PREDICTION OF DEFORMATIONS IN POST-TENSIONED PRESTRESSED SUSPENDED SLABS IN TALL BUILDINGS

Thomas J. Vincent B.E. Civil Engineering (Hons.)

A thesis submitted in fulfilment of the requirements for the degree of Master of Engineering

at

The University of Adelaide (Faculty of Engineering)

July 2008

APPENDIX G

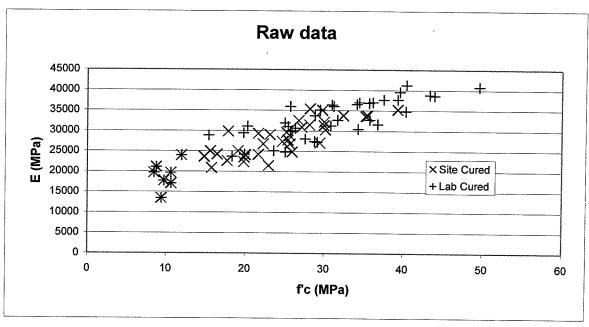
Detailed Outcomes of Data Analysis

MODULUS OF ELASTICITY DATA

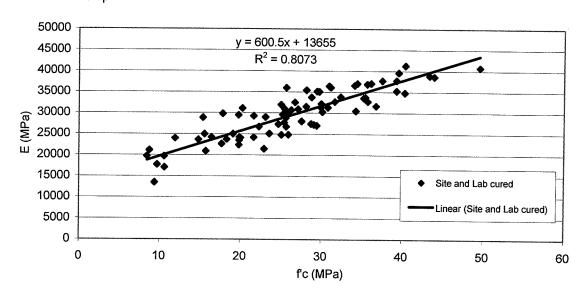
E*=m*sqrt(f'c)

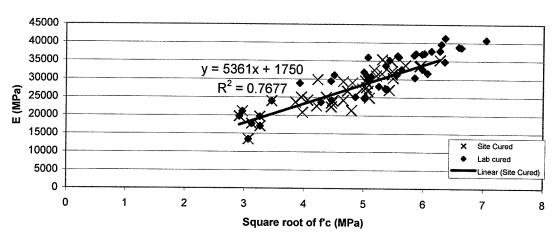
n = 5850.6

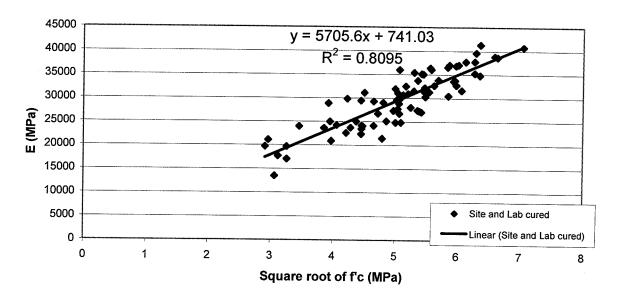
Site and Lab cu	ıred
-----------------	------

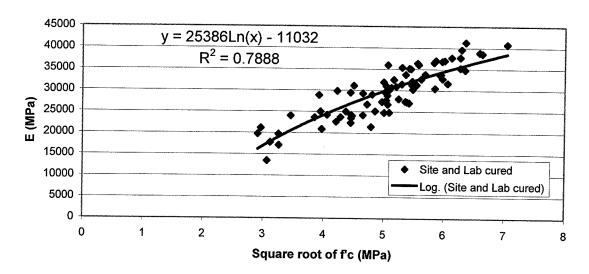

Site and Lab cured					
days	fc (MPa)		sqrt (f'c)	E - E*	(E-E*)/sqrt(f'c)
3	15.6	24974.33			472.523
7	23.11667				180.068
14	27.14667	30889.33	5.210246		77.974
28	30	32161	5.477226		21.168
56	35.275	33580.67	5.939276		-196.600
3	14.85	23582.7		1037.005	269.102
7	20.02333		4.474744		-478.076
28	25.67333			-2943.991	-581.026
3	16.45333	24194.33	4.056271		114.074
7	22.3	26694.33	4.722288	-933.882	-197.761
15	25.43	27694.5	5.042817	-1809.003	-358.729
29	28.1	31473	5.303772	442.750	83.478
1	9.74	17697	3.120897	-562.122	-180.115
3	15.77	20847	3.971146	-2386.586	-600.982
8	19.83	22357.33	4.453089	-3695.908	-829.965
14	21.67	24149.67	4.655105	-3085.489	-662.818
28	25.96	24811.67	5.095096	-4997.700	-980.884
1	8.495	19685	2.914618	2632.734	903.286
3	17.71	22592.67	4.208325	-2028.560	-482.035
14	29.44	27025	5.425864	-4719.560	-869.826
28	25.62	28789.33	5.06162	-824.182	-162.830
1	11.95	23948	3.456877	3723.194	1077.040
7	19.875	23435	4.458139	-2647.786	-593.922
14	22.96	21418.67	4.791659	-6615.416	-1380.611
1	10.64	17025.67	3.261901	-2058.410	-631.046
3	19.1	25013.67	4.370355	-555.530	-127.113
7	24.715	27301.33	4.971418	-1784.447	-358.941
14	30.14	30229.67	5.489991	-1890.074	-344.276
28	29.76	35038	5.455273	3121.382	572.177
1	9.41	13435.33	3.067572	-4511.805	-1470.807
3	17.855	29794.67	4.225518	5072.853	1200.528
7	29.96	31301.67	5.473573	-722.019	-131.910
14	35.485	33729.67	5.956929	-1121.941	-188.342
29	32.425	33783.67	5.694295	468.625	82.297
2	8.785	21086	2.96395	3745.114	1263.555
5	21.67	29266	4.655105	2030.844	436.262
7	25.24	29578	5.023943	184.921	36.808
14	28.17	35380	5.307542	4327.696	815.386
29	39.365	35225.67	6.274153	-1481.895	-236.190
1	10.61	19668	3.257299	610.844	187.531
17	26.76	32493.67	5.173007	2228.473	430.789
3	15.4	28819.33	3.924283	5859.921	1493.246
					1700.240

