do 101 1=n+1, jj
if(fit(1).1t.fit(1+1))go to 101
temp=fit(l)

do 6 jj=1.k
a(ljj=x(Ljj)
continue
fit(H)=fit(1+1)
do 11jj=1,k
x(Ljj)=x(1+1.jj)
continue
fit(1+1)=temp
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do 13 jj=1,k
x(L+1,jj)=a(Lj)
13 continue

101 | continue

200 | continue

do 9iz=1,2

do 1jj=1,k

x(m(iz),jj)=x(n+iz+2,jj)
1 continue

fit(m(iz))=fit(n+iz+2)
9 continue

return

end
c sk o sk sk sk sk sk sk st sk sk sk sk sk st sk sk sk sk sk sk sk sk sk st sk sk sk sk sk sk sk stk sk st sk sk st stk sk st sk skeoste sk sk sk skt sk sk skoskosko ko skok
c This subroutine was used to determine the best (max.) chromosome’s average fitness
c from the population and send this chromosome to test the stopping criteria.

subroutine max2(fit,k,n,bav,x)

dimension fit(105),a(105,30),x(105,30)

nn2=n-1

do 301 loop2=1,nn2

jj2=n-loop2

do 102 1=1,j;2

if(fit(1).1t.fit(1+1))go to 102

temp2=fit(1)

do 7676 jj=1,k

a(1jj)=x(Lj)

7676 | continue

fit()=fit(1+1)

do 8989 jj=1,k

x(Lj)=x(1+1,jj)

8989 | continue

fit(1+1)=temp2

do 1234 jj=1,k

x(I+1,5j)=a(1,jj)

1234 | continue

102 | continue

301 | continue

bav=fit(n)

Cc bav=best chromosome average fitness(max. average fitness).
write(*,*)' best average fitness at end of max2=",bav
write(*,*)' best average chromosome at end of max2=",(x(n,jj),jj=1,k)
return

end
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