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Chapter 1

Introduction

Noise is increasingly becoming recognised as a serious environmental problem and

health hazard (World Health Organization, 2001). Human exposure to sustained

levels of noise has adverse health effects ranging from nervousness and stress to high

blood pressure and loss of hearing. Noise exposure can also increase human error

due to worker fatigue and loss of concentration, and increase safety risk through

the masking of audible alarms (World Health Organization, 1995). To reduce these

health and behavioral effects, strict regulations stating the allowable level of noise

at certain times of the day and during certain activities have been introduced. Such

regulations have commanded the need for a means of minimising unwanted noise

disturbances.

Traditionally, passive techniques such as enclosures, barriers and silencers have

been used to minimise unwanted noise disturbances. While these devices do generate

high attenuation over a broad frequency range, they are less effective at low frequen-

cies and are relatively large in terms of size and cost (Hansen and Synder, 1997).

As an alternative to passive methods, active noise control has shown potential in

minimising low frequency acoustic disturbances. Active noise control involves the

use of one or more secondary sound sources to cancel the primary disturbance, based

on the principle of superposition in which antinoise of equal amplitude but opposite

phase is combined with the primary noise to cancel both disturbances. Active noise

control systems generally consist of a controller which generates a control signal to

drive an actuator, usually a loudspeaker, to minimise the sound field sensed by a

number of microphones (Kuo and Morgan, 1996).

Active noise control has seen rapid recent development due to its potential ben-

efits in size, weight, volume and cost. Currently, active noise control systems are
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being developed for the attenuation of transportation and automotive vehicle noise,

appliance noise such as that produced by air conditioning ducts and refrigerators,

and for use in industrial equipment such as fans and pumps (Kuo and Morgan,

1996). Early research in active noise control focused on achieving global control

in which the entire sound field is attenuated by minimising the potential energy in

an enclosure. However, the level of attenuation achieved with global noise control

strategies, especially in modally dense enclosures, is not always sufficient in practical

applications (Nelson and Elliott, 1992). As an alternative, local noise control was

investigated in which a zone of quiet is generated at the error sensor. While achiev-

ing significant attenuation at the error sensor location, local noise control is not

without its problems, chiefly that the zone of quiet is generally small and impracti-

cally sized. It may be inconvenient to place the error sensor at the desired location

of attenuation, such as near an observer’s ear, preventing the small zone of quiet

from being centered there. Additionally, large pressure gradients in the vicinity of

the error sensor result in significant changes in the perceived sound pressure level

as the observer moves around within the zone of quiet. Also of concern is that the

sound pressure levels outside the zone of quiet with the active noise control system

present are likely to be higher than the original disturbance alone.

To overcome the problems encountered in local active noise control systems,

virtual acoustic sensors have been developed to shift the zone of quiet away from

the physical sensor position to a spatially fixed desired location. A number of virtual

sensing algorithms have been developed in the past and these algorithms estimate

the sound pressure at the desired location of attenuation, referred to as the virtual

location, using the error signal from a remotely located physical sensor (Elliott

and David, 1992, Cazzolato, 1999, Roure and Albarrazin, 1999, Cazzolato, 2002,

Petersen et al., 2008). This estimate of the sound pressure at the virtual location is

then minimised with the active noise control system to generate a zone of quiet at

the desired location of attenuation.

While virtual sensing algorithms have made it possible to shift the zone of quiet

away from the physical error sensor to a desired location of attenuation, in many

practical applications this desired location is not spatially fixed. This occurs for

example, when a virtual sensor is located at the ear of a seated observer and the

observer then moves their head, thereby moving the virtual location. To account

for a virtual location that is moving through the sound field, a number of moving

virtual sensing algorithms have been developed (Petersen et al., 2006, Petersen,

2007, Petersen et al., 2007). These algorithms have been used to estimate the sound

2



1.1. Literature review

pressure at a moving virtual location using the error signal from a remotely located

spatially fixed physical microphone. Minimising the estimate of the sound pressure

at the moving virtual location with the active noise control system creates a zone of

quiet that tracks the desired location of attenuation as it moves through the sound

field.

The research presented in this thesis aims to improve and extend the spatially

fixed and moving virtual sensing algorithms developed for active noise control thus

far and hence increase the scope and application of local active noise control systems.

To achieve this research aim, a number of novel spatially fixed and moving virtual

sensing algorithms are presented for local active noise control. A full description of

the research presented in this thesis to address the general research aim is given in

Section 1.2.

1.1 Literature review

This section provides a review of the literature specific to the content of this thesis.

In Sections 1.1.1 and 1.1.2, literature investigating global and local active noise

control systems is discussed. In Section 1.1.3, a discussion of the research on acoustic

energy density control is presented. Finally, Section 1.1.4 presents a review of the

literature exploring virtual sensing strategies for active noise control.

1.1.1 Global noise control

Global noise control strategies aim to minimise the sound field at all locations within

the acoustic enclosure. An effective measure of the global response of a confined sys-

tem is the energy stored within it and hence a convenient cost function for evaluating

the effect of global noise control is the total acoustic potential energy. Minimising

the total acoustic potential energy results in a spatial levelling of the sound field by

heavily reducing the amplitudes of the enclosure modes and only slightly reducing

the energy between these resonant modes (Nelson and Elliott, 1992). Analysis by

Bullmore et al. (1987), Elliott et al. (1987) and Nelson et al. (1987) demonstrated

that global control is possible when a lightly damped enclosure is excited close to

a natural frequency. The sound field inside the enclosure is dominated by a single

modal contribution which can be attenuated without affecting other modes. How-

ever, if the enclosure is excited off resonance, a number of residual modes contribute

to the response and all of the residual modes cannot be cancelled without exciting
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others. The physical limitations of an active noise control system in an enclosure

are therefore related to the number of modes significantly contributing to the enclo-

sure response at any frequency. A controllability issue also arises when a secondary

source is located on a nodal line or surface of an acoustic mode. In this case, the

secondary source is unable to drive that mode and it is therefore uncontrollable by

the source (Nelson and Elliott, 1992).

While minimising the total acoustic potential energy theoretically achieves global

reductions in the sound field, a practical control system implementing this cost

function would require pressure measurements at all locations within the enclosure.

Instead, practical control systems minimise the potential energy estimated by the

sum of squared pressures at a number of locations within the enclosure (Nelson and

Elliott, 1992). Park and Sommerfeldt (1997) however, demonstrated that achieving

global control is difficult with this method due to observability problems which arise

when the microphones are located on the nodes of the acoustic modes. Minimising

the potential energy estimated by the sum of squared pressures often results in

localised zones of attenuation instead of global reductions.

Two practical applications which demonstrate the difficulty of obtaining signifi-

cant global reduction are the global control of engine induced noise in a car cabin and

propeller noise in an aircraft passenger cabin. As the sound field inside a car is dom-

inated by harmonics of the engine firing frequency, Elliott et al. (1998) investigated

the real-time global control of two harmonics of the engine firing frequency in a car

cabin. A feedforward control system was developed using six loudspeakers shared

with the in-car entertainment system, eight microphones and a reference signal from

the engine ignition circuit. A 4 - 5 dB(A) reduction in the overall A-weighted sound

pressure level was achieved in the front and rear seats of the cabin at high engine

speeds and 2 - 3 dB(A) of attenuation was achieved at lower engine speeds in the

rear of the cabin. The low levels of attenuation achieved at the front and rear cabin

seats was attributed to poor coherence between the reference and error sensors.

Elliott et al. (1990) implemented an active noise control system in a twin tur-

boprop aircraft cabin to reduce the tonal components of the propeller noise at har-

monics of the blade pass frequency (BPF). The active noise control system aimed

to attenuate the BPF and its second and third harmonics using 16 loudspeakers

and 32 microphones placed around the cabin. A feedforward control approach was

employed using a tachometer on one of the propeller engines to generate the ref-

erence signals needed to implement feedforward control. Reductions in the overall

A-weighted sound pressure level of up to 7 dB(A) were achieved at the microphones
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at all three harmonics. Johansson et al. (1999) also experimentally investigated

the global control of propeller induced noise in an aircraft cabin. Real-time feed-

forward control of the BPF was investigated in a mock SAAB 340 cabin using 12

loudspeakers to simulate the propeller noise, 12 control microphones and a combi-

nation of 5 loudspeakers and 3 small shakers mounted on the fuselage to act as the

secondary sources. The mean attenuation in the BPF at the average head height

of seated passengers was 18 dB with the two propellers synchronised and only 3 - 6

dB with the propellers unsynchronised. These small reductions in the global sound

field demonstrate that it is difficult to achieve perceivable differences in the sound

pressure level with global noise control strategies.

1.1.2 Local noise control

As significant global attenuation is difficult to achieve with global noise control

strategies, local noise control strategies were instead investigated. Local noise con-

trol strategies aim to reduce the sound field at a number of points within the acoustic

enclosure to create small localised zones of quiet at the physical error sensors. Olson

and May (1953) were the first to suggest the principle of local active noise control

through development of an electronic sound absorber. Using feedback control, the

electronic sound absorber aimed to attenuate low frequency sound at a physical

microphone using a single loudspeaker. At the microphone position, an overall at-

tenuation of 10 - 25 dB was achieved in the broadband disturbance with a frequency

range below 200 Hz.

Local noise control strategies are suitable for use in complex reactive sound

fields unlike global noise control strategies. As discussed in Section 1.1.1, global

reductions are possible in enclosures excited at a frequency close to an isolated

acoustic resonance (Bullmore et al., 1987, Elliott et al., 1987, Nelson et al., 1987).

When the room response is no longer dominated by a single mode but is instead

composed of contributions from a number of modes, global noise control strategies

are ineffective and local noise control schemes need to be implemented. In fact,

it has been shown that global noise control strategies are ineffective at frequencies

corresponding to a modal overlap of greater than one, as this indicates that the

contribution of the resonant mode is equal to that of the nearby modes (Joseph

et al., 1994b).

When actively cancelling the sound pressure in a pure tone diffuse sound field in

the far-field of the secondary source, the size of the zone of quiet is predictable in

5



Chapter 1. Introduction

a statistical sense. Elliott et al. (1988a) demonstrated that the average sized zone

of quiet generated at a microphone by cancelling the measured pressure with a sin-

gle secondary source is a function of the space-averaged pressure after control and

the spatial correlation properties of the sound field. The zone of quiet was found

to be defined by a sinc function, with the primary sound pressure level reduced

by 10 dB over a sphere of diameter of approximately λ/10, where λ is an acous-

tic wavelength. Minimising the pressure at a point with a single secondary source

was observed to significantly increase the total mean square pressure away from the

point of cancellation (Elliott et al., 1988a, Elliott et al., 1988b, Joseph et al., 1994a).

In numerical simulations conducted by Elliott et al. (1988a), the total mean square

pressure away from the point of cancellation increased by a factor of four with the

active noise control system operating. This increase was, however, not repeatable

from one simulation to another. The statistical variability in the secondary source

strength required to perform pressure cancellation in a pure tone diffuse sound field

has also been investigated (Elliott et al., 1988a, Joseph et al., 1994a). The proba-

bility density function of the mean square secondary source strength was shown to

be an F2,2 distribution (Elliott et al., 1988a, Joseph et al., 1994a). As the mean

of this random variable is infinite, the space-averaged squared secondary pressure

fails to converge. Physically this is due to the secondary source sometimes being

located at a position where it has little effect on the pressure at the sensor location.

As a result, the magnitude of the secondary transfer function will be small and the

secondary source strength correspondingly large. This explains the lack of repeata-

bility between ensemble averages used to determine the average sized zone of quiet

in numerical simulations.

Joseph et al. (1994a) investigated the cancellation of sound pressure at a point in

the near-field of a secondary source in a pure tone diffuse sound field. In comparison

to far-field cancellation, the size of the zone of quiet in the near-field is determin-

istically defined by the near-field characteristics of the secondary source. Also, the

secondary source strength is significantly reduced compared to far-field cancellation

and is not dependent on the statistical properties of the sound field (Joseph et al.,

1994a). In the near-field of the secondary source (2πr0 � λ), the 10 dB zone of

quiet has a diameter equivalent to 0.6r0, where r0 is the radial distance between the

source and the cancellation point. The zone of quiet generated in the near-field of the

secondary source therefore increases in size as the distance between the cancellation

point and the secondary source, r0, increases. Specifically, if the distance between

the secondary source and the cancellation point is greater than λ/5, the size of the
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10 dB zone of quiet approximates λ/10, as is the case for far-field cancellation.

Rafaely (2001) extended previous research (Elliott et al., 1988a, Joseph et al.,

1994a) to theoretically analyse the spatial extent of the localised zones of quiet gen-

erated in a broadband diffuse sound field. Using a previously derived expression for

the correlation coefficient applicable to both broadband and pure tone diffuse sound

fields (Rafaely, 2000), expressions for the zone of quiet generated in both the near-

field and far-field of the secondary source were derived. Numerical simulations were

also performed to investigate the size of the zone of quiet generated in a number of

tonal and broadband diffuse sound fields of different frequencies. Results demon-

strated that the size of the zone of quiet generated in a broadband diffuse sound field

is similar to that generated in a pure tone diffuse sound field at the centre frequency

of the broadband frequency range.

David and Elliott (1994) conducted numerical simulations to investigate the size

of the zone of quiet generated at a microphone both on- and off-axis of a secondary

source. The performance of the local active noise control system in uniform and

diffuse sound fields was investigated with the secondary sound source being modelled

as a piston in an infinite baffle. In a uniform sound field at low frequencies, the zone

of quiet is a shell shape whose size is independent of frequency. At higher frequencies,

the zone of quiet decreases in size until it becomes a sphere with diameter λ/10.

This is the same sized zone of quiet as that derived by Elliott et al. (1988a) for

far-field cancellation in a pure tone diffuse sound field. Similiar sized zones of quiet

were generated both on- and off-axis of the secondary source up to a frequency of 1

kHz. On-axis of the secondary source, in both uniform and diffuse sound fields, the

10 dB zone of quiet increased in size as the distance from the cancellation point to

the secondary source increased up to the limiting distance of λ/10.

1.1.2.1 Applications of local noise control

Local active noise control systems have been successfully implemented in the head-

rest of a passenger seat. Rafaely et al. (1997) and Rafaely and Elliott (1999) in-

vestigated a local active headrest system implementing a feedback controller. The

controller was designed using Internal Model Control (IMC) and a combination of

H2 and H∞ methods. The system included a single secondary loudspeaker mounted

in the headrest and a physical microphone placed 2 cm from the loudspeaker and

10 cm from the ear of a manikin, as shown in Fig. 1.1. The controller had the

performance objective of minimising the variance of the microphone output while
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Figure 1.1: Local active headrest (Rafaely et al., 1997).

being subject to robust stability, disturbance enhancement limits and limits on the

power to the actuators. The cost function and system constraints were H2 and

H∞ functions of the control filter coefficients. Using discretised frequency response

functions in the cost function and constraints, the frequency control filter coefficients

were then solved using convex optimisation. The frequency response functions were

measured in an experimental setup and used in off-line analysis of the controller.

An overall attenuation of 15.7 dB was obtained in the broadband disturbance at the

physical microphone, over a 100 - 400 Hz frequency range. Despite good attenuation

at the physical microphone, only 3.7 dB of attenuation was achieved at the ear of

the manikin.

Brothanek and Jiricek (2002) investigated the performance of a two-channel ac-

tive headrest system in a broadband free field with a 100 - 500 Hz frequency range.

The headrest contained two secondary loudspeakers and two physical microphones

located 5 cm from the loudspeakers and 7 cm from a manikin’s ears. The measured

pressures at the two microphones were minimised by a feedforward controller im-

plementing the Filtered-x LMS (Fx-LMS) algorithm. An attenuation of 15 - 20 dB

was achieved in the broadband disturbance at the physical microphones, however,

only 10 dB of attenuation was achieved at the manikin’s ear.

A double input - quadruple output local active headrest was developed by Pawel-

czyk (2003a), using feedback control. The controller was designed to minimise a 250

Hz tonal disturbance at two microphones located 15 cm from the manikin’s ears,

using four loudspeakers. While 32 dB of attenuation was achieved at the phys-

ical microphones with the double input - quadruple output active headrest, only
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18 dB of attenuation reached the manikin’s ears. In comparison, a double input -

double output local active headrest, which minimises the pressures at two physical

microphones with two loudspeakers, achieved 30 dB of attenuation at the physical

microphones and only 11 dB of attenuation at the manikin’s ears.

As the performance of the local headrest will be influenced by the presence of a

seated passenger’s head, Garcia-Bonito and Elliott (1995a) and Garcia-Bonito et al.

(1997a) theoretically investigated the effect of a diffracting sphere on the size of the

zone of quiet in a diffuse sound field. In numerical simulations, the presence of the

diffracting sphere was seen to increase the size of the zone of quiet as it extends

towards the reflective surface. This size increase is due to an imposed zero normal

pressure gradient on the surface of the sphere. As the sphere approximates a human

head, it is expected that a seated passenger in the active headrest would have a

beneficial effect on the size of the zone of quiet.

In an effort to extend the localised diffuse field zone of quiet to the size of a

human head, Zou et al. (2007) developed a virtual sound barrier. A virtual sound

barrier is an array of loudspeakers and microphones generating a zone of quiet

within the volume bounded by the microphones. Zou et al. (2007) investigated a

16 channel cylindrical virtual sound barrier system whose physical arrangement of

control sources and microphones is shown in Fig. 1.2. The loudspeakers are arranged

on the two horizontal circular ends of a cylinder with radius, ac, and height, hc, of

1.2 m. The error sensors are similarly arranged on a cylinder with radius, ae, and

height, he, of 0.2 m. The performance of the virtual sound barrier was experimentally

investigated inside a 4 m × 4 m × 5 m enclosure. A 16 channel feedforward controller

implementing the filtered-x LMS algorithm generated the control source strengths

using the sum of squared pressures as the desired cost function. Experimental results

demonstrated that the level of attenuation achieved within the virtual sound barrier

decreased with increasing frequency. A 10 dB zone of quiet with diameter of 0.66λ,

or the effective size of a human head, was generated in a pure tone diffuse sound

field with frequency below 550 Hz.

As the aim of the virtual sound barrier system is to create a zone of quiet around

a human head, Zou and Qiu (2008) experimentally investigated the effect of placing

a diffracting sphere inside the virtual sound barrier. Using the same experimental

setup as previously (Zou et al., 2007), a hollow iron sphere of radius 0.09 m was

placed at the centre of the virtual sound barrier to act as the human head. The

experimental results demonstrated that the presence of the diffracting sphere has

the beneficial effect of smoothing out the pressure attenuation. With the diffracting
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Control sources

Control sources

Error sensorshehc

ae

ac

Figure 1.2: Physical arrangement of control sources and errors sensors to generate
a virtual sound barrier (Zou et al., 2007).

sphere, the pressure distribution within the virtual sound barrier becomes more

uniform in the normal direction to the sphere surface.

Kuo (2006) experimentally investigated the active cancellation of non-stationary,

intermittent snoring noise at the ear of a bed partner using feedforward control. The

experimental setup, shown in Fig. 1.3, consisted of two loudspeakers and two micro-

phones mounted in a headboard surrounding the head of a KEMAR human torso

model acting as the bed partner disturbed by the snoring noise. Microphones were

also installed in the ear cavity of the KEMAR model to evaluate the performance

of the active noise control system at the ear position. The broadband snore distur-

bance with 100 - 300 Hz frequency range was simulated by a loudspeaker mounted

in the headboard of a second twin-sized bed in the same room. A reference mi-

crophone mounted in the headboard close to the primary loudspeaker provided the

reference signal to the feedforward controller. In real-time experiments, the signals

from the two microphones were combined to produce a single error signal and the

same control signal was used to drive both secondary sources. With this method,

the average attenuation at the microphones was 10 - 20 dB. Only 5 - 10 dB of

attenuation was, however, achieved at the left ear of the KEMAR model. Kuo

and Gireddy (2007) experimentally investigated the performance of a multi-channel

snore active noise control system in which two secondary loudspeakers were used

to minimise the broadband snore disturbance at two microphones. Using the same

experimental setup as Kuo (2006), an average attenuation of 7 - 12 dB was achieved

at the manikin’s right ear and 2 - 5 dB was achieved at the manikin’s left ear when
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Figure 1.3: Experimental setup of the snore active noise control system (Kuo, 2006).

the two microphones were located in the headboard. This average noise attenuation

increased to 18 - 20 dB at both ears when the two microphones were placed close to

the head of the KEMAR model.

An intrauterine acoustics embedded active noise control system has been devel-

oped by Thanigai and Kuo (2007) to reduce noise inside infant incubators in Neona-

tal Intensive Care Units (NICUs). An example of a mobile infant incubator seen in

NICUs is shown in Fig. 1.4. The broadband noise disturbance inside the incubator

is generally produced by ventilation or breathing equipment and human activity.

The active noise control system, while minimising the unwanted noise disturbance,

also introduces intrauterine audio into the incubator to create a more comfortable

environment for the infant and to mask any residual noise. The added intrauterine

audio consists of a heart beating and the sound of blood and fluid movement. The

performance of the intrauterine active noise control system was investigated using

experimentally measured data from a model incubator. Microphones were placed

at the intended infant’s head position and a secondary loudspeaker was placed out-

side the incubator behind the infant’s head position. A feedforward controller was

developed using a modified version of the Filtered-x Least Mean M-estimate (Fx-

LMM) algorithm with online secondary path modelling. The Fx-LMM algorithm

is robust in the presence of impulsive noise that may cause the Fx-LMS algorithm

to become unstable. Impulsive noise is common in NICUs and is typically caused
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Figure 1.4: An infant incubator in a neonatal intensive care unit (Thanigai and Kuo,
2007).

by medical equipment such as ventilators and human activity. The intrauterine au-

dio was added to the secondary cancelling noise so that it could be heard by the

infant. This audio was also subtracted from the error signal to generate the true

error signal used to update the adaptive filter coefficients. An average attenuation

of 16 dB was achieved in the broadband disturbance below 1 kHz at the error sensor

locations with the intrauterine audio being successfully introduced once the active

noise control system had converged.

1.1.3 Acoustic energy density control

An alternative to the traditional pressure squared cost function implemented in

many local and global active noise control systems is an acoustic energy density cost

function. Acoustic energy density is formed by the sum of acoustic potential energy

density and acoustic kinetic energy density, and in practice is calculated using the

weighted sum of squared pressure and squared particle velocity. The most common

method of estimating the pressure and particle velocity is the two-microphone tech-

nique which uses two closely spaced, phase-matched pressure microphones (Fahy,
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1995). With the two-microphone technique, the pressure is estimated midway be-

tween the two microphones and the particle velocity is calculated using a finite

difference approximation. Acoustic energy density represents the total energy at a

point and has been found to be an effective cost function for both local and global

active noise control applications (Sommerfeldt and Nashif, 1994, Sommerfeldt and

Parkins, 1994, Kestell, 2000). Minimising an acoustic energy density cost function

overcomes the observability problems associated with reducing the squared pressure

and outperforms a potential energy density cost function estimated by microphones

(Sommerfeldt and Nashif, 1994, Sommerfeldt and Parkins, 1994, Elliott and Garcia-

Bonito, 1995).

As acoustic energy density is the sum of the potential and kinetic energy densi-

ties, minimising the energy density at a point reduces the sound pressure and particle

velocity at that point. Particle velocity is directly proportional to the pressure gra-

dient through Euler’s equation (Nelson and Elliott, 1992) and therefore minimising

the pressure and pressure gradient at a point is equivalent to energy density con-

trol. Elliott and Garcia-Bonito (1995) investigated the local control of both pressure

and pressure gradient in a pure tone diffuse sound field with two secondary sources.

Minimising both the pressure and pressure gradient along a single axis produced a

far-field zone of quiet over a distance of λ/2, in the direction of pressure gradient

measurement. This is considerably larger than the zone of quiet obtained by min-

imising the pressure alone (in which the 10 dB zone of quiet was limited to λ/10).

This size increase can be explained by the fact that the average size of the zone

of quiet is a function of the spatial correlation properties of the sound field. The

squared sum of the pressure and pressure gradient cross correlation functions extend

over a larger region compared to the squared pressure correlation function alone. It

should be noted that cancelling the pressure and pressure gradient along a single axis

produces a similar sized zone of quiet to that generated by minimising the pressures

at two points separated by a maximum distance of 0.25λ. As there is no correlation

between the pressure gradients in the three orthogonal directions, minimising the

pressure gradient along a single axis will not affect the pressure gradient along the

remaining two axes. Controlling the pressure and pressure gradient along a single

axis with two secondary sources produces a 10 dB zone of quiet which is cylindrical

in form, with size λ/2 in the direction of gradient cancellation and λ/10 in the two

remaining orthogonal directions. As expected, cancelling the pressure and pressure

gradient along all three orthogonal axes with four secondary sources results in a

spherical zone of quiet with diameter of λ/2.
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Improvement in the overall global attenuation achieved by minimising a poten-

tial energy cost function (estimated by the sum of squared pressures) is possible

by instead minimising the acoustic energy density in the sound field (Sommerfeldt

and Parkins, 1994, Sommerfeldt et al., 1995). This is due to increased observability

when sensing the acoustic energy density. If the error sensor is located at a poten-

tial energy node in the sound field, the magnitude of the kinetic energy density will

approach a maximum. Therefore, as the spatial variance of the acoustic energy den-

sity is less than that of potential energy, the observability problems associated with

discrete pressure measurements can be overcome with an acoustic energy density

cost function (Sommerfeldt and Nashif, 1994).

Sommerfeldt and Nashif (1994) developed a control law based on the filtered-x

LMS algorithm for controlling the global energy in an acoustic standing wave and

also a propagating wave field. In the adaptive algorithm the acoustic pressure and

particle velocity were measured using the two-microphone technique which estimates

the pressure and particle velocity components using a finite difference approxima-

tion. The performance of the adaptive algorithm was investigated in an acoustic

duct with single frequency excitation at 200 Hz. Numerical and experimental re-

sults confirmed the effectiveness of the energy based control law and demonstrated

that acoustic energy density control significantly outperforms pressure control. Som-

merfeldt and Nashif (1991, 1992) also numerically and experimentally investigated

energy density control in the global attenuation of acoustic duct noise. Controlling

the acoustic energy density at a discrete location with a single secondary source

was seen to almost achieve the optimal solution of minimising the potential energy

and significantly outperformed control with a pressure squared cost function. Park

and Sommerfeldt (1997) extended this research to demonstrate that energy density

control can be used in the global attenuation of broadband noise disturbances. Nu-

merical simulations performed in a one-dimensional sound field indicated, as previ-

ously, that greater global control can be achieved by minimising the acoustic energy

density at a point compared to minimising the acoustic pressure. Unlike pressure

control, the global attenuation achieved was independent of the error sensor location,

demonstrating another advantage of an acoustic energy density cost function.

Sommerfeldt and Nashif (1991, 1992, 1994) and Park and Sommerfeldt (1997) all

performed numerical simulations using a rigid-walled one-dimensional modal model

to investigate acoustic energy density control. Cazzolato et al. (2005b) demon-

strated, however, that miscalculation occurs when using this modelling technique

and that previous theoretical results may have been adversely affected by numer-
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ical noise. Using a travelling wave solution, it was shown that a pressure-release

boundary condition is created when the secondary source is located upstream of the

two microphones. Complete attenuation of the energy density is therefore possible

downstream of the secondary source. Such a result was not achieved in previous re-

search (Sommerfeldt and Nashif, 1991, Sommerfeldt and Nashif, 1992, Sommerfeldt

and Nashif, 1994, Park and Sommerfeldt, 1997) because noise is introduced into the

model when the numerical precision of the computer program is reached preventing

convergence of the modal model to the travelling wave solution.

Sommerfeldt et al. (1995) numerically and experimentally compared pressure and

acoustic energy density cost functions for global control in a tonal three-dimensional

sound field. The experimental configuration consisted of a primary source, a sec-

ondary source and an error sensor located in a rectangular enclosure with dimensions

of 1.93 m × 1.22 m × 1.54 m. To measure the acoustic energy density, an inex-

pensive energy density probe was constructed using six Lectret 1207a microphones

flush mounted in a wooden sphere. Results of feedforward control once again demon-

strated that minimising the acoustic energy density at a single location within the

enclosure provides improved global performance compared to minimising the pres-

sure alone.