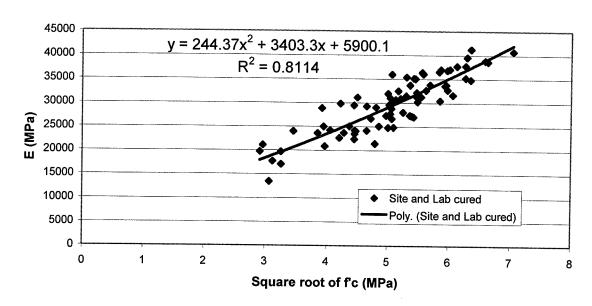
14 31.19333 36037.33 5.585099 3361.152 601.805 28 37.58667 37684.33 6.130797 1815.495 296.127 3 19.78 29424 4.447471 3403.625 765.294 7 25.43333 31033 5.043147 1527.563 302.893 14 28.81667 33713.67 5.368116 2306.969 429.754 28 34.46 36983 5.870264 2638.433 449.455 3 19.88667 24185 4.459447 -1905.440 -427.282 7 27.58 27990.67 5.251666 -2734.733 -520.733 15 30.81333 312625 5.550976 -1214.540 -218.797 29 39.4 37722 6.274021 1015.216 161.813 1 9.74 17697 3.120897 -562.122 -180.115 3 18.32 23655 4.280187 -1386.662 -323.972 8 25.075 2478		1 05 005	1 04000	1	r	· · · · · · · · · · · · · · · · · · ·
28 37.58667 37684.33 6.130797 1815.495 296.127 3 19.78 29424 4.447471 3403.625 765.29-7 7 25.43333 31033 5.043147 1527.563 302.89 14 28.81667 33713.67 5.368116 2306.969 429.75-6 28 34.46 36983 5.870264 2638.433 449.45-1 3 19.88667 24185 4.459447 -1905.440 -427.28-2 7 27.58 27990.67 5.251666 -2734.733 -520.73 15 30.81333 31262 5.550976 -214.540 -218.797 29 39.4 37722 6.274021 1015.216 161.813 1 9.74 17697 3.120897 -562.122 -180.115 3 18.32 23655 4.280187 -1386.662 -323.972 8 25.075 24788 5.007494 -4508.847 -900.420 14 29.09667 27212	7	25.035	31928	5.003499		
3 19.78 29424 4.447771 3403.625 765.294 7 25.43333 31033 5.043147 1527.563 302.895 14 28.81667 33713.67 5.368116 2306.969 429.754 28 34.46 36983 5.870264 268.433 449.457 3 19.88667 24185 4.459447 -1905.440 -427.282 7 27.58 27990.67 5.251666 -2734.733 -520.736 15 30.81333 31262 5.550976 -1214.540 -218.797 29 39.4 37722 6.274021 1015.216 161.813 1 9.74 17697 3.120897 -562.122 -180.115 3 18.32 23655 4.280187 -1386.662 -323.972 3 18.32 23655 4.280187 -1386.662 -323.972 3 3.429 30445 5.855766 -3814.747 -651.451 1 8.495 19685						
7 25.43333 31033 5.043147 1527.563 302.895 14 28.81667 33713.67 5.368116 2306.969 429.754 28 34.46 36983 5.870264 2638.433 449.457 3 19.8667 24185 4.45947 -1905.440 -427.282 7 27.58 27990.67 5.251666 -2734.733 -520.736 15 30.81333 31262 5.550976 -1214.540 -218.797 29 39.4 37722 6.274021 1015.216 161.813 1 9.74 17697 3.120897 -562.122 -180.115 3 18.32 23655 4.280187 -1386.662 -323.972 8 25.075 24788 5.007494 4508.847 -900.420 14 29.09667 27212.33 5.394133 -4346.579 -805.798 28 34.29 30445 5.855766 3814.747 -651.451 1 8.495 19685 2.914618 2632.734 903.286 3 23.59333 25071.67 4.857297 -3346.435 -688.950 14 36.81 31635.33 6.067125 -3860.985 -636.378 28 35.775 23948 3.456877 3723.194 1077.040 1 1.195 23948 3.456877 3723.194 1077.040 1 1.064 17025.67 3.261901 -2058.410 -631.046 3 25.915 30013.33 5.099678 229.814 45.144 7 31.69 32650 5.629387 -285.293 -50.679 14 40.375 34819 6.354133 -2356.488 -370.859 14 43.62 13435.33 3.067572 -4511.809 -1470.808 3 20.27 31083 4.50222 4742.302 1053.325 1 9.41 13435.33 3.067572 -4511.809 -1470.808 3 20.27 31083 4.50222 4742.302 1053.325 7 35.715 36842.33 5.976203 1877.961 314.240 14 43.42 38831 6.589385 279.142 42.362 7 29.475 35144.33 5.429088 3380.909 622.740 15 39.62 39569.67 6.29442 2743.404 435.846 29 40.455 41263.33 6.360425 4051.034 636.912 2 8.785 21086 2.96395 3745.114 1263.555 5 25.7 35957.67 5.069517 6297.952 1242.318 7 30.98 36379.33 5.656968 8315.061 635.430 14 36.185 37016 6.015397 1822.319 302.942 2 8.785 21086 2.96395 3745.114 1263.555 5 25.7 35957.67 5.069517 6297.952 1242.318 7 30.98 36379.33 5.565968 8315.061 635.430 14 36.185 37016 6.015397 1822.319 302.942 2 8.785 21086 2.96395 3745.114 1263.555 5 25.7 35957.67 5.069517 6297.952 1242.318 7 30.98 36379.33 5.565968 8315.061 635.430 14 36.185 37016 6.015397 1822.319 302.942 2 8.785 21086 2.96395 3745.114 1263.555 5 25.7 35957.67 5.069517 6297.952 1242.318 7 30.98 36379.33 5.565968 8315.061 635.430 14 36.185 37016 6.015397 1822.319 302.942 2 8.785 21086 2.96395 3745.114 1263.555 5 25.7 35957.67 5.069517 6297.952 1242		·-				
14 28.81667 33713.67 5.368116 2306.969 429.752 28 34.46 36983 5.870264 2638.433 449.457 3 19.88667 24185 4.459447 -1905.440 -427.282 7 27.58 27990.67 5.251666 -2734.733 -520.736 15 30.81333 31262 5.550976 -1214.540 -218.797 29 39.4 37722 6.274021 1015.216 161.813 1 9.74 17697 3.120897 -562.122 -180.115 3 18.32 23655 4.280187 -1386.662 -323.972 8 25.075 24788 5.007494 4508.847 -900.420 14 29.09667 27212.33 5.394133 -436.662 -323.972 28 34.29 30445 5.855766 -3814.747 -661.451 1 8.495 19685 2.914618 2632.734 903.286 3 23.59333 25071.6		1				
28 34.46 36983 5.870264 2638.433 449.457 3 19.88667 24185 4.459447 -1905.440 -427.282 7 27.58 27990.67 5.251666 -2734.733 -520.736 15 30.81333 31262 5.550976 -1214.540 -218.797 29 39.4 37722 6.274021 1015.216 161.813 1 9.74 17697 3.120897 -562.122 -180.115 3 18.32 23655 4.280187 -1386.662 -323.972 8 25.075 24788 5.007494 4508.847 -900.420 14 29.09667 27212.33 5.394133 -4346.579 -805.798 28 34.29 30445 5.855766 -3814.747 -651.451 1 8.495 19685 2.914618 2632.734 903.286 3 23.59333 25071.67 4.857297 -3346.435 -688.950 14 36.81 31635.3			+			302.899
3 19.88667 24185 4.459447 -1905.440 -427.282 7 27.58 27990.67 5.251666 -2734.733 -520.736 15 30.81333 31262 5.550976 -1214.540 -218.797 29 39.4 37722 6.274021 1015.216 161.813 1 9.74 17697 3.120897 -562.122 -180.115 1 9.74 17697 3.120897 -562.122 -180.115 3 18.32 23655 4.280187 -1386.662 -323.972 8 25.075 24788 5.007494 -4508.847 -900.420 14 29.09667 27212.33 5.394133 -4346.579 -805.798 28 34.29 30445 5.855766 -3814.747 -651.451 1 8.495 19685 2.914618 2632.734 903.286 3 23.5933 25071.67 4.857297 -3346.435 -638.950 14 36.81 31635.33						429.754
7 27.58 27990.67 5.251666 -2734.733 -520.736 15 30.81333 31262 5.550976 -1214.540 -218.797 29 39.4 37722 6.274021 1015.216 161.813 1 9.74 17697 3.120897 -562.122 -180.115 3 18.32 23655 4.280187 -1386.662 -323.972 8 25.075 24788 5.007494 -4508.847 -900.420 14 29.09667 27212.33 5.394133 -4346.579 -805.798 28 34.29 30445 5.855766 -3814.747 -651.451 1 8.495 19685 2.914618 2632.734 903.286 3 23.59333 25071.67 4.857297 -3346.435 -688.950 14 36.81 31635.33 6.067125 -3860.985 -636.378 28 35.775 32720 5.981221 -2273.729 -380.145 1 11.95 23948 3.456877 3723.194 1077.040 7 25.7 29877.33 5.069517 217.619 42.927 7 25.7 29877.33 5.069517 217.619 42.927 14 28.755 27373.67 5.362369 -3999.409 -745.829 1 10.64 17025.67 3.261901 -2058.410 -631.046 3 25.915 30013.33 5.090678 229.814 45.144 7 31.69 32650 5.629387 -285.293 -50.679 14 40.375 34819 6.354133 -2356.488 -370.859 28 44.01 38625.67 6.634003 -187.233 -28.223 1 9.41 13435.33 3.07572 -4511.809 -1470.808 3 20.27 31083 4.502222 4742.302 1053.325 7 35.715 36842.33 5.976203 1877.961 314.240 14 43.42 38831 6.589385 279.142 42.362 7 29.475 35144.33 5.429088 3380.909 622.740 15 39.62 39569.67 6.294442 2743.404 435.846 29 40.455 41263.33 6.360425 4051.034 636.912 2 8.785 21086 2.96395 3745.114 1263.555 5 25.7 35957.67 5.069517 6279.952 1242.318 1 4 36.185 37016 6.015397 1822.319 302.942 2 49.64 40770.67 7.045566 -450.122 -63.887 1 10.61 19668 3.257299 610.844 187.531 4 26.31 30655 5.129327 645.357 125.817						449.457
15 30.81333 31262 5.550976 -1214.540 -218.797 29 39.4 37722 6.274021 1015.216 161.813 1 9.74 17697 3.120897 -562.122 -180.115 3 18.32 23655 4.280187 -1386.662 -323.972 8 25.075 24788 5.007494 -4508.847 -900.420 14 29.09667 27212.33 5.394133 -4346.579 -805.798 28 34.29 30445 5.855766 -3814.747 -651.451 1 8.495 19685 2.914618 2632.734 903.286 3 23.59333 25071.67 4.857297 -3346.435 -688.956 14 36.81 31635.33 6.067125 -3860.985 -636.378 28 35.775 32720 5.981221 -2273.729 -380.145 1 11.95 23948 3.456877 3723.194 1077.040 7 25.7 29877.33						-427.282
29 39.4 37722 6.274021 1015.216 161.813 1 9.74 17697 3.120897 -562.122 -180.115 3 18.32 23655 4.280187 -1386.662 -323.972 8 25.075 24788 5.007494 -4508.847 -900.420 14 29.09667 27212.33 5.394133 -4346.579 -805.798 28 34.29 30445 5.855766 -3814.747 -651.451 1 8.495 19685 2.914618 2632.734 903.286 3 23.59333 25071.67 4.857297 -3346.435 -688.950 14 36.81 31635.33 6.067125 -3860.985 -636.378 28 35.775 32720 5.981221 -2273.729 -380.145 1 11.95 23948 3.456877 3723.194 1077.040 7 25.7 29877.33 5.069517 217.619 42.927 14 28.755 27373.67 <td>~</td> <td></td> <td></td> <td>5.251666</td> <td></td> <td>-520.736</td>	~			5.251666		-520.736
1 9.74 17697 3.120897 -562.122 -180.115 3 18.32 23655 4.280187 -1386.662 -323.972 8 25.075 24788 5.007494 -4508.847 -900.420 14 29.09667 27212.33 5.394133 -4346.579 -805.798 28 34.29 30445 5.855766 -3814.747 -651.451 1 8.495 19685 2.914618 2632.734 903.286 3 23.59333 25071.67 4.857297 -3346.435 -688.950 14 36.81 31635.33 6.067125 -3860.985 -636.378 28 35.775 32720 5.981221 -2273.729 -380.145 1 11.95 23948 3.456877 3723.194 1077.040 7 25.7 29877.33.5 5.069917 217.619 42.927 14 28.755 27373.67 5.362369 -399.409 -745.829 1 10.64 17025					-1214.540	-218.797
3 18.32 23655 4.280187 -1386.662 -323.972 8 25.075 24788 5.007494 -4508.847 -900.420 14 29.09667 27212.33 5.394133 -4346.579 -805.798 28 34.29 30445 5.855766 -3814.747 -651.451 1 8.495 19685 2.914618 2632.734 903.286 3 23.59333 25071.67 4.857297 -3346.435 -688.950 14 36.81 31635.33 6.067125 -3860.985 -636.378 28 35.775 32720 5.981221 -2273.729 -380.145 1 11.95 23948 3.456877 3723.194 1077.040 7 25.7 29877.33 5.069517 217.619 42.927 14 28.755 27373.67 5.362369 -3999.409 -745.829 1 10.64 17025.67 3.261901 -2058.410 -631.046 3 25.915				6.274021		161.813
8 25.075 24788 5.007494 -4508.847 -900.420 14 29.09667 27212.33 5.394133 -4346.579 -805.798 28 34.29 30445 5.855766 -3814.747 -651.451 1 8.495 19685 2.914618 2632.734 903.286 3 23.59333 25071.67 4.857297 -3346.435 -688.950 14 36.81 31635.33 6.067125 -3860.985 -636.378 28 35.775 32720 5.981221 -2273.729 -380.145 1 11.95 23948 3.456877 3723.194 1077.040 7 25.7 29877.33 5.069517 217.619 42.927 14 28.755 27373.67 5.362369 -3999.409 -745.829 1 10.64 17025.67 3.261901 -2058.410 -631.046 3 25.915 30013.33 5.096678 229.814 45.144 7 31.69 3			17697	3.120897	-562.122	-180.115
14 29.09667 27212.33 5.394133 -4346.579 -805.795 28 34.29 30445 5.855766 -3814.747 -651.451 1 8.495 19685 2.914618 2632.734 903.286 3 23.59333 25071.67 4.857297 -3346.435 -688.950 14 36.81 31635.33 6.067125 -3860.985 -636.378 28 35.775 32720 5.981221 -2273.729 -380.145 1 11.95 23948 3.456877 3723.194 1077.040 7 25.7 29877.33 5.069517 217.619 42.927 14 28.755 27373.67 5.362369 -3999.409 -745.829 1 10.64 17025.67 3.261901 -2058.410 -631.046 3 25.915 30013.33 5.090678 229.814 45.144 7 31.69 32650 5.629387 -285.293 -50.679 14 40.375 34				4.280187	-1386.662	-323.972
28 34.29 30445 5.855766 -3814.747 -651.451 1 8.495 19685 2.914618 2632.734 903.286 3 23.59333 25071.67 4.857297 -3346.435 -688.950 14 36.81 31635.33 6.067125 -3860.985 -636.378 28 35.775 32720 5.981221 -2273.729 -380.145 1 11.95 23948 3.456877 3723.194 1077.040 7 25.7 29877.33 5.069517 217.619 42.927 14 28.755 27373.67 5.362369 -3999.409 -745.829 1 10.64 17025.67 3.261901 -2058.410 -631.046 3 25.915 30013.33 5.090678 229.814 45.144 7 31.69 32650 5.629387 -285.293 -50.679 14 40.375 34819 6.354133 -2356.488 -370.859 28 44.01 38625.67		25.075		5.007494	-4508.847	-900.420
1 8.495 19685 2.914618 2632.734 903.286 3 23.59333 25071.67 4.857297 -3346.435 -688.950 14 36.81 31635.33 6.067125 -3860.985 -636.378 28 35.775 32720 5.981221 -2273.729 -380.145 1 11.95 23948 3.456877 3723.194 1077.040 7 25.7 29877.33 5.069517 217.619 42.927 14 28.755 27373.67 5.362369 -3999.409 -745.829 1 10.64 17025.67 3.261901 -2058.410 -631.046 3 25.915 30013.33 5.090678 229.814 45.144 7 31.69 32650 5.629387 -285.293 -50.679 14 40.375 34819 6.354133 -2356.488 -370.859 28 44.01 38625.67 6.634003 -187.233 -28.223 1 9.41 13435.33<			27212.33	5.394133	-4346.579	-805.798
3 23.59333 25071.67 4.857297 -3346.435 -688.950 14 36.81 31635.33 6.067125 -3860.985 -636.378 28 35.775 32720 5.981221 -2273.729 -380.145 1 11.95 23948 3.456877 3723.194 1077.040 7 25.7 29877.33 5.069517 217.619 42.927 14 28.755 27373.67 5.362369 -3999.409 -745.829 1 10.64 17025.67 3.261901 -2058.410 -631.046 3 25.915 30013.33 5.090678 229.814 45.144 7 31.69 32650 5.629387 -285.293 -50.679 14 40.375 34819 6.354133 -2356.488 -370.859 28 44.01 38625.67 6.634003 -187.233 -28.223 1 9.41 13435.33 3.067572 -4511.809 -1470.808 3 20.27 31083 4.502222 4742.302 1053.325 7 35.715 36842.33 5.976203 1877.961 314.240 14 43.42 38831 6.589385 279.142 42.362 7 29.475 35144.33 5.429088 3380.909 622.740 15 39.62 39569.67 6.294442 2743.404 435.846 29 40.455 41263.33 6.360425 4051.034 636.912 2 8.785 21086 2.96395 3745.114 1263.555 5 25.7 35957.67 5.069517 6297.952 1242.318 7 30.98 36379.33 5.565968 3815.081 685.430 14 36.185 37016 6.015397 1822.319 302.942 29 49.64 40770.67 7.045566 -450.122 -63.887 1 10.61 19668 3.257299 610.844 187.531 4 26.31 30655 5.129327 645.357 125.817	28	34.29	30445	5.855766	-3814.747	-651.451
3 23.59333 25071.67 4.857297 -3346.435 -688.950 14 36.81 31635.33 6.067125 -3860.985 -636.378 28 35.775 32720 5.981221 -2273.729 -380.145 1 11.95 23948 3.456877 3723.194 1077.040 7 25.7 29877.33 5.069517 217.619 42.927 14 28.755 27373.67 5.362369 -3999.409 -745.829 1 10.64 17025.67 3.261901 -2058.410 -631.046 3 25.915 30013.33 5.090678 229.814 45.144 7 31.69 32650 5.629387 -285.293 -50.679 14 40.375 34819 6.354133 -2356.488 -370.859 28 44.01 38625.67 6.634003 -187.233 -28.223 1 9.41 13435.33 3.067572 -4511.809 -1470.808 3 20.27 310		8.495	19685	2.914618	2632.734	903.286
28 35.775 32720 5.981221 -2273.729 -380.145 1 11.95 23948 3.456877 3723.194 1077.040 7 25.7 29877.33 5.069517 217.619 42.927 14 28.755 27373.67 5.362369 -3999.409 -745.829 1 10.64 17025.67 3.261901 -2058.410 -631.046 3 25.915 30013.33 5.090678 229.814 45.144 7 31.69 32650 5.629387 -285.293 -50.679 14 40.375 34819 6.354133 -2356.488 -370.859 28 44.01 38625.67 6.634003 -187.233 -28.223 1 9.41 13435.33 3.067572 -4511.809 -1470.808 3 20.27 31083 4.502222 4742.302 1053.325 7 35.715 36842.33 5.976203 1877.961 314.240 14 43.42 38831	3	23.59333	25071.67	4.857297	-3346.435	-688.950
1 11.95 23948 3.456877 3723.194 1077.040 7 25.7 29877.33 5.069517 217.619 42.927 14 28.755 27373.67 5.362369 -3999.409 -745.829 1 10.64 17025.67 3.261901 -2058.410 -631.046 3 25.915 30013.33 5.090678 229.814 45.144 7 31.69 32650 5.629387 -285.293 -50.679 14 40.375 34819 6.354133 -2356.488 -370.859 28 44.01 38625.67 6.634003 -187.233 -28.223 1 9.41 13435.33 3.067572 -4511.809 -1470.808 3 20.27 31083 4.502222 4742.302 1053.325 7 35.715 36842.33 5.976203 1877.961 314.240 14 43.42 38831 6.589385 279.142 42.362 7 29.475 35144.33			31635.33	6.067125	-3860.985	-636.378
7 25.7 29877.33 5.069517 217.619 42.927 14 28.755 27373.67 5.362369 -3999.409 -745.829 1 10.64 17025.67 3.261901 -2058.410 -631.046 3 25.915 30013.33 5.090678 229.814 45.144 7 31.69 32650 5.629387 -285.293 -50.679 14 40.375 34819 6.354133 -2356.488 -370.859 28 44.01 38625.67 6.634003 -187.233 -28.223 1 9.41 13435.33 3.067572 -4511.809 -1470.808 3 20.27 31083 4.502222 4742.302 1053.325 7 35.715 36842.33 5.976203 1877.961 314.240 14 43.42 38831 6.589385 279.142 42.362 7 29.475 35144.33 5.429088 3380.909 622.740 15 39.62 39569.67 6.294442 2743.404 435.846 29 40.455 41263.33 6.360425 4051.034 636.912 2 8.785 21086 2.96395 3745.114 1263.555 5 25.7 35957.67 5.069517 6297.952 1242.318 7 30.98 36379.33 5.565968 3815.081 685.430 14 36.185 37016 6.015397 1822.319 302.942 29 49.64 40770.67 7.045566 -450.122 -63.887 1 10.61 19668 3.257299 610.844 187.531 4 26.31 30655 5.129327 645.357 125.817	28	35.775	32720	5.981221	-2273.729	-380.145
7 25.7 29877.33 5.069517 217.619 42.927 14 28.755 27373.67 5.362369 -3999.409 -745.829 1 10.64 17025.67 3.261901 -2058.410 -631.046 3 25.915 30013.33 5.090678 229.814 45.144 7 31.69 32650 5.629387 -285.293 -50.679 14 40.375 34819 6.354133 -2356.488 -370.859 28 44.01 38625.67 6.634003 -187.233 -28.223 1 9.41 13435.33 3.067572 -4511.809 -1470.808 3 20.27 31083 4.502222 4742.302 1053.325 7 35.715 36842.33 5.976203 1877.961 314.240 14 43.42 38831 6.589385 279.142 42.362 7 29.475 35144.33 5.429088 3380.909 622.740 15 39.62 39569.67			23948	3.456877	3723.194	1077.040
14 28.755 27373.67 5.362369 -3999.409 -745.829 1 10.64 17025.67 3.261901 -2058.410 -631.046 3 25.915 30013.33 5.090678 229.814 45.144 7 31.69 32650 5.629387 -285.293 -50.679 14 40.375 34819 6.354133 -2356.488 -370.859 28 44.01 38625.67 6.634003 -187.233 -28.223 1 9.41 13435.33 3.067572 -4511.809 -1470.808 3 20.27 31083 4.502222 4742.302 1053.325 7 35.715 36842.33 5.976203 1877.961 314.240 14 43.42 38831 6.589385 279.142 42.362 7 29.475 35144.33 5.429088 3380.909 622.740 15 39.62 39569.67 6.294442 2743.404 435.846 29 40.455 41263.33	7	25.7	29877.33	5.069517		
1 10.64 17025.67 3.261901 -2058.410 -631.046 3 25.915 30013.33 5.090678 229.814 45.144 7 31.69 32650 5.629387 -285.293 -50.679 14 40.375 34819 6.354133 -2356.488 -370.859 28 44.01 38625.67 6.634003 -187.233 -28.223 1 9.41 13435.33 3.067572 -4511.809 -1470.808 3 20.27 31083 4.502222 4742.302 1053.325 7 35.715 36842.33 5.976203 1877.961 314.240 14 43.42 38831 6.589385 279.142 42.362 7 29.475 35144.33 5.429088 3380.909 622.740 15 39.62 39569.67 6.294442 2743.404 435.846 29 40.455 41263.33 6.360425 4051.034 636.912 2 8.785 21086	14	28.755	27373.67	5.362369	-3999.409	
3 25.915 30013.33 5.090678 229.814 45.144 7 31.69 32650 5.629387 -285.293 -50.679 14 40.375 34819 6.354133 -2356.488 -370.859 28 44.01 38625.67 6.634003 -187.233 -28.223 1 9.41 13435.33 3.067572 -4511.809 -1470.808 3 20.27 31083 4.502222 4742.302 1053.325 7 35.715 36842.33 5.976203 1877.961 314.240 14 43.42 38831 6.589385 279.142 42.362 7 29.475 35144.33 5.429088 3380.909 622.740 15 39.62 39569.67 6.294442 2743.404 435.846 29 40.455 41263.33 6.360425 4051.034 636.912 2 8.785 21086 2.96395 3745.114 1263.555 5 25.7 35957.67	1	10.64	17025.67	3.261901	-2058.410	-631.046
14 40.375 34819 6.354133 -2356.488 -370.859 28 44.01 38625.67 6.634003 -187.233 -28.223 1 9.41 13435.33 3.067572 -4511.809 -1470.808 3 20.27 31083 4.502222 4742.302 1053.325 7 35.715 36842.33 5.976203 1877.961 314.240 14 43.42 38831 6.589385 279.142 42.362 7 29.475 35144.33 5.429088 3380.909 622.740 15 39.62 39569.67 6.294442 2743.404 435.846 29 40.455 41263.33 6.360425 4051.034 636.912 2 8.785 21086 2.96395 3745.114 1263.555 5 25.7 35957.67 5.069517 6297.952 1242.318 7 30.98 36379.33 5.565968 3815.081 685.430 14 36.185 37016		25.915	30013.33	5.090678	229.814	45.144
14 40.375 34819 6.354133 -2356.488 -370.859 28 44.01 38625.67 6.634003 -187.233 -28.223 1 9.41 13435.33 3.067572 -4511.809 -1470.808 3 20.27 31083 4.502222 4742.302 1053.325 7 35.715 36842.33 5.976203 1877.961 314.240 14 43.42 38831 6.589385 279.142 42.362 7 29.475 35144.33 5.429088 3380.909 622.740 15 39.62 39569.67 6.294442 2743.404 435.846 29 40.455 41263.33 6.360425 4051.034 636.912 2 8.785 21086 2.96395 3745.114 1263.555 5 25.7 35957.67 5.069517 6297.952 1242.318 7 30.98 36379.33 5.565968 3815.081 685.430 14 36.185 37016	7	31.69	32650	5.629387	-285.293	-50,679
28 44.01 38625.67 6.634003 -187.233 -28.223 1 9.41 13435.33 3.067572 -4511.809 -1470.808 3 20.27 31083 4.502222 4742.302 1053.325 7 35.715 36842.33 5.976203 1877.961 314.240 14 43.42 38831 6.589385 279.142 42.362 7 29.475 35144.33 5.429088 3380.909 622.740 15 39.62 39569.67 6.294442 2743.404 435.846 29 40.455 41263.33 6.360425 4051.034 636.912 2 8.785 21086 2.96395 3745.114 1263.555 5 25.7 35957.67 5.069517 6297.952 1242.318 7 30.98 36379.33 5.565968 3815.081 685.430 14 36.185 37016 6.015397 1822.319 302.942 29 49.64 40770.67	14	40.375	34819	6.354133		-370.859
1 9.41 13435.33 3.067572 -4511.809 -1470.808 3 20.27 31083 4.502222 4742.302 1053.325 7 35.715 36842.33 5.976203 1877.961 314.240 14 43.42 38831 6.589385 279.142 42.362 7 29.475 35144.33 5.429088 3380.909 622.740 15 39.62 39569.67 6.294442 2743.404 435.846 29 40.455 41263.33 6.360425 4051.034 636.912 2 8.785 21086 2.96395 3745.114 1263.555 5 25.7 35957.67 5.069517 6297.952 1242.318 7 30.98 36379.33 5.565968 3815.081 685.430 14 36.185 37016 6.015397 1822.319 302.942 29 49.64 40770.67 7.045566 -450.122 -63.887 1 10.61 19668	28	44.01	38625.67	6.634003	-187.233	
3 20.27 31083 4.502222 4742.302 1053.325 7 35.715 36842.33 5.976203 1877.961 314.240 14 43.42 38831 6.589385 279.142 42.362 7 29.475 35144.33 5.429088 3380.909 622.740 15 39.62 39569.67 6.294442 2743.404 435.846 29 40.455 41263.33 6.360425 4051.034 636.912 2 8.785 21086 2.96395 3745.114 1263.555 5 25.7 35957.67 5.069517 6297.952 1242.318 7 30.98 36379.33 5.565968 3815.081 685.430 14 36.185 37016 6.015397 1822.319 302.942 29 49.64 40770.67 7.045566 -450.122 -63.887 1 10.61 19668 3.257299 610.844 187.531 4 26.31 30655 <t< td=""><td></td><td>9.41</td><td>13435.33</td><td>3.067572</td><td>-4511.809</td><td></td></t<>		9.41	13435.33	3.067572	-4511.809	
7 35.715 36842.33 5.976203 1877.961 314.240 14 43.42 38831 6.589385 279.142 42.362 7 29.475 35144.33 5.429088 3380.909 622.740 15 39.62 39569.67 6.294442 2743.404 435.846 29 40.455 41263.33 6.360425 4051.034 636.912 2 8.785 21086 2.96395 3745.114 1263.555 5 25.7 35957.67 5.069517 6297.952 1242.318 7 30.98 36379.33 5.565968 3815.081 685.430 14 36.185 37016 6.015397 1822.319 302.942 29 49.64 40770.67 7.045566 -450.122 -63.887 1 10.61 19668 3.257299 610.844 187.531 4 26.31 30655 5.129327 645.357 125.817		20.27	31083	4.502222	4742.302	
14 43.42 38831 6.589385 279.142 42.362 7 29.475 35144.33 5.429088 3380.909 622.740 15 39.62 39569.67 6.294442 2743.404 435.846 29 40.455 41263.33 6.360425 4051.034 636.912 2 8.785 21086 2.96395 3745.114 1263.555 5 25.7 35957.67 5.069517 6297.952 1242.318 7 30.98 36379.33 5.565968 3815.081 685.430 14 36.185 37016 6.015397 1822.319 302.942 29 49.64 40770.67 7.045566 -450.122 -63.887 1 10.61 19668 3.257299 610.844 187.531 4 26.31 30655 5.129327 645.357 125.817	7	35.715	36842.33		1877.961	
7 29.475 35144.33 5.429088 3380.909 622.740 15 39.62 39569.67 6.294442 2743.404 435.846 29 40.455 41263.33 6.360425 4051.034 636.912 2 8.785 21086 2.96395 3745.114 1263.555 5 25.7 35957.67 5.069517 6297.952 1242.318 7 30.98 36379.33 5.565968 3815.081 685.430 14 36.185 37016 6.015397 1822.319 302.942 29 49.64 40770.67 7.045566 -450.122 -63.887 1 10.61 19668 3.257299 610.844 187.531 4 26.31 30655 5.129327 645.357 125.817	14	43.42	38831	6.589385	279.142	
15 39.62 39569.67 6.294442 2743.404 435.846 29 40.455 41263.33 6.360425 4051.034 636.912 2 8.785 21086 2.96395 3745.114 1263.555 5 25.7 35957.67 5.069517 6297.952 1242.318 7 30.98 36379.33 5.565968 3815.081 685.430 14 36.185 37016 6.015397 1822.319 302.942 29 49.64 40770.67 7.045566 -450.122 -63.887 1 10.61 19668 3.257299 610.844 187.531 4 26.31 30655 5.129327 645.357 125.817	7	29.475	35144.33	5.429088		
29 40.455 41263.33 6.360425 4051.034 636.912 2 8.785 21086 2.96395 3745.114 1263.555 5 25.7 35957.67 5.069517 6297.952 1242.318 7 30.98 36379.33 5.565968 3815.081 685.430 14 36.185 37016 6.015397 1822.319 302.942 29 49.64 40770.67 7.045566 -450.122 -63.887 1 10.61 19668 3.257299 610.844 187.531 4 26.31 30655 5.129327 645.357 125.817	15	39.62	39569.67			
2 8.785 21086 2.96395 3745.114 1263.555 5 25.7 35957.67 5.069517 6297.952 1242.318 7 30.98 36379.33 5.565968 3815.081 685.430 14 36.185 37016 6.015397 1822.319 302.942 29 49.64 40770.67 7.045566 -450.122 -63.887 1 10.61 19668 3.257299 610.844 187.531 4 26.31 30655 5.129327 645.357 125.817	29	40.455		6.360425		
5 25.7 35957.67 5.069517 6297.952 1242.318 7 30.98 36379.33 5.565968 3815.081 685.430 14 36.185 37016 6.015397 1822.319 302.942 29 49.64 40770.67 7.045566 -450.122 -63.887 1 10.61 19668 3.257299 610.844 187.531 4 26.31 30655 5.129327 645.357 125.817	2	8.785	21086	2.96395		
7 30.98 36379.33 5.565968 3815.081 685.430 14 36.185 37016 6.015397 1822.319 302.942 29 49.64 40770.67 7.045566 -450.122 -63.887 1 10.61 19668 3.257299 610.844 187.531 4 26.31 30655 5.129327 645.357 125.817		25.7	35957.67			
14 36.185 37016 6.015397 1822.319 302.942 29 49.64 40770.67 7.045566 -450.122 -63.887 1 10.61 19668 3.257299 610.844 187.531 4 26.31 30655 5.129327 645.357 125.817	7					
29 49.64 40770.67 7.045566 -450.122 -63.887 1 10.61 19668 3.257299 610.844 187.531 4 26.31 30655 5.129327 645.357 125.817	14	36.185				
1 10.61 19668 3.257299 610.844 187.531 4 26.31 30655 5.129327 645.357 125.817	29					
4 26.31 30655 5.129327 645.357 125.817	1	10.61				
15 10:001 120:017	4	26.31				
	17	34.14	36542	5.842944	2357.269	403.439

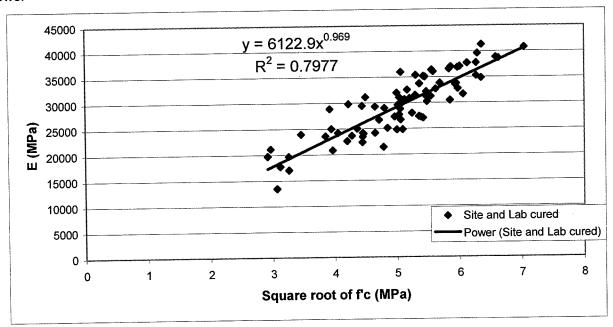

mean	25.05178	28698.3	4.899938	30.724425	17.64295578
stdev	9.745238	6513.113	1.027036	2846.8238	647.0463228
		29424	5.066886	184.92099	36.80794121
mode	9.74	17697	3.120897	-562.1218	-180.1154374
min	8.495	13435.33	2.914618	-6615.416	-1470.807593
max	49.64	41263.33	7.045566	6297.952	1493.246146

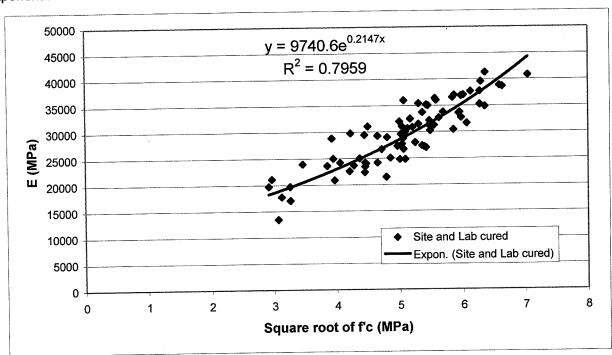

DATA ANALYSIS OF MODULUS OF ELASTICITY


Graph produced from AVERAGE values at each day, both lab and site cured.

