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Abstract

Local active noise control systems generate a zone of quiet at the physical error

sensor location. While significant attenuation is achieved at the error sensor, local

noise control is not without its problems, chiefly that the zone of quiet is generally

small and impractically sized. It may be inconvenient to place the error sensor at the

desired location of attenuation, such as near an observer’s ear, preventing the small

zone of quiet from being centered there. To overcome the problems encountered

in local active noise control, virtual acoustic sensors have been developed to shift

the zone of quiet away from the physical sensor position to a spatially fixed desired

location.

The general aim of the research presented in this thesis is to improve and extend

the spatially fixed and moving virtual sensing algorithms developed for active noise

control thus far and hence increase the scope and application of local active noise

control systems. To achieve this research aim, a number of novel spatially fixed and

moving virtual sensing algorithms are presented for local active noise control.

In this thesis, a spatially fixed virtual sensing technique named the Stochasti-

cally Optimal Tonal Diffuse Field (SOTDF) virtual sensing method is developed

specifically for use in pure tone diffuse sound fields. The SOTDF virtual sensing

method is a fixed gain virtual sensing method that does not require a preliminary

identification stage nor models of the complex transfer functions between the error

sensors and the sources. SOTDF virtual microphones and virtual energy density

sensors that use both pressure and pressure gradient sensors are developed using

the SOTDF virtual sensing method. The performance of these SOTDF virtual sen-

sors is investigated in numerical simulations and using experimental measurements

made in a reverberation chamber. SOTDF virtual sensors are shown to accurately

estimate the pressure and pressure gradient at a virtual location and to effectively

shift the zone of quiet away from the physical sensors to the virtual location. In

numerically simulated and post-processed experimental control, both virtual micro-

phones and virtual energy density sensors achieve higher attenuation at the virtual
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location than conventional control strategies employing their physical counterpart.

As it is likely that the desired location of attenuation is not spatially fixed, a

number of moving virtual sensing algorithms are also developed in this thesis. These

moving virtual sensing algorithms generate a virtual microphone that tracks the de-

sired location of attenuation as it moves through a three-dimensional sound field.

To determine the level of attenuation that can be expected at the ear of a seated

observer in practice, the performance of the moving virtual sensing algorithms in

generating a moving zone of quiet at the single ear of a rotating artificial head is in-

vestigated in real-time experiments conducted in a modally dense three-dimensional

cavity. Results of real-time experiments demonstrate that moving virtual sensors

provide improved attenuation at the moving virtual location compared to either

fixed virtual sensors or fixed physical sensors.

As an acoustic energy density cost function spatially extends the zone of quiet

generated at the sensor location, a fixed three-dimensional virtual acoustic en-

ergy density sensing method is also developed for use in a modally dense three-

dimensional sound field. The size of the localised zone of quiet achieved by minimis-

ing either the acoustic energy density or the squared pressure at the virtual location

with the active noise control system is compared in real-time experiments conduced

in a modally dense three-dimensional cavity. Experimental results demonstrate that

minimising the virtual acoustic energy density provides improved attenuation in the

sound field and a larger 10 dB zone of quiet at the virtual location than virtual

microphones.
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