Sommerfeldt (2006) investigated the global attenuation of low frequency engine

induced sound in the cab of a Caterpillar Inc. earth-moving vehicle using acoustic

energy density control. The aim was to achieve significant attenuation in the third

engine tone over the 50 - 110 Hz frequency range throughout the entire operator cab.

Two 4” loudspeakers and an 8” subwoofer were mounted in the cab and an energy

density sensor was positioned above the operator’s head. The energy density sensor

consisted of six pressure microphones mounted in a circular sphere. A feedforward

control approach was employed using the engine tachometer signal as the reference

signal. In real-time experiments, minimising the acoustic energy density achieved

an overall attenuation of 5 - 7 dB(A) in the third engine tone throughout most of

the cabin.

Miyoshi and Kaneda (1991) experimentally investigated the cancellation of the

pressures at two points with three secondary sources in a broadband diffuse sound

field with 50 - 400 Hz frequency range. The active noise control system consisted

of three noise-control units each of which filtered the signal from a reference micro-

phone to produce the control source strengths to one of three secondary sources.

The filters were determined using the Multiple input/output INverse-filtering The-

orem (MINT). Experiments were conducted in a room with a volume of 70 m3 and
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reverberation time of 0.4 s. The three secondary loudspeakers were located on a cir-

cle with a 1.2 m radius, centred on the midpoint between the two microphones. The

two microphones were separated by a distance of λ/4, where λ is the wavelength of

the centre frequency of the broadband frequency range. Attenuations of 30 dB were

achieved at the two cancellation points with 14.5 dB of attenuation being achieved

in the region between them. The 6 dB zone of quiet centred on the midpoint be-

tween the two microphones was an ellipse with longest diameter λ/2 and shortest

diameter λ/8.

1.1.3.1 Errors in the measurement of acoustic energy density

Despite energy density sensors being effective in both local and global active noise

control applications (Sommerfeldt and Nashif, 1994, Sommerfeldt and Parkins, 1994,

Kestell, 2000), the measurement of acoustic energy density is subject to errors. Such

errors include those associated with the calculation of pressure and particle velocity

when using the two-microphone technique, imperfections in the sensor transducers,

sensitivity and phase mismatch between microphone elements, diffraction, interfer-

ence and environmental effects (Fahy, 1995). The three distinct sources of error

attributed to the measurement of acoustic energy density using the two-microphone

technique are inherent errors, diffraction and interference effects, and instrumen-

tation errors. Cazzolato and Hansen (2000b) derived expressions for the effects of

these errors on the performance of one-dimensional energy density sensors with 2-

or 3-microphone arrangements. The inherent errors due to the finite approximation

of pressure and particle velocity limit the high frequency range of the energy density

sensor and the maximum sensor size. As the 3-microphone arrangement directly

measures the pressure at the centre microphone, inherent errors are purely due to

errors in the velocity approximation. Instrumentation errors such as phase and sen-

sitivity mismatches between the microphone elements were found to define the lower

frequency limit and the minimum sensor size.

In an extension to previous work, Cazzolato and Hansen (2000a) investigated

various physical configurations of three-dimensional energy density sensors and per-

formed a three-dimensional error analysis to determine the most suitable error sensor

design. Four three-dimensional sensor configurations were investigated: the conven-

tional 6-microphone configuration; a 7-microphone configuration in which an addi-

tional microphone is located at the geometric centre of the 6-microphone sensor; and

two 4-microphone configurations in which the pressure is measured at the central mi-
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crophone alone or is the mean of the pressure sensed by all four microphones. These

four sensor configurations are shown in Fig. 1.5. Results of analysis conducted in a

plane progressive wave and a reactive sound field demonstrated that acoustic energy

density can be adequately measured using only a 4-microphone sensor instead of the

conventional 6-microphone sensor. In comparison to the errors recorded using one-

dimensional sensors, the errors for the three-dimensional sensors were three times

larger than the equivalent one-dimensional sensors at the low frequency limit. How-

ever, at the high frequency limit, the errors for the three-dimensional sensors were

less than those for the one-dimensional sensors. The 4-microphone sensor that mea-

sures the pressure directly at the central microphone is the simplest of all designs and

was found to be the best for free field use. In reactive conditions, the 7-microphone

sensor was found to measure the acoustic energy density most accurately.

Parkins et al. (2000) investigated bias errors in the estimate of the potential,

kinetic and acoustic energy density when using a single-axis two-microphone sensor

and a single-axis spherical sensor comprised of two microphones flush mounted in

a sphere. The main advantage of the spherical sensor over the conventional two-

microphone sensor is that the diffraction effects allow the effective sensor size to

be reduced by a factor of 3/2. The bias error equations for the single-axis sensors

were derived for a one-dimensional standing wave field with and without sensitivity

and phase mismatch introduced between microphone elements. The bias errors were

investigated for three cases of reflection coefficient: R=±0.97, corresponding to the

sensor being located at a pressure maximum or minimum; and R=0, correspond-

ing to plane wave propagation. The bias errors in the potential and kinetic energy

density estimates were found to be equal for all values of reflection coefficient. For

matched microphones, the bias errors were found to be small and the effect of spher-

ical scattering on the spherical sensor reduced the bias errors considerably. However,

when phase and sensitivity mismatch were introduced between microphone elements,

the bias errors were significantly increased and spherical scattering no longer influ-

enced these errors. Parkins et al. (2000) also investigated bias errors in the estimate

of the potential, kinetic and total acoustic energy density when using a three-axis

spherical energy density sensor in a three-dimensional sound field. The three-axis

spherical sensor, shown in Fig. 1.6, consisted of six microphones oriented along the

orthogonal axes and flush mounted in a sphere. Results of numerical simulations

to determine the potential, kinetic and energy density bias errors were consistent

with those for the single-axis spherical sensor. Overall, the error magnitude in the

total energy density estimate for mismatched microphones was less than 1 dB. A
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xy
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Figure 1.5: Energy density sensor in 4-microphone and 6- or 7-microphone configu-
rations (Cazzolato and Hansen, 2000a).

three-axis spherical sensor was constructed and then tested in a three-dimensional

rectangular enclosure with a white noise disturbance to experimentally verify nu-

merical results. The spherical sensor consisted of a 2” diameter wooden ball with

three electret microphone pairs mounted along the orthogonal axes. A B&K 1
4
”

microphone pair was used as a two-microphone sensor for comparison. With the

two-microphone sensor, the total acoustic energy density was calculated using the

spectral quantities measured with a two-channel spectrum analyser and a derived

energy density spectral density equation. The total energy density estimate using

the spherical sensor was found to be within ±1.75 dB of that estimated with the

two-microphone sensor in the frequency range of 110 - 400 Hz. Differences in the

energy density estimated with the two sensor arrangements were attributed to sen-

sitivity and phase mismatch, diffraction due to the sphere and experimental error.

It was later shown by Cazzolato and Ghan (2005) however, that the energy density

spectral density equation derived by Parkins et al. (2000) and used in experiments

to estimate the energy density with the two-microphone sensor was incorrect by a

factor of 2.

Ghan et al. (2003) derived one-dimensional expressions for frequency domain

time-averaged energy density spectral density estimates using the two-microphone

method. Direct calculation in the frequency domain removes the need for the ad-

ditional hardware required when performing analysis in the time domain. Cazzo-

lato and Ghan (2005) then extended the concepts previously introduced by Ghan

et al. (2003) to estimate the three-dimensional acoustic energy density using spectral
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Figure 1.6: Three-axis spherical acoustic energy density sensor (Parkins et al., 2000).

methods. Analytical expressions for the single-sided time-averaged energy density

spectral density estimate were derived for several three-dimensional energy density

sensor configurations including the 4-microphone sensor in cubic and tetrahedral

formation, the 6-microphone sensor and the 7-microphone sensor. The derived ex-

pressions use only the auto- and cross-spectral densities between closely spaced mi-

crophones allowing evaluation of the energy density spectral density to be performed

using only data from a two-channel spectrum analyser. All derived expressions were

verified numerically by comparison to traditional time domain estimates of acoustic

energy density. Ghan et al. (2004) also analysed the normalised random errors as-

sociated with the estimation of the time averaged acoustic energy density spectral

density estimate in the frequency domain. It was shown that the normalised error

depends heavily on the number of averages used to produce the spectral density es-

timates. A recent study by Pascal et al. (2008), however, stated that the statistical

errors in the frequency domain estimate of the acoustic energy density are largely

determined by the nature of the sound field, in particular, the coherence between

microphone elements.

Approximate expressions for the frequency domain estimate of the acoustic en-

ergy density were derived by Pascal and Li (2008). The frequency domain acoustic

energy density expressions were derived for two 4-microphone probes in cubic and

tetrahedral arrangement as well as two 5-microphone and two 6-microphone probe

arrangements. A finite sum approximation was used to estimate the pressure and

the two-microphone technique to estimate a component of the pressure gradient.

As previously, these expressions require only the auto- and cross-spectral densities

between closely spaced microphones. The errors associated with the finite difference
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and finite sum approximations at high frequencies were analysed in a plane wave

sound field. No difference was observed between the two types of 4-microphone

tetrahedral probe arrangements in the error analysis. Although the derived acoustic

energy density frequency domain expressions for the two probe configurations were

different, the orientation of the probes had no affect on the magnitude of the errors.

The addition of a fifth microphone resulting in the 5-microphone probe arrange-

ments, demonstrated limited improvement by increasing the high frequency limit by

13%. The high frequency limit is defined based on a fixed maximum error criterion

and is the frequency at which this maximum allowable error occurs. In this case,

the maximum allowable uncertainty was 5%. The 6-microphone probe arrangements

were seen to improve the energy density estimate only if the pressure was estimated

using the average of all microphone elements.

The errors associated with energy density sensors using the two-microphone tech-

nique have commanded the need for alternative methods of measuring the acoustic

energy density. One such alternative is to use sensors that directly measure the

particle velocity rather than using a finite difference approximation. However, ve-

locity microphones have been known to have a poor frequency response and to lack

robustness and dynamic range (Cazzolato et al., 2005a). As an alternative to the

two-microphone technique, the μflown sound intensity probe incorporating Micro-

Electro-Mechanical-Systems (MEMS) technology was developed (de Bree, 1998,

de Bree et al., 1999). The μflown sound intensity probe directly measures velocity

but avoids the problems associated with conventional velocity sensors. The velocity

sensors do, however, exhibit a complex sensitivity curve and the intensity probe is

expensive, making it unsuitable for use in many active noise control applications.

Recently, Cazzolato et al. (2005a) reported development of the PHONE-OR optical

sensor capable of measuring both sound intensity and acoustic energy density along

all three orthogonal axes. The device consists of an omni-directional pressure micro-

phone and three orthogonally mounted pressure gradient microphones to measure

the pressure and particle velocity in all three orthogonal directions. The PHONE-

OR Fibre Optical Microphones (FOM) were developed using MEMS technology

and as such, the problems affecting conventional energy density sensors and veloc-

ity microphones are avoided. Other advantages of the PHONE-OR optical sensor

include a high bandwidth, low self noise, a flat frequency response over the dynamic

range and smaller size compared to conventional energy density probes. Lockwood

and Jones (2006) reported recent development of an acoustic vector sensor (AVS)

for use in air. Commonly used in underwater acoustic sensing applications, AVS
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are used to directly measure the pressure and particle velocity in three orthogonal

directions simultaneously. The sensor consists of an omnidirectional microphone

(commercially available Knowles EK-3132) and three orthogonally orientated gra-

dient microphones (commercially available Knowles NR-3158) collocated on a thin

rod. While being developed for use with beamforming algorithms, these sensors are

capable of measuring sound intensity and acoustic energy density.

1.1.4 Virtual sensing

It has been shown that the zone of quiet generated at the physical error sensor us-

ing traditional local active noise control systems is limited in size. Also, the sound

pressure levels outside the zone of quiet are likely to be higher than the original

disturbance alone with the active noise control system present. This is illustrated in

Fig. 1.7 (a) where the zone of quiet located at the physical error sensor is too small

to extend to the observer’s ear and the observer in fact experiences an increase in

the sound pressure level with the active noise control system operating. A virtual

acoustic sensor overcomes this by shifting the zone of quiet to a desired location

that is remote from the physical sensor. This is shown in Fig. 1.7 (b) where the

zone of quiet is shifted from the physical sensor to a virtual sensor located at the

observer’s ear. Using the physical error signal, the control signal and knowledge of

the system, a virtual sensing algorithm is used to estimate the pressure at a fixed

virtual location. Instead of minimising the physical error signal, the estimated pres-

sure is minimised with the active noise control system to generate a zone of quiet

at the virtual location. Elliott and David (1992) first introduced the concept of vir-

tual sensing for active noise control through development of the virtual microphone

arrangement. A number of virtual sensing algorithms have since been developed to

estimate the virtual quantities including the remote microphone technique (Roure

and Albarrazin, 1999), the forward difference prediction technique (Cazzolato, 1999),

the adaptive LMS virtual microphone technique (Cazzolato, 2002) and the Kalman

filtering virtual sensing method (Petersen et al., 2008). A discussion of these virtual

sensing algorithms is presented in the following sections.

It is worth noting that virtual sensing is essentially the reconstruction of un-

known data or that which is difficult to obtain from available measurements (Good-

win, 1999). As such, the scope of virtual sensing extends far beyond that of active

noise control applications. Virtual sensors have been implemented in a number of

technological systems including radar, biomedical, industrial, communications and
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Figure 1.7: Comparison of local active noise control at (a) a physical sensor; and
(b) a virtual sensor (Kestell, 2000).

control (Goodwin, 1999). Specific industrial application of virtual sensors includes

temperature estimation for shape control applications, process quality attribute esti-

mation in a food extruder, tracking near geostationary satellites for communication

purposes and thickness estimation in rolling mills (Albertos and Goodwin, 2002).

Kammer (1997) demonstrated that virtual sensors can be used in structural response

estimation. Using a transformation matrix and vibration data from accelerometers

placed at discrete locations on a structure, the structural response at inaccessible lo-

cations can be calculated. The transformation matrix is estimated in a preliminary

identification stage using the impulse response function obtained from a vibration

test of the structure.

1.1.4.1 The virtual microphone arrangement

The virtual microphone arrangement proposed by Elliott and David (1992) was the

first virtual sensing algorithm developed for active noise control. This virtual sensing

algorithm uses the assumption of equal primary sound pressure at the physical and

virtual locations and requires a preliminary identification stage in which models of

the secondary transfer functions are estimated. Virtual sensing algorithms similar

to the virtual microphone arrangement have also been proposed by Kuo et al. (2003)

and Pawelczyk (2003c, 2004b, 2005).

The performance of the virtual microphone arrangement has been thoroughly

investigated in both tonal and broadband sound fields (Garcia-Bonito and Elliott,

1995b, Garcia-Bonito et al., 1996, Matsuoka et al., 1996, Garcia-Bonito et al., 1997b,

Garcia-Bonito et al., 1997c, Horihata et al., 1997, Rafaely et al., 1997, Rafaely et al.,
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1999, Holmberg et al., 2002, Pawelczyk, 2003a, Pawelczyk, 2003b, Pawelczyk, 2003c,

Pawelczyk, 2004a, Pawelczyk, 2004b, Pawelczyk, 2005, Diaz et al., 2006, Pawelczyk,

2006). Analysis of the virtual microphone arrangement in a pure tone diffuse sound

field by Garcia-Bonito et al. (1996, 1997b) demonstrated that at low frequencies,

the zone of quiet generated at a virtual microphone is comparable to that achieved

by directly minimising the measured pressure at the virtual location. However, at

higher frequencies, above 500 Hz, the 10 dB zone of quiet is substantially smaller

when using a virtual microphone compared to a physical microphone at the same

location. This is due to the assumption of equal primary sound pressure at the

physical and virtual microphone locations being invalid at high frequencies.

The performance of a local active headrest system implementing the virtual mi-

crophone arrangement has been investigated by a number of authors (Garcia-Bonito

et al., 1996, Garcia-Bonito et al., 1997b, Rafaely et al., 1997, Rafaely et al., 1999,

Holmberg et al., 2002, Pawelczyk, 2003b, Pawelczyk, 2003c, Pawelczyk, 2004b).

Garcia-Bonito et al. (1996, 1997b) experimentally investigated the performance of a

two-channel local active headrest system in minimising a tonal disturbance at virtual

microphones located 2 cm from the ears of a manikin and 10 cm from the physical

microphones. At low frequencies, when the primary acoustic field at the physical and

virtual microphones is similar, good attenuation is achieved at the virtual location.

Below 500 Hz, combining this virtual sensing algorithm with the Fx-LMS algorithm

extends the 10 dB zone of quiet generated at the virtual microphone approximately

8 cm forward by 10 cm side to side. At higher frequencies, however, the assumption

relating to the similarity of the primary field at the physical and virtual microphones

is no longer valid and limited attenuation is achieved at the virtual location.

The performance of a local active headrest system in attenuating a broadband

disturbance with a 100 - 400 Hz frequency range was investigated by Rafaely et al.

(1997, 1999) using feedback control. A single input-single output feedback controller

was designed using a mixed H2/H∞ method and IMC. The controller performance

was analysed off-line at a virtual microphone located at a manikin’s ear, 10 cm

from the physical microphone, using experimentally measured frequency response

functions. An overall attenuation of 9.5 dB was obtained at the virtual microphone

location with the virtual microphone arrangement. This is compared to 19 dB of

attenuation being obtained at the physical microphone by directly minimising the

measured pressure signal. Although significant attenuation is achieved at the phys-

ical microphone with this method, only 3.7 dB of attenuation is achieved at the ear

of the manikin. Differences in the attenuation achieved by minimising the physical
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and virtual microphone signals were partly attributed to the physical microphone

being significantly closer to the secondary loudspeaker than the virtual microphone.

This results in a longer delay in the virtual plant, which has a negative effect on the

performance of the feedback control system.

Pawelczyk (2003c) developed a double input - double output feedback controller

for a local active headrest system. An algorithm using the same assumption as

the virtual microphone arrangement, namely that the primary disturbance at the

physical and virtual microphones is equal, was used to estimate the disturbance at

two virtual microphones located at the manikin’s ears. The two physical micro-

phones were located in the headrest below two secondary loudspeakers, a distance

of 15 cm away from the manikin’s ears. Controlling a 250 Hz tonal disturbance

achieved attenuations of 18 dB at the virtual locations. In comparison to classical

algorithms, attenuations of 30 dB were achieved at the physical microphones by

directly minimising the measured disturbance. The greatest attenuation is achieved

at the physical microphones with this method and only 10 dB of attenuation reaches

the manikin’s ears. In an extension, Pawelczyk (2003b) developed a double input

- quadruple output feedback controller for an active headrest. This local active

headrest system aims to minimise the tonal disturbance at two virtual microphones

located at the manikin’s ears with four secondary sources. In experiments, atten-

uations of 20 dB were achieved at the manikin’s ears and the size of the zone of

quiet was seen to increase compared to that achieved with the double input - double

output feedback controller. Directly minimising the physical error signals achieved

32 dB of attenuation at the two physical microphone locations and 18 dB of attenu-

ation at the manikin’s ears, indicating that the zone of quiet has been enlarged with

this controller.

Pawelczyk (2004b, 2005) proposed another virtual sensing algorithm similar to

the virtual microphone arrangement for a local active headrest system implementing

a feedback controller. In a preliminary identification stage, the feedback controller is

tuned to minimise the signals measured at microphones temporarily located at the

virtual locations. A transfer function modelling the physical error signals that exist

when the controller has converged is measured during this preliminary identifica-

tion stage. The difference between the signals computed with this transfer function

and the actual physical microphone signals is minimised with the controller during

real-time control. This version of the virtual microphone arrangement has been im-

plemented in a double input - double output active headrest system, with the virtual

microphones located 6.5 cm from the physical microphones. In a tonal sound field
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at 250 Hz, attenuations of 30 dB were achieved at the virtual locations. In a broad-

band sound field with a dominating frequency of 330 Hz, the attenuation achieved

at the virtual microphones was reduced to 4 dB. Pawelczyk (2006) also developed a

feedback controller for an active headrest system implementing this modified version

of the virtual microphone arrangement using a factorisation approach. In numerical

simulations, an attenuation of 8.6 dB was achieved at a virtual microphone located

at an observer’s ear, over a 100 - 400 Hz frequency range.

Holmberg et al. (2002) developed a low complexity, robust feedback controller

for a single-channel active headrest system implementing the virtual microphone

arrangement. The controller was designed to attenuate a 140 Hz tonal disturbance

at a virtual microphone located 8 cm from the physical microphone and 12 cm

from the secondary source. An attenuation of 10 dB was achieved at the virtual

microphone location with this simple feedback control system. An increase of 5

dB was measured at the physical microphone location with the active noise control

system operating.

As the performance of the local active headrest will be affected by the presence

of the passenger’s head, Garcia-Bonito and Elliott (1995b) investigated the perfor-

mance of the virtual microphone arrangement near the surface of a reflecting sphere

in a diffuse sound field. The secondary source was modelled as a sphere with a 45

degree pulsating segment and a radius of L/2, while the rigid sphere had a radius

of 11L/15, where L is the separation distance between the cancellation point and

the centre of the source. At low frequencies (kL = 0.2, where k is the wavenumber

and is defined as k = 2π
λ

), both with and without the diffracting sphere, the virtual

microphone arrangement achieved almost the same attenuation at the virtual loca-

tion as a physical microphone located at the cancellation point. However, at high

frequencies (kL = 1), the zone of quiet is substantially reduced when using the vir-

tual microphone arrangement due to the invalid assumption of equal primary sound

pressure at the physical and virtual locations. The presence of the reflecting sphere

near the virtual location was seen to slightly increase the size of the zone of quiet,

especially at high frequencies. This is due to the primary sound field being more

spatially uniform near the surface of the sphere and hence the assumption of equal

primary sound pressure at the physical and virtual locations is more valid. Garcia-

Bonito et al. (1997c) also investigated the effect of minimising both the acoustic

pressure at a virtual location on the surface of a rigid sphere and the secondary

particle velocity in the near field of a two-loudspeaker source array. The pressure at

the virtual location was estimated using the virtual microphone arrangement and
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driven to zero by the first loudspeaker in the array. The secondary particle velocity

was driven to zero with the second loudspeaker, whose input signal was obtained

by filtering the control input to the first loudspeaker with an appropriate transfer

function. Cancellation of the pressure and near field secondary particle velocity in

a tonal sound field with the two-loudspeaker array achieved high reductions at the

virtual location and extended the zone of quiet along all three co-ordinate axes.

Matsuoka et al. (1996) and Horihata et al. (1997) experimentally investigated use

of the virtual microphone arrangement in the control of a 120 Hz tonal disturbance

in a three-dimensional enclosure with dimensions of 1.45 m × 0.92 m × 0.65 m. As

the performance of the active noise control system depends on the accuracy of the

assumption relating the similarly of the primary sound field at the physical and vir-

tual locations, simulations were first conducted to determine the optimum position

of the virtual microphone with respect to the primary disturbance. The performance

of a single channel feedforward active noise control system implementing the virtual

microphone arrangement was compared to a conventional control system minimising

the measured pressure at the virtual location. Although the spatial extent of the

zone of quiet generated at the virtual location was equal for minimising the mea-

sured or estimated pressure, 40 dB of added attenuation was achieved at the virtual

location by directly minimising the measured pressure.

Kuo et al. (2003) and Kuo and Gan (2004) investigated the performance of a

virtual sensing algorithm similar to the virtual microphone arrangement in the con-

trol of broadband engine noise in an electronic muffler. High temperatures, fast air

flow and corrosion in the electronic muffler prevent the physical microphone from

being placed at the desired location of attenuation, requiring a virtual microphone

to be used instead. The developed virtual sensing algorithm uses a compensating

filter to pre-filter the control signal before it is used to drive the secondary source.

This compensating filter is such that together with the physical secondary path,

the virtual secondary path is estimated. The compensating filter is designed in a

preliminary stage in which filters of the primary and virtual secondary paths are

estimated using the adaptive LMS algorithm and a white noise input signal. Sim-

ulations performed using experimentally measured transfer functions demonstrated

that a feedforward active noise control system implementing the developed virtual

sensing method significantly outperformed a traditional active noise control system.

As phone communication is adversely affected by background noise, Pawelczyk

(2004a) experimentally investigated active noise control in a phone using the virtual

microphone arrangement. A feedback controller was designed to minimise a broad-
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band disturbance at a virtual microphone located at an observer’s middle ear. The

phone receiver, placed 2 cm from the ear, contained the secondary loudspeaker and

the physical microphone. At the virtual microphone, an overall attenuation of 4.8

dB was achieved over a 60 - 600 Hz frequency range, with reductions of up to 9 dB

being achieved at some frequencies.

As the low frequency broadband noise generated by wheel-rail interaction is of

significant annoyance to sleeping train passengers, Diaz et al. (2006) developed an

active headboard system implementing the virtual microphone arrangement for use

in railway sleeping cars. A feedforward controller was developed using a modified

version of the Fx-LMS algorithm to minimise the sum of the squared signals from a

number of physical microphones located in the headboard and virtual microphones

located at the assumed position of the sleeping passenger’s ears. The controller per-

formance was analysed in real-time experiments using a wooden paneled enclosure

measuring 1.8 m × 2.3 m × 1.8 m as a mock railway cabin. The primary noise

source was generated using a shaker attached to one of the panels. A reference

signal for the feedforward control system was obtained using an accelerometer po-

sitioned close to the point of primary excitation. In the cabin, two loudspeakers

and two physical microphones were mounted to the headboard of the bed and the

virtual microphones were located 20 cm apart and 20 cm from the headboard, cor-

responding to the location of a sleeping passenger’s ears. To simplify the analysis,

the performance of the system was investigated at the two frequencies of 50 and 250

Hz. Experimental results demonstrated that at both frequencies, the virtual active

headboard system achieves greater attenuation in the head region than an active

headboard system implementing the two physical microphones only. The virtual ac-

tive headboard system moved the 10 dB zone of quiet away from the headboard and

towards the location of the person’s ears. Experimental results also demonstrated

that degraded performance can be expected as the frequency of the primary noise

is increased.

1.1.4.2 The remote microphone technique

The Remote Microphone Technique (RMT) as suggested by Roure and Albarrazin

(1999), is an extension to the virtual microphone arrangement (Elliott and David,

1992), that uses an additional matrix of filters to compute estimates of the primary

disturbances at the virtual microphones from the primary disturbances at the physi-

cal microphones. An active acoustic attenuation system designed to attenuate noise
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at a location that is remote from the physical error sensor using the remote micro-

phone technique was independently patented by Popovich (1997). Versions of the

remote microphone technique have also been suggested by Hashimoto et al. (1995),

Friot et al. (2001) and Yuan (2004).

Although the remote microphone technique was first named by Roure and Albar-

razin (1999), Radcliffe and Gogate (1993) demonstrated earlier that theoretically, a

perfect estimate of the tonal disturbance at the virtual location can be achieved with

such a virtual sensing method provided accurate models of the tonal transfer func-

tions are obtained in the preliminary identification stage. Using a three-dimensional

finite element model of a car cabin, the tonal control achieved at a number of vir-

tual microphones generated with the remote microphone technique was equivalent

to that achieved by directly minimising the measured signals at the virtual locations.

Roure and Albarrazin (1999) experimentally investigated the performance of the

remote microphone technique in a room simulating an aircraft cabin with periodic

noise at 170 Hz. Using twelve virtual microphones, six physical microphones and

nine secondary sources, the remote microphone technique achieved an average atten-

uation of 20 dB at the twelve virtual locations using a feedforward control approach.

However, an average attenuation of 27 dB was obtained by directly minimising the

measured pressures at the virtual locations with classical methods. This disparity

was attributed to the sensitivity of the remote microphone technique to inaccuracies

in the measured transfer functions.

Hashimoto et al. (1995) developed a virtual sensing method exactly the same

as the remote microphone technique which they named the remote error sensing

method. The performance of the remote error sensing method was investigated

in a three-dimensional enclosure with broadband noise using a feedforward control

approach. The enclosure was 2.31 m × 1.86 m × 2.05 m and contained a single pri-

mary and secondary loudspeaker and a physical microphone located 10 cm from the

virtual microphone location. With the remote error sensing method, attenuations

of up to 25 dB were achieved at frequencies between 100 and 2000 Hz at the virtual

location. This is compared to attenuations of up to 40 dB being achieved at cer-

tain frequencies by directly minimising the measured signal at the virtual location.

Differences in attenuation were again attributed to errors in the measured transfer

function matrices.