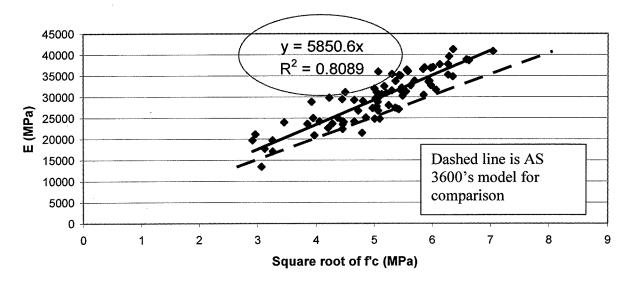

Linear relationship



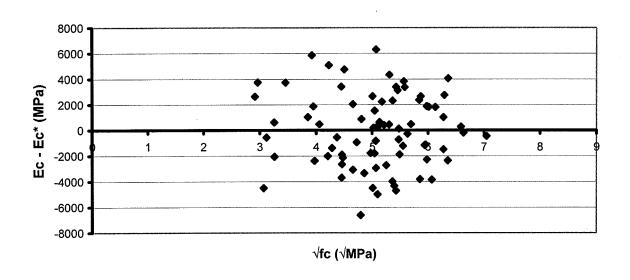

Logarithmic


Polynomial

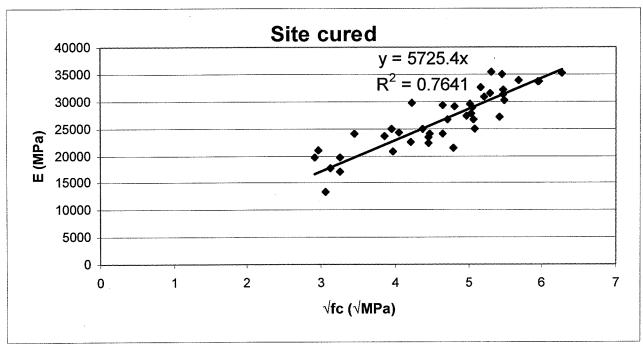
Power

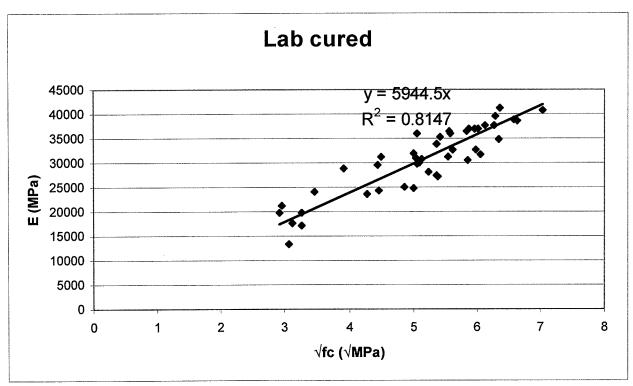


Exponential

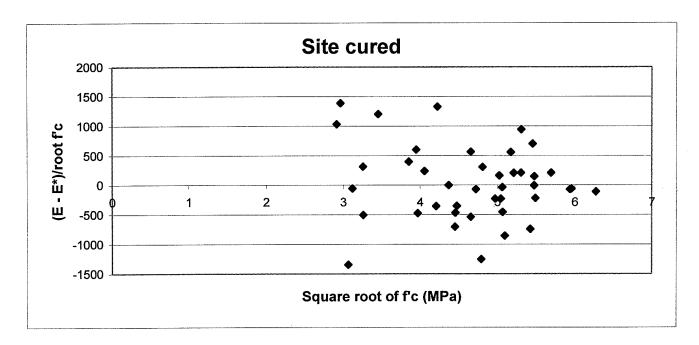

So from the above graphs the most logical relationship to use between E and f'c is: E=5700sqrt(f'c) which has an R^2 of 0.8095

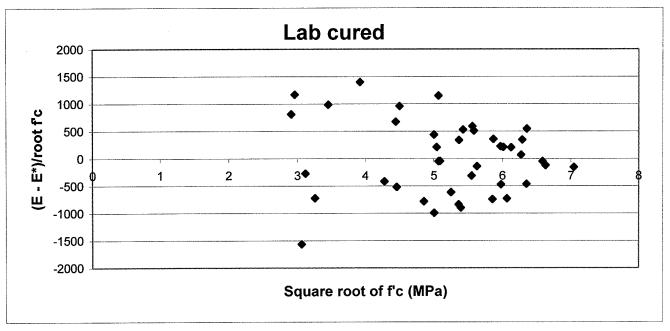
if we set the trendline to go through the origin we get the following:

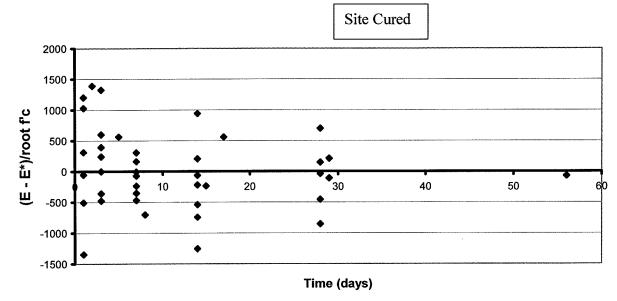


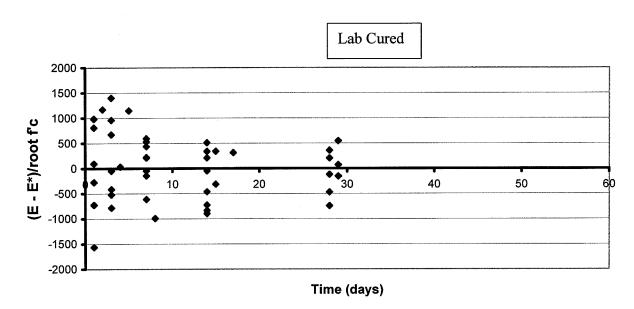

so now the relationship becomes:

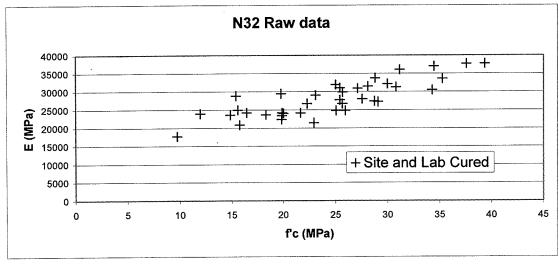
E=5850.6sqrt(f'c) which has an R^2 of .8089

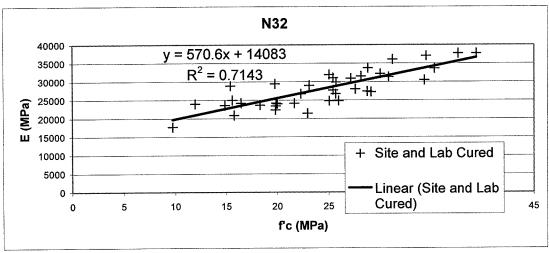


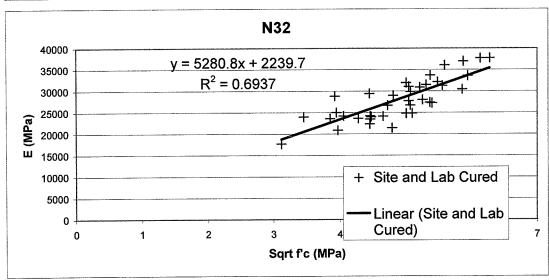

Performing the previous analysis on the separate curing conditions we obtain the following.



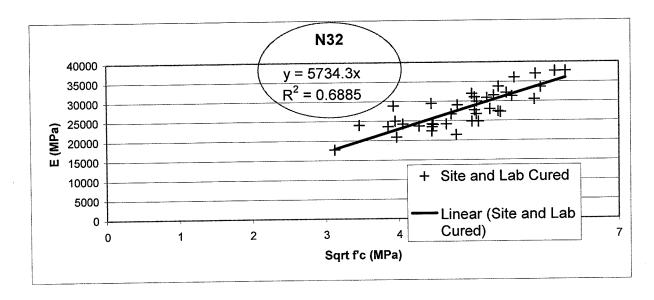

With the corresponding scatter with respect to root fc -

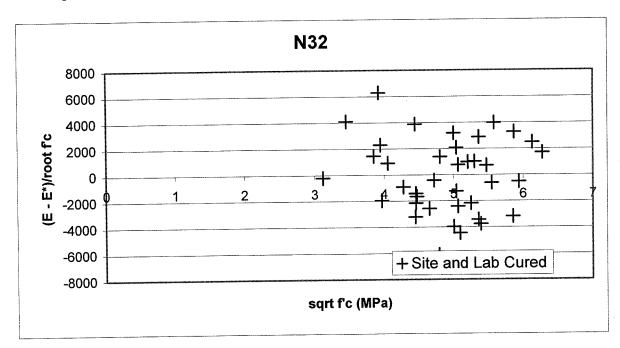

And the following scatter with respect to time

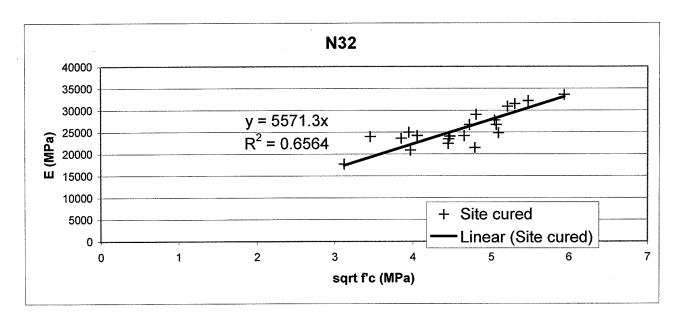


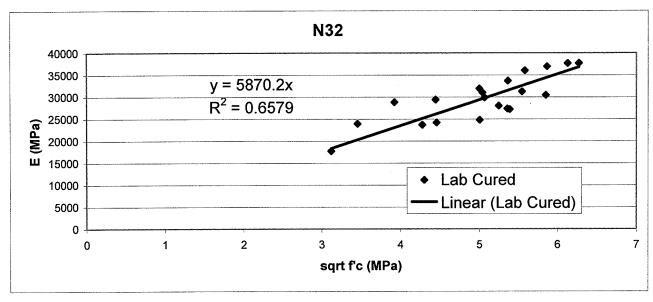


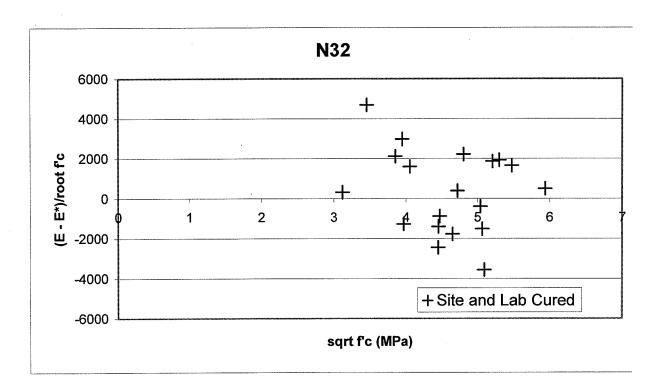
Performing the same analysis on the separate concrete mixes we obtain the following.

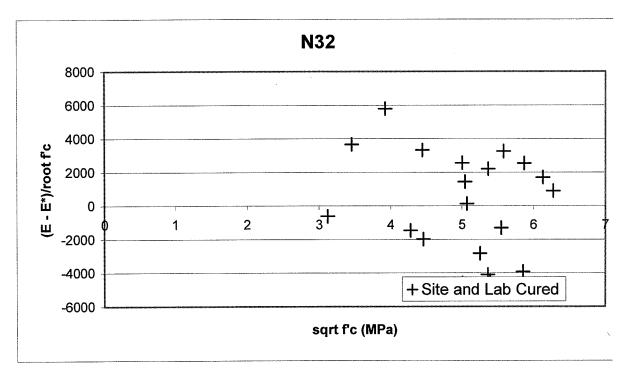

N32 DATA



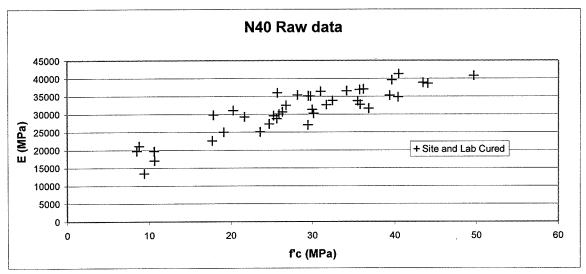

Model applied to N32 data.

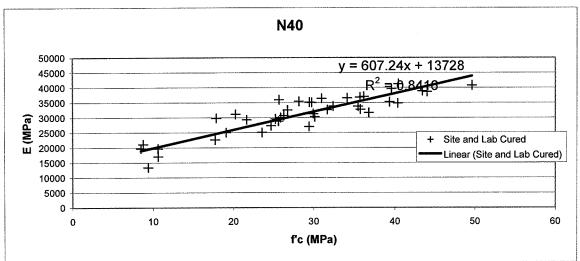


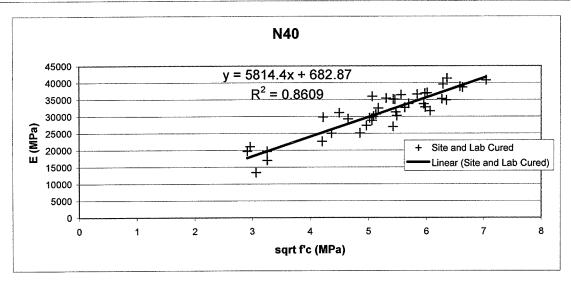

Corresponding Scatter

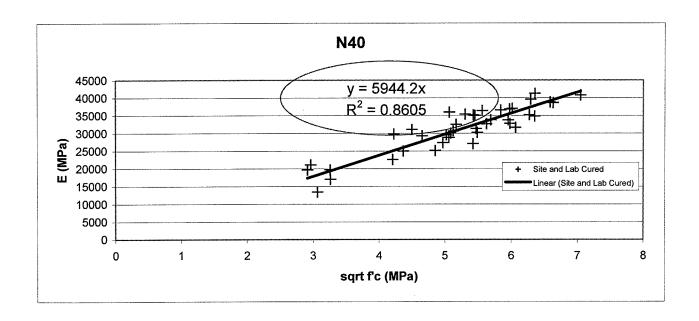


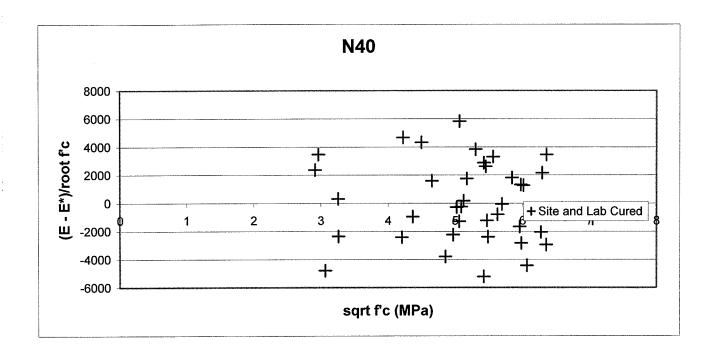
Seperating site and lab cured we get:

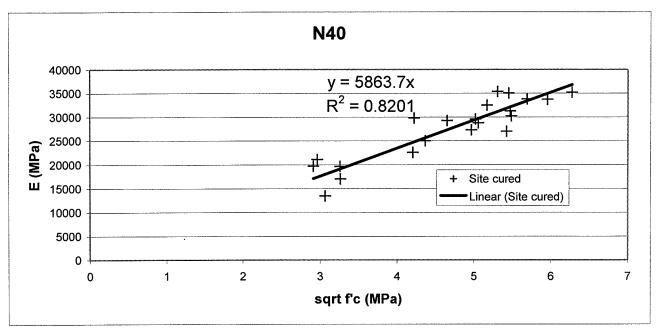


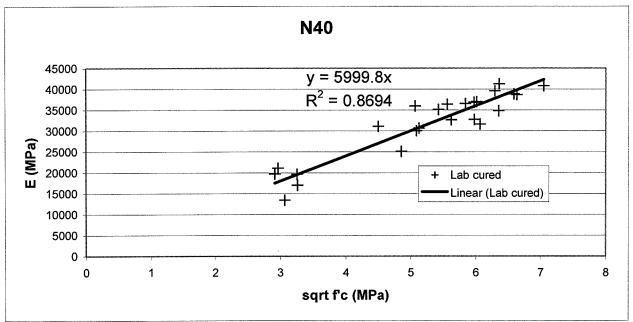


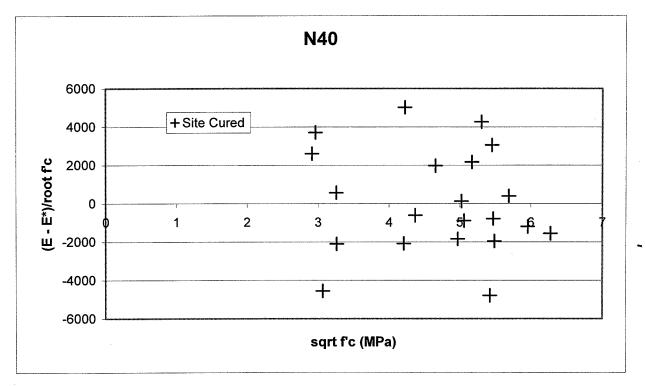


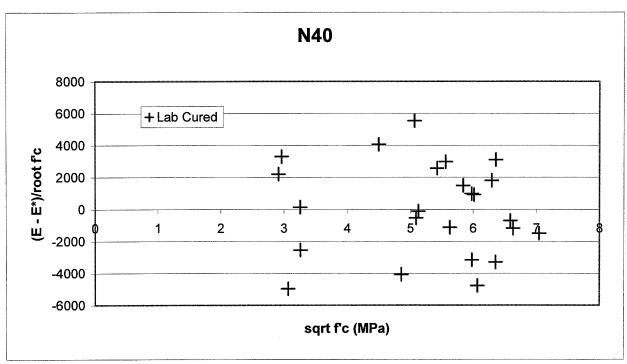

N40 DATA






Model applied to N40 data.




Separating site and lab cured we obtain-

Which contains the following scatter with respect to root fc.