Renault et al. (2000) experimentally compared the performance of the remote

microphone technique to that of the virtual microphone arrangement in the control

of a broadband disturbance in a three-dimensional enclosure. A primary loudspeaker
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producing white noise over the 50 - 300 Hz frequency range was located 1 m outside

of the enclosure. A nine microphone array was located inside the enclosure, 50 cm

below the position of the secondary source, to monitor the controlled sound field.

The central microphone of the microphone array was positioned at the virtual lo-

cation and was 25 cm from the physical microphone. Using a feedforward control

approach, an average attenuation of 3.3 dB was measured by the microphone ar-

ray when employing the remote microphone technique to estimate the broadband

disturbance at the central microphone. Comparatively, the virtual microphone ar-

rangement achieved an average attenuation of 1.3 dB at the microphone array. The

inferior performance of the virtual microphone arrangement was attributed to the

invalid assumption of equal primary sound pressure at the physical and virtual mi-

crophone locations. With a classical feedforward control approach, in which the

measured pressure at the virtual location is minimised, an average attenuation of

3.4 dB was measured by the microphone array.

Friot et al. (2001) developed a simplified version of the remote microphone tech-

nique requiring equal numbers of physical sensors and total sound sources. A single

matrix of frequency response functions was used to estimate the total disturbances

at the virtual locations from the total disturbances measured at the physical micro-

phones. This eliminates the need to extract the primary component of the physical

error signals from the total physical error signals, reducing computational complex-

ity. While simple to implement, this simplified version of the remote microphone

technique can only be used if the primary and secondary frequency response func-

tions between the physical and virtual microphone locations are similar.

Yuan (2004) suggested a modified version of the remote microphone technique

in which two physical error sensors are used to estimate the pressure at a single

virtual location inside an acoustic duct. In this virtual sensing method, the two

physical microphones are positioned inside the acoustic duct so that the primary

transfer functions at these physical microphone locations do not share any zeros.

This allows an accurate estimate of the sound pressure at the virtual location to be

obtained over a broad frequency range. In experiments, the primary and secondary

sources were located at opposite ends of the acoustic duct and the virtual microphone

was positioned between two physical microphones separated by 0.8 m. Using a

feedforward control approach, attenuations of approximately 20 dB were achieved

at the virtual location over the of 100 - 600 Hz frequency range.

Berkhoff (2005) developed active noise barriers for road traffic noise using the

remote microphone technique. As the aim of the active noise barrier is to reduce
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the traffic noise a significant distance from the noise barrier, such as at a building

facade, the remote microphone technique was used to project the zones of quiet

away from the active noise barrier and to the desired locations of attenuation. The

performance of the active noise barrier was investigated in numerical simulations

using three independent broadband primary noise sources located 5 m from the

secondary sources and 0.15 m from each other. The active noise barrier consisted

of five physical microphones positioned 0.5 m from the secondary sources and 0.3 m

from each other. The virtual microphones were located 19.5 m from the secondary

sources and 1.5 m from each other. Minimising the far-field virtual error signals

achieved an overall attenuation of 9 dB at the virtual locations. In comparison,

minimising the near-field physical error signals achieved an overall attenuation of

24.2 dB at the physical error sensors and an overall attenuation of 1.9 dB at the

virtual locations.

1.1.4.3 The forward difference prediction technique

The forward difference prediction technique, as proposed by Cazzolato (1999), fits

a polynomial to the signals at a number of microphones in an array. The pressure

at the virtual location is estimated by extrapolating this polynomial to the virtual

location. This virtual sensing algorithm is suitable for use in low frequency sound

fields, when the virtual distance and the spacing between the physical microphones

is much less than a wavelength. At low frequencies, the spatial rate of change of the

sound pressure between the microphones is small and extrapolation can therefore

be applied (Cazzolato, 1999).

The forward difference prediction technique has several advantages over other

virtual sensing algorithms. Firstly, the assumption of equal primary sound pressure

at the physical and virtual locations does not have to be made, but also preliminary

identification is not required, nor are FIR filters or similar to model the complex

transfer functions between the sensors and the sources. Furthermore, this is a fixed

gain prediction technique that is robust to physical system changes that may alter

the complex transfer functions between the error sensors and the control sources.

The performance of forward difference prediction virtual sensors has been evalu-

ated in a long narrow duct and in a free field, both numerically and experimentally,

by a number of authors (Kestell, 2000, Kestell et al., 2000a, Kestell et al., 2001a,

Kestell et al., 2001b, Munn et al., 2001a, Munn et al., 2001b, Munn et al., 2003b,

Munn, 2004). Using either linear or quadratic prediction techniques, these virtual
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sensors outperform their physical counterparts in terms of the level of attenuation

achieved at the virtual location. While the second-order estimate is theoretically

more accurate than the first-order estimate, experiments in a long narrow duct

demonstrated that quadratic prediction techniques are adversely affected by short

wavelength extraneous noise. It was also shown by Petersen (2007) that the esti-

mation problem is ill-conditioned for second-order forward difference extrapolation,

explaining the difference between numerical and experimental results.

In an attempt to improve the prediction accuracy of the forward difference predic-

tion technique, higher-order forward difference prediction virtual sensors which act

to spatially filter out the extraneous noise were developed by Munn et al. (2002b).

Additional physical microphones were added to the array resulting in a greater

number of microphones than system order. The microphone weights for this over

constrained system were then calculated using a least squares approximation. In

experiments, the accuracy of these higher-order forward difference prediction vir-

tual sensors was found to be adversely affected by sensitivity and phase mismatches

and relative position errors between microphone elements in the array. Such phase

mismatches and position errors are unavoidable when a large number of physical

microphones is used. It was also shown by Petersen (2007) that the estimation

problem is ill-conditioned for higher-order forward difference extrapolation.

As minimising an acoustic energy density cost function has been shown to in-

crease the size of the localised zone of quiet generated at the error sensor, Kestell

(2000) and Kestell et al. (2000a, 2001a, 2001b) developed virtual energy density

sensors using the forward difference prediction technique. From the results of sim-

ulations and experiments conducted in a free field and a long narrow duct, it was

concluded that forward difference prediction virtual energy density sensors produce

the broadest region of control. The size of the zone of quiet was not quantified how-

ever, due to significant variations in its shape and location and no effort was made

to improve upon the variable results. The second-order virtual energy density sensor

also demonstrated poor performance due to sensitivity to short wavelength extra-

neous spatial pressure variations and was outperformed by the first-order forward

difference prediction virtual microphone. It was further concluded by Cazzolato

et al. (2005b), that the variable results obtained in the long narrow duct may have

been a result of flawed analysis. The sound field inside the long narrow duct had

been simulated using a rigid walled, one-dimensional modal model which was shown

to be severely affected by numerical noise.

Petersen et al. (2005) derived analytical expressions for the optimal virtual mi-
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crophone weights in a rigid walled acoustic duct and compared these optimal weights

with those obtained using the forward difference prediction algorithm. The linear

and quadratic forward difference prediction weights were shown to approximate the

optimal weights at low frequencies and for small distances between the observer and

the microphone array. As expected, the prediction accuracy of the forward differ-

ence algorithm was seen to decrease with increasing virtual distance and excitation

frequency.

1.1.4.4 The adaptive LMS virtual microphone technique

The variable performance of the forward difference prediction virtual sensors in real-

time control was thought to be attributed to sensitivity and phase mismatches and

relative position errors between microphone elements. In an attempt to improve the

prediction accuracy, Cazzolato (2002) developed the adaptive LMS virtual micro-

phone technique. This virtual sensing method employs the adaptive LMS algorithm

(Elliott, 2001) to adapt the weights of the physical microphones in the array so that

the weighted sum of these signals minimises the mean square difference between the

predicted pressure and that measured by a microphone temporarily placed at the

virtual location. A virtual sensing algorithm similar to the adaptive LMS virtual

microphone technique was also developed by Gawron and Schaaf (1992).

Theoretical simulations performed by Cazzolato (2002) in a one-dimensional

waveguide demonstrated that the adaptive virtual sensors are unaffected by the

sensitivity mismatches and relative position errors that adversely affect the for-

ward difference prediction technique. The adaptive sensors were seen to predict

the pressure at the virtual location more accurately than the equivalent fixed gain

sensor. Munn et al. (2002a) then experimentally investigated the performance of

the adaptive LMS virtual microphone technique in a one-dimensional waveguide at

an acoustic resonance. Results of real-time feedforward control were in agreement

with those of Cazzolato (2002), demonstrating that this virtual sensing method can

overcome sensitivity mismatches and relative position errors and outperform the

forward difference prediction technique to achieve the greatest attenuation at the

virtual location. Munn et al. (2003a) also theoretically examined the impact of in-

creasing the number of axial modes in the numerical model of the one-dimensional

waveguide as previous simulations by Cazzolato (2002) had only included the first

six axial modes. It was shown that the inclusion of higher order modes did not affect

the prediction accuracy of the adaptive LMS virtual microphone technique. Subse-
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quent work by Cazzolato et al. (2005b) demonstrated, however, that this analysis

may be flawed as miscalculation occurs when using a modal modelling technique as

noise is introduced into the model when the numerical precision of the computer

program is reached.

Petersen (2007) experimentally investigated the performance of the adaptive

LMS virtual microphone technique in a broadband sound field with a 50 - 500 Hz

frequency range in a long narrow duct. For an array of 2, 3 and 5 physical sensors, the

overall estimation performance decreased with an increasing distance between the

physical sensor array and the virtual location. The best estimation performance is

theoretically achieved with an array of 5 physical sensors, however, this configuration

was found to be ill-conditioned in experiments and a similar estimation performance

was achieved with all three physical sensor configurations.

1.1.4.5 The Kalman filtering virtual sensing method

The Kalman filtering virtual sensing method (Petersen et al., 2008) uses Kalman

filtering theory to obtain estimates of the error signals at the virtual locations using

remotely placed physical microphones. In this virtual sensing method, the active

noise control system is first modelled as a state space system whose outputs are

the physical and virtual error signals. A Kalman filter is formulated to compute

estimates of the plant states and subsequently estimate the virtual error signals

using the physical error signals. The Kalman filter is implemented in two forms,

the prediction form and the time-measurement update form. The prediction form

is used to obtain future estimates of the states while the time-measurement update

form is used to update current state estimates given measurements of the current

error signals.

The Kalman filtering virtual sensing method is optimal in its estimation of the

virtual error signals given a known or measured noise covariance. Also, this virtual

sensing algorithm is derived including measurement noise on the sensors (Petersen

et al., 2008). An added advantage is that instead of using a number of FIR or

IIR filter matrices to compute an estimate of the virtual error signals, one compact

state space model is used. This does mean, however, that a preliminary identification

stage is required in which the state space model of the plant is estimated and that

the Kalman filtering virtual sensing method is limited to use in systems of relatively

low order.

The performance of this virtual sensing method has been investigated in real-
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time feedforward experiments conducted in an acoustic duct over a 50 - 500 Hz

frequency range (Petersen et al., 2008). The state space model of the plant was first

estimated using subspace model identification techniques (Haverkamp, 2001) with

a microphone temporarily located at the virtual location, 10 cm from the physical

microphone. A comparison of the power spectra of the measured and estimated

virtual disturbance signal demonstrated that the algorithm accurately estimates

the virtual error signal over the entire 50 - 500 Hz frequency range. Combining this

virtual sensing algorithm with the Fx-LMS algorithm achieved an overall attenuation

of 19.7 dB at the virtual location. This is compared to an attenuation of 25.1 dB

being achieved by directly minimising the error signal at the virtual location. The 5.4

dB difference was attributed to the fact that the primary disturbances at the physical

and virtual locations were not completely causally related, which is a requirement

in this virtual sensing algorithm.

1.1.4.6 Moving virtual sensing

Virtual sensing methods have made it possible to shift the zone of quiet away from

the physical error sensor to the desired location of attenuation. In many practical

applications, however, this virtual location may not be spatially fixed. This oc-

curs, for example, when the desired location of attenuation is the ear of a seated

observer and the observer moves their head, thereby moving the virtual location.

As a result, one-dimensional moving virtual sensing algorithms have been devel-

oped to generate a virtual microphone capable of tracking a moving virtual location

in a one-dimensional sound field. These moving virtual sensing algorithms include

the remote moving microphone technique (Petersen et al., 2006), the adaptive LMS

moving virtual microphone technique (Petersen et al., 2007) and the Kalman filtering

moving virtual sensing method (Petersen, 2007).

The remote moving microphone technique (Petersen et al., 2006) computes the

error signal at a moving virtual location by interpolating the virtual error signals

at a number of spatially fixed virtual locations estimated using the remote micro-

phone technique (Roure and Albarrazin, 1999). The performance of this moving

virtual sensing algorithm has been experimentally investigated in an acoustic duct,

at an acoustic resonance using a feedforward control approach (Petersen et al., 2006,

Petersen, 2007). In the acoustic duct, the virtual microphone moved sinusoidally

between a virtual distance of v = 0.02 m and 0.12 m with a period of 10 s. Min-

imising the moving virtual error signal with the active noise control system achieved
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greater than 34 dB of attenuation at the moving virtual location. This is 20 dB

of attenuation greater than that achieved by minimising the error signal at a fixed

physical microphone at v = 0 m or a fixed virtual microphone at v = 0.02 m.

Petersen et al. (2007) developed the adaptive LMS moving virtual microphone

technique that estimates the pressure at a moving virtual location as the weighted

sum of the error signals from a number of microphones in an array. The micro-

phone weights are computed by linearly interpolating between previously calculated

weights for fixed virtual distances. The performance of the adaptive LMS moving

virtual microphone technique has also been experimentally investigated in an acous-

tic duct driven sinusoidally at an acoustic resonance (Petersen, 2007, Petersen et al.,

2007). As previously discussed, the virtual microphone moved sinusoidally between

a virtual distance (from the physical microphone) of v = 0.02 m and 0.12 m with

a period of 10 s. Experimental results demonstrated that minimising the moving

virtual error signal using a feedforward control approach achieves an additional 18

dB of attenuation at the moving virtual location compared to minimising the error

signal at a fixed physical microphone at v = 0 m or a fixed virtual microphone at

v = 0.02 m.

The Kalman filtering moving virtual sensing method (Petersen, 2007) estimates

the pressure at a moving virtual location by interpolating the virtual error signals

at a number of spatially fixed virtual locations estimated using the Kalman filtering

virtual sensing method (Petersen, 2007, Petersen et al., 2008). The performance of

the Kalman filtering moving virtual sensing method has also been experimentally

investigated in an acoustic duct driven sinusoidally at an acoustic resonance (Pe-

tersen, 2007). Again, the virtual microphone moved sinusoidally between a virtual

distance of v = 0.02 m and 0.12 m with a period of 10 s. Experimental results

demonstrated that minimising the moving virtual error signal using a feedforward

control approach achieves an additional 14 dB of attenuation at the moving virtual

location compared to minimising the error signal at a fixed physical microphone at

v = 0 m or a fixed virtual microphone at v = 0.02 m. While the Kalman filtering

virtual sensing method is optimal in its estimation of the virtual error signal at

a spatially fixed virtual location, this moving virtual sensing algorithm is outper-

formed by the remote moving microphone technique (Petersen et al., 2006) and the

adaptive LMS moving virtual microphone technique (Petersen et al., 2007) in terms

of the attenuation achieved at the moving virtual location. In real-time experiments,

the accuracy of the estimate of the moving virtual error signal obtained with the

Kalman filtering moving virtual sensing method is limited by measurement noise on
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the physical microphones and the causality constraint on the estimation of the vir-

tual primary disturbance from the physical primary disturbance (Petersen, 2007).

It should also be noted that the Kalman filtering moving virtual sensing method

requires estimation of the state space model of the plant and therefore it is limited

to systems of relatively low order such as an acoustic duct system.

1.1.5 Conclusions from the literature review

Early researchers in active noise control attempted to achieve global control in which

the sound field is minimised at all locations within the acoustic enclosure. The level

of attenuation achieved with global noise control strategies is, however, not always

sufficient, especially in modally dense sound fields. As an alternative, local noise

control systems were investigated, where a localised zone of quiet is generated at the

physical error sensor using a pressure squared cost function. While significant atten-

uation may be achieved at the error sensor location with local active noise control

systems, the zone of quiet is generally small and impractically sized. Moreover, it

may be inconvenient to place the error sensor at the desired location of attenuation,

such as at a person’s ear, preventing the zone of quiet from being centred there.

In an attempt to broaden the zone of quiet, an acoustic energy density cost func-

tion was implemented in local active noise control systems as an alternative to the

traditional squared pressure cost function. Minimising the acoustic energy density

spatially extends the zone of quiet achieved at the sensor location compared to min-

imising the sound pressure alone and avoids the observability problems associated

with a potential energy density cost function estimated by microphones (Sommer-

feldt and Nashif, 1994, Sommerfeldt and Parkins, 1994, Elliott and Garcia-Bonito,

1995).

To overcome the inconveniences associated with error sensor placement, virtual

acoustic sensors were developed for active noise control to shift the zone of quiet to

a spatially fixed location that is remote from the physical error sensor. A number of

virtual sensing algorithms have been developed in the past and a summary of these

algorithms, including their characteristics, advantages and disadvantages, is given

in Table 1.1.

The first virtual sensing method developed for active noise control was the vir-

tual microphone arrangement (Elliott and David, 1992). This virtual sensing method

uses the often invalid assumption of equal primary pressure at the physical and vir-

tual locations and requires a preliminary identification stage in which models of
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the secondary transfer functions at the physical and virtual locations are estimated.

This virtual sensing method has been extensively researched, including its applica-

tion in a local active headrest and the effect of minimising the pressure at a virtual

location near the surface of a reflecting sphere (Garcia-Bonito et al. 1996, Garcia-

Bonito et al. 1997b, Garcia-Bonito et al. 1997c, Rafaely et al. 1997, Rafaely et al.

1999, Holmberg et al. 2002, Pawelczyk 2003b, Pawelczyk 2003c, Pawelczyk 2004b).

The remote microphone technique (Roure and Albarrazin, 1999) is an extension

to the virtual microphone arrangement that uses an additional filter to compute an

estimate of the primary pressure at the virtual location from the primary pressure at

the physical location. In theory, a perfect estimate of the tonal disturbance may be

achieved at the virtual location with the remote microphone technique provided

accurate models of the tonal transfer functions are obtained in the preliminary

identification stage.

An alternative virtual sensing method named the forward difference prediction

technique (Cazzolato, 1999) uses forward difference extrapolation to estimate the

virtual quantities. This fixed gain technique does not require a preliminary iden-

tification stage, nor FIR filters or similar to model the complex transfer functions

between the sensors and the sources. The performance of forward difference virtual

sensors has only been investigated in simple sound fields including a free field and

the one-dimensional sound field inside an acoustic duct. In experiments, forward

difference prediction virtual sensors were found to be sensitive to phase and sensi-

tivity mismatches and relative position errors between the physical microphones in

the array.

The adaptive LMS virtual microphone technique (Cazzolato, 2002) employs the

adaptive LMS algorithm to adapt the weights of physical microphones in an array so

that the weighted sum of these signals minimises the mean square difference between

the predicted pressure and that measured by a microphone placed at the virtual lo-

cation. Like the forward difference prediction technique, the performance of this

virtual sensing method has only been considered in idealised sound fields. Experi-

mental results demonstrated that the adaptive LMS virtual microphone technique

can compensate for relative position errors and sensitivity mismatches adversely

affecting the forward difference prediction technique.

The Kalman filtering virtual sensing method (Petersen et al., 2008) uses Kalman

filtering theory to obtain an optimal estimate of the error signal at the virtual

location. In this virtual sensing method, the active noise control system is modelled

as a state space system whose outputs are the physical and virtual error signals. The
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Kalman filtering virtual sensing method has the advantage that a single compact

state space model is used to compute an estimate of the virtual error signals. This

virtual sensing method is, however, limited to use in systems of relatively low order

such as an acoustic duct and requires a large amount of data in the preliminary

identification stage.

As it is likely that the virtual location will not be spatially fixed, moving virtual

sensing algorithms have been developed in recent years to generate a virtual micro-

phone capable of tracking a one-dimensional trajectory in a one-dimensional sound

field. A number of moving virtual sensing algorithms have been developed including

the remote moving microphone technique (Petersen et al., 2006), the adaptive LMS

moving virtual microphone technique (Petersen et al., 2007) and the Kalman fil-

tering moving virtual sensing method (Petersen, 2007). The results of experiments

conducted in an acoustic duct demonstrated that these one-dimensional moving vir-

tual sensing algorithms achieve greater attenuation at the moving virtual location

compared to control at a fixed physical or virtual sensor.

Extensive research has been conducted on virtual sensing methods in the past;

however the focus of this research has been to develop new and improved virtual

sensors rather than on their development for use in practical applications. Generally,

the performance of virtual sensors can be improved by

1. Increasing the size of the zone of quiet generated at a virtual location in a

three-dimensional sound field and maintaining high levels of attenuation there.

2. Tracking the location of a virtual sensor in a three-dimensional sound field and

maintaining high levels of attenuation there.

Most spatially fixed virtual sensing methods have only been applied to simple one-

dimensional sound fields. No spatially fixed virtual sensing technique has been

developed for a complex sound field that is robust to changes in the transfer functions

between the error sensors and the sources and that does not require a preliminary

identification stage. Three-dimensional virtual acoustic energy density sensors are

yet to be developed for use in a three-dimensional sound field. Also, moving virtual

sensing methods that generate a virtual microphone capable of tracking a three-

dimensional trajectory in a three-dimensional sound field have not been previously

investigated.
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Table 1.1: Summary of virtual sensing algorithms for active noise control.

Algorithm Characteristics Advantages Disadvantages

The virtual micro-
phone arrangement
(Elliott and David,
1992)

Generates a spatially fixed virtual
microphone using models of the
secondary transfer functions at the
physical and virtual locations and
the assumption that the primary
disturbance at the physical loca-
tion is equal to the primary distur-
bance at the virtual location.

• Requires a preliminary identifica-
tion stage.
• Uses the assumption of equal pri-
mary sound pressure at the physi-
cal and virtual locations.
• Is not robust to changes in the
sound field that alter the transfer
functions between the sensors and
the sources.

The remote micro-
phone technique
(Roure and Albar-
razin, 1999)

Generates a spatially fixed vir-
tual microphone in an extension
to the virtual microphone arrange-
ment (Elliott and David, 1992) us-
ing an additional filter to compute
an estimate of the primary distur-
bance at the virtual microphone
from the primary disturbance at
the physical microphone.

• Theoretically obtains a perfect
estimate of the tonal disturbance
provided accurate models of the
tonal transfer functions are ob-
tained.
• Does not use the assumption of
equal primary sound pressure at
the physical and virtual locations.

• Requires a preliminary identifica-
tion stage.
• Is not robust to changes in the
sound field that alter the transfer
functions between the sensors and
the sources.

The forward dif-
ference prediction
technique (Cazzo-
lato, 1999)

Generates spatially fixed virtual
microphones and energy density
sensors by fitting a polynomial to
the signals from a number of phys-
ical microphones in an array. This
polynomial is then extrapolated to
the virtual location.

• Is a fixed gain technique.
• Is robust to changes in the sound
field that may alter the transfer
functions between the sensors and
the sources.
• Does not require a preliminary
identification stage or FIR filters or
similar to model the complex trans-
fer functions.

• Is only suitable for use in low fre-
quency sound fields and for small
virtual distances.
• Is sensitive to phase and sensi-
tivity mismatches and relative po-
sition errors between the physical
microphones.
• Second order estimate is ill-
conditioned and is adversely af-
fected by short wavelength extra-
neous noise.

Table 1.1 continued on next page.
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Table 1.1 continued.

Algorithm Characteristics Advantages Disadvantages

The adaptive LMS
virtual micro-
phone technique
(Cazzolato, 2002)

Generates a spatially fixed virtual
microphone by employing the LMS
algorithm to adapt the weights of
physical microphones in an array so
that the weighted sum of these sig-
nals minimises the mean square dif-
ference between the predicted pres-
sure and that measured at the vir-
tual location.

• Can compensate for relative po-
sition errors and sensitivity mis-
matches adversely affecting the for-
ward difference prediction tech-
nique.

• Requires a preliminary identifica-
tion stage.
• Is not robust to changes in the
sound field that alter the transfer
functions between the sensors and
the sources.

The Kalman filter-
ing virtual sensing
method (Petersen
et al., 2008)

Generates a spatially fixed virtual
microphone using Kalman filtering
theory.

• Uses a compact state space model
instead of FIR or IIR filter matri-
ces.
• Is derived including measurement
noise on the sensors.
• Estimation is optimal given a
known or measured noise covari-
ance.

• Requires a preliminary identifica-
tion stage.
• Is limited to use in systems of rel-
atively low order.

The remote moving
microphone tech-
nique (Petersen
et al., 2006)

Generates a moving virtual mi-
crophone by interpolating the vir-
tual error signals at a number of
spatially fixed virtual locations es-
timated using the remote micro-
phone technique (Roure and Albar-
razin, 1999).

• Virtual microphone can track the
desired location of attenuation as it
moves through the sound field.

• Requires a preliminary identifica-
tion stage.
• Is not robust to changes in the
sound field that alter the transfer
functions between the sensors and
the sources.

Table 1.1 continued on next page.
40



1.1.
L
iteratu

re
rev

iew

Table 1.1 continued.

Algorithm Characteristics Advantages Disadvantages

The adaptive LMS
moving virtual mi-
crophone technique
(Petersen et al.,
2005)

Generates a moving virtual micro-
phone by interpolating the virtual
error signals at a number of spa-
tially fixed virtual locations esti-
mated using the adaptive LMS vir-
tual microphone technique (Cazzo-
lato, 2002).

• Virtual microphone can track the
desired location of attenuation as it
moves through the sound field.

• Requires a preliminary identifica-
tion stage.
• Is not robust to changes in the
sound field that alter the transfer
functions between the sensors and
the sources.

The Kalman filter-
ing moving virtual
sensing method
(Petersen, 2007)

Generates a moving virtual micro-
phone by interpolating the virtual
error signals at a number of spa-
tially fixed virtual locations esti-
mated using the Kalman filtering
virtual sensing method (Petersen
et al., 2008).

• Virtual microphone can track the
desired location of attenuation as it
moves through the sound field.
• Implemented using a compact
state space model instead of FIR
or IIR filter matrices.
• Is derived including measurement
noise on the sensors.

• Requires a preliminary identifica-
tion stage.
• Is limited to use in systems of rel-
atively low order.
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1.2 Contributions of this thesis

The general aim of the research presented in this thesis is to improve and extend

the spatially fixed and moving virtual sensing algorithms developed for active noise

control thus far and hence increase the scope and application of local active noise

control systems. To achieve this research aim, a number of novel spatially fixed and

moving virtual sensing algorithms are presented for local active noise control in this

thesis and these are described as follows:

1. The Stochastically Optimal Tonal Diffuse Field (SOTDF) virtual sens-

ing method

A number of spatially fixed virtual sensing algorithms have been developed for active

noise control in the past. A clear advantage of the forward difference prediction

technique (Cazzolato, 1999) over other virtual sensing algorithms is that it does not

require a preliminary identification stage to model the complex transfer functions

between the error sensors and the sources. As a result, this virtual sensing method is

robust to changes that may alter the transfer functions between the error sensors and

the sources. The forward difference prediction technique is however, only suitable

for use in low frequency sound fields where the spatial rate of change is low.

In this thesis, a spatially fixed virtual sensing technique named the Stochasti-

cally Optimal Tonal Diffuse Field (SOTDF) virtual sensing method is developed

specifically for use in pure tone diffuse sound fields. A diffuse sound field is the most

complex sound field to control and hence provides the lower limit on the virtual sens-

ing performance that can be expected in practice. SOTDF virtual microphones that

use both pressure and pressure gradient sensors are developed using the SOTDF vir-

tual sensing method. In an effort to extend the zone of quiet generated at the virtual

location, virtual acoustic energy density sensors are also developed with this pre-

diction technique. The SOTDF virtual sensing method, like the forward difference

prediction technique, is a fixed gain virtual sensing method that does not require

a preliminary identification stage nor models of the complex transfer functions be-

tween the error sensors and the sources. The SOTDF virtual sensing method is

therefore robust to changes that may alter the transfer functions between the error

sensors and the sources.
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2. Moving virtual sensing algorithms for a three-dimensional sound field

As it is likely that the desired location of attenuation is not spatially fixed, a number

of moving virtual sensing algorithms have been developed in the past to generate

a virtual microphone that tracks the desired location of attenuation as it moves

through a one-dimensional sound field (Petersen et al., 2006, Petersen, 2007, Pe-

tersen et al., 2007). In this thesis, a number of moving virtual sensing algorithms

are developed to generate a virtual microphone at a moving virtual location in a

three-dimensional sound field. The moving virtual sensing algorithms presented in

this thesis use the remote moving microphone technique (Roure and Albarrazin,

1999), the adaptive LMS moving virtual microphone technique (Cazzolato, 1999)

and the SOTDF moving virtual sensing method to estimate the error signal at the

moving virtual location in a reactive three-dimensional sound field. Minimising

this estimate of the sound pressure at the moving virtual location with the active

noise control system generates a moving zone of quiet that tracks a desired three-

dimensional trajectory in the three-dimensional sound field.

3. The remote energy density technique for a three-dimensional sound

field

Employing an acoustic energy density cost function has been shown to generate a

larger zone of quiet at the sensor location than acoustic pressure control (Elliott and

Garcia-Bonito, 1995). In an effort to extend the localised zone of quiet generated

at the virtual location, one-dimensional virtual acoustic energy density sensors have

been developed using the forward difference prediction technique (Kestell et al.,

2000a). Forward difference prediction virtual energy density sensors were shown to

produce a broader region of control compared to virtual microphones in numeri-

cal simulations and experiments conducted in a free field and a long narrow duct

(Kestell, 2000, Kestell et al., 2000a, Kestell et al., 2001a, Kestell et al., 2001b).

In this thesis, a three-dimensional virtual acoustic energy density sensing method

is presented for use in a three-dimensional sound field. This virtual energy den-

sity sensing method uses a modified version of the remote microphone technique

(Roure and Albarrazin, 1999) to estimate the total acoustic energy density at a

virtual location in a three-dimensional sound field. Minimising the estimate of the

total virtual acoustic energy density with the active noise control system creates a

spatially extended zone of quiet at a fixed virtual location.
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1.3 Overview of this thesis

This thesis begins by providing a review of the virtual sensing algorithms developed

for active noise control in Chapter 2. The spatially fixed virtual sensing algorithms

that shift the zone of quiet away from the physical error sensor to a spatially fixed

virtual location are first presented. These algorithms include the virtual microphone

arrangement (Elliott and David, 1992), the remote microphone technique (Roure and

Albarrazin, 1999), the forward difference prediction technique (Cazzolato, 1999),

the adaptive LMS virtual microphone technique (Cazzolato, 2002) and the Kalman

filtering virtual sensing method (Petersen et al., 2008). Following this, derivations

of the moving virtual sensing algorithms that generate a virtual microphone capable

of tracking a moving virtual location in a one-dimensional sound field are presented.

These algorithms include the remote moving microphone technique (Petersen et al.,

2006), the adaptive LMS moving virtual microphone technique (Petersen et al.,

2007) and the Kalman filtering moving virtual sensing method (Petersen, 2007).

The derivations of previously developed spatially fixed and moving virtual sensing

techniques are provided as a background for the new virtual sensing method that is

presented in Chapter 3 and for the other work that follows in this thesis.

The spatially fixed SOTDF virtual sensing method is presented in Chapter 3.

Stochastically optimal virtual microphones and virtual energy density sensors that

use both pressure and pressure gradient sensors are developed for use in a pure tone

diffuse sound field. Theoretical expressions for the controlled sound fields generated

with a number of conventional control strategies and those employing the SOTDF

virtual sensors are also derived. These expressions predict the optimal control per-

formance obtained in a pure tone diffuse sound field. The performance of SOTDF

virtual sensors is then investigated in numerical simulations and using experimental

measurements made in a reverberation chamber. The optimal expressions for the

controlled sound field are also validated in numerically simulated and post-processed

experimental control. Finally, as perfect control may be achieved in a pure tone dif-

fuse sound field with the deterministic remote microphone technique (Roure and

Albarrazin, 1999), the performance of SOTDF virtual sensors is compared to that

of the remote microphone technique in numerically simulated and post-processed

experimental control.

Chapter 4 presents the moving virtual sensing algorithms that generate a moving

virtual microphone in a three-dimensional sound field. Firstly, the moving virtual

sensing algorithms are derived using the remote microphone technique (Roure and
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Albarrazin, 1999), the adaptive LMS virtual microphone technique (Cazzolato, 2002)

and the SOTDF virtual sensing method. To determine the level of attenuation that

can be expected at the ear of a seated observer, the performance of the moving

virtual sensing algorithms in generating a zone of quiet at the single ear of a rotating

artificial head is then investigated in real-time experiments conducted in a modally

dense three-dimensional cavity. To create a zone of quiet at the ear of the rotating

artificial head in real-time, the moving virtual sensing algorithms are combined with

a modified version of the filtered-x LMS algorithm to account for the fact that the

virtual location is moving though the sound field.

The three-dimensional virtual acoustic energy density sensing method is pre-

sented in Chapter 5. This chapter begins with a derivation of the remote energy

density sensing technique. Experimental results of active noise control at a virtual

energy density sensor and a virtual microphone in a modally dense three-dimensional

sound field are then presented to compare the size of the localised zone of quiet

achieved by minimising either the acoustic energy density or the squared pressure.

To create a zone of quiet at the virtual energy density sensor, the remote energy

density sensing technique is combined with a modified version of the filtered-x LMS

algorithm for acoustic energy density sensing. In acoustic pressure control, the vir-

tual microphone is generated using the remote microphone technique (Roure and

Albarrazin, 1999) which is combined with the filtered-x LMS algorithm in real-time

control.

In summary, the major findings and conclusions from the research presented in

this thesis are detailed in Chapter 6. Additionally, recommendations for future work

are also discussed.

1.4 Publications arising from this thesis

The journal and conference publications arising from this thesis are as follows:

Journal publications:

• Moreau, D.J., Ghan, J., Cazzolato, B.S., Zander, A.C., 2009. Active noise

control in a pure tone diffuse sound field using virtual sensing. Journal of the

Acoustical Society of America 125(6), 3742-3755.

• Moreau, D.J., Cazzolato, B.S., Zander, A.C., Petersen, C.D., 2008. A review

of virtual sensing algorithms for active noise control. Algorithms 1(2), 69-99.
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• Moreau, D.J., Cazzolato, B.S., Zander, A.C., 2008. Active noise control at a

moving virtual sensor in three-dimensions. Acoustics Australia 36(3), 85-88.

Conference publications:

• Moreau, D.J., Cazzolato, B.S., Zander, A.C., 2009. Active noise control at a

moving virtual microphone using the SOTDF moving virtual sensing method.

In: Proceedings of Acoustics 2009, Research to Consulting, Adelaide, South

Australia, 23-25 November.

• Moreau, D.J., Cazzolato, B.S., Zander, A.C., 2008. Active noise control at a

moving location in a modally dense three-dimensional sound field using virtual

sensing. In: Proceedings of Acoustics 08, Paris, France, 29 June - 4 July.

-Awarded second prize for the best paper in structural acoustics and vibration.

• Moreau, D.J., Ghan, J., Cazzolato, B.S., Zander, A.C., 2007. Active noise con-

trol with a virtual acoustic sensor in a pure-tone diffuse sound field. In: Pro-

ceedings of the 14th International Congress on Sound and Vibration, Cairns,

Queensland, Australia, 9-12 July.
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Chapter 2

A Review of Virtual Sensing

Theory for Active Noise Control

This chapter presents a review of the virtual sensing algorithms developed for ac-

tive noise control. These virtual sensing algorithms will be used throughout this

thesis and are implemented as presented here. The spatially fixed virtual sensing

algorithms that shift the zone of quiet away from the physical sensor and to a spa-

tially fixed virtual location are discussed in Section 2.1. The moving virtual sensing

algorithms that generate a virtual microphone capable of tracking a moving virtual

location in a one-dimensional sound field are presented in Section 2.2.

2.1 Spatially fixed virtual sensing algorithms

Spatially fixed virtual sensing algorithms are used to obtain estimates of the error

signals at a number of spatially fixed virtual locations using the error signals from

the remotely located physical error sensors, the control signal and knowledge of the

system. A number of spatially fixed virtual sensing algorithms have been developed

in the past including the virtual microphone arrangement (Elliott and David, 1992),

the remote microphone technique (Roure and Albarrazin, 1999), the forward differ-

ence prediction technique (Cazzolato, 1999), the adaptive LMS virtual microphone

technique (Cazzolato, 2002), and the Kalman filtering virtual sensing method (Pe-

tersen et al., 2008). These spatially fixed virtual sensing algorithms are described

as follows.
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2.1.1 Virtual sensing problem formulation

The virtual sensing problem and notation used throughout this thesis are introduced

in this section. It is assumed here that there are Ma physical microphones, Mv

spatially fixed virtual microphones and L secondary sources. The vector of the total

complex pressures at the Ma physical microphones, pa(n), is defined as

pa(n) =
[

pa1(n) pa2(n) ... paMa
(n)

]T

. (2.1)

The total pressures at the Ma physical microphones, pa(n), is the sum of the sound

fields produced by the primary and secondary sound sources at the physical micro-

phone locations, and may be written as

pa(n) = ppa(n) + psa(n) = ppa(n) + Zsaus(n), (2.2)

where ppa(n) is a vector of the primary pressures at the Ma physical microphones,

psa(n) is a vector of the secondary pressures at the Ma physical microphones, Zsa

is a matrix of size Ma × L whose elements are the transfer functions between the

secondary sources and the physical microphones, us(n) is a vector of the secondary

source strengths and n is the time step.

Similarly, the vector of the total pressures at the Mv spatially fixed virtual loca-

tions, pv(n), is defined as

pv(n) =
[

pv1(n) pv2(n) ... pvMv
(n)

]T

. (2.3)

The total pressures at the Mv virtual microphones, pv(n), is the sum of the sound

fields produced by the primary and secondary sources at the Mv virtual locations

and may be written as

pv(n) = ppv(n) + psv(n) = ppv(n) + Zsvus(n), (2.4)

where ppv(n) is the vector of the primary pressures at the Mv virtual locations,

psv(n) is the vector of secondary pressures at the Mv virtual locations and Zsv is

a matrix of size Mv × L whose elements are the transfer functions between the

secondary sources and the virtual locations.

Using the physical error signals, pa(n), the control signal and knowledge of the

system, a virtual sensing algorithm is used to estimate the pressures, pv(n), at the
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spatially fixed virtual locations. Instead of minimising the physical error signals, the

estimated pressures are minimised by the active noise control system to generate

zones of quiet at the virtual locations. The tilde symbol is used throughout this

thesis to indicate estimated quantities. For example, estimates of the total pressures

at the spatially fixed virtual locations are denoted by p̃v(n).

2.1.2 The virtual microphone arrangement

The virtual microphone arrangement, proposed by Elliott and David (1992), was

the first virtual sensing algorithm suggested for active noise control. This virtual

sensing algorithm uses the assumption of equal primary sound pressure at the phys-

ical and virtual microphone locations. A block diagram of the virtual microphone

arrangement is shown in Fig. 2.1. The virtual microphone arrangement is most eas-

ily implemented with equal numbers of physical and virtual sensors, so Mv = Ma

(Petersen, 2007). The microphones are located in Mv pairs, each consisting of one

physical microphone and one virtual microphone. In this virtual sensing algorithm

the primary sound pressure is assumed to be equal at the physical and virtual

microphones in each pair or that ppa(n) = ppv(n). This assumption holds if the

primary sound field does not change significantly between the physical and virtual

microphones in each pair.

pa(n) p̃v(n)

p̃sa(n)

p̃sv(n)

us(n)

Z̃sa

Z̃sv

p̃pa(n) = p̃pv(n)

+
++ −

∑∑

Figure 2.1: Block diagram of the virtual microphone arrangement.

A preliminary identification stage is required in this virtual sensing algorithm

in which the matrices of secondary transfer functions, Z̃sa and Z̃sv, are typically

modelled as matrices of FIR or IIR filters. Once this preliminary identification

stage is complete, the microphones temporarily placed at the virtual locations are
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removed. As shown in Fig. 2.1, estimates, p̃v(n), of the total error signals at the

virtual locations are calculated using (Elliott and David, 1992)

p̃v(n) = pa(n) − (Z̃sa − Z̃sv)us(n). (2.5)

2.1.3 The remote microphone technique

The remote microphone technique developed by Roure and Albarrazin (1999) is an

extension to the virtual microphone arrangement (Elliott and David, 1992) which

uses an additional matrix of filters to compute estimates of the primary disturbances

at the virtual sensors from the primary disturbances at the physical sensors. Like

the virtual microphone arrangement, the remote microphone technique requires a

preliminary identification stage in which the secondary transfer matrices Z̃sa and Z̃sv

are typically modelled as matrices of FIR or IIR filters. The Mv ×Ma sized matrix

of primary transfer functions between the physical locations and the virtual loca-

tions, M̃, is also estimated as a matrix of FIR or IIR filters during this preliminary

identification stage. The secondary transfer function matrix Z̃sa is identified using

the secondary sources and the physical microphones while microphones temporarily

placed at the virtual locations are used to obtain matrices Z̃sv and M̃.

A block diagram of the remote microphone technique is given in Fig. 2.2. As

shown in Fig. 2.2, estimates of the primary disturbances, p̃pa(n), at the physical

error sensors are first calculated using (Roure and Albarrazin, 1999)

p̃pa(n) = pa(n) − p̃sa(n) = pa(n) − Z̃saus(n). (2.6)

Next, estimates of the primary disturbances, p̃pv(n), at the virtual locations are

obtained using (Roure and Albarrazin, 1999)

p̃pv(n) = M̃p̃pa(n). (2.7)

Finally, estimates, p̃v(n), of the total virtual error signals are calculated as (Roure

and Albarrazin, 1999)

p̃v(n) = p̃pv(n) + p̃sv(n) = M̃p̃pa + Z̃svus(n). (2.8)
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pa(n) p̃v(n)
M̃

p̃sa(n)

p̃sv(n)

us(n)

Z̃sa

Z̃sv

p̃pa(n) p̃pv(n)

+
++−

∑∑

Figure 2.2: Block diagram of the remote microphone technique.

2.1.4 The forward difference prediction technique

The forward difference prediction technique, as proposed by Cazzolato (1999), fits a

polynomial to the signals from a number of physical microphones in an array. The

pressure at the virtual location is estimated by extrapolating this polynomial to the

virtual location.

Fig. 2.3 (a) shows the pressure at a virtual location, x, estimated by a first-

order finite difference estimate. Using Ma = 2 physical microphones, separated by a

distance of 2h, the equation for the estimate of the pressure at the virtual location

using two microphone linear forward difference extrapolation is given by (Cazzolato,

1999)

p̃v(n) = pa2(n) +
pa2(n) − pa1(n)

2h
x. (2.9)

The pressure at a virtual location, x, can also be estimated by a second-order finite

difference estimate, as shown in Fig. 2.3 (b). Using Ma = 3 physical microphones,

each separated by a distance of h, the equation for the estimate of the pressure at the

virtual location using three microphone quadratic forward difference extrapolation

is given by (Cazzolato, 1999)

p̃v(n) =
x(x + h)

2h2
pa1(n) +

x(x + 2h)

h2
pa2(n) +

(x + 2h)(x + h)

2h2
pa3(n). (2.10)

In an attempt to improve the prediction accuracy of the forward difference algo-

rithm, higher-order forward difference prediction virtual sensors which act to spa-

tially filter out the extraneous noise were developed (Munn et al., 2002b, Munn,

2004). Additional physical microphones were added to the array resulting in a
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pa1(n)pa1(n)

pa2(n)
pa2(n) pa3(n)

p̃v(n)
p̃v(n)

hh xx2h

(a) (b)

Figure 2.3: Diagram of (a) two microphone linear forward difference extrapolation;
and (b) three microphone quadratic forward difference extrapolation. The black
curved line represents the actual pressure field and the dashed line represents the
pressure estimate.

greater number of microphones than system order. The microphone weights for this

over constrained system were then calculated using a least squares approximation.

The pressure at a virtual location, x, estimated by a first-order finite difference

estimate using Ma = 3 physical microphones, each separated by a distance of h, is

shown in Fig. 2.4 (a). The equation for the estimate of the pressure at the virtual

location using three microphone linear forward difference extrapolation is given by

(Munn, 2004)

p̃v(n) =
(−3x − h)

6h
pa1(n) +

1

3
pa2(n) +

(3x + 5h)

6h
pa3(n). (2.11)

The pressure at a virtual location, x, estimated by a first-order finite difference

estimate using Ma = 5 physical microphones, separated by a distance of h/2, is

shown in Fig. 2.4 (b). The equation for the estimate of the pressure at the virtual

location using five microphone linear forward difference extrapolation is given by

(Munn, 2004)

p̃v(n) =
(−2x + 3h)

5h
pa1(n)+

(−x + 2h)

5h
pa2(n)+

1

5
pa3(n)+

x

5h
pa4(n)+

(2x − h)

5h
pa5(n).

(2.12)

The pressure at a virtual location, x, estimated by a second-order finite difference

estimate using Ma = 5 physical microphones, separated by a distance of h/2, is

shown in Fig. 2.4 (c). The equation for the estimate of the pressure at the virtual

location using five microphone quadratic forward difference extrapolation is given
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by (Munn, 2004)

p̃v(n) =
(20x2 − 54xh + 31h2)

35h2
pa1(n) +

(−10x2 + 3xh + 9h2)

35h2
pa2(n)

+
(−20x2 − 40xh − 31h2)

35h2
pa3(n) +

(−10x2 − 27xh − 5h2)

35h2
pa4(n)

+
(20x2 − 26xh + 3h2)

35h2
pa5(n). (2.13)

pa1(n)

pa1(n) pa1(n)

pa2(n)

pa2(n) pa2(n)

pa3(n)

pa3(n)
pa3(n)

pa4(n)

pa4(n)

pa5(n)

pa5(n)

p̃v(n)

p̃v(n)
p̃v(n)

hh

x

x x

h/2h/2h/2h/2

h/2h/2h/2h/2

(a) (b)

(c)

Figure 2.4: Diagram of (a) three microphone linear forward difference extrapolation;
(b) five microphone linear forward difference extrapolation; and (c) five microphone
quadratic forward difference extrapolation. The black curved line represents the
actual pressure field and the dashed line represents the pressure estimate.

In an attempt to extend the zone of quiet generated at the virtual location,

Kestell (2000) and Kestell et al. (2000a,b, 2001a,b) developed virtual energy density

sensors using the forward difference prediction technique. An estimate of the energy

density at a virtual location, x, using two microphone linear forward difference

extrapolation, with the arrangement of physical microphones shown in Fig. 2.3 (a),

is given by (Kestell, 2000, Kestell et al., 2001b)

ẼDv(n) =
1

4ρc2

[(
1 +

x

2h

)2

p2
a2(n) − x

h

(
1 +

x

2h

)
pa1(n)pa2(n) +

( x

2h

)2

p2
a1(n)

− 1

(2hk)2

(
p2

a2(n) + 2pa1(n)pa2(n) + p2
a1(n)

)]
, (2.14)
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where k is the wavenumber. An estimate of the energy density at a virtual location,

x, using three microphone quadratic forward difference extrapolation, with the ar-

rangement of physical microphones shown in Fig. 2.3 (b), is given by (Kestell, 2000,

Kestell et al., 2001b)

ẼDv(n) =
1

4ρc2

[(
x(x + h)

2h2
pa1(n) +

x(x + h)

h2
pa2(n)

+
(x + 2h)(x + h)

2h2
pa3(n)

)2

− 1

(k)2

(
(2x + h)

2h2
pa1(n) − (2x + 2h)

h2
pa2(n) +

(2x + h)

2h2
pa3(n)

)]
.

numberline (2.15)

2.1.5 The adaptive LMS virtual microphone technique

The adaptive LMS virtual microphone technique developed by Cazzolato (2002) em-

ploys the adaptive LMS algorithm (Kuo and Morgan, 1996) to adapt the weights

of physical microphones in an array so that the weighted summation of these sig-

nals minimises the mean square difference between the predicted pressure and that

measured by a microphone temporarily placed at the virtual location.

For the case of Mv = 1 virtual microphone and a single secondary source, an

estimate of the total disturbance at the virtual microphone location, p̃v(n), is cal-

culated as the sum of the weighted physical sensor signals at Ma physical sensors in

an array and this is given by (Cazzolato, 2002)

p̃v(n) =
Ma∑
i=1

wipai(n) = wTpa(n), (2.16)

where w is a vector containing the Ma physical error sensor weights,

w =
[

w1 w2 · · · wMa

]T

. (2.17)

The weights, w, are calculated in a preliminary identification stage by switching the

primary source off and exciting the secondary source with band-limited white noise

(Petersen, 2007). A modified version of the adaptive LMS algorithm is used to adapt

the microphone weights. This algorithm can be used to find the optimal solution for

the weights that minimises the mean square difference between the predicted sensor

quantity, p̃sv(n), and that measured by a physical sensor temporarily placed at the
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virtual location, psv(n). A block diagram of the adaptive LMS virtual microphone

technique used to estimate the physical error sensor weights is shown in Fig. 2.5.

As only a single temporal tap is used, the real valued weights each correspond to a

pure gain and are calculated using

w(n + 1) = w(n) + 2μpsa(n)ε(n), (2.18)

where μ is the convergence coefficient and ε(n) is the error term. The error term,

ε(n), is defined as the difference between the actual virtual secondary disturbance

and the estimated virtual secondary disturbance, given by

ε(n) = psv(n) − p̃sv(n), (2.19)

where the estimated virtual secondary disturbance is given by

p̃sv(n) = wTpsa(n). (2.20)

Once the weights have converged, they are fixed and the temporary microphone is

removed from the virtual location.

ε(n)
w

psv(n)

p̃sv(n)psa(n)
+− ∑

LMS

Figure 2.5: Block diagram of the adaptive LMS algorithm used to calculate the
physical sensor weights.

Despite being calculated by exciting the secondary source only, the weights, w,

are applied to both the primary and secondary disturbances as it has been assumed

that the weights are optimal in the estimation of both disturbances. This, however,

may not always be true, especially in the near field of the secondary source where

the spatial properties of the primary and secondary sound fields are very different

(Berkhoff, 2005). As a result, Petersen (2007) suggested that the optimal weights
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for the estimation of both the primary and secondary disturbances should be found

separately, with the adaptive LMS virtual microphone technique being implemented

as shown in Fig. 2.6.

pa(n) p̃v(n)

p̃sa(n) p̃sv(n)us(n) Z̃sa

p̃pa(n) p̃pv(n)

ws

wp

+
++−

∑∑

Figure 2.6: Block diagram of the adaptive LMS virtual microphone technique in
which the primary and secondary weights are found separately.

As shown in Fig. 2.6, the virtual sensing algorithm separates the physical error

signals into their primary and secondary components using the vector of the physical

secondary transfer functions Z̃sa. This vector of FIR or IIR filters is estimated in

the preliminary identification stage. The primary component of the physical error

signals is calculated as (Petersen, 2007)

p̃pa(n) = pa(n) − p̃sa(n) = pa(n) − Z̃saus(n). (2.21)

Once the primary and secondary weights have been estimated separately using

Eq. (2.18), the pressure at the virtual location is estimated using

p̃v(n) = p̃pv + p̃sv = wT
p p̃pa(n) + wT

s p̃sa(n), (2.22)

where wp and ws are vectors containing the Ma optimal physical primary and sec-

ondary weights and p̃pa(n) and p̃sa(n) are vectors containing estimates of the pri-

mary and secondary disturbances at the Ma physical sensor locations.

2.1.6 The Kalman filtering virtual sensing method

The Kalman filtering virtual sensing method (Petersen et al., 2008) uses Kalman fil-

tering theory to obtain estimates of the error signals at the virtual locations. In this

virtual sensing method, the active noise control system is first modelled as a state

space system whose outputs are the physical and virtual error signals. A Kalman fil-

ter is formulated to compute estimates of the plant states and subsequently estimate

the virtual error signals using the physical error signals. The following derivation
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of the Kalman filtering virtual sensing method follows the work of Petersen (2007)

and Petersen et al. (2008).

The active noise control system plant is described by the following state space

model (Petersen, 2007, Petersen et al., 2008)

z(n + 1) = Az(n) + Bsus(n) + Bpup(n)

pa(n) = Caz(n) + Dsaus(n) + Dpaup(n) + va(n) (2.23)

pv(n) = Cvz(n) + Dsvus(n) + Dpvup(n) + vv(n),

where z(n) are the N plant states, va(n) are the physical measurement noise signals,

vv(n) are the virtual measurement noise signals, up(n) are the K primary distur-

bance signals and us(n) are the L secondary disturbance signals. In the state space

model, A is the state matrix of size N × N in discrete form, Bs is the discrete

secondary input matrix of size N × L, Bp is the discrete primary input matrix of

size N × K, Ca is the discrete physical output matrix of size Ma × N , Cv is the

discrete virtual output matrix of size Mv ×N , Dsa and Dpa are the discrete physical

feedforward matrices of size Ma ×L and Ma ×K respectively, and Dsv and Dpv are

the discrete virtual feedforward matrices of size Mv×L and Mv×K respectively. In-

clusion of the measurement noise signals, va(n) and vv(n), in the state space model

account for measurement noise on the microphones at the physical and virtual loca-

tions during the preliminary identification stage. Once the preliminary identification

stage is complete, the microphones temporarily positioned at the virtual locations

are removed.

Implementation of the Kalman filtering virtual sensing method is shown in the

block diagram in Fig. 2.7 (a). In this figure, G is the generalised plant of the acoustic

system, G̃ is an estimate of the generalised plant given by the state space model

in Eq. (2.23) and K are the Kalman filter gains. This is a form of the generalised

control configuration with two sets of inputs and two sets of outputs (Skogestad and

Postlethwaite, 2005), as shown in Fig. 2.7 (b). The generalised control configuration

with two sets of inputs and two sets of outputs (Skogestad and Postlethwaite, 2005)

can therefore be interpreted as a virtual sensor arrangement.

The covariance properties of the stochastic signals up(n), va(n) and vv(n) are

required when using Kalman filtering theory to estimate the error signals at the

virtual locations. These covariance properties and the state space model of the

active noise control system plant are estimated during a preliminary identification

stage with microphones temporarily positioned at the virtual locations. The primary
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Figure 2.7: Block diagram of (a) implementation of the Kalman filtering virtual
sensing method; and (b) the generalised control configuration with two sets of inputs
and two sets of outputs (Skogestad and Postlethwaite, 2005).
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2.1. Spatially fixed virtual sensing algorithms

disturbance signals, up(n), the physical measurement noise signals, va(n), and the

virtual measurement noise signals, vv(n), are all assumed to be zero mean white

stationary random processes with the the following covariance properties (Petersen,

2007, Petersen et al., 2008)

E

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎣

up(n)

va(n)

vv(n)

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

up(k)

va(k)

vv(k)

1

⎤
⎥⎥⎥⎥⎥⎦

T
⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

I ST
pa ST

pv 0

Spa Ra Rav 0

Spv RT
av Rv 0

⎤
⎥⎥⎦ δnk, (2.24)

where E[·] denotes the expectation operator, I is the identity matrix and δnk is the

Kronecker delta function.