In summary we have determined the following:

Both N32 and N40							
	Site Cured Lab cured Both						
Linear equation	5725.4sqrt(fc)	5944.5sqrt(fc)	5850.6sqrt(fc)				
Standard deviation 2629.5 2968.5 2846.824							

N40						
	Site Cured Lab cured Both					
Linear equation	5863.7sqrt(fc)	5999.8sqrt(fc)	5944.2sqrt(fc)			
Standard deviation		2893.1	2801.3			

Γ	N32					
Γ		Site Cured	Lab cured	Both		
ı	Linear equation	5571.3sqrt(fc)	5870.2sqrt(fc)	5734.3sqrt(fc)		
١	Standard deviation	2402.2	3089.0	2830.2		

Hence although there is minimal change in the relationship (i.e. 5725.4sqrt(fc) vs 5944.5sqrt(fc)) there is not enough to justify utilising different equations for different scenarios. The following equation is suffice for all ages, temperatures, curing locations and mixes:

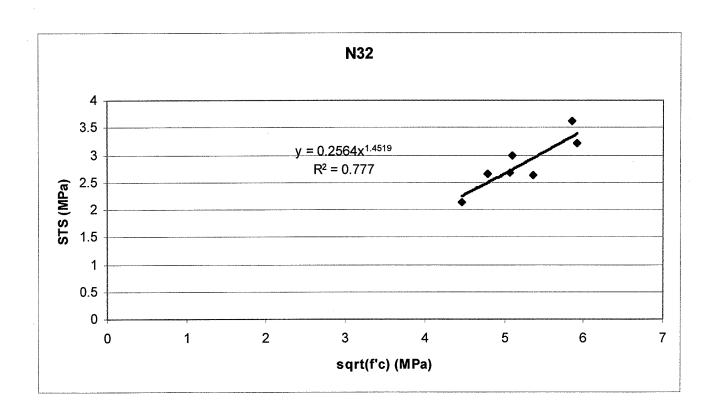
E=5850.6sqrt(fc)

TENSILE STRENGTH DATA

linear equation format f't*=n*sqrt(f'c)+y power equation format f't*=a*sqrt(f'c)^b

a = 0.2351 b = 1.5316 n = 0.8454 y = -1.4146

[Site and Lab cured					
•				linear	power	
	f'c	f't	root f'c	f't - f't*	f't - f't*	f't - f't*/root fc
	25.96	3	5.095096	0.107206	0.153395	0.030106465
	19.9	2.13	4.460942	-0.22668	-0.192279	-0.043102688
Ī	22.96	2.65	4.791659	0.013731	0.058896	0.012291292
	35.09	3.205	5.923681	-0.38828	-0.380536	-0.064239734
	25.62	3.44	5.06162	0.575506	0.62199	0.122883584
	17.855	2.13	4.225518	-0.027653	-0.007225	-0.001709943
	30	2.74	5.477226	-0.475847	-0.440036	-0.080339281
	32.913	3.85	5.736985	0.414553	0.436086	0.07601301
	24.715	2.55	4.971418	-0.238237	-0.19146	-0.038512091
	29.76	3.52	5.455273	0.322712	0.359464	0.065892971
	26.68	2.87	5.165269	-0.082118	-0.036871	-0.007138222
	32.425	3.1	5.694295	-0.299357	-0.275083	-0.04830861
	25.2	3.02	5.023943	0.187359	0.234054	0.046587765
	10.61	1.4	3.257299	0.060879	-0.034648	-0.010637147
	25.41	2.94	5.040833	0.09308	0.139696	0.027712852
	26.76	3.2	5.173007	0.24134	0.286457	0.05537526
	34.29	3.61	5.855766	0.074135	0.087233	0.014896982
	25.7	2.68	5.069517	-0.191169	-0.144746	-0.028552245
	28.755	2.62	5.362369	-0.498747	-0.458473	-0.085498195
	35.775	3.745	5.981221	0.103076	0.105984	0.017719524
	20.27	2.59	4.502222	0.198422	0.234727	0.052135844
	35.715	3.31	5.976203	-0.327682	-0.324341	-0.054272069
	44.5567	4.48	6.675081	0.251487	0.174831	0.026191573
	31.69	2.82	5.629387	-0.524484	-0.496339	-0.088169225
	44.01	4.26	6.634003	0.066214	-0.004659	-0.000702226
	29.475	3.08	5.429088	-0.095151	-0.057331	-0.010559993
	40.455	4.3	6.360425	0.337497	0.301732	0.04743891
	30.98	3.42	5.565968	0.129131	0.160712	0.028873992
	49.64	4.52	7.045566	-0.021721	-0.156496	-0.022212035
	10.61	1.4	3.257299	0.060879	-0.034648	-0.010637147
	29.935	3.24	5.471289	0.029173	0.065241	0.01192432
	34.14	3.66	5.842944	0.134975	0.14904	0.025507758
mean	29.3092	3.1088	5.3504	0.0001	0.0104	0.0021
stdev	8.6665	0.7593	0.8394	0.2701	0.2686	0.0495
median	29.6175	3.0900	5.4422	0.0609	0.0271	0.0056
min	10.6100	1.4000	3.2573	-0.5245	-0.4963	-0.0882
max	49.6400	4.5200	7.0456	0.5755	0.6220	0.1229


N32 DATA ANALYSIS

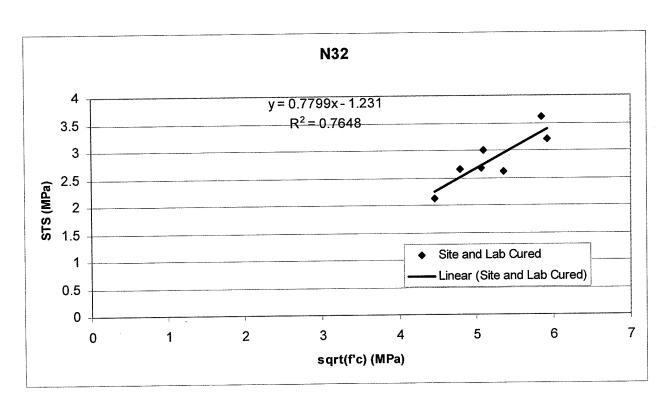
Power modelling

a = 0.2564 b = 1.4519

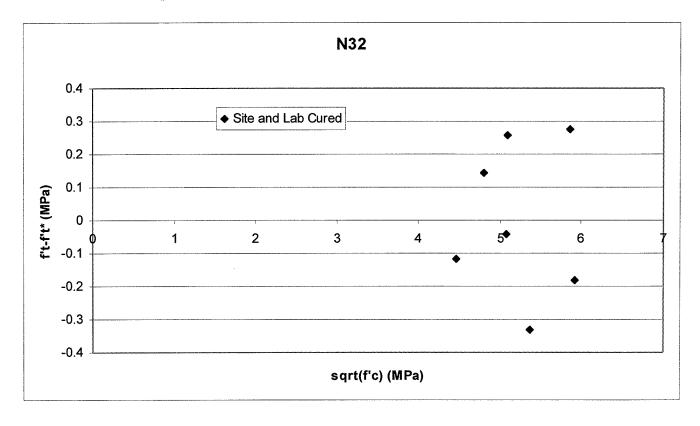
			•	
Site	and Lab C			
Pour	f'c (MPa)	STS (MPa)	sqrt(f'c)	f't-f't*
2N28	25.96	3	5.095096	0.27333
3N7	19.9	2.13	4.460942	-0.118125
3N14	22.96	2.65	4.791659	0.15589
3N60	35.09	3.205	5.923681	-0.188469
2N28	34.29	3.61	5.855766	0.272872
3N7	25.7	2.68	5.069517	-0.026817
3N14	28.755	2.62	5.362369	-0.316777

stdev 0.232245

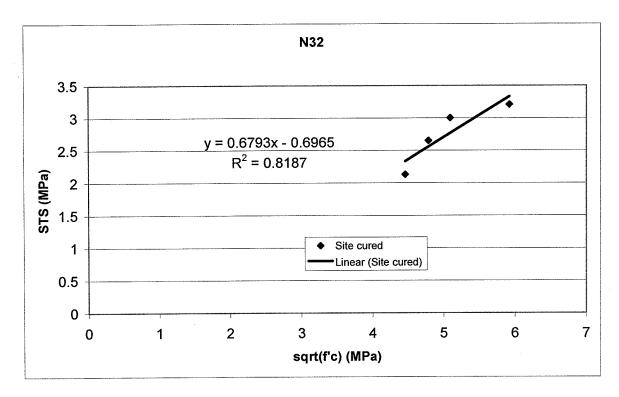
Linear Modelling

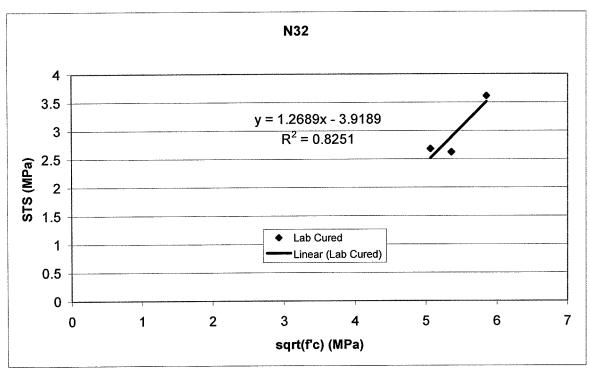

y = mx+c

m= 0.7799 y= -1.231

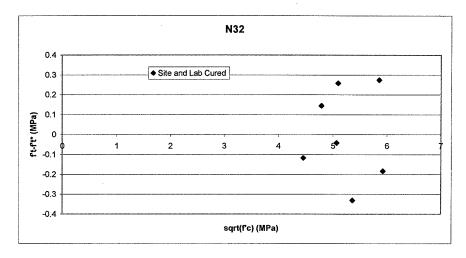

Site and Lab Cured				
Pour	f'c (MPa)	STS (MPa)		f't-f't*
2N28	25.96	3	5.095096	0.257335
3N7	19.9	2.13	4.460942	-0.118088
3N14	22.96	2.65	4.791659	0.143985
3N60	35.09	3.205	5.923681	-0.183879
2N28	34.29	3.61	5.855766	0.274088
3N7	25.7	2.68	5.069517	-0.042716
3N14	28.755	2.62	5.362369	-0.331111

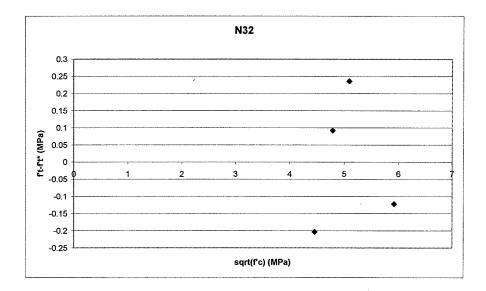
stdev

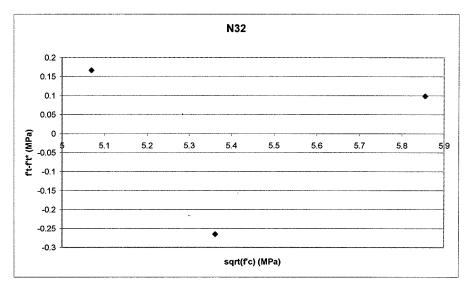

0.231406

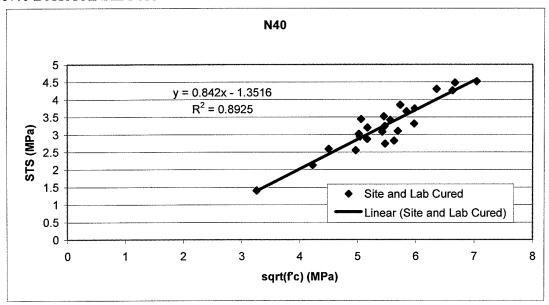


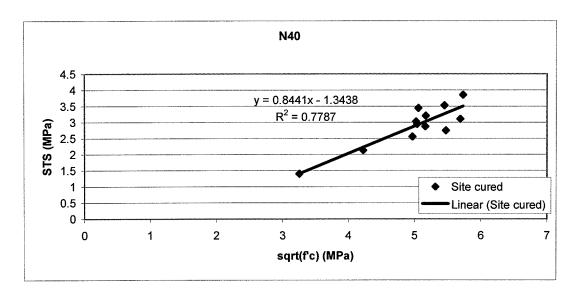
With the corresponding scatter –

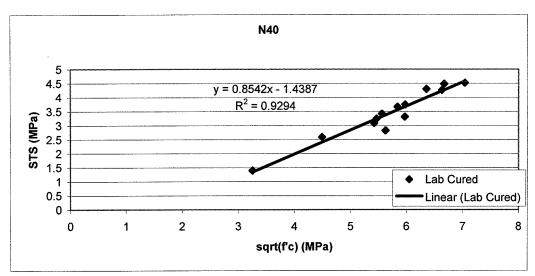


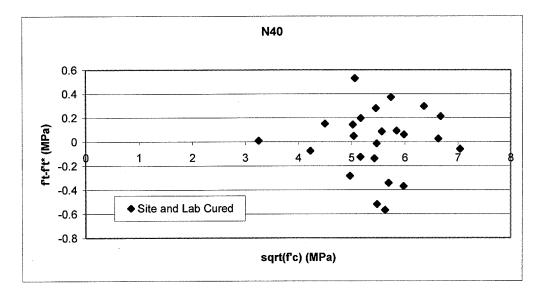

Separating site cured and lab cured data yields the following graphs -

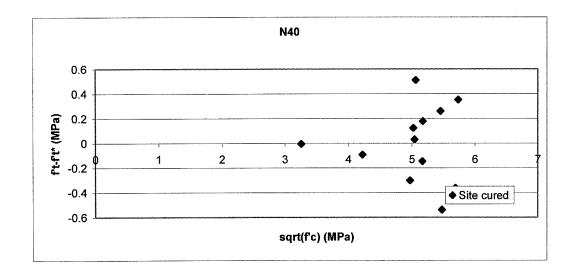


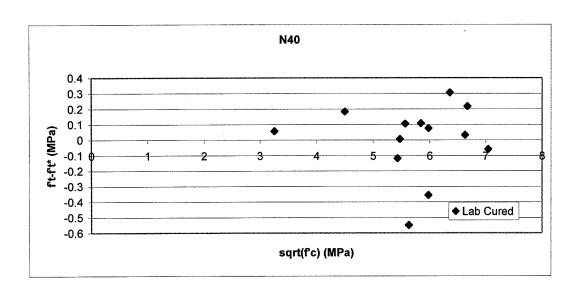

With the corresponding scatter with respect to root fc






N40 DATA ANALYSIS





With the corresponding scatter-

SUMMARY

N32 and N40					
	Site Cured	Lab cured	Both		
Linear equation	0.8096sqrt(f'c) - 1.2168	0.8781sqrt(fc) - 1.6168	0.8454sqrt(f'c) - 1.4146		
Standard deviation	0.294	0.257	0.270		
Power equation	0.2258sqrt(f'c)^1.5638	0.2244sqrt(fc)^1.5522	0.2351sqrt(f'c)^1.5316		
Standard deviation	0.301	0.238	0.269		

Linear equation is slightly less accurate, power equation is used in programming.

N40						
	Site Cured	Lab cured	Both			
Linear equation	0.8441sqrt(f'c) -1.3438	0.8542sqrt(f'c)-1.4387	0.842sqrt(f'c) - 1.3516			
Standard deviation	0.308	0.243	0.267			
Power equation	0.2132sqrt(f'c)^1.6083	0.2377sqrt(fc)^1.5259	0.2386sqrt(f'c)^1.5303			
Standard deviation	0.312	0.235	0.269			

N32								
	Site Cured	Lab cured	Both					
Linear equation	0.6793sqrt(f'c)6965	1.2689sqrt(fc) -3.9189	0.7799sqrt(f'c) -1.231					
Standard deviation	0.200	0.232	0.231					
Power equation	0.3082sqrt(f'c)^1.345	0.0707sqrt(fc)^2.2055	0.2564sqrt(f'c)^1.4519					
Standard deviation	0.209	0.222	0.232					

APPENDIX H

Results of Deformation Prediction Methods.

Input and Output from Monte Carlo Simulation

N32, Strips 1 and 9, Long Term

		INPUTS
Slab Geometry	Prestress factors	Loads
slab depth 200	Tendon force NS 3708.8 kN	
length (EW 9.6	Tendon force EW 3178.9 kN	Live load 3 kPa (unfactored)
length (NS 8.4	Wanter Control of the	LL reductid 0.4
drop dist(EV 3		Dead load 4.8 kPa (unfactored)
drop dist(NS 2.4	eccentricity (NS directi 100 mm	Extra dead 1.4 kPa (unfactored)
column size 625	eccentricity #1 (NS dir 40.55 mm	Total 7.4 MPa
column size 625	eccentricity #2 (NS dir	
cover 25		Miscellaneous Concrete properties
I (EW) 1 5.60E+09		
I (NS) 1 9.26E+09	eccentricity (EW direct 130 mm	Poisson's ratio 0.15
I (EW) 2 1.60E+09	eccentricity #1 (EW dit 55.55 mm	Density 2400
I (NS) 2 3.59E+09	eccentricity #2 (EW dit -74.45 mm	K1 1
I (EW) 3 2.24E+09		K2 0.5 Factors that account for slab location.
I (NS) 3 4.89E+09	Long term factors	kcs 1.7
top reo 12		short term load factor 0.5
lower reo 12	Shrinkage strain 400 Microstrain	long term load factor 0.25
Ln 8.35	Creep Factor 2.6	
		Factors for C & H [2] Factors for C and M Long term E for camber
depth of slab		c1 600 mm KC 0.7
deffective 161.1		11 9.6 m H 70 %
		c1/l1
		beta 1.14 ti 7 days
		alpha1 (1) 0 Ka 2 0.002087 Φ(10000,7) 1.674 kf
		alpha2 (1) 0 Ka 3 0.00218
		alpha1 (2) 1
		······································
		alpha2 (2) 1 alpha1 (3) 1.13

				Fin	al out	put
	OUTP	UT NS	OUTP	UT EW	OUTPUT MID	
	MEAN	STDEV	MEAN	STDEV	MEAN	STDEV
	(mm)		(mm)		(mm)	
1 C & M (d is whole span)	27.6	3.6	66.5	8.5	94.1	9.3
2 C & M (d is drop panel widt)	71.3	9.2	232.7	29.9	303.9	31.3
3 C & M (d is 0.2 x span)	52.3	6.7	166.2	21.4	218.5	22.4
4 Naaman (d is whole span)	9.8	1.1	25.7	2.9	35.5	3.1
5 Naaman (d is drop panel wi	25.3	2.9	90.0	10.3	115.3	10.7

1	C & H [1] (d is whole slab)	-8.5	1.0	-21.8	2.5	-30.2	2.7
2	C & H [1] (d is drop panel w	-21.9	2.5	-76.2	8.7	-98.1	9.1
3	C & H [1] (d is 0.2 x width)	-16.0	1.8	-54.4	6.2	-70.5	6.5
4a	C & H [2] (using a[1])					-71.2	8.1
4b	C & H [2] (using a[2])					-32.6	3.7
4c	C & H (2) (using a(3))					-34.1	3.9
5	C & M [1] (d is whole slab)	-30.0	3.4	-74.1	8.5	-104.1	9.1
6	C & M [1] (d is drop panel w	-77.4	8.8	-259.4	29.6	-336.8	30.9
7	C & M [1] (d is 0.2 x width)	-56.8	6.5	-185.3	21.2	-242.1	22.1
8	Naaman (d is whole slab)	-57.7	6.6	-142.5	16.3	-200.2	17.6
9	Naaman (d is drop panel wi	-148.9	17.0	-498.8	57.0	-647.7	59.5
10	Naaman [1] (d is 0.2 x width	-109.3	12.5	-356.3	40.7	-465.6	42.6
(C)	Warner					-185.8	21.2

	NS	North - South Direction	L
İ	EW	East - West Direction	
	Both	Both Directions	

-1.7			
	-1.3		
		-3.0	

	SUMMARY (Total Deformation)									
	NS mean	NS stdev	EW mean	EW stdev	MID mean	MID stdev				
C & M (d is whole span)	-4.1	4.9	-8.9	12.0	-13.0	13.0				
C & M (d is drop panel width)	-7.9	12.7	-27.9	42.1	-35.8	44.0				
C & M (d is 0.2 x span)	-6.2	9.3	-20.3	30.1	-26.5	31.5				
Mamor					20.8	21.2				

N32, Strips 1 and 9, Short Term

		INPUTS
Slab Geometry	Prestress factors	Loads
slab depth 200	Tendon force NS 3708.8 kN	
length (EW 9.6	Tendon force EW 3178.9 kN	Live load 3 kPa (unfactored)
length (NS 8.4		LL reductid0.4
drop dist(EV 3		Dead load 4.8 kPa (unfactored)
drop dist(NS 2.4	eccentricity (NS directi 100 mm	Extra dead 1.4 kPa (unfactored)
column size 625	eccentricity #1 (NS dir 40.55 mm	Total 7.4 MPa
column size 625	eccentricity #2 (NS dir -59.45 mm	
cover 25		Miscellaneous Concrete properties
I (EW) 1 5.60E+09	. #	la de la companya de
I (NS) 1 9.26E+09	eccentricity (EW direct 130 mm	Poisson's ratio 0.15
I (EW) 2 1.60E+09	eccentricity #1 (EW dit 55.55 mm	Density 2400
I (NS) 2 3.59E+09	eccentricity #2 (EW dit74.45 mm	K1 1 K2 D.5 Factors that account for slab location.
I (EW) 3 2.24E+09	1 t footom	
I (NS) 3 4.89E+09	Long term factors	kcs 1.7 short term load factor 0.5
top reo 12	Shrinkage strain 400 Microstrain	short term load factor 0.5 long term load factor 0.25
lower reo 12 Ln 8.35	Shrinkage strain 400 Microstrain Creep Factor 2.6	long term load ractor
Ln 8.35	Creep Factor 2.0	Factors for C & H [2] Factors for C and M Long term E for camber
depth of slab		c1 600 mm kc 0.7
deffective 161.1		11 9.6 m H 70 %
4011001110		c1/l1 0.0625 t 1000 days
		beta 1.14 ti 7 days
		beta n 1.15 Ka 1 0.004553
		alpha1 (1) 0 Ka 2 0.002087 Φ(10000,7) 1.674 kf
		alpha2 (1) 0 Ka 3 0.00218
		alpha1 (2)1
		alpha2 (2) 1
		alpha1 (3) 1.13
		alpha2 (3)
		alpha2 (3) 0.53

		Final output							2.5			
		OUTP	UT NS	OUTP	UT EW	OUTP	UT MID					
		MEAN	STDEV	MEAN	STDEV	MEAN	STDEV			SUMM	ARY (Total D	eformation)
		(mm)		(mm)		(mm)		,	NS mean	NS stdev	EW mean EW s	dev MID mean M
	is whole span)	9.5	1.1	22.9	2.7	32.5	2.9	C & M (d is whole span)	-0.5	1.5	1.0 3.	6 0.5
	is drop panel width	24.6	2.9	80.3	9.4	104.8	9.8	C & M (d is drop panel width)	1.3	3.8	6.7 12	.7 8.0
	is 0.2 x span)	18.0	2.1	57.3	6.7	75,4	7.0	C & M (d is 0.2 x span)	0.5	2.8	4.4 9.	
4 Naaman	(d is whole span)	2.7	0.3	7.2	0.8	9.9	0.9	Warner				-51.8
5 Naaman	(d is drop panel wi	7.0	0.8	25.1	2.9	32.1	3.1					
6 Naaman	(dis 0.2 x span)	5.2	0.6	17.9	2.1	23.1	2.2					
4a C&HE 4b C&HE 4c C&HE 5 C&M[1 6 C&M[1 7 C&M[1 8 Naaman 9 Naaman] (d is 0.2 x width) (f (using of(1)) (f (using of(2)) (f (using of(3)) (f (using of(3)) (f (d is whole stab) (f (d is drop panel w (f (d is 0.2 x width) (f (d is whole stab) (f (d is drop panel wi	-8.4 -21.6 -15.9 -16.1 -41.5	1.0 2.5 1.9 1.9 4.9	-15.2 -20.7 -72.3 -51.7 -39.7 -139.1	2.4 8.5 6.1 4.7 16.3	-19.7 -19.9 -9.1 -9.5 -29.0 -93.9 -67.5 -55.8 -180.6	1.9 2.3 1.1 1.1 2.6 8.9 6.3 5.0 17.0					
	[1] (d is 0.2 x width	-30.5	3,6	-99.3	11.6	-129.8	12.2					
11 Warner						-51.8	6.1					
a isim waxa	5066											
NS North - S	South Direction	-1.7										
	/est Direction			-1.3								
Both Both Dir		-				-3.0						

N32, Strips 2 and 8, Long Term

INPUTS Slab Geometry Prestress factors Loads 2649.1 kN 3576.3 kN slab depth Tendon force EW 3 kPa (unfactored) length (EW Tendon force NS Live load length (NS drop dist(EV 8.4 LL reduction 4.8 kPa (unfactored) 1.4 kPa (unfactored) 7.4 MPa 2.4 625 130 mm 55.55 mm eccentricity (EW direct eccentricity #1 (EW directed) eccentricity #2 (EW directed) drop dist(N Extra dead Total column size -74.45 mm column siz 625 **Miscellaneous Concrete properties** 25 8.66E+09 6.40E+09 3.78E+09 1.80E+09 4.70E+09 100 mm 40.55 mm -59.45 mm I (EW) 1 I (NS) 1 eccentricity (NS directive eccentricity #1 (NS directive) Poisson's ratio Density K1 2400 eccentricity #2 (NS dir I (NS) 2 I (EW) 3 K2 0.5 I (NS) 3 2.56E+09 Long term factors 1.7 kcs short term load factor top reo 400 Microstrain 2.6 lower reo Shrinkage strain long term load factor 8.35 Creep Factor Ln Factors for C and M Long term E for camber kc 0.7 Factors for C & H [2] c1 **600** depth of slab deffective c1 I1 mm kc H 9.6 0.0625 1.14 70 1000 7 161.1 c1/l1 days beta days Ka 1 0.004553 Ka 2 0.002087 Ka 3 0.00218 beta n 1.15 Φ(10000,7) **1.674** kf alpha1 (1) alpha2 (1) 0 alpha1 (2) alpha2 (2) alpha1 (3) 1.13 0.53 alpha2 (3)

				al output				
		OUTPUT NS		OUTP	UT EW	OUTPUT MID		
		MEAN	STDEV	MEAN	STDEV	MEAN	STDE	
		(mm)		(mm)		(mm)		
1	C & M (d is whole span)	38.6	4.8	35.9	4.4	74.4	6.5	
2	C & M (d is drop panel width	137.2	16.9	82.2	10.1	219.3	19.7	
3	C & M (d is 0.2 x span)	96.5	11.9	66.1	8.1	162.5	14.4	
4	Naaman (d is whole span)	13.7	1.7	13.9	1.7	27.7	2.4	
5	Naaman (d is drop panel wi	48.8	5.9	31.9	3.8	80.8	7.0	
6	Naaman (d is 0.2 x span)	34.3	4.1	25.7	3.1	60.0	5.2	
1 2 3	C & H [1] (d is whole slab) C & H [1] (d is drop panel w C & H [1] (d is 0.2 x width)	-12.3 -43.8 -30.8	1.5 5.3 3.7	-14.2 -32.4 -26.1	1.7 3.9 3.1	-26.5 -76.2 -56.9	2.3 6.6 4.9	
4a 4b	C & H (2) (using a[1]) C & H (2) (using a[2])					-71.6 -32.8	8.6 3.9	
40 40	C & H [2] (using a[3])					-34.3	4.1	
5	C & M [1] (d is whole slab)	-43.7	5.3	-48.2	5.8	-91.8	7.8	
6	C & M [1] (d is drop panel w	-155.2	18.7	-110.4	13.3	-265.6	22.9	
7	C & M [1] (d is 0.2 x width)	-109.2	13.1	-88.7	10.7	~197.9	16.9	
8	Naaman (d is whole slab)	-84.0	10.1	-92.6	11.1	-176.6	15.0	
9	Naaman (d is drop panel wi	-298.5	35.9	-212.2	25.5	-510.8	44.1	
10	Naaman [1] (d is 0.2 x width	-209.9	25.2	~170.7	20.5	-380.6	32.5	
11	Warner					-186.7	22.5	
							,	
NS FW	North - South Direction	-1.7		-1.3	 		 	
Evv Both	East - West Direction			-1.3		-3.0	—	
	Both Directions		1			-0.0	ŧ	

	SUMMARY (Total Deformation)									
	NS mean	NS stdev	EW mean	EW stdev	MID mean	MID stdev				
C & M (d is whole span)	-6.8	7.1	-13.6	7.3	-20.3	10.2				
C & M (d is drop panel width)	-19.7	25.2	-29.5	16.7	-49.2	30.2				
C & M (d is 0.2 x span)	-14.4	17.7	-24.0	13.4	-38.3	22.2				
Warner					-186.7	22.5				

N32, Strips 2 and 8, Short Term

INPUTS Loads Slab Geometry Prestress factors 2649.1 kN 3576.3 kN slab depth length (EW length (NS drop dist(EV Tendon force EW 3 kPa (unfactored) 0.4 4.8 kPa (unfactored) 1.4 kPa (unfactored) 7.4 MPa Tendon force NS Live load LL reduction Dead load 130 mm 55.55 mm -74.45 mm eccentricity (EW direct eccentricity #1 (EW directed) eccentricity #2 (EW directed) drop dist(NS Extra dea column size column size 625 Miscellaneous Concrete properties cover 25 100 mm 40.55 mm -59.45 mm I (EW) 1 eccentricity (NS directi 6.40E+09 3.78E+09 1.80E+09 4.70E+09 0.15 I (NS) 1 I (EW) 2 eccentricity #1 (NS dir eccentricity #2 (NS dir Poisson's ratio Density 2400 I (NS) 2 I (EW) 3 K1 K2 0.5 Factors that account for slab location. 1.7 0.5 0.25 I (NS) 3 2.56E+09 Long term factors kcs short term load factor long term load factor top reo 400 Microstrain Shrinkage strain lower reo Creep Factor Factors for C & H [2] c1 600 l1 9.6 Factors for C and M Long term E for camber kc H 70 % depth of slab 161.1 deffective 0.0625 1.14 c1/l1 beta 1000 Ka 1 0.004553 Ka 2 0.002087 Ka 3 0.00218 beta n alpha1 (1) alpha2 (1) Φ(10000,7) **1.674** kf alpha2 (1) alpha1 (2) alpha2 (2) alpha1 (3) alpha2 (3)

					Fin	al out	put		
_		OUTP	UT NS	OUTP	UT EW	OUTP	UT MID		
		MEAN	STDEV	MEAN	STDEV	MEAN	STDEV	SUMMAR	RY (Total Deformation)
MARKET TO		(mm)		(mm)		(mm)		NS mean NS stdev EV	W mean EW stdev MID mean MID stdev
1	C & M (d is whole span)	13.3	1.6	12.4	1.5	25.7	2.2	C & M (d is whole span) -0.5 2.2	-2.3 2.2 -2.8 3.1
2	C & M (d is drop panel width		5.7	28.3	3.4	75.7	6.6	C & M (d is drop panel width) 2.5 7.7	-3.6 5.0 -1.0 9.2
3	C & M (d is 0.2 x span)	33.3	4.0	22.8	2.7	56.1	4.9	C & M (d is 0.2 x span) 1.3 5.4	-3.1 4.0 -1.8 6.8
4	Naaman (d is whole span)	3.8	0.5	3.9	0.5	7.7	0.7	Warner	-51.9 6.2
5	Naaman (d is drop panel wi		1.6	8.9	1.1	22.4	1.9		
6	Naaman (d is 0.2 x span)	9.5	1.1	7.1	0.9	16.7	1.4		
	(9/30))								
1	C & H [1] (d is whole slab)	-3.4	0.4	-3.9	0.5	-7.4	0.6		
2	C & H [1] (d is drop panel w		1.5	-9.0	1.1	-21.2	1.8		
3	C & H [1] (d is 0.2 x width)	-8.6	1.0	-7.2	0.9	-15.8	1.3		
48	C & H [2] (using a[1])					-19.9	2.4		
4b	C & H [2] (using a[2])					-9.1	1.1		
4C	C & H [2] (using a[3])					-9.5	1.1		
5	C & M (1) (d is whole slab)		1.5	-13.4	1.6	-25.5	2.2		
6	C & M [1] (d is drop panel w		5.2	-30.7	3.7	-73.8	6.4		
7	C & M [1] (d is 0.2 x width)	-30.3	3.6	-24.7	3.0	-55.0	4.7		

\$255 (Sin)		
NS	North - South Direction	-1
EW	East - West Direction	
Both	Both Directions	

9 Naaman (d is drop panel v 10 Naaman [1] (d is 0.2 x wid 11 **Warner**

-1.7			
	-1.3		·
		-3.0	

N32, Strips 3 and 8, Long Term

INPUTS Slab Geometry Prestress factors Loads 3443.9 kN 3576.3 kN siab depth length (EW Tendon force EW Tendon force NS 3 kPa (unfactored) 0.4 4.8 kPa (unfactored) 1.4 kPa (unfactored) 7.4 MPa Live load LL reduction length (NS Dead load drop dist(E) 130 mm 55.55 mm -74.45 mm drop dist(N eccentricity (EW direct eccentricity #1 (EW direct Extra dead Total 625 column size 625 eccentricity #2 (EW dir Miscellaneous Concrete properties cover I (EW) 1 25 8.66E+09 6.40E+09 3.78E+09 1.80E+09 4.70E+09 2.56E+09 12 100 mm 40.55 mm -59.45 mm eccentricity (NS directi I (EW) 1 I (NS) 1 I (EW) 2 I (NS) 2 I (EW) 3 I (NS) 3 top reo eccentricity #1 (NS direction of the eccentricity #2 (NS direction) 0.15 2400 Poisson's ratio Density K1 K2 1 0.5 Factors that account for slab location. Long term factors kcs 1.7 0.5 0.25 short term load factor 400 Microstrain 2.6 Shrinkage strain Creep Factor lower reo long term load factor Ln 8.35 Factors for C & H [2] c1 600 l1 9.6 c1/l1 0.0625 Factors for C and M Long term E for camber kc 0.7 % kc H]mm depth of slab 161.1 deffective days days 1000 1.14 1.15 beta beta n ti Ka 1 0.004553 Ka 2 0.002087 Ka 3 0.00218 Φ(10000,7) **1.674** kf alpha1 (1) alpha2 (1) alpha1 (2) alpha2 (2) 1.13 0.53 alpha1 (3) alpha2 (3)

					Fin	al out	put
		OUTP	UT NS	OUTPUT EW		OUTPUT MID	
		MEAN	STDEV	MEAN	STDEV	MEAN	STDEV
	1012.0000	(mm)	-	(mm)		(mm)	
1	C & M (d is whole span)	38.7	4.7	46.8	5.7	85.5	7.4
2	C & M (d is drop panel width	137.6	16.8	107.1	13.1	244.7	21.3
3	C & M (d is 0.2 x span)	96.7	11.8	86.2	10.5	182.9	15.8
4	Naaman (d is whole span)	13.8	1.7	18.2	2.2	32.0	2.7
5	Naaman (d is drop panel wi	49.0	5.9	41.6	5.0	90.6	7.7
6	Naaman (d is 0.2 x span)	34.5	4.1	33.5	4.0	67.9	5.8
	Marion .						
1	C & H [1] (d is whole slab)	-12.4	1.5	-14.2	1.7	-26.6	2.3
ż	C & H [1] (d is drop panel w	-44.0	5.3	-32.5	3.9	-76.5	6.6
3	C & H [1] (d is 0.2 x width)	-30.9	3.7	-26.2	3.1	-57.1	4.9
4a	C & H (2) (using a(1))					-71.8	8.6
4b	C & H [2] (using a[2])					-32.9	4.0
4¢	C & H [2] (using a[3])					-34.4	4.1
5	C & M [1] (d is whole slab)	-43.8	5.3	-48.3	5.8	-92.1	7.8
6	C & M [1] (d is drop panel w	-155.8	18.7	-110.7	13.3	-266.5	23.0
7	C & M [1] (d is 0.2 x width)	-109.5	13.2	-89.0	10.7	-198.6	17.0
8	Naaman (d is whole slab)	-84.2	10.1	-92.9	11.2	-177.2	15.1
9	Naaman (d is drop panel wi	-299.5	36.0	-212.9	25.6	-512.4	44.2
10	Naaman [1] (d is 0.2 x width	-210.6	25.3	-171.2	20.6	-381.8	32.6
11	Warner					-187.3	22.5
Kerrer	State State Control of the Control o						
NS	North - South Direction	-1.7					
EW	East - West Direction	- 1		-1,3			<u> </u>
Both	Both Directions			7,0		-3.0	

	SUMMARY (Total Deformation)							
	NS mean	NS stdev	EW mean	EW stdev	MID mean	MID stdev		
C & M (d is whole span)	-6.8	7.1	-2.8	8.2	-9.6	10.8		
C & M (d is drop panel width)	-19.8	25.2	-4.9	18.7	-24.7	31.3		
C & M (d is 0.2 x span)	-14.4	17.7	-4.2	15.0	-18.6	23.2		
Warner					-187.3	22.5		

N32, Strips 3 and 8, Short Term

INPUTS Slab Geometry Prestress factors Loads slab depth length (EW length (NS Tendon force EW 3576.3 kN 3 kPa (unfactored) Tendon force NS Live load 0.4 4.8 kPa (unfactored) 1.4 kPa (unfactored) LL reduction drop dist(E) Dead load 130 mm 55.55 mm -74.45 mm eccentricity (EW direct eccentricity #1 (EW directer) eccentricity #2 (EW directer) 2.4 Extra dead drop dist(N 625 7.4 MPa column size column siz 625 **Miscellaneous Concrete properties** 25 100 mm 40.55 mm 8.66E+09 eccentricity (NS directi I (EW) 1 6.40E+09 3.78E+09 1.80E+09 I (NS) 1 eccentricity #1 (NS dir I (EW) 2 I (NS) 2 -59.45 mm Density K1 eccentricity #2 (NS dir 2400 0.5 I (EW) 3 4.70E+09 K2 1.7 0.5 I (NS) 3 2.56E+09 Long term factors 12 short term load factor 400 Microstrain long term load factor 12 Shrinkage strain lower reo 8.35 Creep Factor Factors for C & H [2] c1 600 Factors for C and M Long term E for camber kc 0.7 depth of slab]mm 161.1 70 deffective [11 9.6 н c1/l1 0.0625 1000 davs 1.14 1.15 beta days Ka 1 0.004553 Ka 2 0.002087 Ka 3 0.00218 beta n alpha1 (1) Φ(10000,7) **1.674** kf 0 alpha2 (1) alpha1 (2) alpha2 (2) alpha1 (3) 1.13 alpha2 (3) 0.53

SUMMARY (Total Deformation)

NS stdev EW mean EW stdev MID mean MID stdev

NS mean

C & M (d is drop panel width)
C & M (d is 0.2 x span)
Warnel

		OUTP	UT NS	OUTP	UT EW	OUTPUT MID		
		MEAN	STDEV	MEAN	STDEV	MEAN	STDE	
		(mm)		(mm)		(mm)		
1	C & M (d is whole span)	13.4	1.6	16.1	1.9	29.5	2.5	
2	C & M (d is drop panel width	47.5	5.7	37.0	4.4	84.5	7.2	
3	C & M (d is 0.2 x span)	33.4	4.0	29.7	3.6	63.1	5.4	
4	Naaman (d is whole span)	3.8	0.5	5.0	0.6	8.9	0.8	
5	Naaman (d is drop panel wi	13.6	1.6	11.6	1.4	25,2	2.1	
6	Naaman (d is 0.2 x span)	9.6	1.2	9.3	1.1	18.9	1.6	

1	C & H [1] (d is whole slab)	-3.4	0.4	-3.9	0.5	-7.4	0.6
2	C & H [1] (d is drop panel w	-12.2	1.5	-9.0	1.1	-21.2	1.8
3	C & H [1] (d is 0.2 x width)	-8.6	1.0	-7.3	0.9	-15.9	1.4
4a	C & H [2] (using a[1])					-19.9	2.4
4b	C & H [2] (using a[2])					-9.1	1.1
4c	C & H [2] (using a[3])					-9.5	1.1
5	C & M [1] (d is whole slab)	-12.2	1.5	-13.4	1.6	-25.6	2.2
6	C & M [1] (d is drop panel w	-43.3	5.2	-30.8	3.7	-74.0	6.4
7	C & M [1] (d is 0.2 x width)	-30.4	3.7	-24.7	3.0	-55.2	4.7
8	Naaman (d is whole slab)	-23.4	2.8	-25.8	3.1	-49.2	4.2
9	Naaman (d is drop panel wi	-83.2	10.0	-59.1	7.1	-142.3	12.3
10	Naaman [1] (d is 0.2 x width	-58.5	7.0	-47.6	5.7	-106.1	9.1
11	Warner					-52.0	6.3

NS	North - South Direction	
EW	East - West Direction	
Both	Both Directions	

-1.7			
	-1.3		
		-3.0	

N32, Strips 4 and 9, Long Term

INPUTS Slab Geometry Prestress factors Loads 3443.9 kN 3178.9 kN slab depth length (EW Tendon force NS Tendon force EW 9.6 8.4 Live load 3 kPa (unfactored) LL reduction 0.4 4.8 kPa (unfactored) length (NS drop dist(EV 2.4 625 eccentricity (NS directi eccentricity #1 (NS direccentricity #2 (NS direccentricity #2) 100 mm 40.55 mm -59.45 mm 1.4 kPa (unfactored) 7.4 MPa drop dist(N Extra dea column size Total column size 625 Miscellaneous Concrete properties cover 5.60E+09 9.83E+09 1.60E+09 4.49E+09 2.24E+09 I (EW) 1 130 mm 55.55 mm -74.45 mm eccentricity (EW direct eccentricity #1 (EW directed) eccentricity #2 (EW directed) Poisson's ratio 0.15 I (NS) 1 I (EW) 2 Density K1 2400 I (NS) 2 I (EW) 3 0.5 Factors that account for slab location. 1.7 0.5 0.25 Long term factors I (NS) 3 5.29E+09 top reo lower reo 12 12 8.35 short term load factor long term load factor 400 Microstrain Shrinkage strain Creep Factor Factors for C & H [2] c1 600 l1 9.6 c1/l1 0.0625 Factors for C and M Long term E for camber kc 0.7 H 70 % depth of slab 161.1 days beta beta n 1.14 1.15 Ka 1 0.004553 Ka 2 0.002087 Ka 3 0.00218 alpha1 (1) alpha2 (1) Φ(10000,7) **1.674** kf ō alpha1 (2) alpha2 (2) 1.13 0.53 alpha2 (3)