The term Bpup(n) in Eq. (2.23) can be interpreted as process noise, w(n), and

the combined influence of the measurement noise signals and disturbance signals

can be interpreted as an auxiliary measurement noise signal, v(n), where

w(n) = Bpup(n), (2.25)

v(n) =

⎡
⎣ Dpaup(n) + va(n)

Dpvup(n) + vv(n)

⎤
⎦ . (2.26)

Using these definitions, the following covariance matrix can be defined

E

⎡
⎣
⎡
⎣ w(n)

v(n)

⎤
⎦
⎡
⎣ w(k)

v(k)

⎤
⎦

T⎤
⎦ =

⎡
⎣ Q̄p S̄T

p

S̄p R̄p

⎤
⎦ δnk. (2.27)

The covariance matrix Q̄p of the process noise w(n) is given by

Q̄p = BpB
T
p . (2.28)
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The covariance matrix R̄p of the auxiliary measurement noise v(n) is given by

R̄p =

⎡
⎣ R̄a R̄av

R̄T
av R̄v

⎤
⎦

=

⎡
⎣ Ra + ST

paDpa + DpaSpa + DpaD
T
pa RT

av + ST
paD

T
pv + DpaSpv + DpaD

T
pv

RT
av + ST

pvD
T
pa + DpvSpa + DpvD

T
pa Rv + ST

pvDpv + DpvSpv + DpvD
T
pv

⎤
⎦ .

numberline (2.29)

The covariance matrix S̄p between the process noise w(n) and the auxiliary mea-

surement noise v(n) is given by

S̄p =

⎡
⎣ S̄pa

S̄pv

⎤
⎦ =

⎡
⎣ DpaB

T
p + SpaB

T
p

DpvB
T
p + SpvB

T
p

⎤
⎦ . (2.30)

The virtual sensing algorithm in state space form, that estimates the virtual

error signals p̃v(n|n), given measurements of the physical error signals pa(i) up to

i = n, is as follows (Petersen, 2007, Petersen et al., 2008)

⎡
⎣ z̃(n + 1|n)

p̃v(n|n)

⎤
⎦ =

⎡
⎣ A − KpaCa Bs − KpaDsa Kpa

Cv − MpvCa Dsv − MpvDsa Mpv

⎤
⎦
⎡
⎢⎢⎣

z̃(n|n − 1)

us(n)

pa(n)

⎤
⎥⎥⎦ ,

(2.31)

where Kpa is the Kalman gain matrix and Mpv is the virtual innovation gain matrix.

The Kalman gain matrix and the virtual innovation gain matrix are found by

Kpa = (AXpaC
T
a + S̄pa)R

−1
aε , (2.32)

Mpv = (CvXpaC
T
a + R̄−1

av )R−1
aε , (2.33)

with Xpa = XT
pa, the unique solution to the discrete algebraic Riccati equation given

by

Xpa = AXpaA
T−(AXpaC

T
a +S̄pa)(CaXpaC

T
a +R̄a)

−1(AXpaC
T
a +S̄pa)

T+Q̄p, (2.34)

where Raε is the covariance matrix of the innovation signals εa(n) = pa(n)−p̃a(n|n−
1) given by

Raε =
[
εa(n)εa(n)T

]
= CaXpaC

T
a + R̄a. (2.35)

60



2.1. Spatially fixed virtual sensing algorithms

To implement the Kalman filtering virtual sensing method, the state space ma-

trices A, Bs, Ca, Cv, Dsa and Dsv of the state space model in Eq. (2.23) and the

covariance matrices Q̄p, S̄pa, R̄a and R̄av need to be known (Petersen, 2007). To-

gether, the state space model in Eq. (2.23) and covariance matrices describe the

behaviour of the active noise control system and the covariance properties of the

input signals. In practice, the behaviour of the active noise control system can

be estimated in a preliminary system identification stage using subspace identifica-

tion techniques (Haverkamp, 2001). Subspace identification techniques estimate a

model of the active noise control system in an innovations form (Haverkamp, 2001).

Therefore, the Kalman filtering virtual sensing method needs to be reformulated for

practical implementation with an innovations model of the active noise control sys-

tem. The steps to practical implementation of the Kalman filtering virtual sensing

method using an innovations model of the active noise control system are as follows

(Petersen, 2007)

1. Temporarily locate physical sensors at the spatially fixed virtual locations and

measure an input-output data-set

⎧⎨
⎩us(n),

⎡
⎣ pa(n)

pv(n)

⎤
⎦
⎫⎬
⎭Ns

n=1. (2.36)

2. Use subspace identification techniques (Haverkamp, 2001) to estimate an in-

novations model of the physical and virtual error signals

z̃(n + 1|n) = Ãz̃(n|n − 1) + B̃sus(n) + K̃p

[
εa(n)Tεv(n)T

]T

pa(n) = C̃az̃(n|n − 1) + D̃saus(n) + εa(n) (2.37)

pv(n) = C̃vz̃(n|n − 1) + D̃svus(n) + εv(n),

and estimate the covariance matrix of the white innovation signals

R̃ε =

⎡
⎣ ˜̄Raε

˜̄Ravε

˜̄RT
avε

˜̄Rvε

⎤
⎦ . (2.38)
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3. Implement the Kalman filtering virtual sensing method as

⎡
⎣ z̃(n + 1|n)

p̃v(n|n)

⎤
⎦ =

⎡
⎣ Ã − K̃paC̃a B̃s − K̃paD̃sa K̃pa

C̃v − M̃pvC̃a D̃sv − M̃pvD̃sa M̃pv

⎤
⎦
⎡
⎢⎢⎣

z̃(n|n − 1)

us(n)

pa(n)

⎤
⎥⎥⎦ ,

(2.39)

where the Kalman gain matrix K̃pa and the virtual innovation gain matrix

M̃pv are calculated as follows

K̃pa =

⎛
⎝ÃXpC̃

T
a + K̃p

⎡
⎣ ˜̄Raε

˜̄RT
avε

⎤
⎦
⎞
⎠ (C̃aXpC̃

T
a + ˜̄Raε)

−1, (2.40)

M̃pv = (C̃vXpC̃
T
a + ˜̄RT

avε)(C̃aXpC̃
T
a + ˜̄Raε)

−1, (2.41)

with Xp = XT
p > 0, the unique solution to the discrete algebraic Riccati

equation given by

Xp = ÃXpÃ
T − K̃pa(C̃aXpC̃

T
a + ˜̄Raε)

−1K̃T
pa + K̃pR̃εK̃

T
p . (2.42)

2.2 Moving virtual sensing algorithms

As it is most likely that the virtual location is not spatially fixed, one-dimensional

moving virtual sensing algorithms have been developed in recent years. These mov-

ing virtual sensing algorithms estimate the error signals at a number of virtual loca-

tions that move through a one-dimensional sound field. A number of moving virtual

sensing algorithms have been developed including the remote moving microphone

technique (Petersen et al., 2006), the adaptive LMS moving virtual microphone

technique (Petersen et al., 2007) and the Kalman filtering moving virtual sensing

method (Petersen, 2007). These moving virtual sensing algorithms are described as

follows.

2.2.1 The remote moving microphone technique

The remote moving microphone technique (Petersen et al., 2006), uses the remote

microphone technique (Roure and Albarrazin, 1999) to obtain estimates of the vir-

tual error signals at the moving virtual locations. In this section it is assumed that

there are L secondary sources, Ma physical sensors and Mv moving virtual sensors.
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The time-variant locations of the Mv moving virtual microphones are contained in

matrix xv(n) of size 3 × Mv, defined as (Petersen, 2007)

xv(n) =
[

xv1(n) xv2(n) ... xvMv
(n)

]
, (2.43)

where each of the moving virtual locations, xvmv
(n), are defined by three spatial

co-ordinates with respect to a reference frame and are given by

xvmv
(n) =

[
xvmv

(n) yvmv
(n) zvmv

(n)
]T

. (2.44)

It is assumed here that the Mv moving virtual locations, xv(n), are known at every

time step. In practice, the moving virtual locations could be measured using a head

tracking system based on camera vision or on ultrasonic position sensing (Petersen,

2007).

The remote moving microphone technique is used to compute estimates of the

virtual error signals, p̃v(n), at the moving virtual locations, xv(n). A block diagram

of the remote moving microphone technique is given in Fig. 2.8. In this moving

virtual sensing algorithm, the remote microphone technique is first used to obtain

estimates of the virtual error signals, ˜̄pv(n), at M̄v spatially fixed virtual microphone

locations, x̄v. It is assumed here that the moving virtual locations, xv(n), are

confined to a certain region and that the spatially fixed virtual microphone locations,

x̄v, are therefore located within this region. The vector of the M̄v spatially fixed

virtual microphone locations is given by

x̄v =
[

x̄v1 x̄v2 ... x̄vM̄v

]
, (2.45)

where each of the spatially fixed virtual locations, x̄vm̄v
, are defined by three spatial

co-ordinates with respect to a reference frame and are given by

x̄vm̄v
=
[

x̄vm̄v
ȳvm̄v

z̄vm̄v

]T

. (2.46)

The virtual error signals, ˜̄pv(n), at the spatially fixed virtual locations, x̄v, are

calculated using the remote microphone technique as described in Section 2.1.3. The

remote microphone technique requires a preliminary identification stage in which the

secondary transfer matrices, Z̃sa of size Ma×L and Z̃sv of size M̄v ×L, are modelled

as matrices of FIR or IIR filters. The M̄v × Ma sized matrix of primary transfer

functions at the spatially fixed virtual locations from the physical locations, M̃, is
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pa(n) p̃v(n)˜̄pv(n)
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+
++

Interpolate

−
∑∑

Figure 2.8: Block diagram of the remote moving microphone technique.

also estimated as a matrix of FIR or IIR filters during this preliminary identification

stage.

Estimates of the primary disturbances, p̃pa(n), at the Ma physical error sensors

are first calculated using

p̃pa(n) = pa(n) − p̃sa(n) = pa(n) − Z̃saus(n). (2.47)

Next, estimates of the primary disturbances, ˜̄ppv(n), at the spatially fixed virtual

locations, x̄v, are obtained using

˜̄ppv(n) = M̃p̃pa(n). (2.48)

Estimates, ˜̄pv(n), of the total virtual error signals at the spatially fixed virtual

locations, x̄v, are calculated as

˜̄pv(n) = ˜̄ppv(n) + ˜̄psv(n) = M̃p̃pa(n) + Z̃svus(n). (2.49)

As shown in Fig. 2.8, estimates, p̃v(n), of the virtual error signals at the moving

virtual locations, xv(n), are now obtained by linearly interpolating the virtual error

signals, ˜̄pv(n), at the spatially fixed virtual locations, x̄v.
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2.2.2 The adaptive LMS moving virtual microphone tech-

nique

The adaptive LMS moving virtual microphone technique (Petersen et al., 2007)

uses the adaptive LMS virtual microphone technique (Cazzolato, 2002) to obtain

estimates of the virtual error signals at the moving virtual locations. The adaptive

LMS moving virtual microphone technique is used to compute estimates of the

virtual error signals, p̃v(n), at the moving virtual locations, xv(n). A block diagram

of the adaptive LMS moving virtual microphone technique is shown in Fig. 2.9.

pa(n) p̃v(n)˜̄pv(n)

p̃sa(n) ˜̄psv(n)us(n)
x̄v(n)

xv(n)

Z̃sa ws

wp
p̃pa(n) ˜̄ppv(n)

+
++

Interpolate

−
∑∑

Figure 2.9: Block diagram of the adaptive LMS moving virtual microphone tech-
nique.

In this moving virtual sensing algorithm, the adaptive LMS virtual microphone

technique, as described in Section 2.1.5, is first used to obtain estimates of the

virtual error signals, ˜̄pv(n) at the spatially fixed virtual locations, x̄v. As shown in

Fig. 2.9, the primary component of the physical error signals is first calculated using

the matrix of physical secondary transfer functions Z̃sa and is given as (Petersen,

2007)

p̃pa(n) = pa(n) − p̃sa(n) = pa(n) − Z̃saus(n). (2.50)

Matrices of the primary and secondary weights, wp and ws, of size Ma × M̄v, at

the M̄v spatially fixed virtual locations, x̄v, are then estimated separately using

Eq. (2.18). Estimates, ˜̄pv(n), of the total virtual error signals at the spatially fixed

virtual locations, x̄v, can then be calculated as

˜̄pv(n) = ˜̄ppv(n) + ˜̄psv(n) = wT
p p̃pa(n) + wT

s p̃sa(n). (2.51)

As shown in Fig. 2.9, estimates, p̃v(n), of the virtual error signals at the moving

virtual locations, xv(n), are now obtained by linearly interpolating the virtual error
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signals, ˜̄pv(n), at the spatially fixed virtual locations, x̄v.

2.2.3 The Kalman filtering moving virtual sensing method

The Kalman filtering moving virtual sensing method (Petersen, 2007) uses Kalman

filtering theory to obtain estimates of the virtual error signals at the moving virtual

locations. The Kalman filtering virtual sensing method as described in Section

2.1.6 is first used to obtain estimates of the virtual error signals, ˜̄pv(n), at the

spatially fixed virtual locations, x̄v. State space realisation of the Kalman filtering

virtual sensing algorithm that estimates the virtual error signals ˜̄pv(n|n), given

measurements of the physical error signals pa(i) up to i = n, is as follows (Petersen,

2007)

⎡
⎣ z̃(n + 1|n)

˜̄pv(n|n)

⎤
⎦ =

⎡
⎣ A − KpaCa Bs − KpaDsa Kpa

C̄v − MpvCa D̄sv − M̄pvDsa M̄pv

⎤
⎦
⎡
⎢⎢⎣

z̃(n|n − 1)

us(n)

pa(n)

⎤
⎥⎥⎦ ,

(2.52)

where C̄v and D̄sv are the state space matrices of the virtual secondary transfer

path matrix ˜̄Zsv at the spatially fixed virtual locations x̄v. The Kalman gain matrix

Kpa can be found using equation Eq. (2.32) and the virtual innovation gain matrix

M̄pv, of size M̄v × Ma, is given by

M̄pv = (C̄vXpaC
T
a + R̄−1

av )R−1
aε , (2.53)

with Xpa = XT
pa, the unique stabilising solution to the discrete algebraic Riccati

equation given in Eq. (2.34). The covariance matrix between the auxiliary measure-

ment noises on the physical sensors and virtual sensors spatially fixed at x̄v, R̄av, is

defined as in Eq. (2.29).

Estimates, p̃v(n), of the virtual error signals at the moving virtual locations,

xv(n), are now obtained by linearly interpolating the virtual error signals, ˜̄pv(n), at

the spatially fixed virtual locations, x̄v.

2.3 Conclusion

This chapter has presented a review of the spatially fixed and moving virtual sensing

algorithms developed for active noise control. Spatially fixed virtual sensing algo-
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rithms are used to obtain estimates of the error signals at a number of spatially fixed

virtual locations using the physical error signals, the control signal and knowledge

of the system. The theory for a number of spatially fixed virtual sensing algorithms

including the virtual microphone arrangement (Elliott and David, 1992), the remote

microphone technique (Roure and Albarrazin, 1999), the forward difference predic-

tion technique (Cazzolato, 1999), the adaptive LMS virtual microphone technique

(Cazzolato, 2002) and the Kalman filtering virtual sensing method (Petersen et al.,

2008) has been presented here. Moving virtual sensing algorithms estimate the er-

ror signals at a number of virtual locations that move through a one-dimensional

sound field. The theory for a number of moving virtual sensing algorithms includ-

ing the remote moving microphone technique (Petersen et al., 2006), the adaptive

LMS moving virtual microphone technique (Petersen et al., 2007) and the Kalman

filtering moving virtual sensing method (Petersen, 2007) has also been presented in

this chapter.
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Chapter 3

The Spatially Fixed Stochastically

Optimal Tonal Diffuse Field

(SOTDF) Virtual Sensing Method

Since diffuse sound fields are described statistically, the question arises: “is there a

statistically optimal relationship that best describes the transfer function between

a physical and virtual sensor in a diffuse sound field?”. This chapter answers this

question, demonstrating that such a relationship exists through formulation of the

Stochastically Optimal Tonal Diffuse Field (SOTDF) virtual sensing method. The-

oretical expressions for the controlled sound field generated when employing the

SOTDF virtual sensors are derived in this chapter and the results of numerical sim-

ulations, together with experimental results obtained in a reverberant chamber, are

also presented.

Garcia-Bonito and Elliott (1995b) and Garcia-Bonito et al. (1997b) previously

investigated the performance of a virtual microphone in a pure tone diffuse sound

field using the virtual microphone arrangement (Elliott and David, 1992). The

virtual microphone arrangement projects the zone of quiet away from the physical

microphone to a virtual location using the often invalid assumption of equal primary

sound pressure at the physical and virtual locations. A preliminary identification

stage is required in this virtual sensing method in which models of the transfer

functions between the secondary source and microphones located at the physical

and virtual locations are estimated. Garcia-Bonito et al. (1997b) investigated the

performance of the virtual microphone arrangement in a local active headrest in

a diffuse sound field. At low frequencies, below 500 Hz, the attenuation achieved
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at the virtual location with the virtual microphone arrangement is comparable to

directly minimising the signal of a physical microphone located there. At higher

frequencies, however, limited attenuation is achieved at the virtual location due to

the assumption relating to the similarity of the primary field at the physical and

virtual locations being invalid.

In this chapter, the spatially fixed SOTDF virtual sensing method is presented.

SOTDF virtual microphones and virtual energy density sensors that use both pres-

sure and pressure gradient sensors are developed specifically for use in pure tone

diffuse sound fields. Of considerable significance is that the SOTDF virtual sens-

ing method does not require that the assumption of equal primary pressure at the

physical and virtual locations be made, but also preliminary identification is not

required, nor are FIR filters or similar to model the complex transfer functions be-

tween the error sensors and the sources. Furthermore, this is a fixed gain prediction

technique that is robust to physical system changes, such as observer head move-

ment, that may alter the complex transfer functions between the errors sensors and

the secondary sources.

Theoretical expressions for the controlled sound field generated with a number of

conventional control strategies and those employing the SOTDF virtual sensors are

also derived. These expressions predict the optimal control performance obtained

in a pure tone diffuse sound field and thus set performance limits for the maximum

achievable attenuation for each of the sensing and control strategies investigated.

The optimal expressions for the controlled sound field are validated in numerically

simulated and post-processed experimental control. The nine local control strategies

analysed in this chapter are as follows:

1. Cancelling the pressure at a point with one secondary source.

2. Cancelling the pressure and pressure gradient at a point with two secondary

sources.

3. Cancelling the pressures at two closely spaced points with two secondary

sources.

4. Cancelling the pressures and pressure gradients at two closely spaced points

with four secondary sources.

5. Cancelling the pressures at four closely spaced points with four secondary

sources.
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6. Cancelling the pressure at a virtual location with one secondary source using

the measured pressure and pressure gradient at a point.

7. Cancelling the pressure at a virtual location with one secondary source using

the measured pressures at two closely spaced points.

8. Cancelling the pressure and pressure gradient at a virtual location with two

secondary sources using the measured pressures and pressure gradients at two

closely spaced points.

9. Cancelling the pressure and pressure gradient at a virtual location with two

secondary sources using the measured pressures at four closely spaced points.

Table 3.1 provides a summary of research conducted on these nine local control

strategies in a pure tone diffuse sound field. Those who have analytically, numeri-

cally or experimentally analysed any of the nine control strategies are shown in the

table. All nine control strategies are analysed in this chapter using all three analysis

methods.

As shown in Table 3.1, theoretical expressions for the controlled sound field

generated with control strategies 1, 2 and 3 have been previously derived, and control

strategies 1 and 3 have been validated experimentally. Elliott et al. (1988a) derived

an expression for the zone of quiet generated at the sensor by minimising the pressure

at a point with a single secondary source in a pure tone diffuse sound field. The

zone of quiet was found to be defined by a sinc function and the primary sound field

minimised by 10 dB or more over a sphere of diameter approximately λ/10. Elliott

and Garcia-Bonito (1995) then extended previous theory to derive an expression for

the zone of quiet generated at the sensor location by cancelling the pressure and

pressure gradient at a point, or the pressures at two points, with two secondary

sources in a diffuse sound field. Driving the pressure and pressure gradient at a

point to zero reduces the primary sound field by 10 dB or more over a distance of

λ/2 in the direction of pressure gradient cancellation. Control strategy 6 has been

investigated using the virtual microphone arrangement (Garcia-Bonito and Elliott,

1995b, Garcia-Bonito et al., 1997b); however it is also investigated here using the

derived SOTDF virtual sensing method for pure tone diffuse sound fields.

Section 3.1 presents the theoretical background, the SOTDF virtual sensing

method and the derived theoretical models for the controlled sound fields generated

with each of the nine active noise control strategies listed. A description of the the-

ory used to complete the numerical and experimental work is detailed in Sections
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3.2.2 and 3.2.3 respectively. Results of numerically simulated and post-processed

experimental control are discussed and compared in Section 3.3.

Finally, it is important to note that a diffuse sound field is the most complex

sound field to control and hence provides a lower limit on the performance that can

be expected in practice (Elliott and Garcia-Bonito, 1995). The results presented in

this chapter provide a guide to the minimum control performance that is likely to

be achieved in any sound field.

3.1 Theoretical background

For the present study, the primary acoustic sound field is considered diffuse and

the sound field contributions due to each of the secondary sources are modelled as

uncorrelated single diffuse acoustic fields. The secondary acoustic sound fields may

be modelled as diffuse if each of the secondary sources is several wavelengths from

the cancellation region and remote from all other sources (Elliott and Garcia-Bonito,

1995).

Slightly different notation from the previous chapter will be adopted here for

convenience. In the following, a single diffuse acoustic field is denoted by the sub-

script i and the total acoustic field, given by the superposition of each of the single

diffuse acoustic fields, is indicated by a lack of subscript. The pressure at a point

x in a single diffuse acoustic field is given by pi(x) and the x -axis component of

pressure gradient at a point x in this field is given by gi(x).

For a displacement vector r = rxi + ryj + rzk between two points xj and xk , the

following functions are defined

A(r) = sinc(k |r|), (3.1)

B(r) =
∂A(r)

∂rx

= −k

(
sinc(k |r|) − cos(k |r|)

k |r|
)(

rx

|r|
)

, (3.2)

C(r) =
∂A2(r)

∂r 2
x

= −k2

[
sinc(k |r|)

(
rx

|r|
)2

+

(
sinc(k |r|) − cos(k |r|)

(k |r|)2

)(
1 − 3

(
rx

|r|
)2
)]

,

numberline (3.3)
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Table 3.1: Summary of research conducted on local control strategies in a pure tone diffuse sound field.

Control strategy Theoretical analysis Numerical analysis Experimental analysis

1 Elliott et al. (1988a,b). Elliott et al. (1988a,b),
Garcia-Bonito and Elliott
(1995a).

Garcia-Bonito and Elliott
(1995a).

2 Elliott and Garcia-Bonito
(1995), Garcia-Bonito and
Elliott (1995b).

Elliott and Garcia-Bonito
(1995), Garcia-Bonito and
Elliott (1995b, 1999).

3 Elliott and Garcia-Bonito
(1995).

Elliott and Garcia-Bonito
(1995), Garcia-Bonito and
Elliott (1995b).

Miyoshi and Kaneda
(1991).

4

5

6 Garcia-Bonito et al.
(1997b).

Garcia-Bonito and Elliott
(1995b), Garcia-Bonito
et al. (1997b).

Garcia-Bonito et al.
(1997b).

7

8

9
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where sinc(k |r|) = sin(k |r|)/(k |r|) and k is the wavenumber.

The correlations between the pressures and pressure gradients at two different

points xj and xk separated by r are given by (Elliott and Garcia-Bonito, 1995)

〈pi(xj )p
�
i (xk)〉 = A(r)

〈|pi|2
〉
, (3.4)

〈pi(xj )g
�
i (xk)〉 = −B(r)

〈|pi|2
〉
, (3.5)

〈gi(xj )p
�
i (xk)〉 = B(r)

〈|pi|2
〉
, (3.6)

〈gi(xj )g
�
i (xk)〉 = −C(r)

〈|pi|2
〉
, (3.7)

where 〈·〉 denotes spatial averaging and � indicates complex conjugation. In the case

that xj and xk are at the same point, the limits of A(r), B(r) and C(r) as r → 0

must be taken, yielding

〈pi(xj )p
�
i (xk)〉 =

〈|pi|2
〉
, (3.8)

〈pi(xj )g
�
i (xk)〉 = 0, (3.9)

〈gi(xj )p
�
i (xk)〉 = 0, (3.10)

〈gi(xj )g
�
i (xk)〉 =

(
k2

3

)〈|pi|2
〉
. (3.11)

If there are M sensors in the field, each measuring either pressure or pressure

gradient, then p is defined as an M × 1 matrix whose elements are the relevant

pressures and pressure gradients measured by the sensors in the total diffuse acoustic

sound field. The M×1 matrix whose elements are the relevant pressures and pressure

gradients measured by the sensors in a single diffuse acoustic sound field is therefore

given by pi .

The pressure and pressure gradient at any point in the diffuse sound field can

be expressed as the weighted sum of the M components, each of which are perfectly

correlated with a corresponding element of pi , and a component, pi,u(x) and gi,u(x),

uncorrelated with each of the elements. In a single diffuse acoustic sound field, the

pressure and pressure gradient at any point x can be written as (Elliott et al., 1988a)

pi(x) = Hp(x)pi + pi,u(x), (3.12)

gi(x) = Hg(x)pi + gi,u(x), (3.13)

where Hp(x) and Hg(x) are matrices of real scalar weights which are functions of the

position x only, and the uncorrelated pressure, pi,u(x), and uncorrelated pressure
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gradient, gi,u(x), are such that

〈
pi,u(x)pH

i

〉
= 0, (3.14)〈

gi,u(x)pH
i

〉
= 0. (3.15)

By postmultiplying Eqs. (3.12) and (3.13) by pH
i , spatially averaging and using

Eqs. (3.14) and (3.15), it can be shown that

〈
pi(x)pH

i

〉
= Hp(x)

〈
pip

H
i

〉
+
〈
pi,u(x)pH

i

〉
= Hp(x)

〈
pip

H
i

〉
, (3.16)〈

gi(x)pH
i

〉
= Hg(x)

〈
pip

H
i

〉
+
〈
gi,u(x)pH

i

〉
= Hg(x)

〈
pip

H
i

〉
. (3.17)

Rearranging Eqs. (3.16) and (3.17) yields

Hp(x) = Lp(x)M−1, (3.18)

Hg(x) = Lg(x)M−1, (3.19)

where

Lp(x) =

〈
pi(x)pH

i

〉
〈|pi|2

〉 , (3.20)

Lg(x) =

〈
gi(x)pH

i

〉
〈|pi|2

〉 , (3.21)

M =

〈
pip

H
i

〉
〈|pi|2

〉 . (3.22)

Lp(x), Lg(x) and M can be found using Eqs. (3.4) - (3.11) and therefore weight

matrices Hp(x) and Hg(x) can be found also.

Postmultiplying Eq. (3.12) by its adjoint and then spatially averaging yields

〈pi(x)p�
i (x)〉 = Hp(x)

〈
pip

H
i

〉
HH

p (x) +
〈
pi,u(x)p�

i,u(x)
〉
. (3.23)

Substituting Eqs. (3.18) and (3.22) into Eq. (3.23) gives

〈|pi|2
〉

= Hp(x)

〈
pip

H
i

〉
〈|pi|2

〉 〈|pi |2
〉
HH

p (x) +
〈|pi,u(x)|2〉

= Lp(x)
(
M−1

)H
LH

p (x)
〈|pi|2

〉
+
〈|pi,u(x)|2〉 . (3.24)

By rearranging Eq. (3.24) and noting that M is self-adjoint, the uncorrelated com-
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ponent of pressure in a single diffuse sound field is

〈|pi,u(x)|2〉 =
(
1 − Lp(x)M−1LH

p (x)
) 〈|pi|2

〉
. (3.25)

The total acoustic field, produced by the superposition of the primary acoustic

field and the acoustic field contributions due to each of the secondary sources, is

given by

p(x) =
∑

i

pi(x) =Hp(x)p +
∑

i

pi,u(x). (3.26)

If the secondary sources are used to drive each of the elements of p to zero, then

only the uncorrelated components remain and the resulting acoustic field is given

by

p(x) = pu(x) =
∑

i

pi,u(x). (3.27)

The uncorrelated components of each of the diffuse acoustic fields are uncorrelated

to each other if the assumption is made that the secondary sources are all several

wavelengths apart. Also, the resulting diffuse acoustic fields are uncorrelated to each

other except in a small region surrounding the point of cancellation. Therefore the

mean squared pressure at the point x can be expressed as

〈|p(x)|2〉 =
∑

i

〈|pi,u(x)|2〉
=

(
1 − Lp(x)M−1LH

p (x)
)∑

i

〈|pi|2
〉

=
(
1 − Lp(x)M−1LH

p (x)
) 〈|p|2〉 , (3.28)

where
〈|p|2〉 is the mean squared pressure after control. Using Eq. (3.28), expres-

sions for the controlled sound field generated with each of the nine local control

strategies are derived in the following sections. The SOTDF virtual sensing method

is introduced in Section 3.1.6.