(mm) (mm) (mm) (mm) (mm) 1						Fin	al out	put
(mm) (mm) (mm) (mm) (mm) 1			OUTP	UT NS	OUTP	UT EW	OUTP	UT MID
1 C & M (d is whole span) 2 C & M (d is whole span) 3 C & M (d is drop panel wid) 4 Naaman (d is whole span) 5 Naaman (d is drop panel wid) 6 Naaman (d is drop panel wid) 1 C & H [1] (d is whole slab) 2 C & H [1] (d is whole slab) 2 C & H [1] (d is whole slab) 3 C & H [1] (d is drop panel wid) 4 C & H [2] (sing q q q q q q q q q q q q q q q q q q q			MEAN	STDEV	MEAN	STDEV	MEAN	STDE
1 C & M (d is whole span) 2 C & M (d is whole span) 3 C & M (d is drop panel wid) 4 Naaman (d is whole span) 5 Naaman (d is drop panel wid) 6 Naaman (d is drop panel wid) 1 C & H [1] (d is whole slab) 2 C & H [1] (d is whole slab) 2 C & H [1] (d is whole slab) 3 C & H [1] (d is drop panel wid) 4 C & H [2] (sing q q q q q q q q q q q q q q q q q q q	9830000		(mm)		(mm)		(mm)	
2 C & M (d is 0.2 x span) 45.1 6.5 233.5 28.7 286.5 45.1 6.6 8 20.5 211.8 45.1 5.5 166.8 20.5 21.8 45.1 5.5 166.8 20.5 21.8	1	C & M (d is whole span)	24.2	3.0	66.7	8.2	91.0	8.7
Naaman (d is whole span) 8.6 1.0 25.9 3.1 34.5	2	C & M (d is drop panel width	53.1	6.5	233.5	28.7	286.5	29.5
18.9 2.2 90.7 10.8 109.6	3	C & M (d is 0.2 x span)	45.1	5.5	166.8	20.5	211.8	21.3
Deflectiful	4	Naaman (d is whole span)	8.6	1.0	25.9	3.1	34.5	3.2
1	5	Naaman (d is drop panel wi	18,9	2.2	90.7	10.8	109.6	11.0
1 C & H [1] (d is whole slab) -8.0 1.0 -21.9 2.6 -30.0 2 C & H [1] (d is drop panel w of the content of the con	6	Naaman (d is 0.2 x span)	16.0	1.9	64.8	7.7	80.8	7.9
4a C & H (2) (using q(1)) 4b C & H (2) (using q(2)) 4c C & H (2) (using q(3)) 5 C & M (1) (d is whole slab) 6 C & M (1) (d is whole slab) 7 C & M (1) (d is drop panel w exidence) 8 Naaman (d is whole slab) 9 Naaman (d is drop panel with 15.2) 9 Naaman (d is drop panel with 10.0) 10 Naaman (1) (d is 0.2 x width 11 Warner NS North- South Direction 11 Warner -71.7 -32.9 -43.3 -74.6 8.9 -103.1 -62.1 31.0 -323.6 22.1 -239.5 -62.2 31.0 -198.3 -196.6 22.1 -239.5 -101.8 -101.8 -12.1 -358.8 42.6 -460.6 -187.1	2	C & H [1] (d is drop panel w	-17.6	2.1	-76.8	9.1	-94.4	9.3
4a C & H [2] (using q[1]) 4b C & H [2] (using q[2]) 4c C & K [2] (using q[3]) 5 C & M [1] (d is whole slab) 6 C & M [1] (d is drop panel w -62.4 7.4 -261.2 31.0 -323.6 7 C & M [1] (d is 0.2 x width -52.9 6.3 -186.6 22.1 -239.5 8 Naaman (d is whole slab) 9 Naaman (d is drop panel w -119.9 14.2 -502.4 59.6 -622.3 10 Naaman [1] (d is 0.2 x width -101.8 12.1 -358.8 42.6 -460.6 11 Warner NS North - South Direction 1-1.7		C & H [1] (d is drop panel w						
4b C & H (2) (taling d(2)) 4c C & H (2) (taling d(3)) 5 C & M (1) (d is whole slab) 6 C & M (1) (d is drop panel w 7 C & M (1) (d is 0.2 x width) 8 Naaman (d is whole slab) 9 Naaman (d is whole slab) 10 Naaman (1) (d is drop panel w 11 Warner NS North- South Direction -32.9 -34.3 -74.6 8.9 -103.1 -103.1 -323.6 -26.2 -21.0 -323.6 -22.1 -323.6 -22.1 -323.5 -186.6 22.1 -329.5 -32.9 -34.3 -186.6 22.1 -329.5 -196.6 -22.3 -196.6 -22.3 -101.8 -11.9 -101.8 -12.1 -358.8 -358.8 -360.6 -187.1	rendered breen		-14.9	1.8	-54.8	0.0		6.7
4c C & H (2) (using d(3)) 5 C & M (1) (d is whole slab) 6 C & M (1) (d is drop panel w 7 C & M (1) (d is 0.2 x width) 8 Naaman (d is whole slab) 9 Naaman (d is drop panel wi 10 Naaman (1) (d is 0.2 x width) 11 Warner								8.5 3.9
5 C & M [1] (d is whole slab) -28.5 3.4 -74.6 8.9 -103.1 6 C & M [1] (d is drop panel w -62.4 7.4 -261.2 31.0 -323.6 7 C & M [1] (d is 0.2 x width) -52.9 6.3 -186.6 22.1 -239.5 8 Naaman (d is whole slab) -54.8 6.5 -143.5 17.0 -198.3 9 Naaman (d is drop panel wi -119.9 14.2 -502.4 59.6 622.3 10 Naaman [1] (d is 0.2 x width -101.8 12.1 -358.8 42.6 -460.6 11 Warner -101.8 12.1 -358.8 42.6 -460.6 NS North -South Direction -1.7								4.1
6 C & M [1] (d is drop panel w -62.4 7.4 -261.2 31.0 -323.6 7 C & M [1] (d is 0.2 x width) -52.9 6.3 -186.6 22.1 -239.5 8 Naaman (d is whole slab) -54.8 6.5 -1443.5 17.0 -198.3 9 Naaman (d is drop panel wider 119.9 14.2 -502.4 59.6 -622.3 10 Naaman [1] (d is 0.2 x width -101.8 12.1 -358.8 42.6 -460.6 11 Warner -101.8 12.1 -358.8 42.6 -460.6		**************************************	28.5	34	746	80		9.5
7 C & M [1] (d is 0.2 x width)								31.9
8 Naaman (d is whole slab) -54.8 6.5 -143.5 17.0 -198.3 9 Naaman (d is drop panel wi -119.9 14.2 -502.4 59.6 -622.3 10 Naaman (1) (d is 0.2 x widt -101.8 12.1 -358.8 42.6 -460.6 11 Warner -187.1 -187.1								23.0
9 Naaman (d is drop panel wi 10 Naaman [1] (d is 0.2 x width 101.8 12.1 -358.8 42.6 -460.6 11 Warner -101.8 12.1 -358.8 42.6 -187.1 1								18.2
10 Naaman [1] (d is 0.2 x width -101.8 12.1 -358.8 42.6 -460.6 11 Warner -187.1 NS North - South Direction -1.7								61.3
11 Warner -187.1 NS North - South Direction -1.7								44.2
NS North - South Direction -1.7							-187.1	22.2
	183318		4.7					
			-1./		13			
Both Both Directions -3.0					-1.3		-3.0	-

		SUMM	ARY (To	tal Defo	rmation)	
	NS mean	NS stdev	EW mean	EW stdev	MID mean	MID stdev
C & M (d is whole span)	-5.9	4.5	-9.2	12.1	-15.1	12.9
C & M (d is drop panel width)	-11.0	9.9	-29.1	42.3	-40.0	43.4
C & M (d is 0.2 x span)	-9.6	8.4	-21.1	30.2	-30.7	31.3
Warner					-187.1	22.2

N32, Strips 4 and 9, Short Term

INPUTS Loads Slab Geometry slab depth 200 Prestress factors 3443.9 kN 3178.9 kN Tendon force NS length (EW length (NS drop dist(EV Live load LL reduction 3 kPa (unfactored) 9.6 8.4 3 2.4 625 625 Tendon force EW 3 kPa (unfactored) 0.4 4.8 kPa (unfactored) 1.4 kPa (unfactored) 7.4 MPa Dead load 100 mm 40.55 mm -59.45 mm eccentricity (NS directi Extra dead drop dist(NS eccentricity #1 (NS direccentricity #2 (NS direccentricity #2) column size column size **Miscellaneous Concrete properties** 25 5.60E+09 9.83E+09 cover I (EW) 1 I (NS) 1 I (EW) 2 130 mm 55.55 mm -74.45 mm eccentricity (EW direct Poisson's ratio eccentricity #1 (EW dir eccentricity #2 (EW dir Density K1 K2 1.60E+09 4.49E+09 2400 I (NS) 2 I (EW) 3 2.24E+09 0.5 1.7 0.5 I (NS) 3 5.29E+09 Long term factors kcs top reo lower reo short term load factor Shrinkage strain Creep Factor 400 Microstrain 2.6 long term load factor 12 8.35 Ln Factors for C & H [2] c1 600 11 9.6 c1/11 0.0625 beta 1.14 beta n 1.15 alpha1 (1) 0 alpha2 (1) 0 alpha2 (2) 1 Factors for C and M Long term E for camber kc 0.7 H 70 % depth of slab deffective mm 161.1 days days 1000 7 Ka 1 0.004553 Ka 2 0.002087 Ka 3 0.00218 Φ(10000,7) **1.674** kf alpha2 (2) alpha1 (3) 1.13 0.53 alpha2 (3)

					FIL	al out	μuι
		OUTP	UT NS	OUTP	UT EW	OUTP	UT MID
		MEAN	STDEV	MEAN	STDEV	MEAN	STDE
307 X M	Male de la companie d	(mm)		(mm)		(mm)	
1	C & M (d is whole span)	8.4	1.0	23.0	2.7	31.4	2.9
2	C & M (d is drop panel width	18.3	2.2	80.5	9.6	98.8	9.8
3	C & M (d is 0.2 x span)	15.5	1.8	57.5	6.8	73.1	7.1
4	Naaman (d is whole span)	2.4	0.3	7.2	0.9	9.6	0.9
5	Naaman (d is drop panel wi	5.2	0.6	25.2	3.0	30.4	3.1
6	Naaman (d is 0.2 x span)	4.5	0.5	18.0	2.1	22.4	2.2
1	C & H [1] (d is whole slab)	-2.2	0.3	-6.1	0.7	-8.3	0.8
morronese.	action		T 02	6.4	0.7	0.2	
2	C & H [1] (d is drop panel w	-4.9	0.6	-21.3	2.5	-26.2	2.6
3	C & H [1] (d is 0.2 x width)	-4.2	0.5	-15.2	1.8	-19.4	1.9
4a	C& H [2] (using a[1])		0.0	7.0.0		-19.9	2.4
4b	C & H [2] (using a[2])					-9.1	1.1
4c	C & H [2] (using a[3])					-9.5	1.1
5	C & M [1] (d is whole slab)	-7.9	0.9	-20.7	2.5	-28.6	2.6
6	C & M [1] (d is drop panel w	-17.3	2.1	-72.6	8.6	-89.9	8.8
7	C & M [1] (d is 0.2 x width)	-14.7	1.7	-51.8	6.1	-66.5	6.4
8	Naaman (d is whole slab)	-15.2	1.8	-39.9	4.7	-55.1	5.1
9	Naaman (d is drop panel wi	-33.3	4.0	-139.6	16.6	-172.9	17.0
10	Naaman [1] (d is 0.2 x width	-28.3	3.4	-99.7	11.8	-128.0	12.3
11	Warner					-52.0	6.2
		CALCON HOMES ALL CALL					
NS	North - South Direction	-1.7					
EW	East - West Direction			-1.3			
Both	Both Directions		1		1	-3.0	

		SUMMARY (Total Deformation)										
	NS mean	NS stdev	EW mean	EW stdev	MID mean	MID stdev						
C & M (d is whole span)	-1.2	1.4	1.0	3.7	-0.2	3.9						
C & M (d is drop panel width)	-0.7	3.0	6.7	12.9	6.0	13.2						
C & M (d is 0.2 x span)	-0.8	2.5	4.4	9.2	3.6	9.5						
Warner					-52.0	6.2						

N32, Strips 4 and 11, Long Term

		INPUTS
Slab Geometry	Prestress factors	Loads
slab depth 200	Tendon force NS 3443.9 kN	
length (EW 9.6	Tendon force EW 3178.9 kN	Live load 3 kPa (unfactored)
length (NS 8.4		LL reductid 0.4
drop dist(EV 3	Partition	Dead load 4.8 kPa (unfactored)
drop dist(NS 2.4 column size 625	eccentricity (NS directi 100 mm	Extra dead 1.4 kPa (unfactored)
	eccentricity #1 (NS din 40.55 mm eccentricity #2 (NS din -59.45 mm	Total 7.4 MPa
column size 625	eccentricity #2 (NS dirt -59.45 mm	Miscellaneous Concrete properties
cover 25		wiscenaneous Concrete properties
I (EW) 1 5.60E+09 I (NS) 1 9.83E+09	eccentricity (EW direct 130 mm	Poisson's ratio 0.15
I (NS) 1 9.83E+09 I (EW) 2 1.60E+09	eccentricity #1 (EW direct	Density 2400
1 (NS) 2 4.49E+09	eccentricity #2 (EW dir -74.45 mm	K1 1
I (EW) 3 2.24E+09		K2 0.5 Factors that account for slab location.
I (NS) 3 5.29E+09	Long term factors	kcs 1.7
top reo 12	__	short term load factor 0.5
lower reo 12	Shrinkage strain 400 Microstrain	long term load factor 0.25
Ln 8.35	Creep Factor 2.6	
		Factors for C & H [2] Factors for C and M Long term E for camber
depth of slab		c1 600 mm kc 0.7
deffective 161.1		I1 9.6 m H 70 % t 1000 days
		beta 1.14 ti 7 days
		beta n 1.15 Ka 1 0.004553
		alpha1 (1) 0 Ka 2 0.002087 Φ(10000,7) 1.674 kf
		alpha2 (1) 0 Ka 3 0.00218
		alpha1 (2) 1
		alpha2 (2) 1
		alpha1 (3) 1.13
		aipha2 (3) 0.53

					Fin	al out	put							
		OUTP	UT NS	OUTP	UT EW	OUTP	UT MID							
		MEAN	STDEV	MEAN	STDEV	MEAN	STDEV			SUMM	ARY (To	tal Defo	rmation)	
W. (1977)	U.S.745868	(mm)		(mm)		(mm)			NS mean	NS stdev	EW mean	EW stdev	MID mean	MID s
1	C & M (d is whole span)	24.2	3.0	66.7	8.2	91.0	8.7	C & M (d is whole sp			-9.2		-15.1	
2	C & M (d is drop panel width	53.1	6.5	233.5	28.7	286.5	29.5	C & M (d is drop panel wi-			-29.1	42.3	-40.0	
3	C & M (d is 0.2 x span)	45.1	5.5	166.8	20.5	211.8	21.3	C & M (d is 0.2 x sp		8.4	-21.1	30.2	-30.7	31
4	Naaman (d is whole span)	8.6	1.0	25.9	3.1	34.5	3.2	War	ner				-187.1	22
5	Naaman (d is drop panel wi	18.9	2.2	90.7	10.8	109.6	11.0							
6	Naaman (d is 0.2 x span)	16.0	1.9	64.8	7.7	80.8	7.9							
	0.0120													
1	C & H [1] (d is whole slab)	-8.0	1.0	-21.9	2.6	-30.0	2.8							
2	C & H [1] (d is drop panel w	-17.6	2.1	-76.8	9.1	-94.4	9.3							
3	C & H [1] (d is 0.2 x width)	-14.9	1.8	-54.8	6.5	-69.8 -71.7	6.7 8.5							
4a	C & H [2] (using a[1])					-71.7	3.9							
4b 4c	C & H [2] (using a[2])					-34.3	4.1							
5	C & H [2] (using a[3]) C & M [1] (d is whole slab)	-28.5	3.4	-74.6	8.9	-103.1	9.5							
6	C & M [1] (d is drop panel w	-62.4	7.4	-261.2	31.0	-323.6	31.9							
7	C & M [1] (d is 0.2 x width)	-52.9	6.3	-186.6	22.1	-239.5	23.0							
8	Naaman (d is whole slab)	-54.8	6.5	-143.5	17.0	-198.3	18.2							
9	Naaman (d is drop panel wi		14.2	-502.4	59.6	-622.3	61.3							
10	Naaman [1] (d is 0.2 x width		12.1	-358.8	42.6	-460.6	44.2							
11	Warner					-187.1	22.2							
	38000000													
NS	North - South Direction	-1.7												
EW	East - West Direction			-1.3										
Both	Both Directions				i	-3.0								

N32, Strips 4 and 11, Short Term

INPUTS Loads Prestress factors Slab Geometry 3443.9 kN 3178.9 kN slab depth length (EW Tendon force NS Tendon force EW Live load LL reduction 3 kPa (unfactored) 0.4 4.8 kPa (unfactored) 1.4 kPa (unfactored) length (NS 8.4 Dead load drop dist(EV 100 mm 40.55 mm -59.45 mm 2.4 625 eccentricity (NS directiveccentricity #1 (NS directiveccentricity #1) Extra dead drop dist(N 7.4 MPa column size column size 625 eccentricity #2 (NS dir **Miscellaneous Concrete properties** 5.60E+09 9.83E+09 1.60E+09 4.49E+09 I (EW) 1 I (NS) 1 0.15 2400 eccentricity (EW direct eccentricity #1 (EW dir eccentricity #2 (EW dir Poisson's ratio Density 130 mm 55.55 mm I (EW) 2 I (NS) 2 K1 K2 1 0.5 **-74.45** mm Factors that account for slab location. I (EW) 3 2.24E+09 1.7 Long term factors kcs I (NS) 3 5.29E+09 0.5 0.25 short term load factor top reo lower reo 400 Microstrain 2.6 12 8.35 Shrinkage strain long term load factor Creep Factor 600 9.6 0.0625 1.14 1.15 Factors for C and M Long term E for camber kc 0.7 c1 I1 depth of slab mm deffective 161.1 Н 70 1000 7 days c1/l1 beta Ka 1 0.004553 Ka 2 0.002087 Ka 3 0.00218 beta n alpha1 (1) Φ(10000,7) 1.674 kf alpha2 (1) alpha1 (2) alpha2 (2) alpha1 (3) 1.13 alpha2 (3) 0.53

					Fin	al out	put
		OUTP	UT NS	OUTP	UT EW	OUTP	UT MID
		MEAN	STDEV	MEAN	STDEV	MEAN	STDE
		(mm)		(mm)		(mm)	
1	C & M (d is whole span)	8.4	1.0	23.0	2.7	31.4	2.9
2	C & M (d is drop panel width	18.3	2.2	80.5	9.6	98.8	9.8
3	C & M (d is 0.2 x span)	15.5	1.8	57.5	6.8	73.1	7.1
4	Naaman (d is whole span)	2.4	0.3	7.2	0.9	9.6	0.9
5	Naaman (d is drop panel wi	5.2	0.6	25.2	3.0	30.4	3.1
6	Naaman (d is 0.2 x span)	4.5	0.5	18.0	2.1	22.4	2.2
(a)	i sali da						
1	C & H [1] (d is whole slab)	-2.2	0.3	-6.1	0.7	-8.3	0.8
2	C & H [1] (d is drop panel w	-4.9	0.6	-21.3	2.5	-26.2	2.6
3	C & H [1] (d is 0.2 x width)	-4.2	0.5	-15.2	1.8	-19.4	1.9
4a	C.&.H [2] (using a[1])					-19.9	2.4
4b	C & H [2] (using a[2])					-9.1	1.1
4c	C & H [2] (using a[3])					-9.5	1.1
5	C & M [1] (d is whole slab)	-7.9	0.9	-20.7	2.5	-28.6	2.6
6	C & M [1] (d is drop panel w	-17.3	2.1	-72.6	8.6	-89.9	8.8
7	C & M [1] (d is 0.2 x width)	-14.7	1.7	-51.8	6.1	-66.5	6.4
8	Naaman (d is whole slab)	-15.2	1.8	-39.9	4.7	-55.1	5.1
9	Naaman (d is drop panel wi	-33.3	4.0	-139.6	16.6	-172.9	17.
10	Naaman [1] (d is 0.2 x width	-28.3	3.4	-99.7	11.8	-128.0	12.
11	Warner					-52.0	6.2
	Variable of the Control of the Contr						
NS	North - South Direction	-1.7		I			
EW	East - West Direction			-1.3			
Both	Both Directions			1		-3.0	

	SUMMARY (Total Deformation)										
	NS mean	NS stdev	EW mean	EW stdev	MID mean	MID stdev					
C & M (d is whole span)	-1.2	1.4	1.0	3.7	-0.2	3.9					
C & M (d is drop panel width)	-0.7	3.0	6.7	12.9	6.0	13.2					
C & M (d is 0.2 x span)	-0.8	2.5	4.4	9.2	3.6	9.5					
100			•		52.0	6.2					

N32, Strips 5 and 10, Long Term

		INPUTS
Slab Geometry	Prestress factors	Loads
slab depth 200 length (EW 9.6 length (NS 8.4 drop dist(EV 3 drop dist(EV 2.4 column size 625 column size 625 (EW) 1 8.66E+09 (EW) 2 3.78E+09 (EW) 2 1.80E+09 (EW) 3 4.70E+09 (IS) 3 2.56E+09	Tendon force EW 2649.1 kN Tendon force NS 3178.9 kN eccentricity (EW direct 130 mm eccentricity #1 (EW direct 74.45 mm eccentricity (NS direct 100 mm eccentricity #1 (NS direct 40.55 mm eccentricity #2 (NS direct 55.45 mm eccentricity #1 (NS direct 55.45 mm eccentricity #2 (NS direct 55.45 mm eccentricity #2 (NS direct 55.45 mm eccentricity #2 (NS direct 55.45 mm)	Live load 3 KPa (unfactored)
top reo lower reo 12 lower reo 12 lower sass depth of slab deffective 161.1	Shrinkage strain Creep Factor 400 Microstrain 2.6	Factors for C & H 2 c1 600 mm kc 0.7 c1 11 9.6 m c1/11 0.0625 beta 1.15 beta 1.15 alpha1 (1) 0 alpha1 (2) 1 alpha2 (2) 1 alpha2 (3) 0.53