3.1.1 Cancelling the pressure at a point with one secondary

source

Control strategy 1 involves cancelling the pressure at a point with a single secondary

source. The pressure at a single location x1 is to be sensed and therefore the matrix
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p is simply

p = [p(x1)] . (3.29)

Using Eqs. (3.4) and (3.8) to find Lp(x) and M gives

Lp(x) =

〈
pi(x)pH

i

〉
〈|pi|2

〉 = [A(x − x1)] , (3.30)

M =

〈
pip

H
i

〉
〈|pi|2

〉 = 1. (3.31)

When a single secondary source is used to drive p(x1) to zero, the mean squared

pressure at the point x is given by

〈|p(x)|2〉 =
(
1 − Lp(x)M−1LH

p (x)
) 〈|p|2〉

=
(
1 − A2(x − x1)

) 〈|p|2〉
= (1 − sinc2(k |x − x1|))

〈|p|2〉 , (3.32)

where
〈|p|2〉 is the mean squared pressure after control. This expression for the

mean squared pressure at a point x is the same as that previously derived by Elliott

et al. (1988a).

The mean squared pressure of the total acoustic field,
〈|p|2〉 , is given by the

sum of the mean squared pressure of the primary diffuse acoustic field,
〈|pp|2

〉
,

and the mean squared pressure of the secondary diffuse acoustic field,
〈|ps|2

〉
. The

distribution of the variable β =
〈|ps|

2〉
〈|pp|

2〉 is the f2,2 distribution (Yeh, 1973), if the

source and cancellation points are randomly selected, as previously shown by Elliott

et al. (1988a). An f2,2 distribution arises from the ratio of two chi-squared variables

each with 2 degrees of freedom (Yeh, 1973). An f2,2 distribution has probability

density and cumulative distribution functions given by

f2,2 (β) =
1

(1 + β)2 , (3.33)

F2,2 (β) =
β

(1 + β)
. (3.34)
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The increase in the mean squared pressure of the acoustic field after control, α, is

α =

〈|p|2〉〈|pp|2
〉 =

〈|pp|2
〉

+
〈|ps|2

〉
〈|pp|2

〉 = 1 + β. (3.35)

By substituting Eq. (3.35) into Eqs. (3.33) and (3.34), the probability density and

cumulative distribution functions for α are given by

fα,1 (α) =
1

α2
, (3.36)

Fα,1 (α) =
α − 1

α
, (3.37)

for α ≥ 1. The relative change in mean squared pressure at the point x, as a function

of α, is therefore given by

〈|p(x)|2〉〈|pp(x)|2〉 =
(
1 − sinc2(k |x − x1|)

) 〈|p|2〉〈|pp(x)|2〉
=

(
1 − sinc2(k |x − x1|)

)
α. (3.38)

3.1.2 Cancelling the pressure and pressure gradient at a

point with two secondary sources

A one-dimensional energy density sensor at x1 measures the pressure and pressure

gradient at that point. Therefore minimising the pressure and pressure gradient at a

point is equivalent to minimising the one-dimensional energy density at that point.

As the pressure and pressure gradient at the same point in a diffuse sound field are

uncorrelated, two secondary sources are required to cancel both these quantities.

For the case of cancelling the pressure and pressure gradient at a point with two

secondary sources, the sensor matrix p is given by

p =

⎡
⎣ p(x1)

g(x1)

⎤
⎦ . (3.39)
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Using Eqs. (3.4) - (3.11) to find Lp(x) and M gives

Lp(x) =

〈
pi(x)pH

i

〉
〈|pi|2

〉 =
[

A(x − x1) −B(x − x1)
]
, (3.40)

M =

〈
pip

H
i

〉
〈|pi|2

〉 =

⎡
⎣ 1 0

0 (k2/3)

⎤
⎦ . (3.41)

When two secondary sources are used to drive p(x1) and g(x1) to zero, the mean

squared pressure at the point x is given by

〈|p(x)|2〉 =
(
1 − Lp(x)M−1LH

p (x)
) 〈|p|2〉

= (1 − A2(x − x1) − 3

k2
B2(x − x1))

〈|p|2〉 . (3.42)

A one-dimensional form of this expression was previously derived by Elliott and

Garcia-Bontio (1995) by considering only points x along the line joining x and x1

parallel to the x -axis. Eq. (3.42) allows the mean squared pressure to be found at

all points in three-dimensional space.

The mean squared pressure of the total acoustic field,
〈|p|2〉 , is given by the sum

of the mean squared pressure of the primary diffuse acoustic field,
〈|pp|2

〉
, and the

mean squared pressures of the secondary diffuse acoustic fields,
〈|ps1|2

〉
and

〈|ps2|2
〉
.

Elliott and Garcia-Bontio (1995) previously stated that the distributions of each of

the variables β1 =
〈|ps1|

2〉
〈|pp|

2〉 and β2 =
〈|ps2|

2〉
〈|pp|

2〉 are given by the f2,2 distribution, if the

source and cancellation points are randomly selected. The increase in mean squared

pressure of the acoustic field after control, α, is

α =

〈|p|2〉〈|pp|2
〉 =

〈|pp|2
〉

+
〈|ps1|2

〉
+
〈|ps2|2

〉
〈|pp|2

〉 = 1 + β1 + β2. (3.43)

While the distributions of β1 and β2 are known, these two variables are not indepen-

dent and therefore the distribution of their sum, and consequently the distribution

of α, cannot be found using the sum distribution formula (Yeh, 1973).

When cancelling the pressure and pressure gradient at a point with two secondary

sources, the relative change in mean squared pressure at the point x, as a function

of α, is given by

〈|p(x)|2〉〈|pp(x)|2〉 = (1 − A2(x − x1) − 3

k2
B2(x − x1))α. (3.44)
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3.1.3 Cancelling the pressures at two points with two sec-

ondary sources

For the case of cancelling the pressures measured at two points x1 and x2, with two

secondary sources, the matrix p is given by

p =

⎡
⎣ p(x1)

p(x2)

⎤
⎦ . (3.45)

Using Eqs. (3.4) - (3.8) to find Lp(x) and M gives

Lp(x) =

〈
pi(x)pH

i

〉
〈|pi|2

〉 =
[

A(x − x1) A(x − x2)
]
, (3.46)

M =

〈
pip

H
i

〉
〈|pi|2

〉 =

⎡
⎣ 1 A(x1 − x2)

A(x2 − x1) 1

⎤
⎦ . (3.47)

When two secondary sources are used to drive p(x1) and p(x2) to zero, the mean

squared pressure at the point x is given by

〈|p(x)|2〉 =
(
1 − Lp(x)M−1LH

p (x)
) 〈|p|2〉

=

(
1 − A2(x − x1) + A2(x − x2)

1 − A2(x1 − x2)

− 2A(x − x1)A(x − x2)A(x1 − x2)

1 − A2(x1 − x2)

)〈|p|2〉 . (3.48)

A one-dimensional form of this expression was previously derived by Elliott

and Garcia-Bontio (1995) by considering only points x along the line joining x1

and x2 parallel to the x -axis. Eq. (3.48) allows the mean squared pressure to be

found at all points in three-dimensional space. At the limit where the spacing be-

tween x1 and x2 converges to zero in the x -direction, the expression for the mean

squared pressure converges to that of pressure and pressure gradient cancellation

with two secondary sources, as given by Eq. (3.42). This is as expected, since as

x1 and x2 approach the same point, the component of pressure gradient in the x -

direction between points x1 and x2 becomes perfectly correlated with p(x1) and

p(x2). Therefore, this component of pressure gradient can be accurately estimated

as limx2→x1
(p(x1) − p(x2))/ |x1−x2|.

It can be shown that the distribution of the variable α, the increase in mean
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squared pressure of the acoustic field, has the same distribution as in the previous

case. When cancelling the pressures at two points with two secondary sources, the

relative change in mean squared pressure at the point x is given by

〈|p(x)|2〉〈|pp(x)|2〉 =

(
1 − A2(x − x1) + A2(x − x2) − 2A(x − x1)A(x − x2)A(x1 − x2)

1 − A2(x1 − x2)

)
α.

(3.49)

3.1.4 Cancelling the pressures and pressure gradients at two

points with four secondary sources

By using multiple energy density sensors it is possible to further extend the zone of

quiet beyond that achieved with a single energy density sensor. Two one-dimensional

energy density sensors measure the pressures and pressure gradients at two points x1

and x2. These are four independent quantities and therefore four secondary sources

are required. For the case of cancelling the pressures and pressure gradients at two

points with four secondary sources, the matrix p is given by

p =

⎡
⎢⎢⎢⎢⎢⎣

p(x1)

p(x2)

g(x1)

g(x2)

⎤
⎥⎥⎥⎥⎥⎦ . (3.50)

Using Eqs. (3.4) - (3.11) to find Lp(x) and M gives

Lp(x) =

〈
pi(x)pH

i

〉
〈|pi|2

〉
=

[
A(x − x1) A(x − x2) −B(x − x1) −B(x − x2)

]
, (3.51)

M =

〈
pip

H
i

〉
〈|pi|2

〉

=

⎡
⎢⎢⎢⎢⎢⎣

1 A(x1 − x2) 0 −B(x1 − x2)

A(x1 − x2) 1 B(x1 − x2) 0

0 B(x1 − x2) (k2/3) −C(x1 − x2)

−B(x1 − x2) 0 −C(x1 − x2) (k2/3)

⎤
⎥⎥⎥⎥⎥⎦ .

numberline (3.52)
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When four secondary sources are used to drive p(x1), p(x2), g(x1) and g(x2) to zero,

the mean squared pressure after control at the point x is

〈|p(x)|2〉 =
(
1 − Lp(x)M−1LH

p (x)
) 〈|p|2〉 . (3.53)

The relative change in the mean squared pressure at the point x is therefore given

by

〈|p(x)|2〉〈|pp(x)|2〉 =
(
1 − Lp(x)M−1LH

p (x)
)
α. (3.54)

3.1.5 Cancelling the pressures at four points with four sec-

ondary sources

For the case of cancelling the pressures at four points with four secondary sources,

the matrix p is given by

p =

⎡
⎢⎢⎢⎢⎢⎣

p(x1)

p(x2)

p(x3)

p(x4)

⎤
⎥⎥⎥⎥⎥⎦ . (3.55)

Using Eqs. (3.4) - (3.8) to find Lp(x) and M gives

Lp(x) =

〈
pi(x)pH

i

〉
〈|pi|2

〉
=

[
A(x − x1) A(x − x2) A(x − x3) A(x − x4)

]
, (3.56)

M =

〈
pip

H
i

〉
〈|pi|2

〉

=

⎡
⎢⎢⎢⎢⎢⎣

1 A(x2 − x1) A(x3 − x1) A(x4 − x1)

A(x1 − x2) 1 A(x3 − x2) A(x4 − x2)

A(x1 − x3) A(x2 − x3) 1 A(x4 − x3)

A(x1 − x4) A(x2 − x4) −A(x3 − x4) 1

⎤
⎥⎥⎥⎥⎥⎦ . (3.57)
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When four secondary sources are used to drive p(x1), p(x2), p(x3) and p(x4) to zero,

the mean squared pressure after control at the point x is

〈|p(x)|2〉 =
(
1 − Lp(x)M−1LH

p (x)
) 〈|p|2〉 . (3.58)

The relative change in the mean squared pressure at the point x is therefore given

by

〈|p(x)|2〉〈|pp(x)|2〉 =
(
1 − Lp(x)M−1LH

p (x)
)
α. (3.59)

3.1.6 Cancelling the pressure at a virtual location with one

secondary source using the measured pressure and

pressure gradient at a point

Instead of cancelling the measured quantities, the pressure at a virtual location x0

is to be minimised. In order to do this, the pressure at the virtual location, p(x0),

must be estimated from measured quantities, in this case, p(x1) and g(x1), thus

creating a virtual microphone. From Section 3.1.2 in which the measured quantities

are p(x1) and g(x1), the matrix p is given by

p =

⎡
⎣ p(x1)

g(x1)

⎤
⎦ . (3.60)

As stated in Eq. (3.12), the pressure at any point x is given by

p(x) = Hp(x)p + pu(x). (3.61)

Therefore the pressure at any point x can be expressed as the sum of two compo-

nents, one of which is perfectly correlated with the elements of p, and a perfectly

uncorrelated component. If only the measured quantities p(x1) and g(x1) are known,

the best possible estimate of pu(x) is zero since it is perfectly uncorrelated with the

measured signals. Therefore, the best estimate of the pressure, p(x), is given by

p̃(x) = Hp(x)p, (3.62)
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and the best estimate of the pressure at the virtual location, x0, is

p̃(x0) = Hp(x0)p. (3.63)

As stated in Section 3.1.2, matrices Lp(x) and M are

Lp(x) =

〈
pi(x)pH

i

〉
〈|pi|2

〉 =
[

A(x − x1) −B(x − x1)
]
, (3.64)

M =

〈
pip

H
i

〉
〈|pi|2

〉 =

⎡
⎣ 1 0

0 (k2/3)

⎤
⎦ . (3.65)

The matrix of weights Hp(x0) can now be found using Eq. (3.18) as

Hp(x0) =
[

Hpp1(x0) Hpg1(x0)
]

= Lp(x0)M
−1

=
[

A(x0 − x1) − 3
k2 B(x0 − x1)

]
. (3.66)

The best estimate of pressure at the virtual location, x0, is therefore given by

p̃(x0) = Hp(x0)p

= A(x0 − x1)p(x1) − 3

k2
B(x0 − x1)g(x1). (3.67)

This diffuse field extrapolation method fits weight function Hp(x0) to the known

data in p. The estimated pressure, p̃(x0), normalised by p(x1) is

p̃(x0)

p(x1)
= A(x0 − x1) − 3

k2
B(x0 − x1)

g(x1)

p(x1)
. (3.68)

The normalised extrapolation function used to estimate the pressure at the virtual

location given in Eq. (3.68) is shown in Fig. 3.1 for the values of g(x1)
p(x1)

given in Table

3.2. The locations of the physical sensors are indicated with a vertical line. The

result of the above derivation is that this diffuse field extrapolation method fits a sinc

type function to the known data, unlike the traditional forward difference virtual

microphone prediction technique that fits a polynomial to the measured quantities.

It should be noted that no phase information is contained in the stochastically

optimal weight function. This is because a diffuse sound field consists of sound

waves coming from all directions with equal probability and amplitude and hence
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Table 3.2: Values of g(x1)
p(x1)

used to plot the normalised extrapolation function.

g(x1)
p(x1)

1
10

= −20 dB√
1
10

= −10 dB

1 = 0 dB√
10 = 10 dB

10 = 20 dB

the phase information is cancelled with spatial averaging.

As the distance between x0 and x1 increases, the pressure estimate, p̃(x0), ap-

proaches zero. This is because the pressure at the virtual location and the known

quantities become uncorrelated as the distance between x0 and x1 increases. This

is the case for any virtual sensor in a diffuse sound field. If none of the distances

between the virtual location and the physical sensors are small (relative to a wave-

length), then the pressure and pressure gradient at the virtual location will be un-

correlated with the measured quantities and the best estimate of the pressure and

pressure gradient at the virtual location will be close to zero.

When the estimate of the pressure at the virtual location, p̃(x0), given in

Eq. (3.67) is cancelled in a pure tone diffuse sound field, the total complex pressure at

a position x, where x = x0+Δx, is given by p(x). The total complex pressure, p(x),

is due to both the primary and the secondary sources. The total complex pressure,

p(x), can be decomposed into two components. The first is a component perfectly

spatially correlated with the estimate of the pressure at the virtual location, p̃(x0),

and the second is a component perfectly spatially uncorrelated with p̃(x0). The total

complex pressure at any point x is the sum of these two components and may be

written as

p(x) = hpp(x)p̃(x0) + puu(x), (3.69)

where hpp(x) is a function of the distance x and puu(x) is defined such that

〈puu(x)p̃�(x0)〉 = 0. (3.70)

By postmultiplying Eq. (3.69) by p̃�(x0) and spatially averaging it can be shown

that

〈p(x)p̃�(x0)〉 = hpp(x)
〈|p̃(x0)|2

〉
. (3.71)
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Figure 3.1: Normalised diffuse field extrapolation functions, p̃(x0)/p(x1) (Eq.
(3.68)), to estimate the pressure at the virtual location using the pressure and pres-
sure gradient at a point as a function of differing pressure gradient and pressure
ratios at the measurement point x1.
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Using Eqs. (3.4) and (3.5), the correlation between the total complex pressure at x

and the estimate of the pressure at the virtual location can be written as

〈p(x)p̃�(x0)〉 =

(
A(x0 − x1)A(x − x1)+

3

k2
B(x0 − x1)B(x − x1)

)〈|p|2〉 . (3.72)

Using Eqs. (3.8) - (3.11), it can be shown that the mean squared pressure estimate at

the virtual location, using Eq. (3.67), is related to the total mean squared pressure

by 〈|p̃(x0)|2
〉

=

(
A2(x0 − x1) +

3

k2
B2(x0 − x1)

)〈|p|2〉 . (3.73)

By substituting Eqs. (3.72) and (3.73) into Eq. (3.71), the weight function hpp(x) is

found to be

hpp(x) =
A(x0 − x1)A(x − x1)+

3
k2 B(x0 − x1)B(x − x1)

A2(x0 − x1) + 3
k2 B2(x0 − x1)

. (3.74)

The space-average mean squared pressure at x, which is uncorrelated with p̃(x0), is

obtained by multiplying both sides of Eq. (3.69) by their conjugates and spatially

averaging to give

〈|puu(x)|2〉 =
〈|p|2〉− |hpp(x)|2 〈|p̃(x0)|2

〉
. (3.75)

Using Eqs. (3.73) and (3.74), the space-average uncorrelated pressure may be written

as

〈|puu(x)|2〉 =

(
1 −

(
A(x0 − x1)A(x − x1)+

3
k2 B(x0 − x1)B(x − x1)

)2

A2(x0 − x1) + 3
k2 B2(x0 − x1)

)〈|p|2〉 .

(3.76)

If p̃(x0) is cancelled with a single secondary source, the residual pressure at x is,

according to Eq. (3.69), puu(x) only. The mean squared pressure at a position x in

the controlled sound field is given by Eq. (3.76),

〈|p(x)|2〉 =

(
1 −

(
A(x0 − x1)A(x − x1)+

3
k2 B(x0 − x1)B(x − x1)

)2

A2(x0 − x1) + 3
k2B2(x0 − x1)

)〈|p|2〉 .

(3.77)

As p(x) is the pressure due to both the primary and secondary sound fields,
〈|p|2〉

corresponds to the space-average mean square pressure after cancellation of the

pressure at the virtual location. When the pressure at the virtual location, x0,
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estimated using the pressure and pressure gradient at the point x1, is cancelled with

a single secondary source, the relative change in mean squared pressure at a point

x in the controlled sound field is given by

〈|p(x)|2〉〈|pp|2
〉 =

(
1 −

(
A(x0 − x1)A(x − x1)+

3
k2 B(x0 − x1)B(x − x1)

)2

A2(x0 − x1) + 3
k2B2(x0 − x1)

)
α. (3.78)

If x0 = x1, then p̃(x0) = p(x1) and this control strategy is equivalent to control

strategy 1, minimising the pressure at a point with a single control source.

An expression for the lower bound on control performance when the pressure at

the virtual location is estimated using the pressure and pressure gradient at a point

has also been derived and is given in Appendix A.1. This expression gives the worst

case limit on virtual sensing performance.

3.1.7 Cancelling the pressure at a virtual location with one

secondary source using the measured pressures at two

points

In this case, the pressure at a virtual location, x0, is driven to zero with one secondary

source using the measured quantities p(x1) and p(x2). From Section 3.1.3, the

matrix p is given by

p =

⎡
⎣ p(x1)

p(x2)

⎤
⎦ , (3.79)

and matrices Lp(x) and M are

Lp(x) =

〈
pi(x)pH

i

〉
〈|pi|2

〉 =
[

A(x − x1) A(x − x2)
]
, (3.80)

M =

〈
pip

H
i

〉
〈|pi|2

〉 =

⎡
⎣ 1 A(x1 − x2)

A(x1 − x2) 1

⎤
⎦ . (3.81)
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From Eq. (3.18), the matrix of weights is found to be

Hp(x) =
[

Hpp1(x) Hpp2(x)
]

= Lp(x)M−1

=
[

A(x−x1)−A(x1−x2)A(x−x2)
1−A(x1−x2)2

A(x−x2)−A(x1−x2)A(x−x1)
1−A(x1−x2)2

]
. (3.82)

As in the previous section, the best estimate of the pressure at the virtual location,

x0, is therefore given by

p̃(x0) = Hp(x0)p

=
A(x0 − x1) − A(x1 − x2)A(x0 − x2)

1 − A(x1 − x2)2
p(x1)

+
A(x0 − x2) − A(x1 − x2)A(x0 − x1)

1 − A(x1 − x2)2
p(x2). (3.83)

This diffuse field extrapolation method fits weight function Hp(x0) to the known

data in p. The estimated pressure, p̃(x0), normalised by p(x1) is

p̃(x0)

p(x1)
=

A(x0 − x1) − A(x1 − x2)A(x0 − x2)

1 − A(x1 − x2)2

+
A(x0 − x2) − A(x1 − x2)A(x0 − x1)

1 − A(x1 − x2)2

p(x2)

p(x1)
. (3.84)

The normalised extrapolation function used to estimate the pressure at the virtual

location given in Eq. (3.84) is shown in Fig. 3.2 for the values of p(x2)
p(x1)

given in Table

3.3. The locations of the physical microphones are indicated by the vertical lines.

Table 3.3: Values of p(x2)
p(x1)

used to plot the normalised extrapolation function.

p(x1)
p(x2)

1
10

= −20 dB√
1
10

= −10 dB

1 = 0 dB√
10 = 10 dB

10 = 20 dB

Following the same method as in the previous section, an expression for the mean

squared pressure at a point x in the controlled sound field can be found. In this
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Figure 3.2: Normalised diffuse field extrapolation functions, p̃(x0)/p(x1) (Eq.
(3.84)), to estimate the pressure at the virtual location using the measured pres-
sures at two points as a function of differing pressure ratios at the two measurement
points x1 and x2.
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control strategy, the best estimate of the pressure at the virtual location, p̃(x0), is

given by Eq. (3.83). For convenience let

A1 =
A(x0 − x1) − A(x1 − x2)A(x0 − x2)

1 − A(x1 − x2)2
, (3.85)

A2 =
A(x0 − x2) − A(x1 − x2)A(x0 − x1)

1 − A(x1 − x2)2
, (3.86)

so that

p̃(x0) = A1p(x1) + A2p(x2). (3.87)

Using Eq. (3.4), the correlation between the total complex pressure at x and the

estimate of the pressure at the virtual location is found to be

〈p(x)p̃�(x0)〉 = (A1A(x − x1) + A2A(x − x2))
〈|p|2〉 . (3.88)

Using Eqs. (3.4) and (3.8), it can be shown that the mean squared pressure estimate

at the virtual location, using Eq. (3.87), is related to the total mean squared pressure

by 〈|p̃(x0)|2
〉

=
(
A2

1 + A2
2 + 2A1A2A(x1 − x2)

) 〈|p|2〉 . (3.89)

By substituting Eqs. (3.88) and (3.89) into Eq. (3.71), the weight function hpp(x) is

found to be

hpp(x) =
A1A(x − x1) + A2A(x − x2)

A2
1 + A2

2 + 2A1A2A(x1 − x2)
. (3.90)

By substituting Eqs. (3.89) and (3.90) into Eq. (3.75), the space-average uncorrelated

pressure becomes

〈|puu(x)|2〉 =

(
1 − (A1A(x − x1) + A2A(x − x2))

2

A2
1 + A2

2 + 2A1A2A(x1 − x2)

)〈|p|2〉 . (3.91)

When p̃(x0) is cancelled with a single control source the residual pressure at x is,

according to Eq. (3.69), puu(x) only. Therefore, the mean squared pressure at a

position x in the controlled sound field is given by

〈|p(x)|2〉 =

(
1 − (A1A(x − x1) + A2A(x − x2))

2

A2
1 + A2

2 + 2A1A2A(x1 − x2)

)〈|p|2〉 . (3.92)

When the pressure at the virtual location, x0, estimated using the pressures at the

points x1 and x2, is cancelled with a single secondary source, the relative change in
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mean squared pressure is given by

〈|p(x)|2〉〈|pp|2
〉 =

(
1 − (A1A(x − x1) + A2A(x − x2))

2

A2
1 + A2

2 + 2A1A2A(x1 − x2)

)
α. (3.93)

If x0 is the same point as x1, then p̃(x0) = p(x1) as expected. The control strategy

therefore collapses to the first strategy of pressure control at a point. At the limit

where the spacing between x1 and x2 converges to zero, the expression for the mean

squared pressure converges to that found in the previous section where the pressure

at x0 is cancelled using the pressure and pressure gradient at x1.

An expression for the lower bound on control performance when the pressure

at the virtual location is estimated using the pressures at two points has also been

derived and is given in Appendix A.2. This expression gives the worst case limit on

virtual sensing performance.

3.1.8 Cancelling the pressure and pressure gradient at a vir-

tual location with two secondary sources using the

measured pressures and pressure gradients at two

points

Instead of cancelling the pressure only at the virtual location, the pressure and

pressure gradient at x0 may be minimised, generating a virtual energy density sensor.

In order to do this, the pressure, p(x0), and pressure gradient, g(x0), at the virtual

location must be estimated from measured quantities, in this case p(x1), g(x1),

p(x2) and g(x2). From Section 3.1.4, in which the measured quantities are p(x1),

g(x1), p(x2) and g(x2), the matrix p is given by

p =

⎡
⎢⎢⎢⎢⎢⎣

p(x1)

p(x2)

g(x1)

g(x2)

⎤
⎥⎥⎥⎥⎥⎦ . (3.94)
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As stated in Eqs. (3.12) and (3.13), the pressure and pressure gradient at any point

x are given by

p(x) = Hp(x)p + pu(x), (3.95)

g(x) = Hg(x)p + gu(x). (3.96)

Therefore the pressure and pressure gradient at the virtual location x0 can be ex-

pressed as the sum of two components, one of which is perfectly correlated with

the elements of p, and an uncorrelated component. If only the measured quanti-

ties p(x1), g(x1), p(x2) and g(x2) are known, the best possible estimates of pu(x)

and gu(x) are zero since they are perfectly uncorrelated with the measured signals.

Therefore, the best estimates of the pressure and pressure gradient at the virtual

location are given by

p̃(x0) = Hp(x0)p, (3.97)

g̃(x0) = Hg(x0)p. (3.98)

Matrices Lp(x), Lg(x) and M are

Lp(x) =

〈
pi(x)pH

i

〉
〈|pi|2

〉
=

[
A(x − x1) A(x − x2) −B(x − x1) −B(x − x2)

]
, (3.99)

Lg(x) =

〈
gi(x)pH

i

〉
〈|pi|2

〉
=

[
B(x − x1) B(x − x2) −C(x − x1) −C(x − x2)

]
, (3.100)

M =

〈
pip

H
i

〉
〈|pi|2

〉

=

⎡
⎢⎢⎢⎢⎢⎣

1 A(x1 − x2) 0 −B(x1 − x2)

A(x1 − x2) 1 B(x1 − x2) 0

0 B(x1 − x2) (k2/3) −C(x1 − x2)

−B(x1 − x2) 0 −C(x1 − x2) (k2/3)

⎤
⎥⎥⎥⎥⎥⎦ .

numberline (3.101)
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Weight matrices Hp(x0) and Hg(x0) can be found as

Hp(x0) = Lp(x0)M
−1, (3.102)

Hg(x0) = Lg(x0)M
−1, (3.103)

where

Hp(x0) =
[

Hpp1(x0) Hpp2(x0) Hpg1(x0) Hpg2(x0)
]
, (3.104)

Hg(x0) =
[

Hgp1(x0) Hgp2(x0) Hgg1(x0) Hgg2(x0)
]
. (3.105)

Weight matrices Hp(x0) and Hg(x0) can be used in Eqs. (3.97) and (3.98) to give

an estimate of the pressure and pressure gradient at the virtual location.

When the estimates of the pressure and pressure gradient at the virtual location

given in Eqs. (3.97) and (3.98) are cancelled in a pure tone diffuse sound field,

the total complex pressure at a position x, where x = x0+Δx, is given by p(x).