					Fin	al out	put
		OUTP	UT NS	OUTP	UTEW	OUTP	UT MID
		MEAN	STDEV	MEAN	STDEV	MEAN	STDEV
31.00 B		(mm)		(mm)		(mm)	
1	C & M (d is whole span)	34.3	4.2	35.8	4.4	70.1	6.0
2	C & M (d is drop panel width	121.9	14.9	82.1	10.0	204.0	17.9
3	C & M (d is 0.2 x span)	85.7	10.5	66.0	8.1	151.7	13.2
4	Naaman (d is whole span)	12.2	1.4	14.0	1.7	26.2	2.2
5	Naaman (d is drop panel wi	43.5	5.2	32.0	3.8	75.4	6.4
6	Naaman (d is 0.2 x span)	30.6	3.6	25.7	3.0	56.3	4.7
1 2 3 4a	C & H [1] (d is whole slab) C & H [1] (d is drop panel w C & H [1] (d is 0.2 x width) C & H [2] (using a[1])	-12.3 -43.9 -30.9	1.5 5.2 3.7	-14.2 -32.5 -26.1	1.7 3.8 3.1	-26.5 -76.4 -57.0 -71.7	2.2 6.5 4.8 8.5 3.9
4b 4c	C & H [2] (using a[2])					-32.9 -34.3	4.1
5	C & H [2] (using α[3]) C & M [1] (d is whole slab)	-43.7	5.2	-48.2	5.7	-92.0	7.7
6	C & M [1] (d is drop panel w	-155.5	18.4	-110.5	13.1	-266.0	22.6
7	C & M [1] (d is 0.2 x width)	-109.3	13.0	-88.9	10.5	-198.2	16.7
8	Naaman (d is whole slab)	-84.1	10.0	-92.8	11.0	-176.9	14.8
9	Naaman (d is drop panel wi	-299.0	35.4	-212.5	25.2	-511.5	43.5
10	Naaman [1] (d is 0.2 x width	-210.2	24.9	-170.9	20.3	-381.2	32.1
11	Warner					-187.0	22.2
NS	North - South Direction	-1.7	ı		1		<u> </u>
EW	East - West Direction			-1.3			
Both	Both Directions				1	-3.0	

	SUMMARY (Total Deformation)						
'	NS mean	NS stdev	EW mean	EW stdev	MID mean	MID stdev	
C & M (d is whole span)	-11.1	6.7	-13.7	7.2	-24.8	9.8	
C & M (d is drop panel width)	-35.3	23.7	-29.7	16.5	-65.0	28.8	
C & M (d is 0.2 x span)	-25.3	16.6	-24.1	13.3	-49.4	21.3	
Warner		_		_	-187.0	22.2	

N32, Strips 5 and 10, Short Term

		INPUTS
Slab Geometry	Prestress factors	Loads
slab depth 200	Tendon force EW 2649.1 kN	
length (EW 9.6	Tendon force NS 3178.9 kN	Live load 3 kPa (unfactored)
length (NS 8.4		LL reductid 0.4
drop dist(EV3		Dead load 4.8 kPa (unfactored)
drop dist(NS 2.4	eccentricity (EW direct 130 mm	Extra dead 1.4 kPa (unfactored)
column size 625	eccentricity #1 (EW dig 55.55 mm	Total 7.4 MPa
column size 625	eccentricity #2 (EW dit -74.45 mm	
cover 25	· · · · · · · · · · · · · · · · · · ·	Miscellaneous Concrete properties
I (EW) 1 8.66E+09	eccentricity (NS directi 100 mm	Incompany April
I (NS) 1 6.40E+09	eccentricity #1 (NS dir 40.55 mm	Poisson's ratio 0.15 Density 2400
I (EW) 2 3.78E+09	eccentricity #2 (NS dir59.45 mm	Density 2400 K1 1
I (NS) 2 1.80E+09 I (EW) 3 4.70E+09		K2 0.5 Factors that account for slab location.
- 1	Laur tarm factors	
I (NS) 3 2.56E+09	Long term factors	kcs 1.7 short term load factor 0.5
top reo 12 lower reo 12	Shrinkage strain 400 Microstrain	long term load factor 0.25
lower reo 12 Ln 8.35	Creep Factor 2.6	long term load ractor
6.55	Creep ractor	Factors for C & H [2] Factors for C and M Long term E for camber
depth of slab		c1 600 mm kc 0.7
deffective 161.1		11 9.6 m H 70 %
		c1/l1 0.0625 t 1000 days
		beta 1.14 ti 7 days
		beta n 1.15 Ka 1 0.004553
		alpha1 (1) 0 Ka 2 0.002087 Φ(10000,7) 1.674 kf
		alpha2 (1) 0 Ka 3 0.00218
		alpha1 (2)1
		alpha2 (2) 1
		alpha1 (3) 1.13
		alpha2 (3) 0.53

C & M (d is whole span) C & M (d is drop panel width) C & M (d is 0.2 x span) Warner

					Fin	al out	put
		OUTF	UT NS	OUTP	UT EW	OUTP	UT MID
		MEAN	STDEV	MEAN	STDEV	MEAN	STDE
		(mm)		(mm)		(mm)	
1	C & M (d is whole span)	11.9	1.4	12.4	1.5	24.2	2.0
2	C & M (d is drop panel width	42.1	5.0	28.4	3.4	70.5	6.0
3	C & M (d is 0.2 x span)	29.6	3.5	22.8	2.7	52.5	4.4
4	Naaman (d is whole span)	3.4	0.4	3.9	0.5	7.3	0.6
5	Naaman (d is drop panel wi	12.1	1.4	8,9	1.1	21.0	1.8
6	Naaman (d is 0.2 x span)	8.5	1.0	7.1	0.8	15.6	1.3
1	C & H [1] (d is whole slab)	-3.4	0.4	-3.9	0.5	-7.4	0.6
2	C & H [1] (d is drop panel w		1.4	-9.0	1.1	-21.2	1.8
3	C & H [1] (d is 0.2 x width)	-8.6	1.0	-7.3	0.9	-15.8	1.3
4a	C & H [Z] (using a[1])					-19.9	2.4
4b	C & H [Z] (using a[2])					-9.1	1.1
4c	C & H [2] (using a[3])			40.		-9.5	1.1
5	C & M [1] (d is whole slab)	-12,1	1.4	-13.4	1.6	-25.5	2.1
6	C & M [1] (d is drop panel w		5.1	-30.7	3.6	-73.9	6.3
7	C & M [1] (d is 0.2 x width)	-30.4	3.6	-24.7	2.9	-55.1 -49.1	4.6
8 9	Naaman (d is whole slab)	-23.4 -83.1	2.8 9.8	-25.8 -59.0	7.0	-142.1	12.1
10	Naaman (d is drop panel wi		6.9	-47.5	5.6	-105.9	8.9
11	Naaman [1] (d is 0.2 x width	-30.4	0.5	-47.5	3.0	-51.9	6.2
71	Warner					-51.9	6.2
NS	North - South Direction	-1.7	1	12			
EW	East - West Direction			-1.3		2.0	
Both	Both Directions		l		i	-3.0	<u> </u>

N32, Strips 6 and 10, Long Term

INPUTS Loads Slab Geometry Prestress factors slab depth Tendon force EW 3 kPa (unfactored) 0.4 4.8 kPa (unfactored) 1.4 kPa (unfactored) 7.4 MPa Tendon force NS 3178.9 kN Live load length (NS drop dist(E\ LL reduction 8.4 Dead load 2.4 625 eccentricity (EW directeccentricity #1 (EW di drop dist(N Extra dea Total column size **-74.45** mm column size 625 eccentricity #2 (EW dir **Miscellaneous Concrete properties** 25 8.66E+09 6.40E+09 3.78E+09 I (EW) 1 I (NS) 1 eccentricity (NS direct 100 mm 40.55 mm Poisson's ratio Density K1 K2 -59.45 mm 2400 I (EW) 2 eccentricity #2 (NS dir I (NS) 2 I (EW) 3 1.80E+09 4.70E+09 0.5 Factors that account for slab location. 1 (NS) 3 2.56E+09 Long term factors short term load factor 0.5 0.25 top reo Shrinkage strain Creep Factor 400 Microstrain long term load factor lower reo Factors for C and M Long term E for camber kc 0.7 70 % Factors for C depth of slab c1 I1 161.1 9.6 0.0625 c1/l1 1000 days 1.14 1.15 Ka 1 0.004553 Ka 2 0.002087 Ka 3 0.00218 beta n Φ(10000,7) **1.674** kf alpha1 (1) alpha2 (1) 0 alpha1 (2) 1.13 alpha1 (3) alpha2 (3)

SUMMARY (Total Deformation)

NS mean NS stdev EW mean EW stdev MID mean MID stdev

-17.6 10.3 -48.5 29.7 -36.2 22.0

6.7 23.8 16.7

C & M (d is drop panel width

		OUTP	UT NS	OUTP	UT EW	OUTP	UT MI
		MEAN	STDEV	MEAN	STDEV	MEAN	STE
- XX	1533549698	(mm)		(mm)		(mm)	
1	C & M (d is whole span)	34.3	4.2	43.0	5.3	77.3	6.
2	C & M (d is drop panel width	121.9	15.0	98.5	12.2	220.4	19
3	C & M (d is 0.2 x span)	85.7	10.6	79.3	9.8	165.0	14
4	Naaman (d is whole span)	12.2	1.4	16.7	2.0	29.0	2
5	Naaman (d is drop panel wi	43.5	5.2	38.4	4.5	81.8	6
6	Naaman (d is 0.2 x span)	30.6	3.6	30.9	3.7	61.4	5
1	C & H [1] (d is whole slab)	-12.3	1.5	-14.2	1.7	-26.5	2
	• • • • • • • • • • • • • • • • • • • •						
2	C & H [1] (d is drop panel w	-43.9 -30.9	5.2 3.7	-32.5 -26.1	3.8	-76.4 -57.0	6
ა 4a	C & H [1] (d is 0.2 x width)	-30.9	3.7	-20.1	3.1	-71.7	8
48 4b	C & H [2] (using a[1])					-32.9	3
40 40	C & H [2] (using a[2])					-34.3	4
5	C & H [2] (using a[3]) C & M [1] (d is whole slab)	-43.7	5.2	-48.2	5.7	-92.0	7
6	C & M [1] (d is whole slab)	-155.5	18.4	-110.5	13.1	-266.0	22
7	C & M [1] (d is 0.2 x width)	-109.3	13.0	-88.9	10.5	-198.2	16
8	Naaman (d is whole slab)	-84.1	10.0	-92.8	11.0	-176.8	14
9	Naaman (d is drop panel wi	-299.0	35.4	-212.5	25.2	-511.5	43
10	Naaman [1] (d is 0.2 x width	-210.2	24.9	-170.9	20,3	-381.1	32
11	Warner					-187.0	22
							•
NS	North - South Direction	-1.7		4.0			
EW	East - West Direction			-1.3	-	3.0	
Both	Both Directions					-3.0	

N32, Strips 6 and 10, Short Term

INPUTS Loads Slab Geometry Prestress factors 3178.9 kN 3178.9 kN Tendon force EW slab depth Live load 3 kPa (unfactored) Tendon force NS length (EV 9.6 LL reduction 0.4 4.8 kPa (unfactored) length (NS 8.4 3 drop dist(E\ 1.4 kPa (unfactored) 7.4 MPa 2.4 625 eccentricity (EW direct **130** mm Extra dead drop dist(NS Total column size eccentricity #2 (EW dia **-74.45** mm column size 625 Miscellaneous Concrete properties 25 cover 100 mm 40.55 mm -59.45 mm I (EW) 1 8.66E+09 eccentricity (NS directi Poisson's ratio eccentricity #1 (NS direccentricity #2 (NS direccentricity #2 I (NS) 1 6.40E+09 Density 2400 I (EW) 2 I (NS) 2 3.78E+09 K1 K2 1.80E+09 0.5 Factors that account for slab location. 1 (EW) 3 4.70E+09 1.7 kcs I (NS) 3 2.56E+09 Long term factors short term load factor top reo 400 Microstrain long term load factor Shrinkage strain Creep Factor 12 8.35 2.6 Ln Factors for C and M Long term E for camber Factors for C & H [2] c1 |11 600 kc H 0.7 70 depth of slab 9.6 161.1 deffective 0.0625 1000 days c1/l1 1.14 beta Ka 1 0.004553 Ka 2 0.002087 Ka 3 0.00218 beta n 1.15 Φ(10000,7) 1.674 kf alpha1 (1) 0 alpha2 (1) alpha1 (2) alpha2 (2) alpha1 (3) 1.13 alpha2 (3) 0.53

					Fin	al out	put
		OUTP	UT NS	OUTP	UT EW	OUTP	UT MID
		MEAN	STDEV	MEAN	STDEV	MEAN	STDEV
24/33/27 X		(mm)		(mm)		(mm)	
1	C & M (d is whole span)	11.9	1.4	14.9	1.8	26.7	2.3
2	C & M (d is drop panel width	42.1	5.0	34.1	4.0	76.2	6.4
3	C & M (d is 0.2 x span)	29.6	3.5	27.4	3.2	57.0	4.8
4	Naaman (d is whole span)	3,4	0.4	4.7	0.6	8.0	0.7
5	Naaman (d is drop panel wi	12.1	1.4	10.7	1.3	22.7	1.9
6	Naaman (d is 0.2 x span)	8.5	1.0	8.6	1.0	17.1	1.4
\$ 15 A	ection with						
1	C & H [1] (d is whole slab)	-3.4	0.4	-3.9	0.5	-7.4	0.6
2	C & H [1] (d is drop panel w	-12.2	1.4	-9.0	1.1	-21.2	1.8
3	C & H [1] (d is 0.2 x width)	-8.6	1.0	-7.3	0.9	-15.8	1.3
4a	C & H (2) (using a(1))					-19.9	2.4
4b	C & H [2] (using a[2])					-9.1	1.1
40	C & H [2] (using a[3])					-9.5	1.1
5	C & M [1] (dis whole slab)	-12.1	1.4	-13.4	1.6	-25.5	2.1
6	C & M [1] (d is drop panel w	-43.2	5.1	-30.7	3.6	-73.9	6.3
7	C & M [1] (d is 0.2 x width)	-30.4	3.6	-24.7	2.9	-55.1	4.6
8	Naaman (d is whole slab)	-23.4	2.8	-25.8	3.1	-49.1	4.1
9	Naaman (d is drop panel wi		9.8	-59.0	7.0	-142.1	12.1
10	Naaman [1] (d is 0.2 x width	-58.4	6.9	-47.5	5.6	-105.9	8.9
11	Warner					-51.9	6.2
	essessiona.						
NS	North - South Direction	-1.7		T	T		T
EW	Fast - West Direction	1.1		-1.3	T		1
Both	Both Directions			1	1	-3.0	

	SUMMARY (Total Deforma					
	NS mean	NS stdev	EW mean	EW stdev	MID mean	MID stdev
C & M (d is whole span)	-2.0	2.0	0.2	2.4	-1.8	3.1
C & M (d is drop panel width)	-2.7	7.2	2.1	5.4	-0.6	9.0
C & M (d is 0.2 x span	-2.4	5.0	1.4	4.4	-1.0	6.7
Warner			-		-51.9	6.2

N32, Strips 7 and 11, Long Term

INPUTS Loads Slab Geometry Prestress factors 3178.9 kN 2649.1 kN slab depth Tendon force EW Tendon force NS 3 kPa (unfactored) 0.4 4.8 kPa (unfactored) Live load length (EV length (NS LL reduction Dead load drop dist(E) 130 mm 55.55 mm -74.45 mm 1.4 kPa (unfactored) 7.4 MPa eccentricity (EW direct drop dist(N eccentricity #1 (EW dir eccentricity #2 (EW dir 625 column size 625 **Miscellaneous Concrete properties** cover 25 eccentricity (NS directi eccentricity #1 (NS dir eccentricity #2 (NS dir 100 mm 40.55 mm -59.45 mm 5.60E+09 I (EW) 1 9.26E+09 1.60E+09 Poisson's ratio 0.15 2400 Density K1 K2 I (EW) 2 I (NS) 2 3.59E+09 2.24E+09 0.5 Factors that account for slab location I (EW) 3 1.7 Long term factors kcs I (NS) 3 4.89E+09 short term load factor top reo 400 Microstrain lower reo Shrinkage strain long term load factor 8.35 Creep Factor 2.6 Factors for C & H [2] Factors for C and M Long term E for camber kc 0.7 70 % 9.6 0.0625 1.14 161.1 deffective 1000 7 c1/l1 days days beta Ka 1 0.004553 Ka 2 0.002087 Ka 3 0.00218 Φ(10000,7) **1.674** kf alpha1 (1) alpha2 (1) alpha1 (2) alpha2 (2) alpha1 (3) alpha2 (3) 0.53

					Fin	al out	put						
		OUTP	UT NS	OUTP	UT EW	OUTP	UT MID						
		MEAN	STDEV	MEAN	STDEV	MEAN	STDEV			SUMM	ARY (Tot	al Defo	rmation)
25638048	(MCCASSES)	(mm)		(mm)		(mm)			NS mean	NS stdev	EW mean I	EW stdev	MID mean
1	C & M (d is whole span)	19.8	2.3	66.6	7.9	86.4	8.2	C & M (d is whole span)	-12.1	4.3	-9.3	11.8	-21.4
2	C & M (d is drop panel width	51.0	6.0	233.1	27.5	284.1	28.2	C & M (d is drop panel width)	-28.7	11.0	-29.3	41.4	-58.0
3	C & M (d is 0.2 x span)	37.4	4.4	166.5	19.7	203,9	20.2	C & M (d is 0.2 x span)	-21.5	8.1	-21.3	29.6	-42.8
4	Naaman (d is whole span)	7.0	8.0	25.9	3,1	32.9	3.2	Warner					-187.0
5	Naaman (d is drop panel wi	18.2	2.2	90.6	10.7	108.8	10.9						
6	Naaman (d is 0.2 x span)	13.3	1.6	64.7	7.7	78.1	7.8						
3 4a 4b 4c 5	C & H [1] (d is 0.2 x width) C & H [2] (issing a[1]) C & H [2] (issing a[2]) C & H [2] (using a[3]) C & H [2] (using a[3]) C & M [1] (d is whole slab)	-16.2 -30.2	1.9	-54.8 -74.6	6.5 8.8	-71.0 -71.7 -32.9 -34.3 -104.8	6.8 8.5 3.9 4.1 9.5						
6	C & M [1] (d is drop panel w	-78.0	9.2	-261.1	30.9	-339.1	32.3						
7	C & M [1] (d is 0.2 x width)	-57.2	6.8	-186.5	22.1	-243.8	23.1						
8	Naaman (d is whole slab)	-58.1	6.9	-143.5	17.0	-201.6	18.3						
9	Naaman (d is drop panel wi	-149.9	17.8	-502.2	59.5	-652.1	62.1						
10	Naaman [1] (d is 0.2 x width	-110.1	13.0	-358.7	42.5	-468.8	44.4						
11	Warner					-187.0	22.1						
Section													
NS	North - South Direction	-1.7											
EW	East - West Direction			-1.3									
	Both Directions					-3.0	1						

MID mean MID stdev

N32, Strips 7 and 11, Short Term

INPUTS Loads Slab Geometry Prestress factors 3178.9 kN slab depth length (EV Tendon force EW 200 9.6 Tendon force NS 2649.1 kN Live load 3 kPa (unfactored) 0.4 4.8 kPa (unfactored) length (NS 8.4 LL reduction Dead load drop dist(E\ 130 mm 55.55 mm drop dist(NS 2.4 eccentricity (EW direc Extra dead 1.4 kPa (unfactored) 7.4 MPa column size 625 eccentricity #1 (EW di Total eccentricity #2 (EW dir -74.45 mm column size 625 Miscellaneous Concrete properties cover 25 5.60E+09 9.26E+09 1.60E+09 eccentricity (NS direct eccentricity #1 (NS dir 100 mm 40.55 mm I (EW) 1 Poisson's ratio I (NS) 1 I (EW) 2 eccentricity #2 (NS dire **-59.45** mm Density 2400 K1 K2 I (NS) 2 3.59E+09 0.5 I (EW) 3 2.24E+09 Factors that account for slab location. 1.7 Long term factors I (NS) 3 4.89E+09 kcs short term load factor 0.5 top reo lower reo Shrinkage strain 400 Microstrain long term load factor 8.35 Creep Factor 2.6 Factors for C and M Long term E for camber kc 0.7 Factors for C & H [2] depth of slab 9.6 0.0625 deffective 161.1 11 Н 70 c1/i1 1000 days beta 1.14 Ka 1 0.004553 Ka 2 0.002087 Ka 3 0.00218 beta n 1.15 Φ(10000,7) 1.674 kf alpha1 (1) 0 alpha2 (1) 0 alpha1 (2) alpha2 (2) alpha1 (3) 1.13 alpha2 (3) 0.53