The total complex pressure, p(x), can be decomposed into three components. The

first is a component perfectly spatially correlated with the estimate of the pressure,

p̃(x0), the second is a component perfectly spatially correlated with the estimate

of the pressure gradient, g̃(x0), and the third is a component perfectly spatially

uncorrelated with both p̃(x0) and g̃(x0). The total complex pressure at any point x

is the sum of these three components and may be written as

p(x) = hpp(x)p̃(x0) + hpg(x)g̃(x0) + puu(x), (3.106)

where hpp(x) and hpg(x) are a function of the distance x. The uncorrelated compo-

nent of pressure, puu(x), is defined such that

〈puu(x)p̃�(x0)〉 = 0, (3.107)

〈puu(x)g̃�(x0)〉 = 0. (3.108)

The estimated pressure and pressure gradient at the virtual location, x0, are also

on average uncorrelated so that

〈ĝ(x0)p̃
�(x0)〉 = 0, (3.109)

〈p̂(x0)g̃
�(x0)〉 = 0. (3.110)

By postmultiplying Eq. (3.106) by p̃(x0) and spatially averaging it can be shown
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that

〈p(x)p̃�(x0)〉 = hpp(x)
〈|p̃(x0)|2

〉
. (3.111)

Using Eqs. (3.4) and (3.5), the correlation between the total complex pressure at x

and the estimate of the pressure at the virtual location can be written as

〈p(x)p̃�(x0)〉 = Ppx

〈|p|2〉 , (3.112)

where

Ppx = Hpp1(x0)A(x − x1) + Hpp2(x0)A(x − x2)

− Hpg1(x0)B(x − x1) − Hpg2(x0)B(x − x2). (3.113)

Using Eqs. (3.4) - (3.11), it can be shown that the mean squared pressure estimate

at the virtual location, x0, is related to the total mean squared pressure by

〈|p̃(x0)|2
〉

= P0

〈|p|2〉 , (3.114)

where

P0 = (Hpp1(x0)Hpp2(x0) + Hpp2(x0)Hpp1(x0))A(x2 − x1)

+ (Hpp2(x0)Hpg1(x0) − Hpg2(x0)Hpp1(x0)) B(x1 − x2)

+ (Hpp1(x0)Hpg2(x0) − Hpg1(x0)Hpp2(x0))B(x2 − x1)

− Hpg1(x0)Hpg2(x0)C(x2 − x1) − Hpg2(x0)Hpg1(x0)C(x1 − x2)

+ H2
pp1(x0) + H2

pp2(x0) +
k2

3

(
H2

pg1(x0) + H2
pg2(x0)

)
. (3.115)

By substituting Eqs. (3.112) and (3.114) into Eq. (3.111), the weight function hpp(x)

is found to be

hpp(x) =
Ppx

P0
. (3.116)

By postmultiplying Eq. (3.106) by g̃�(x0) and spatially averaging, it can be shown

that the correlation between the pressure field and the pressure gradient estimate

at the virtual location is given by

〈p(x)g̃�(x0)〉 = hpg(x)
〈|g̃(x0)|2

〉
. (3.117)

Using Eqs. (3.4) and (3.5), the correlation between the total complex pressure at x
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and the estimate of the pressure gradient at the virtual location can be written as

〈p(x)g̃�(x0)〉 = Pgx

〈|p|2〉 , (3.118)

where

Pgx = Hgp1(x0)A(x − x1) + Hgp2(x0)A(x − x2)

− Hgg1(x0)B(x − x1) − Hgg2(x0)B(x − x2). (3.119)

Using Eqs. (3.4) - (3.11), it can be shown that the mean squared pressure gradient

estimate at the virtual location is related to the total mean squared pressure by

〈|g̃(x0)|2
〉

= G0

〈|p|2〉 , (3.120)

where

G0 = (Hgp1(x0)Hgp2(x0) + Hgp2(x0)Hgp1(x0))A(x2 − x1)

+ (Hgp2(x0)Hgg1(x0) − Hgg2(x0)Hgp1(x0))B(x1 − x2)

+ (Hgp1(x0)Hgg2(x0) − Hgg1(x0)Hgp2(x0))B(x2 − x1)

− Hgg1(x0)Hgg2(x0)C(x2 − x1) − Hgg2(x0)Hgg1(x0)C(x1 − x2)

+ H2
gp1(x0) + H2

gp2(x0) +
k2

3

(
H2

gg1(x0) + H2
gg2(x0)

)
. (3.121)

By substituting Eqs. (3.118) and (3.120) into Eq. (3.117), the weight function hpg(x)

is found to be

hpg(x) =
Pgx

G0

. (3.122)

The space-average mean squared pressure at x, which is uncorrelated with both p̃(x0)

and g̃(x0), is obtained by multiplying both sides of Eq. (3.106) by their conjugates

and spatially averaging to give

〈|puu(x)|2〉 =
〈|p|2〉− (|hpp(x)|2 〈|p̃(x0)|2

〉
+ |hpg(x)|2 〈|g̃(x0)|2

〉)
. (3.123)

By substituting Eqs. (3.114), (3.116), (3.120) and (3.122) into Eq. (3.123), the space-

average uncorrelated pressure becomes

〈|puu(x)|2〉 =

(
1 −

(
P 2

px

P0
+

P 2
gx

G0

))〈|p|2〉 . (3.124)
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If p̃(x0) and g̃(x0) are both cancelled with two secondary sources, the residual pres-

sure at a point x is, according to Eq. (3.106), puu(x) only. Therefore, the mean

squared pressure at a position x in the controlled sound field is given by

〈|p(x)|2〉 =

(
1 −

(
P 2

px

P0
+

P 2
gx

G0

))〈|p|2〉 . (3.125)

When the pressure and pressure gradient at the virtual location, x0, estimated using

the pressures and pressure gradients at the points x1 and x2, are cancelled with two

secondary sources, the relative change in mean squared pressure is given by

〈|p(x)|2〉〈|pp|2
〉 =

(
1 −

(
P 2

px

P0
+

P 2
gx

G0

))
α. (3.126)

An expression for the lower bound on control performance when the virtual pres-

sure and pressure gradient are estimated using the pressures and pressure gradients

at two points has been derived and is given in Appendix A.3. This expression gives

the worst case limit on virtual sensing performance.

3.1.9 Cancelling the pressure and pressure gradient at a vir-

tual location with two secondary sources using the

measured pressures at four points

In this case, the pressure and pressure gradient at a virtual location x0 are driven to

zero with two secondary sources using the measured quantities p(x1), p(x2) , p(x3)

and p(x4). From Section 3.1.5, the matrix p is given by

p =

⎡
⎢⎢⎢⎢⎢⎣

p(x1)

p(x2)

p(x3)

p(x4)

⎤
⎥⎥⎥⎥⎥⎦ , (3.127)
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and matrices Lp(x), Lg(x) and M are

Lp(x) =

〈
pi(x)pH

i

〉
〈|pi|2

〉
=

[
A(x − x1) A(x − x2) A(x − x3) A(x − x4)

]
, (3.128)

Lg(x) =

〈
gi(x)pH

i

〉
〈|pi|2

〉
=

[
B(x − x1) B(x − x2) B(x − x3) B(x − x4)

]
, (3.129)

M =

〈
pip

H
i

〉
〈|pi|2

〉

=

⎡
⎢⎢⎢⎢⎢⎣

1 A(x2 − x1) A(x3 − x1) A(x4 − x1)

A(x1 − x2) 1 A(x3 − x2) A(x4 − x2)

A(x1 − x3) A(x2 − x3) 1 A(x4 − x3)

A(x1 − x4) A(x2 − x4) −A(x3 − x4) 1

⎤
⎥⎥⎥⎥⎥⎦ .(3.130)

Weights matrices Hp(x0) and Hg(x0) can be found as

Hp(x0) = Lp(x0)M
−1, (3.131)

Hg(x0) = Lg(x0)M
−1, (3.132)

where

Hp(x0) =
[

Hpp1(x0) Hpp2(x0) Hpp3(x0) Hpp4(x0)
]
, (3.133)

Hg(x0) =
[

Hgp1(x0) Hgp2(x0) Hgp3(x0) Hgp4(x0)
]
. (3.134)

Weights matrices Hp(x0) and Hg(x0) can be used in Eqs. (3.97) and (3.98) to give

an estimate of the pressure and pressure gradient at the virtual location.

The method described in Section 3.1.8 can be used to derive an expression for the

mean squared pressure at a point x in the controlled sound field. Using Eq. (3.4),

the correlation between the total complex pressure at x and the estimate of the

pressure at the virtual location is found to be

〈p(x)p̃�(x0)〉 = Ppx

〈|p|2〉 , (3.135)
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where

Ppx = Hpp1(x0)A(x − x1) + Hpp2(x0)A(x − x2)

+ Hpp3(x0)A(x − x3) + Hpp4(x0)A(x − x4). (3.136)

Using Eqs. (3.4) and (3.8), it can be shown that the mean squared estimate of the

pressure at the virtual location is related to the total mean squared pressure by

〈|p̃(x0)|2
〉

= P0

〈|p|2〉 , (3.137)

where

P0 = 2Hpp1(x0)Hpp2(x0)A(x1 − x2) + 2Hpp1(x0)Hpp3(x0)A(x1 − x3)

+ 2Hpp1(x0)Hpp4(x0)A(x1 − x4) + 2Hpp2(x0)Hpp3(x0)A(x2 − x3)

+ 2Hpp2(x0)Hpp4(x0)A(x2 − x4) + 2Hpp3(x0)Hpp4(x0)A(x3 − x4)

+ H2
pp1(x0) + H2

pp2(x0) + H2
pp3(x0) + H2

pp4(x0). (3.138)

By substituting Eqs. (3.135) and (3.137) into Eq. (3.111), the weight function hpp(x)

is found to be

hpp(x) =
Ppx

P0
. (3.139)

Using Eq. (3.4), the correlation between the total complex pressure at x and the

estimate of the pressure gradient at the virtual location can be written as

〈p(x)g̃�(x0)〉 = Pgx

〈|p|2〉 , (3.140)

where

Pgx = Hgp1(x0)A(x − x1) + Hgp2(x0)A(x − x2)

+ Hgp3(x0)A(x − x3) + Hgp4(x0)A(x − x4), (3.141)

Using Eqs. (3.4) and (3.8), it can be shown that the mean squared estimate of the

pressure gradient at the virtual location is related to the total mean squared pressure

by 〈|g̃(x0)|2
〉

= G0

〈|p|2〉 , (3.142)
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where

G0 = 2Hgp1(x0)Hgp2(x0)A(x1 − x2) + 2Hgp1(x0)Hgp3(x0)A(x1 − x3)

+ 2Hgp1(x0)Hgp4(x0)A(x1 − x4) + 2Hgp2(x0)Hgp3(x0)A(x2 − x3)

+ 2Hgp2(x0)Hgp4(x0)A(x2 − x4) + 2Hgp3(x0)Hgp4(x0)A(x3 − x4)

+ H2
gp1(x0) + H2

gp2(x0) + H2
gp3(x0) + H2

gp4(x0). (3.143)

By substituting Eqs. (3.140) and (3.142) into Eq. (3.117), the weight function hpg(x)

is found to be

hpg(x) =
Pgx

G0
. (3.144)

By substituting Eqs. (3.137), (3.139), (3.142) and (3.144) into Eq. (3.123), the space-

average uncorrelated pressure becomes

〈|puu(x)|2〉 =

(
1 −

(
P 2

px

P0

+
P 2

gx

G0

))〈|p|2〉 . (3.145)

If p̃(x0) and g̃(x0) are cancelled with two secondary sources, the residual pressure

at x would, according to Eq. (3.106), be puu(x) only. The mean squared pressure

at a position x in the controlled sound field would therefore be given by Eq. (3.145)

and is 〈|p(x)|2〉 =

(
1 −

(
P 2

px

P0
+

P 2
gx

G0

))〈|p|2〉 . (3.146)

When the pressure and pressure gradient at the virtual location, x0, estimated using

the pressures at the points x1, x2, x3 and x4, are cancelled with two secondary

sources, the relative change in mean squared pressure is given by

〈|p(x)|2〉〈|pp|2
〉 =

(
1 −

(
P 2

px

P0
+

P 2
gx

G0

))
α. (3.147)

An expression for the lower bound on control performance when the virtual

pressure and pressure gradient have been estimated using the pressures at four

points has been derived and is given in Appendix A.4. This expression gives the

worst case limit on virtual sensing performance.
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3.2 Numerical and experimental validation

The performance of the nine local control strategies was evaluated in numerically

simulated and post-processed experimental control. Quadratic optimisation was

used to simulate control using both the numerically simulated and experimentally

measured transfer functions, giving the limit on the maximum achievable feedfor-

ward control performance. Details of quadratic optimisation are given in Section

3.2.1. The theory used to model the acoustic sound field is presented in Section

3.2.2, while Section 3.2.3 details the experimental method. The numerical and ex-

perimental results are then presented in Section 3.3.

3.2.1 Optimal narrowband control

In this section, the optimal narrowband control performance that can be obtained

at the desired locations of maximum attenuation is derived. An optimal feedforward

control approach is used assuming that a feedforward reference signal is available

that is strongly correlated to the primary disturbances measured at the desired

locations. To determine the theoretical limit on the achievable feedforward control

performance in a tonal primary sound field, quadratic optimisation is used (Elliott,

2001). The objective of quadratic optimisation is to calculate the optimal secondary

source strengths required to minimise a cost function, which in this case is the

square of the total quantities measured at the sensors. The optimal secondary source

strengths required to minimise this cost function are derived here. This technique

is used to simulate control using both the numerically simulated model and the

experimentally measured transfer functions.

As previously stated, p is defined as an M × 1 vector whose elements are the

relevant pressures and pressure gradients measured by the sensors in the total diffuse

acoustic field. Now pp is defined as an M ×1 vector whose elements are the relevant

pressures and pressure gradients measured by the sensors in the primary diffuse

acoustic field alone. Using control strategy 2 as an example, where the pressure and

pressure gradient at a point, x1, are to be minimised, the vector pp is

pp = [ pp(x1) gp(x1) ]T. (3.148)

Let the strength of the L secondary sources be written as

us = [ us1 us2 ... usl ]T. (3.149)
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If the acoustic transfer impedance matrix, defining the relationship between the

quantities measured at the error sensors and each of the secondary source strengths,

is given by

Zs =

⎡
⎢⎢⎢⎢⎢⎣

Zs11 Zs12 · · · Zs1L

Zs21
. . .

...
. . .

ZsM1 ZsML

⎤
⎥⎥⎥⎥⎥⎦ , (3.150)

then the secondary acoustic pressure field at the sensors is

ps = Zsus , (3.151)

where ps is defined as an M×1 vector whose elements are the relevant pressures and

pressure gradients measured by the sensors in the secondary diffuse acoustic field

alone. By the principle of superposition, the total pressure at each of the physical

and virtual sensor locations is the sum of the primary and secondary acoustic fields

and may be written as

p = pp + ps = pp + Zsus . (3.152)

In this case, the objective of quadratic optimisation is to minimise the sum of the

total quantities squared and the cost function J may be written as

J = pHp, (3.153)

where H indicates a Hermitian transpose. By substituting Eq. (3.152) into

Eq. (3.153), the cost function takes Hermitian quadratic form,

J = pH
p pp + pH

p Zsus + uH
s Zs

Hpp + uH
s Zs

HZsus. (3.154)

The optimal solution depends on the relative number of secondary sources, L,

to the number of error sensors, M . If there are more error sensors than secondary

sources, M > L, then the system is described as overdetermined. In this case, the

cost function can be minimised by setting the derivative of Eq. (3.154) with respect

to us to zero, assuming that the matrix ZH
s Zs is positive definite. For M > L, the

optimal secondary source strengths are (Elliott, 2001)

us = −[ZH
s Zs ]

−1Zs
Hpp. (3.155)
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Substituting this value back into Eq. (3.154) for the general cost function gives the

minimum value of (Elliott, 2001)

J = pH
p [I − Zs [Z

H
s Zs ]

−1Zs
H]pp. (3.156)

When the same number of secondary sources as error sensors are present, M =

L, the system is said to be fully-determined and the cost function has a global

minimum assuming that the matrix ZH
s Zs is positive definite. In this case, the

optimal secondary source strengths for which the value of the cost function is zero

are (Elliott, 2001)

us = −Zs
−1pp. (3.157)

If there are more secondary sources than error sensors, M < L, the system is

said to be underdetermined. The matrix ZH
s Zs cannot be positive definite in an

underdetermined system and is therefore singular. As a result, a unique solution to

the cost function is unavailable and instead an infinite number of secondary source

strengths will cause the cost function to be zero. To obtain a unique solution how-

ever, the control effort uH
s us can be minimised while constraining the cost function

in Eq. (3.154) to be equal to zero (Elliott, 2001). In this case, the optimal secondary

source strengths are (Elliott, 2001)

us = −Zs
H[ZsZs

H]−1pp. (3.158)

3.2.2 Numerical modelling

The diffuse sound field was simulated using the numerical model described by Bull-

more et al. (1987). This analytical model assumes that the pressure at any point

in the enclosure can be calculated using a finite modal summation. The complex

pressure amplitude at any point x is given by

p(x, ω) =

N−1∑
n=0

ψn(x)an(ω) = ΨTa, (3.159)

where the summation consists of N normal modes with normalised mode shape

functions ψn(x) and complex modal amplitudes an(ω). Nth order vectors of these

quantities are given by Ψ and a, whose nth order components are ψn(x) and an(ω)

respectively. The vector a can be considered as a linear superposition of contribu-

tions from a primary source and a series of L secondary sources. Therefore a may
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be written as

a = ap+Bus , (3.160)

where ap is the vector of complex modal amplitudes apn(ω) due to the primary

source, us is the Lth order vector of complex secondary source strengths usl(ω)

and B is the N×L matrix of modal excitation coefficients Bnl(ω), connecting the

excitation of the nth mode to the lth secondary source.

Morse’s (1948) solution was used to describe the form of the sound field in the

rectangular enclosure. It should be noted that this is only an approximate solution as

the eigenfunctions are only valid for an enclosure without damping. The normalised

mode shape functions are given by

ψn(x) =
√

εn1
εn2

εn3
cos(n1πx1/L1)cos(n2πx2/L2)cos(n3πx3/L3), (3.161)

where n1, n2 and n3 are integer modal indices and L1, L2 and L3 are the enclosure

dimensions. The normalisation factors are εν = 1 if ν = 0 and εν = 2 if ν > 0 such

that
∫

V
|ψn|2 dV = V , where V is the enclosure volume. The complex amplitude of

the nth mode is given by

an(ω) =
ρV

c

ω

2ξnωnω − j(ω2
n − ω2)

∫
V

ψn(y)s(y, ω)dV, (3.162)

where s(y, ω) is the total distribution of source strength density within the enclosure,

ρ and c are the density and speed of sound in the medium and ξn and ωn are the

damping ratio and natural frequency of the nth mode. The latter is given by

ωn = πc
[
(n1/L1)

2 + (n2/L2)
2 + (n3/L3)

2]1/2
. (3.163)

In numerical simulations, the primary and secondary sources are assumed to be

point monopoles. The complex amplitude of the nth mode due to the primary

source, with source strength up, is therefore

apn(ω) =
ρV

c

ω

2ξnωnω − j(ω2
n − ω2)

ψn(yp)up, (3.164)

and the modal excitation coefficients of the lth secondary source are given by

Bnl(ω) =
ρV

c

ω

2ξnωnω − j(ω2
n − ω2)

ψn(ysl). (3.165)
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The enclosure model used in this simulation was that described by Elliott et

al. (1988a) and is rectangular in shape with dimensions π m × e m × 1 m. By

setting the constant damping ratio to be 0.0014, the reverberation time at 1.5 kHz

is selected to be half a second. The Schroeder frequency (Schroeder and Kuttruff,

1962) is calculated to be 400 Hz using

fsch =
( c

2π

)( 3π

2ξnV

)1/3

. (3.166)

An excitation frequency of 1.5 kHz was used in the simulation and all modes with

natural frequencies below a cutoff value of 2 kHz were included in the summation so

that the total number of modes included was approximately 8000. A 2 kHz modal

cutoff value was selected by examining the convergence of results for cutoff values

between 1.5 kHz and 4 kHz.

As suggested by Elliott et al. (1988a), the accuracy of the sound field generated

by the computer simulation was determined by computing the spatial cross corre-

lation function for zero time delay and comparing this to the theoretical function

given by

〈p(x, t)p(x + Δx, t)〉 =
〈
p2
〉

sinc(kΔx). (3.167)

The averaged result, computed over 200 different source locations, is shown in

Fig. 3.3 (a). The space-averaged spatial cross correlation function of pressure

that Elliott et al. (1988a) achieved in their numerical simulation compared to

the sinc(kΔx) function is shown in Fig. 3.3 (b). Despite slight deviations from

the sinc(kΔx) function at distances greater than 0.5λ, both simulated functions

compare favourably to theory. Therefore the ability of the computer simulation to

accurately simulate a diffuse sound field is confirmed.

Results of numerically simulated control were obtained using a number of sources

(dependent on the control strategy implemented) randomly located within the en-

closure but such that they are not within a wavelength of one another or the enclo-

sure walls. The average mean squared pressure (Elliott et al., 1988a) of the total

controlled pressure field was computed over 200 different source configurations at

various distances in the x-direction from the point of cancellation.

3.2.3 Experimental method

Experiments were conducted to validate the analytical expressions and the numerical

simulations. Post-processed experimental control was implemented computationally
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(a) Function achieved in the numerical simu-
lation (solid line) compared with theoretical
function (dashed line).

(b) Function Elliott et al. (1988b)
achieved in numerical simulation
(solid line) compared with theoreti-
cal function (dashed line).

Figure 3.3: Space-averaged spatial cross correlation function of the pressure com-
puted in the numerical simulation compared to the theoretical function as a function
of distance normalised by wavelength.

using transfer functions experimentally measured in the reverberation chamber in

the School of Mechanical Engineering at the University of Adelaide and quadratic

optimisation as described in Section 3.2.1. The reverberation chamber has dimen-

sions of 6.84 m × 5.66 m × 4.72 m, a volume of V = 183 m3 and a reverberation time

of approximately T60 = 7s over the frequency range of interest. The chamber con-

tains several large obliquely-orientated curved panel diffusers and has a Schroeder

frequency fsch = 2000
√

T60/V = 391 Hz (Schroeder, 1996). In the reverberation

chamber, the sound pressure was measured using a condenser microphone (LEC-

TRET model 1207) and the particle velocity measured using a Microflown (USP)

(de Bree, 1998, de Bree et al., 1999). The pressure gradient was then estimated

from the particle velocity measurement assuming a far-field condition in which the

particle velocity, v, is related to the pressure gradient by (Elliott, 2001)

jωv = −1

ρ

∂p

∂x
. (3.168)

3.2.3.1 Transducer calibration

The two transducers (microphone and Microflown) were calibrated in the anechoic

chamber in the School of Mechanical Engineering at the University of Adelaide. The
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anechoic chamber has dimensions of 4.75 m × 3.90 m × 3.94 m and a volume of

73 m3. Calibration was performed using a back-to-back transfer function with the

microphone used as the reference. The Microflown particle velocity measurements

were compared to the pressure measurements assuming a far-field condition in which

the pressure and particle velocity are related by (Nelson and Elliott, 1992)

p

v
= ρc. (3.169)

In order to perform calibration using a back-to-back transfer function, the two

transducers were positioned in the far-field of a source where the distance between

the loudspeakers and the sensors, r, was selected such that r � 1/k. Two sets of

transfer functions were taken; one with the microphone directly upstream of the

Microflown, and the other with the positions of the two transducers reversed. By

dividing the two transfer functions, the spatial separation of 10.0 mm between the

acoustic centres of the two transducers was calculated (which was equal to half the

group delay). The square root of the product of the two transfer functions was taken

so that the effects of the finite separation would cancel each other and this function

was equal to the Microflown sensitivity divided by the acoustic impedance ρc = 415

Pa/(m/s). It should be noted that the Microflown was only calibrated relative to the

microphone, rather than to absolute velocity, since it was only necessary to know the

ratios between the pressure and pressure gradient measurements for the purposes of

the virtual sensing exercise.

3.2.3.2 Post-processed experimental control

Post-processed control was implemented using transfer functions experimentally

measured in the reverberation chamber. In the reverberation chamber, the micro-

phone and Microflown were mounted to a stepper-motor driven Cartesian traverse as

shown in Fig. 3.4. The stepper-motor traverse was controlled using Matlab and the

Data Acquisition Toolbox. This enabled measurement of both pressure and pressure

gradient over a 465 mm × 360 mm × 320 mm volume. Two intersecting planes,

one vertical and one horizontal, each containing 931 points, were scanned with the

traverse. As the microphone and Microflown were separated by an integer number

of grid spacings, the pressure and pressure gradient were measured at exactly the

same location.

Six loudspeakers, located near the corners of the room and sufficiently far apart

to produce uncorrelated sound fields, were used to either generate the primary diffuse
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acoustic field or act as secondary sources. Such an arrangement allowed for the total

number of possible combinations of primary and secondary sources to be C6
1C

5
n with

n being the number of secondary sources. The strengths of all sources were adjusted

so that the space averaged pressure level generated by each source was equal within

the zone of interest. The sources were driven with a multi-tonal signal containing

tones from 800 Hz to 3000 Hz in 50 Hz increments using a dSpace DS1104 card.

This effectively provided an additional set of 45 measurements at each of the sensor

locations. During postprocessing, each of these measurements were normalised by

the acoustic wavelength, λ, to allow a comparison of the results. For each speaker

acting as the source in turn, the sound field in the room was allowed to stabilise and

then the complex transfer functions between the source and each of the microphone

and Microflown were measured using the dspace DS1104 card. Data collection was

performed using a 2048 point FFT with a sampling frequency of 20 kHz and averag-

ing over approximately 200 overlapping samples. The coherence between the source

and the microphone was generally over 90%. The coherence between the source and

the Microflown was typically above 90% up to approximately 2000 Hz but suffered

at higher frequencies due to a low signal-to-noise ratio.

The average diffuse field zone of quiet was calculated as the mean squared average

of the controlled sound fields over a number of data sets (dependent on control

strategy) divided by the mean squared average of the primary fields. To obtain a

large number of data sets to provide the spatial average, a number of different points

in the field were selected as the sensor locations, while ensuring that the relative

arrangement of the sensors remained constant. At each of the sensor locations,

one of the loudspeakers was selected as the primary source and then a suitable

number of secondary sources (depending on control strategy) were selected from the

remaining loudspeakers. This process was repeated for a large number of primary

and secondary source combinations at each sensor location. The total number of

data sets used to calculate the average diffuse sound field for each control strategy

is shown in Table 3.4.

3.3 Results

Figs. 3.5 and 3.6 show the control profiles obtained with each of the nine control

strategies in a pure tone diffuse sound field. The results achieved with control strate-

gies employing a single error sensor and secondary source are shown in Fig. 3.5 while

Fig. 3.6 shows the results obtained with control strategies employing multiple er-
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Figure 3.4: Microphone and Microflown mounted to the stepper-motor traverse.

Table 3.4: Number of data sets used to calculate the mean squared average diffuse
sound field after control for each control strategy.

Control Strategy No. of source
permutations

No. of sensor
positions

Total no. of
data sets

1 30 30 900

2 60 60 3600

3 60 60 3600

4 30 50 1500

5 30 50 1500

6 30 20 600

7 30 20 600

8 60 50 3000

9 60 50 3000
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ror sensors and secondary sources. The zones of quiet generated in numerically

simulated and post-processed experimental control are shown, together with the an-

alytical expressions for the relative change in mean squared pressure after control.

In Figs. 3.5 and 3.6, the solid vertical lines indicate the positions of the physical

sensors while the dashed vertical line indicates the virtual location at 0.1λ. Using

control strategy 6 as an illustrative case, the control profiles obtained in analytical,

numerically simulated and post-processed experimental control are shown in Fig. 3.5

(b), where a single secondary source has been used to minimise the pressure at the

virtual location, estimated using the pressure and pressure gradient at a point. The

analytical zone of quiet in this figure has been generated using Eq. (3.78) for the rel-

ative change in mean squared pressure after control. The numerically simulated and

post-processed experimental control profiles have been generated using Eq. (3.67)

to estimate the pressure at the virtual location.

3.3.1 Numerical results

Fig. 3.5 (a) shows the relative change in the mean squared pressure of the sound

field when the pressure at a point is cancelled with a single secondary source (control

strategy 1). The mean squared pressure change is plotted against the distance from

the point of pressure cancellation, for a value of α = 2, the 50th percentile value

of α obtained in the numerical simulation. Fig. 3.5 (a) reveals that the simulated

results close to the point of cancellation are a good fit to the analytical function.

As already stated in Section 3.1.1, when minimising the pressure at a point with

a single secondary source, the random variable α has a distribution given by the

probability density and cumulative distribution functions

fα,1 (α) =
1

α2
, (3.170)

Fα,1 (α) =
α − 1

α
, (3.171)

where α ≥ 1. Such a distribution means that the increase in space-average mean

squared pressure after control does not have a finite mean value. However, in prac-

tice, the strength of the secondary source is limited which will prevent α from having

a theoretically infinite mean value. Fig. 3.7 shows the cumulative distribution func-

tion of the random variable α observed in the numerical simulation compared to the

analytical distribution function. The distribution computed from 600 simulations is

seen to be a good fit to the analytical function and indicates that sufficient modes
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(a) Control strategy 1.
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(b) Control strategy 6.
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(c) Control strategy 7.

Figure 3.5: Control profiles achieved in analytical, numerically simulated and post-
processed experimental control with control strategies employing a single source and
error sensor. Solid vertical lines indicate the positions of the physical sensors while
the dashed vertical line indicates the virtual location.
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(a) Control strategy 2.
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(b) Control strategy 3.
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(c) Control strategy 4.
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(d) Control strategy 5.
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(e) Control strategy 8.
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(f) Control strategy 9.

Figure 3.6: Control profiles achieved in analytical, numerically simulated and post-
processed experimental control with control strategies employing multiple sensors
and secondary sources. Control profiles obtained with post-processed experimental
data are generated by removing any ill-conditioning (see Section 3.3.2.1). Solid
vertical lines indicate the positions of the physical sensors while the dashed vertical
line indicates the virtual location.
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Figure 3.7: Cumulative distributions for α obtained in numerically simulated and
post-processed experimental control when using control strategy 1 compared to the
analytical F2,2 distribution. The 50th percentile value of α is indicated by a solid
vertical line.

have been included in the simulations. The 50th percentile value of α is approxi-

mately 2 for the cancellation of pressure at a point with a single secondary source,

as seen in Fig. 3.7. For a value of α = 2, the 10 dB zone of quiet observed in the

simulation is a sphere of approximately λ/10, as shown in Fig. 3.5 (a). The same

result was found by Elliott et al. (1988a).

Fig. 3.6 (a) illustrates the control profile achieved with an energy density sensor

(pressure and pressure gradient) and two secondary sources in a diffuse sound field

(control strategy 2), for a value of α = 3.4. The analytical function clearly gives

a good prediction of the zone of quiet obtained in the numerical simulation. The

distribution of the random variable α observed in the numerical simulation, when

two secondary sources are used, is shown in Fig. 3.8 (a) (denoted two num). Again,

α does not have a finite mean value, however, in practice the mean squared pressure

after control will be limited by the control source strengths. The 50th percentile

value of α observed in the numerical simulation is approximately 3.4 for cancellation

of pressure and pressure gradient at a point with two secondary sources. For a value

of α = 3.4, the 10 dB zone of quiet observed in the simulation has a diameter of

λ/2 in the direction of pressure gradient cancellation. The same result was found

by Elliott and Garcia-Bonito (1995) and Garcia-Bonito and Elliott (1995b). This

is a five fold increase in the zone of quiet compared to that obtained by cancelling

pressure alone. Similar control performance is achieved by minimising the pressures

at two points with two secondary sources (control strategy 3) as shown in Fig. 3.6

(b). Again, this is the same result found by Elliott and Garcia-Bonito (1995) and
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(a) Conventional control strategies 1 (one
secondary source), 2 or 3 (two secondary
sources) and 4 or 5 (four secondary sources).
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(b) Virtual control strategies 6 or 7 (one sec-
ondary source) and 8 or 9 (two secondary
sources).

Figure 3.8: Cumulative distributions for α obtained in numerically simulated and
post-processed experimental control. 50th percentile values of α are indicated by
solid lines.

Garcia-Bonito and Elliott (1995b).

Superior control performance is achieved using energy density sensors at two

points with four secondary sources (control strategy 4), as shown in Fig. 3.6 (c),

for a value of α = 5.6. Again, numerically simulated results close to the point of

cancellation are a good fit to the analytical function. When four secondary sources

are used, the random variable α has the distribution shown in Fig. 3.8 (a). Similarly

to the previous two distributions, it does not have a finite mean value, but will in

practice be limited by the strengths of the secondary sources. The 50th percentile

value of α observed in the numerical simulation is approximately 5.6 for cancellation

of pressure and pressure gradient at two points with four secondary sources. For a

value of α = 5.6, the 10 dB zone of quiet observed in the simulation has a diameter

of λ in the direction of pressure gradient measurement, as shown in Fig. 3.6 (c).

This is a 10 fold increase compared to using a single microphone with one secondary

source or a doubling compared to using a single energy density sensor with two

secondary sources. The same result can be achieved by minimising the pressures at

four points with four secondary sources (control strategy 5), as shown in Fig. 3.6

(d), where the microphones are each separated by 0.01λ.

Control with a virtual microphone, using the measured pressure and pressure
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gradient at a point (control strategy 6), is shown in Fig. 3.5 (b), for a value of

α = 2. Fig. 3.5 (b) reveals that the numerically simulated results close to the point

of cancellation are a good fit to the analytical function. The distribution of the

random variable α, observed in the simulation of virtual microphone control, is equal

to the Fα,1 distribution given in Eq. (3.171) as demonstrated in Fig. 3.8 (b). For the

50th percentile value of α = 2, a maximum attenuation of 24 dB and a 10 dB zone

of quiet with diameter of approximately λ/10 is generated at the virtual location in

the simulation. Fig. 3.5 (c) shows similar control performance can be obtained using

the pressures at two points to estimate the pressure at a virtual location (control

strategy 7). In comparison to the performance of conventional control strategies, a

virtual microphone achieves higher attenuation at the virtual location than a single

microphone and one secondary source or an energy density sensor and two secondary

sources. Conventional control strategies employing four secondary sources achieve

significantly higher attenuation at the virtual location than a virtual microphone

and a single secondary source. The increase in attenuation at the virtual location

achieved with four secondary sources is, however, most likely accompanied by an

increase in sound pressure level away from the point of cancellation. This is indicated

by the median (50th percentile) value of α being only 2 (SPL increase of 3 dB)

for a single secondary source and 5.6 (SPL increase of 7.5 dB) for four secondary

sources. As found in previous research by Garcia-Bonito and Elliott (1995b) and

Garcia-Bonito et al. (1997b), the size of the 10 dB zone of quiet achieved at the

virtual location with the SOTDF virtual sensing method and the virtual microphone

arrangement are similar at low frequencies. However, at higher frequencies above

500 Hz the SOTDF virtual sensing method outperforms the virtual microphone

arrangement because the assumption of equal primary pressure at the physical and

virtual locations is no longer valid and the zone of quiet achieved at the virtual

location with the virtual microphone arrangement is severely reduced (Garcia-Bonito

and Elliott, 1995b, Garcia-Bonito et al., 1997b).

Control with a virtual energy density sensor and two secondary sources produces

a superior control profile to that achieved with a virtual microphone and a single

secondary source. This is indicated by the zone of quiet in Fig. 3.6 (e), for a value

of α = 3.4 (SPL increase of 5.3 dB) where the pressure and pressure gradient at the

virtual location are estimated using the measured pressures and pressure gradients

at two points (control strategy 8). Again, numerically simulated results close to

the point of cancellation are a good fit to the analytical function. A maximum

attenuation of 50 dB and a 10 dB zone of quiet with diameter of approximately λ/2
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is achieved at the virtual location in the simulation. A similar result is obtained

using the pressures at four points to estimate the pressure and pressure gradient at

the virtual location (control strategy 9) as shown in Fig. 3.6 (f). The distribution

of the random variable α, when two secondary sources are used in virtual energy

density control, is shown in Fig. 3.8 (b). This figure indicates that the distribution

for α is equal when using either a physical or virtual energy density sensor and

two secondary sources. Comparison of Figs. 3.8 (a) and (b) illustrates that the

distribution of α is only dependent on the number of secondary sources and not on

the control strategy. In comparing the performance of virtual energy density sensors

to that of conventional control strategies, a virtual energy density sensor achieves

significantly higher attenuation at the virtual location than a single microphone

and one secondary source or an energy density sensor and two secondary sources.

Conventional control strategies employing four secondary sources achieve similar

levels of attenuation at the virtual location to a virtual energy density sensor and

two secondary sources. The increase in mean squared pressure after control will,

however, most likely be higher when four secondary sources are used compared to

only two secondary sources. This is indicated by the median (50th percentile) value

of α being approximately 3.4 for two secondary sources and 5.6 for four secondary

sources.

3.3.2 Experimental results

Analysis of the nine control strategies was repeated using the experimentally mea-

sured transferred functions. Fig. 3.5 shows the performance of control strategies

employing a single error sensor and secondary source (control strategies 1, 6 and

7), for a value of α = 2. Using the post-processed experimental data, minimising

either the measured or estimated pressure generates a zone of quiet with diameter

of λ/10 at the physical and virtual locations respectively. This agrees well with the

analytical and the numerically simulated results presented earlier. The distributions

of the random variable α observed in post-processed experimental control are shown

in Figs. 3.7 and 3.8. The distributions are seen to be a good fit with those observed

in the simulations.

In comparison to previous experimental results, Garcia-Bonito and Elliott

(1995a; 1995b) also found that the 10 dB zone of quiet obtained by minimising

the pressure at a physical microphone is a sphere with a diameter of λ/10 in a pure

tone diffuse sound field at high frequencies. It was also shown that minimising the
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pressure at the surface of a rigid object tends to extend the zone of quiet beyond that

achieved in the absence of the diffracting object (Garcia-Bonito and Elliott, 1995a,

Garcia-Bonito and Elliott, 1995b). As stated previously, minimising the pressure

estimated at the virtual location with the SOTDF virtual sensing method generates

a zone of quiet the same size as that achieved by minimising the measured pressure

(when the distance between the physical and virtual sensors is � λ). The same

experimental result was observed at low frequencies by Garica-Bonito et al. (1997b)

for the virtual microphone arrangement. The attenuation achieved at the virtual

location with the virtual microphone arrangement is, however, severely reduced at

higher frequencies due to the assumption of equal sound pressure at the physical

and virtual locations being invalid.

While the performance of control strategies employing a single error sensor and

secondary source (control strategies 1, 6 and 7) is as expected, control strategies

employing multiple sensors and secondary sources (control strategies 2-5, 8 and 9)

achieve poorer experimental control than expected from the analytical and numer-

ically simulated results. This may explain the lack of published experimental data

on control strategies employing multiple sensors and secondary sources in a diffuse

sound field. An example of the poor experimental performance of control strategies

employing multiple sensors and secondary sources is shown in Fig. 3.9 for control

strategy 2. With the raw experimental post-processed data, minimising the pres-

sure and pressure gradient at a point with two secondary sources (control strategy 2)

generates a zone of quiet with a diameter of λ/5 in the direction of pressure gradient

measurement. This is significantly smaller than the zone of quiet with diameter of

λ/2 obtained in analytical and numerically simulated results. A decrease of more

than 15 dB in the maximum attenuation can also be seen at the sensor location in

post-processed experimental control compared with the analytical and numerically

simulated results.

3.3.2.1 Improving conditioning

The poorer than predicted control performance of strategies employing multiple

sensors and secondary sources (control strategies 2-5, 8 and 9) is attributed to ill-

conditioning. Quadratic optimisation described in Section 3.2.1 was used to calculate

the optimal secondary source strengths required to minimise the quantities measured

at the physical or virtual sensors. All control strategies employ the same number of

secondary sources as error sensors, so the system is said to be fully-determined. In
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Figure 3.9: Example of the effect of ill-conditioning in post-processed experimental
results using control strategy 2. The solid vertical line indicates the position of the
physical sensors.

this case, the optimal set of secondary source strengths for which the value of the

cost function is zero are (Elliott, 2001)

qs = −Zs
−1pp. (3.172)

Calculation of the optimal secondary source strengths therefore requires inversion of

the secondary transfer matrix Zs . This matrix must be non-singular and hence in-

vertible. While invertible, matrices that are close to singular, namely ill-conditioned,

can still be problematic.

The condition number, κ, of non-singular, square matrix, Zs , with respect to

inversion, gives a bound on the accuracy of the solution to Eq. (3.172). The condition

number, κ, is defined as (Kreyszig, 1999)

κ(Zs) =
∥∥Zs

−1
∥∥ · ‖Zs‖ , (3.173)

where ‖·‖ denotes the matrix norm. When the condition number is high, implying

high sensitivity to changes in the data, the matrix is said to be ill-conditioned

(Kreyszig, 1999).

When minimising the pressure at the physical or virtual location with a single

secondary source, Zs is scalar and hence the control source strength, qs, can be

evaluated perfectly provided the impedance matrix is non-zero. The remaining six

control strategies, however, employ multiple error sensors and secondary sources

and the accuracy of the calculated secondary source strengths can be attributed to
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the conditioning of matrix Zs . The distribution of κ(Zs) for these control strategies

using the measured experimental data is shown in Fig. 3.10 in histogram form. As

a different number of configurations (see Table 3.4) is used in each control strategy,

the distributions are normalised with respect to the number of configurations used

in control strategies 4 and 5 to allow comparison. The spread of all distributions

is very wide and it is evident that certain configurations of secondary sources and

sensors result in a very high condition number and hence inaccurate secondary

source strengths. The ill-conditioning is attributed to coherences less than unity in

the measured transfer functions, thus introducing magnitude and more importantly

phase errors. The poor performance of these control strategies is expected given the

previously displayed cumulative distribution functions shown in Fig. 3.8.

To improve the poor experimental performance of control strategies employing

multiple sensors and secondary sources, ill-conditioning was addressed in two ways.

Firstly, poorly conditioned data sets were removed from calculation of the mean

squared pressure. Only samples of controlled sound field with matrix Zs having

condition number, κ(Zs), below a certain threshold value were included in calcu-

lation of the space-average mean squared pressure after control. This ensured a

certain level of accuracy in the calculated secondary source strengths. The thresh-

old value for each control strategy was selected to achieve the desired accuracy with

the largest number of samples. Reducing the threshold value any further would have

resulted in an asymmetrical zone of quiet due to averaging over too few data sets.

Distributions of condition number showing included and discarded configurations

are shown in Fig. 3.11. Included configurations are shown in red while discarded

configurations are shown in black. As done previously, the distributions are nor-

malised with respect to the number of configurations used in control strategies 4

and 5 to allow comparison.

The alternative technique used to improve the conditioning was to add one more

secondary source than necessary to the active control system. While the removal

of poorly conditioned data sets does generate experimental results comparable with

theory and numerically simulated control, such a procedure cannot be done in prac-

tice. Adding an extra secondary source ensures only secondary sources which are

well coupled to the sensors are used, avoiding use of secondary sources which have a

very small transfer matrix. As discussed in Section 3.2.1, when a greater number of

secondary sources are present compared to the number of error sensors, the system is

said to be underdetermined. For an underdetermined system there exists an infinite

number of possible secondary source strengths which will cause the cost function in
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(a) Control strategy 2.
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(b) Control strategy 3.
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(c) Control strategy 4.
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(d) Control strategy 5.
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(e) Control strategy 8.
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(f) Control strategy 9

Figure 3.10: Normalised distribution of the condition number, κ.
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Eq. (3.154) to be zero. However, a unique solution can be obtained by minimising

the control effort qH
s qs while also constraining the cost function in Eq. (3.154) to

be equal to zero (Elliott, 2001). In this case the optimal set of secondary source

strengths are (Elliott, 2001)

qs = −Zs
H[ZsZs

H]−1pp. (3.174)

Both of the afore mentioned methods for improving conditioning have been investi-

gated and were found to produce essentially equivalent control profiles.

Fig. 3.6 shows the experimental performance of control strategies employing mul-

tiple sensors and secondary sources with ill-conditioned data removed. By removing

ill-conditioning, post-processed control with an energy density sensor and two sec-

ondary sources (control strategy 2) generates a zone of quiet of diameter 0.45λ as

shown in Fig. 3.6 (a). This is an agreeable fit with the analytical and numerically

simulated results in which a quiet zone of size λ/2 is achieved. Minimising the pres-

sures at two points (control strategy 3) generates a similar sized zone of quiet to that

with an energy density sensor and two secondary sources as shown in Fig. 3.6 (b).

The experimental results achieved here by minimising the pressures at two points

are in agreement with those obtained by Miyoshi and Kaneda (1991), however they

plotted zones of quiet using contours of 6 dB and 14.5 dB attenuation.

The superior control performance achieved with four secondary sources (control

strategies 4 and 5) is indicated by the larger zones of quiet in Figs. 3.6 (c) and (d).

By removing ill-conditioning, a zone of quiet of diameter 0.9λ is obtained. This is

a good fit with the analytical and numerically simulated results in which the quiet

zone has a diameter of λ.

Control with a virtual energy density sensor is shown in Fig. 3.6 (e), where the

pressure and pressure gradient at a virtual location are estimated using the measured

pressure and pressure gradient at two points (control strategy 8). By removing ill-

conditioning, this virtual control strategy results in a 10 dB zone of quiet with longest

diameter approximately λ/2, which is a good fit with the analytical and numerically

simulated results. A reduction in maximum attenuation is seen in post-processed

control with 39 dB of attenuation achieved at the virtual location compared to 50

dB in the simulation. A similar level of control can be obtained using the pressures

at four points to estimate the pressure and pressure gradient at the virtual location

(control strategy 9), as shown in Fig. 3.6 (f).

Fig. 3.12 shows the distributions of the random variable α observed in post-
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(a) Control strategy 2.
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(b) Control strategy 3.
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(c) Control strategy 4.
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(d) Control strategy 5.
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(e) Control strategy 8.
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(f) Control strategy 9.

Figure 3.11: Normalised distribution of the condition number, κ, showing cutoff.
Included configurations are shown in red while discarded configurations are shown
in black.
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processed control when any ill-conditioning is removed or when one more secondary

source than necessary is added to the control system. With the conditioning im-

proved, the increase in mean squared pressure away from the point of cancellation

is likely to be much smaller. This is indicated by the 50th percentile α values in

Fig. 3.12 being significantly smaller than those discussed in Section 3.3.1. For the

case of pressure and pressure gradient minimisation with two secondary sources

(control strategy 2), the 50th percentile value of α is reduced from 3.4 to 1.7 when

ill-conditioning is removed, as shown in Fig. 3.12 (a). When four secondary sources

are used (control strategies 4 and 5), the 50th percentile value of α is reduced from

5.6 to 2.2 by improving conditioning as shown in Fig. 3.12 (a). In virtual energy

density control (control strategies 8 and 9), the 50th percentile value of α is reduced

from 3.4 to 2 when ill-conditioning is removed as shown in Fig. 3.12 (b). When

three secondary sources are used in pressure and pressure gradient minimisation

(control strategy 2) instead of two secondary sources, the 50th percentile value of

α is reduced from 3.4 to 1.3 as shown in Fig. 3.12 (c). Fig. 3.12 (c) also shows

that when five secondary sources are used (control strategies 4 and 5), the 50th

percentile value of α is reduced from 5.6 to 1.4. In virtual energy density control

(control strategies 8 and 9), the 50th percentile value of α is reduced from 3.4 to 1.3

when three secondary sources are used instead of two secondary sources, as shown

in Fig. 3.12 (d).

Fig. 3.12 shows that a smaller increase in mean squared pressure away from the

point of cancellation can be expected when conditioning is improved by adding extra

secondary sources instead of by removing any ill-conditioning. The distributions

corresponding to the removal of ill-conditioning shown in Figs. 3.12 (a) and (b) can

be improved and made to closely match those for the addition of extra secondary

sources, as shown in Figs. 3.12 (c) and (d), by reducing the threshold value of κ.

However, reducing the threshold value means that fewer data sets are included in

calculation of the mean squared pressure after control, leading to an inaccurate

estimate of the average control performance in a diffuse sound field. The results in

Fig. 3.12 show that it is possible to avoid an increase in sound pressure level away

from the point of cancellation by employing additional sources.

3.3.3 Comparison to the remote microphone technique

The remote microphone technique (Roure and Albarrazin, 1999) computes an esti-

mate of the pressure at the virtual location using a preliminary identification stage.
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(a) Conventional control strategies 2 or 3
(two secondary sources) and 4 or 5 (four sec-
ondary sources) when ill-conditioning is re-
moved. Distribution for control strategy 1
(single secondary source) is shown for com-
parison.
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(b) Virtual control strategies 8 or 9 (two sec-
ondary sources) when ill-conditioning is re-
moved. Distribution for control strategies 6
or 7 (single secondary source) is shown for
comparison.
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(c) Virtual control strategies 8 or 9 (two sec-
ondary sources) when ill-conditioning is re-
moved. Distribution for control strategies 6
or 7 (single secondary source) is shown for
comparison.
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(d) Virtual control strategies 8 or 9 (three
secondary sources) when one more control
source than necessary is added. Distribution
for control strategies 6 or 7 (single secondary
source) is shown for comparison.

Figure 3.12: Post-processed experimental cumulative distributions for α for control
strategies employing multiple sensors and secondary sources when conditioning is
improved. 50th percentile values of α are indicated by solid vertical.
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3.3. Results

In this preliminary identification stage models of the secondary transfer functions

at the physical and virtual locations and the primary transfer function at the vir-

tual location from the physical location are estimated. In a pure tone diffuse sound

field, perfect control may be achieved at the virtual location using the determin-

istic remote microphone technique, provided accurate models of the tonal transfer

functions are obtained in the preliminary identification stage.

Fig. 3.13 shows the control profiles obtained by minimising the virtual pressure

with a single secondary source using the remote microphone technique in a pure tone

diffuse sound field. The zones of quiet generated in numerically simulated and post-

processed experimental control are shown for four virtual locations between 0.1λ

and 0.4λ. The solid vertical line indicates the position of the physical microphone.

The formulation of the remote microphone technique used here is given in Section

2.1.3. As shown in Fig. 3.13, perfect control is achieved at all virtual locations with

the remote microphone technique in both numerically simulated and post-processed

experimental control.

For comparison, the control profiles obtained by minimising the virtual pressure

with a single secondary source using the SOTDF virtual sensing method are shown

in Fig. 3.14. Again, the zones of quiet generated in numerically simulated and post-

processed experimental control are shown for four virtual locations between 0.1λ

and 0.4λ, for a value of α = 2. The solid vertical lines indicate the positions of

the physical sensors while the solid round markers indicate the virtual locations.

Figs. 3.14 (a) and (b) show the control profiles obtained in numerically simulated

and post-processed experimental control when the pressure at the virtual location

is estimated using the measured pressure and pressure gradient at a point (control

strategy 6). The numerically simulated and post-processed experimental control

profiles both show a decrease in attenuation at the virtual location as the separation

distance between the physical and virtual sensors is increased to 0.4λ. Greater than

20 dB of attenuation is achieved at a virtual location of 0.1λ in the numerical

simulation and 17 dB of attenuation is achieved at the same virtual location in

post-processed experimental control. When the separation distance is increased

to 0.4λ, a slight increase in sound pressure level occurs at the virtual location in

the numerical simulation and no attenuation is achieved at the virtual location

in post-processed experimental control. The reduction in attenuation seen with

increasing separation distance between the physical and virtual sensors is due to the

measured and virtual quantities becoming uncorrelated as the separation distance

increases. As the uncorrelated component dominates the estimate, the estimate of
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(a) Numerically simulated control.
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(b) Post-processed experimental control.

Figure 3.13: Control profiles obtained by minimising the pressure at four virtual
locations between 0.1λ and 0.4λ with a single secondary source using the remote
microphone technique. The vertical line indicates the location of the physical mi-
crophone.

the pressure at the virtual location will approach zero. Similar control performance

can be obtained using the pressures at two points to estimate the pressure at the

virtual location (control strategy 7), as shown in Figs. 3.14 (c) and (d).

Comparing Figs. 3.13 and 3.14 demonstrates that the remote microphone tech-

nique achieves greater control at the virtual location compared to the SOTDF vir-

tual sensing method. Perfect attenuation of the primary disturbance at the virtual

location is achieved with the remote microphone technique for all separation dis-

tances between the physical and virtual microphones. This is provided accurate

estimation of the tonal transfer functions occurs in the preliminary identification

stage. Although greater control is achieved at the virtual location with the remote

microphone technique, the SOTDF virtual sensing method is much simpler to im-

plement because it is a fixed scalar weighting method requiring only sensor position

information. The remote microphone technique requires recalibration of all transfer

functions between the sources and sensors when the sensor or source locations are

altered, compared to the SOTDF virtual sensing method, which is independent of

the source or sensor locations within the sound field. The weight functions only

need to be updated if the geometric arrangement of physical and virtual locations

changes with respect to each other.
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(a) Numerically simulated control using the
measured pressure and pressure gradient at
a point to estimate the pressure at the vir-
tual location (control strategy 6).
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(b) Post-processed experimental control us-
ing the measured pressure and pressure gra-
dient at a point to estimate the pressure at
the virtual location (control strategy 6).

−1 −0.5 0 0.5 1
−25

−20

−15

−10

−5

0

5

10

M
ea

n
sq

u
ar

ed
p
re

ss
u
re

d
iff

er
en

ce
,
d
B

Distance, λ
0.1λ 0.2λ 0.3λ 0.4λ

(c) Numerically simulated control using the
measured pressures at two points to esti-
mate the pressure at the virtual location
(control strategy 7).
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(d) Post-processed experimental control us-
ing the measured pressures at two points to
estimate the pressure at the virtual location
(control strategy 7).

Figure 3.14: Control profiles obtained by minimsing the pressure at four virtual
locations between 0.1λ and 0.4λ with a single secondary source using the SOTDF
method. The vertical lines indicate the positions of the physical sensors while the
round markers indicate the virtual locations.
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3.4 Conclusion

By considering the pressure and pressure gradient to have components perfectly

spatially correlated and perfectly uncorrelated with the measured quantities in a

diffuse sound field, prediction algorithms for stochastically optimal virtual sensors

in a pure tone diffuse sound field have been derived. Analytical expressions for

the controlled sound field generated with nine local control strategies have also

been derived and these expressions were validated using numerical simulations and

experimental measurements from a reverberation chamber. Results of numerically

simulated and post-processed experimental control demonstrated that increasing the

number of secondary sources and the number of quantities to be minimised generates

larger zones of quiet at the physical or virtual locations. This size increase, however,

comes at a cost. In addition to added computational effort, the distributions of the

increase in mean squared pressure, α, demonstrate that the pressure level after

control away from the point of cancellation will most likely be higher for control

strategies employing a larger number of secondary sources.

It was shown that the SOTDF virtual sensors can accurately predict the pressure

and pressure gradient at a location that is remote from the physical sensors and are

therefore capable of projecting the zones of quiet to a virtual location. In numeri-

cally simulated and post-processed experimental control, both virtual microphones

and virtual energy density sensors achieve higher attenuation at the virtual location

of 0.1λ than conventional control strategies employing their physical counterpart.

Control with four secondary sources has been shown to achieve similar levels of at-

tenuation at the virtual location to a virtual energy density sensor and outperform a

virtual microphone. The pressure level after control away from the point of cancel-

lation will, however, most likely be significantly higher when four secondary sources

are used compared to only one secondary source with a virtual microphone or two

secondary sources with a virtual energy density sensor.

In post-processed experimental control, the performance of control strategies

employing multiple sensors and secondary sources was adversely affected by ill-

conditioning. Conditioning was improved in two ways: firstly, by removing poorly

conditioned data sets from the calculation of the mean squared pressure after control;

and secondly, by adding one more control source than necessary to the control

system. Both methods significantly improved experimental control performance so

that results of post-processed experimental control agreed with the analytical and

numerically simulated results.

128



3.4. Conclusion

In a pure tone diffuse sound field, perfect control may be achieved at the virtual

location with the deterministic remote microphone technique (Roure and Albarrazin,

1999), provided accurate models of the tonal transfer functions are obtained in the

preliminary identification stage. Although greater control is achieved at the virtual

location with the remote microphone technique, the SOTDF virtual sensing method

is much simpler to implement as it is a fixed weighting technique requiring only

sensor position information. Also, unlike the remote microphone technique, the

SOTDF virtual sensing method is robust to changes that may alter the transfer

functions between the sources and the error sensors.
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