					Fin	al out	put
		OUTP	PUT NS	OUTP	UT EW	OUTP	UT MID
		MEAN	STDEV	MEAN	STDEV	MEAN	STDE
minär		(mm)		(mm)		(mm)	<u> </u>
1	C & M (d is whole span)	6.8	0.8	23.0	2.7	29.8	2.8
2	C & M (d is drop panel width	17.6	2.1	80.5	9.5	98,1	9.8
3	C & M (d is 0.2 x span)	12.9	1.5	57.5	6.8	70.4	7.0
4	Naaman (d is whole span)	2.0	0.2	7.2	0,9	9.2	0.9
5	Naaman (d is drop panel wi	5.0	0.6	25.2	3.0	30.2	3.0
6	Naaman (d is 0.2 x span)	3.7	0.4	18.0	2.1	21.7	2.2
1 2 3 4a	C & H [1] (d is whole slab) C & H [1] (d is drop panel w C & H [1] (d is 0.2 x width) C & H [2] (using a[1])	-2.4 -6.1 -4.5	0.3 0.7 0.5	-6.1 -21.3 -15.2	0.7 2.5 1.8	-8.5 -27.4 -19.7 -19.9 -9.1	0.8 2.6 1.9 2.4
4b 4c	C & H [2] (using a[2]) C & H [2] (using a[3])					-9.5	1.1
5	C & M [1] (d is whole slab)	-8.4	1.0	-20.7	2.5	-29.1	2.6
6	C & M [1] (d is drop panel w	-21.7	2.6	-72.5	8.6	-94.2	9.0
7	C & M [1] (d is 0.2 x width)	-15.9	1.9	-51.8	6.1	-67.7	6.4
8	Naaman (d is whole slab)	-16.1	1.9	-39.9	4.7	-56.0	5.1
9	Naaman (d is drop panel wi	-41.6	4.9 3.6	-139.5 -99.6	16.5 11.8	-181.1 -130.2	17.2 12.3
10 11	Naaman [1] (d is 0.2 x width	-30.6	3.0	-99.0	11.0	-52.0	6.2
11	Warner					-02.0	0.2
entransfer to carrie	0030345						
NS	North - South Direction	-1.7					
EW	East - West Direction			-1.3	ļ	- 2.0	
Both	Both Directions		l			-3.0	

		SUMM	ARY (To	tal Defo	rmation)	
	NS mean	NS stdev	EW mean	EW stdev	MID mean	MID stdev
C & M (d is whole span)	-3.2	1.3	1.0	3.7	-2.2	3.9
C & M (d is drop panel width)	-5.7	3.3	6.7	12.8	1.0	13.2
C & M (d is 0.2 x span)	-4.6	2.4	4.4	9.2	-0.2	9.5
Warner					-52.0	6.2

N40, Strips 1 and 9, Long Term

		INPUTS
Slab Geometry	Prestress factors	Loads
slab depth 200	Tendon force NS 3708.8 kN	·
length (EW 9.6	Tendon force EW 3178.9 kN	Live load 3 kPa (unfactored)
length (NS 8.4		LL reductid 0.4
drop dist(EV 3		Dead load 4.8 kPa (unfactored)
drop dist(NS 2.4	eccentricity (NS directi 100 mm	Extra dead 1.4 kPa (unfactored)
column size 625	eccentricity #1 (NS dir 40.55 mm	Total 7.4 MPa
column size 625	eccentricity #2 (NS dir -59.45 mm	Bilinea Hannaua Congreta proportios
cover 25		Miscellaneous Concrete properties
i (EW) 1 5.60E+09 I (NS) 1 9.26E+09	eccentricity (EW direct 130 mm	Poisson's ratio 0.15
I (NS) 1 9.26E+09 I (EW) 2 1.60E+09	eccentricity #1 (EW dis 55.55 mm	Density 2400
I (NS) 2 3.59E+09	eccentricity #2 (EW dis -74.45 mm	K1 1
I (EW) 3 2.24E+09		K2 0.5 Factors that account for slab location.
I (NS) 3 4.89E+09	Long term factors	kcs 1.7
top reo 12	3	short term load factor 0.5
lower reo 12	Shrinkage strain 400 Microstrain	long term load factor 0.25
Ln 8.35	Creep Factor 2.6	
		Factors for C & H [2] Factors for C and M Long term E for camber
depth of slab		c1 600 mm kc 0.7
deffective 161.1		1
		c1/l1 0.0625 t 1000 days beta 1.14 ti 7 days
		beta n 1.15 Ka 1 0.004553
		alpha1 (1) 0 Ka 2 0.002087 Φ(10000,7) 1.674 kf
		alpha2 (1) 0 Ka 3 0.00218
		alpha1 (2) 1
		alpha2 (2) 1
		alpha1 (3) 1.13
		alpha2 (3)

					Fin	al out	put
		OUTP	UT NS	OUTP	UT EW	OUTP	UT MID
		MEAN	STDEV	MEAN	STDEV	MEAN	STDE
	115200335355	(mm)		(mm)		(mm)	
1	C & M (d is whole span)	24.2	5.1	58.2	12.3	82.4	13.3
2	C & M (d is drop panel width	62.4	13.2	203.6	43.0	266.0	45.0
3	C & M (d is 0.2 x span)	45.8	9.7	145.4	30.7	191.2	32.2
4	Naaman (d is whole span)	9.4	1.2	24.6	3.1	33.9	3.3
1 5	Naaman (d is drop panel wi	24.1	3.0	86.0	10.8	110.2	11.2
6	Naaman (d is 0.2 x span)	17.7	2.2	61.5	7.7	79.2	8.0
***************************************	eston					00.0	
1 1	C & H [1] (d is whole slab)	-8.1	1.0	-20.8	2.6	-28.9	2.8
2	C & H [1] (d is drop panel w	-20.9	2.6	-72.8	9.1	-93.7	9.5
3	C & H [1] (d is 0.2 x width)	-15.3	1.9	-52.0	6.5	-67.4	6.8
4a	C & H [2] (using a[1])					-68.0	8.5
4b	C & H [2] (using a[2])					-31.2	3.9 4.1
4c	C & H [2] (using a[3])			70.0		-32.6	
5	C & M [1] (d is whole slab)	-28.7	3.6	-70.8	8.9	-99.5	9.6 32.4
6	C & M [1] (d is drop panel w	-74.0	9.3	-247.9	31.0	-321.9	
7	C & M [1] (d is 0.2 x width)	-54.3	6.8	-177.0	22.2	-231.4	23.2 18.4
8	Naaman (d is whole slab)	-55.2	6.9	-136.2	17.0	-191.4	
9	Naaman (d is drop panel wi	-142.3	17.8	-476.6	59,7	-619.0	62.3
10	Naaman [1] (d is 0.2 x width	-104.5	13.1	-340.5	42.6	-444.9	44.6 22.2
- 11	Warner					-177.5	22.2
asing ting	STUDICIO ES						
NS	North - South Direction	-1.7					
EW	East - West Direction			-1.3			
Both	Both Directions		1			-3.0	

	SUMMARY (Total Deformation)									
	NS mean	NS mean NS stdev EW mean EW stdev MID mean MID								
C & M (d is whole span)	-6.2	6.2	-13.9	15.2	-20.1	16.4				
C & M (d is drop panel width)	-13.3	16.1	-45.5	53.0	-58.8	55.4				
C & M (d is 0.2 x span)	-10.2	11.8	-32.9	37.9	-43.1	39.7				
Warner					-177.5	22.2				

N40, Strips 1 and 9, Short Term

		INPUTS
Slab Geometry Slab depth 200 length (EW 9.6 length (NS 8.4 drop dist(NS 2.4 column size 625 column size 625 column size 625 (EW) 1 5.60E+09 1 (NS) 1 9.26E+09 1 (NS) 2 1.60E+09 1 (NS) 2 1.60E+09 1 (NS) 3 4.89E+09 1 (NS) 3 4.89E+09	Prestress factors Tendon force NS 3708.8 kN Tendon force EW 3178.9 kN eccentricity (NS direct 40.55 mm eccentricity #1 (NS dir 55.45 mm eccentricity (EW direct 55.55 mm eccentricity #1 (EW direct 55.55 mm eccentricity #2 (EW direct 55.55 mm eccentricity #2 (EW direct 74.45 mm) Long term factors Shrinkage strain 400 Microstrain Creep Factor 2.6	Live load
		alpha2 (3) 0.53

						put	al out	Fin					
						JT MID	OUTP	JT EW	OUTP	UT NS	OUTP		
mation)	al Defor	ARY (Tota	SUMMA			STDEV	MEAN	STDEV	MEAN	STDEV	MEAN		
MID mean MiD :	W stdev	EW mean E	NS stdev	NS mean			(mm)		(mm)		(mm)		850.000
0.3 3	3.6	0.91		-0.6	C & M (d is whole span)	2.9	30.9	2,7	21.8	1.1	9.1	C & M (d is whole span)	1
7.4 13	12.6	6.3	3.8	1.2	C & M (d is drop panel width)	9.8	99,8	9.3	76.4	2.9		C & M (d is drop panel width	2
4.5 9	9.0	4.1		0.4	C & M (d is 0.2 x span)	7.0	71.7	6.7	54.6	2.1	17.2	C & M (d is 0.2 x span)	3
-49.3 6					Warner	0.9	9.4	0.8	6.8	0.3	2.6	Naaman (d is whole span)	4
10.0	'					3.0	30.6	2.9	23.9	0.8		Naaman (d is drop panel wi	5
						2.2	22.0	2.1	17.1	0.6	4.9	Naaman (d is 0.2 x span)	6
						0.8	-8.0	0.7	-5.8	0.3	-2.2	C & H [1] (d is whole slab)	1
						2.6	-26.0	2.5	-20.2	0.3		C & H [1] (d is whole slab) C & H [1] (d is drop panel w	2
						1.8	-18.7	1.8	-14.4	0.7	-4.3	C & H [1] (d is 0.2 x width)	3
						2.3	-18.9	1.0	-14.4	0.5	4.3	C& H [1] (d is 0.2 x whoth) C& H [2] (using a[1])	ن 4a
						1.1	-8.7					C & H [2] (using a[2])	4b
						1.1	-9.0	1				C & H [2] (using q[3])	4C
						2.6	-27.6	2.4	-19.7	1.0	-8.0	C & M [1] (d is whole slab)	5
						8.8	-89.4	8.4	-68.8	2.5		C & M [1] (d is drop panel w	6
						6.3	-64.3	6.0	-49.2	1.8	-15.1	C & M [1] (d is 0.2 x width)	7
						5.0	-53.1	4.6	-37.8	1.9	-15.3	Naaman (d is whole slab)	8
						16.9	-171.9	16.2	-132.4	4.8	-39.5	Naaman (d is drop panel wi	9
						12.1	-123.6	11.6	-94.6	3.5		Naaman [1] (d is 0.2 x width	10
						6.0	-49.3					Warner	11
									***********				(**** <u>********************************</u>
											-1.7	North - South Direction	NS
									-1.3			East - West Direction	EW
							-3.0					Both Directions	Both

N40, Strips 2 and 8, Long Term

		INPUTS
Slab Geometry	Prestress factors	Loads
slab depth 200	Tendon force NS 3576.3 kN	
length (EW 9.6	Tendon force EW 2649.1 kN	Live load 3 kPa (unfactored)
length (NS 8.4		LL reductid 0.4
drop dist(EV 3		Dead load 4.8 kPa (unfactored)
drop dist(NS 2.4	eccentricity (NS directi 100 mm	Extra dead 1.4 kPa (unfactored)
column size 625	eccentricity #1 (NS dir 40.55 mm	Total 7.4 MPa
column size 625	eccentricity #2 (NS dir -59.45 mm	
cover 25		Miscellaneous Concrete properties
I (EW) 1 8.66E+09	400	Inches to the Control of the Control
I (NS) 1 6.40E+09	eccentricity (EW direct 130 mm	Poisson's ratio 0.15
! (EW) 2 3.78E+09	eccentricity #1 (EW dig 55.55 mm	Density 2400 K1 1
1 (NS) 2 1.80E+09	eccentricity #2 (EW dit74.45]mm	K2 0.5 Factors that account for slab location.
I (EW) 3 4.70E+09	Laura da mar da adama	kcs 1.7
I (NS) 3 2.56E+09	Long term factors	short term load factor 0.5
top reo 12	Shrinkage strain 400 Microstrain	long term load factor 0.5
lower reo 12 Ln 8,35	Shrinkage strain 400 Microstrain Creep Factor 2.6	iong term load factor
	0,00p 1 dotor	Factors for C & H [2] Factors for C and M Long term E for camber
depth of slab		c1 600 mm kc 0.7
deffective 161.1		I1 9.6 m H 70 %
		c1/l1 0.0625 t 1000 days
		beta 1.14 ti 7 days
		beta n 1.15 Ka 1 0.004553
		alpha1 (1) 0 Ka 2 0.002087 Φ(10000,7) 1.674 kf
		alpha2 (1) 0 Ka 3 0.00218
		alpha1 (2) 1
		alpha2 (2) 1
		alpha1 (3) 1.13 alpha2 (3) 0.53
		alpha2 (3) 0.53

					Fin	al out	put
		OUTP	UT NS	OUTP	UT EW	OUTPUT MID	
		MEAN	STDEV	MEAN	STDEV	MEAN	STDE
\$\$750.YW	600000000	(mm)		(mm)		(mm)	
1	C & M (d is whole span)	33.7	3.8	31.3	3.5	65.0	5.2
2	C & M (d is drop panel width	119.8	13,5	71.7	8.1	191.5	15.8
3	C & M (d is 0.2 x span)	84.2	9.5	57.7	6.5	141.9	11.5
4	Naaman (d is whole span)	13.0	1.7	13.2	1.7	26.3	2.4
5	Naaman (d is drop panel wi	46.4	6.0	30.3	3.9	76.7	7.2
6	Naaman (d is 0.2 x span)	32.6	4.2	24.4	3.2	57.0	5.3
2 3 4a 4b 4c	C & H [1] (d is drop panel w C & H [1] (d is 0.2 x width) C & H [2] (using a[1]) C & H [2] (using a[2]) C & H [2] (using a[3])	-41.6 -29.3	5.4 3.8	-30.8 -24.8	4.0 3.2	-72.4 -54.0 -67.9 -31.1 -32.5	6.7 5.0 8.8 4.0 4.2
	C & M [1] (d is whole slab)	-41.5	5.4	-45.7	5.9	-87.2	8.0
6	C & M [1] (d is drop panel w	-147.4	19.0	-104.8	13.5	-252.1	23.4
7	C & M [1] (d is 0.2 x width)	-103.6	13.4	-84.3	10.9	-187.9	17.3
8	Naaman (d is whole slab)	-79.7	10.3	-87.9	11.4	-167.6	15.3
9	Naaman (d is drop panel wi	-283.4	36.6	-201.5	26.0	-484.9	44.9
10	Naaman [1] (d is 0.2 x width	-199.3	25.8	-162.0	20.9	-361.3	33.2
11	Warner					-177.3	22.9
NS	North - South Direction	-1.7					
EW	East - West Direction			-1.3			
Both	Both Directions		1			-3.0	1

	SUMMARY (Total Deformation)										
	NS mean	NS stdev	EW mean	EW stdev	MID mean	MID stdev					
C & M (d is whole span)	-9.4	6.6	-15.7	6.9	-25.1	9.5					
M (d is drop panel width)	-29.3	23.4	-34.3	15.8	-63.6	28.2					
C & M (d is 0.2 x span)	-21.1	16.4	-27.8	12.7	-48.9	20.8					
Warner					-177.3	22.9					

N40, Strips 2 and 8, Short Term

INPUTS Slab Geometry Prestress factors Loads Tendon force NS Tendon force EW 3576.3 kN 2649.1 kN slab depth length (EW length (NS 9.6 8.4 Live load LL reduction 3 kPa (unfactored) 0.4 4.8 kPa (unfactored) drop dist(EV drop dist(NS Dead load 1.4 kPa (unfactored) 7.4 MPa 100 mm 40.55 mm -59.45 mm 2.4 eccentricity (NS directi Extra dead 625 625 eccentricity #1 (NS direccentricity #2 (NS directed) Total column size **Miscellaneous Concrete properties** 25 cover I (EW) 1 8.66E+09 6.40E+09 3.78E+09 1.80E+09 4.70E+09 2.56E+09 Poisson's ratio Density eccentricity (EW direct eccentricity #1 (EW directecentricity #2 (EW directed) 130 mm 55.55 mm -74.45 mm 0.15 2400 I (NS) 1 I (EW) 2 I (NS) 2 I (EW) 3 I (NS) 3 K1 K2 0.5 Factors that account for slab location Long term factors 1.7 kcs top reo short term load factor 400 Microstrain Shrinkage strain Creep Factor 0.25 long term load factor Factors for C & H [2] c1 600 Factors for C and M Long term E for camber kc 0.7 9.6 0.0625 1.14 1.15 0 0 depth of slab deffective c1 l1 mm c1/l1 1000 days days beta Ka 1 0.004553 Ka 2 0.002087 Ka 3 0.00218 beta n Φ(10000,7) **1.674** kf alpha1 (1) alpha2 (1) alpha1 (2) alpha2 (2) 1 alpha1 (3) 1.13 alpha2 (3) 0.53

					Fin	al out	put
		OUTP	UT NS	OUTP	UT EW	OUTPUT MID	
		MEAN	STDEV	MEAN	STDEV	MEAN	STDE
	17123055555	(mm)		(mm)		(mm)	
1	C & M (d is whole span)	12.7	1.6	11.8	1.5	24.4	2.2
2	C & M (d is drop panel width	45.0	5.8	27.0	3.4	72.0	6.7
3	C & M (d is 0.2 x span)	31.7	4.0	21.7	2.8	53.4	4.9
4	Naaman (d is whole span)	3.6	0.5	3.7	0.5	7.3	0.7
5	Naaman (d is drop panel wi	12.9	1,6	8.4	1,1	21.3	2.0
6	Naaman (d is 0.2 x span)	9.1	1.2	6.8	0.9	15.9	1.4
**********	Geden e		1 04	27	0E	7.0	1 04
1	C & H [1] (d is whole slab)	-3.3	0.4	-3.7	0.5	-7.0	0.6
2	C & H [1] (d is drop panel w	-11.6	1.5	-8.6	1.1 0.9	-20.2	1.8
3	C & H [1] (d is 0.2 x width)	-8.1	1.0	-6.9	0.9	-15.0 -18.9	2.4
4a 4b	C & H (2) (using a[1])					-8.7	1.1
******	C & H (2) (using a[2])					-0.7 -9.1	1.3
4c	C & H [7] (using a[3])	-11.5	1.5	-12.7	1.6	-24.3	2.2
5 6	C & M [1] (d is whole slab) C & M [1] (d is drop panel w	-41.0	5.2	-29.2	3.7	-70.2	6.4
7	C & M [1] (d is 0.2 x width)	-28.8	3.7	-23.5	3.0	-52.3	4.7
8	Naaman (d is whole slab)	-22.2	2.8	-24.5	3.1	-46.7	4.2
9	Naaman (d is whole slab)	-78.9	10,1	-56.1	7.2	-135.0	12.
10	Naaman [1] (d is 0.2 x width	-55.5	7.1	-45.1	5.8	-100.6	9.1
11	Warner					-49.4	6.3
NS	North - South Direction	-1.7	1 7		т		
EW	East - West Direction	-1./	-	-1.3	\vdash		\vdash
Both	Both Directions			-1.0		-3.0	

		SUMMARY (Total Deformation)										
· ·	NS mean	NS stdev	EW mean	EW stdev	MID mean	MID stdev						
C & M (d is whole span)	-0.5	2.2	-2.2	2.2	-2.8	3.1						
C & M (d is drop panel width)	2.3	7.8	-3.5	5.1	-1.1	9.3						
C & M (d is 0.2 x span)	1.1	5.5	-3.0	4.1	-1.9	6.8						
Warner					-49.4	6.3						

N40, Strips 3 and 8, Long Term

		INPUTS
Slab Geometry	Prestress factors	Loads
slab depth 200	Tendon force EW 3443.9 kN	
length (EW 9.6	Tendon force NS 3576.3 kN	Live load 3 kPa (unfactored)
length (NS 8.4		LL reductid 0.4
drop dist(EV 3		Dead load 4.8 kPa (unfactored)
drop dist(NS 2.4	eccentricity (EW direct 130 mm	Extra dead 1.4 kPa (unfactored)
column size 625	eccentricity #1 (EW dit 55.55 mm	Total 7.4 MPa
column size 625	eccentricity #2 (EW dir -74.45 mm	
cover 25		Miscellaneous Concrete properties
I (EW) 1 8.66E+09	eccentricity (NS directi 100 mm	<u>-</u>
I (NS) 1 6.40E+09	eccentricity #1 (NS dir 40.55 mm	Poisson's ratio 0.15
I (EW) 2 3.78E+09	eccentricity #2 (NS dir -59.45 mm	Density 2400
I (NS) 2 1.80E+09		K11
I (EW) 3 4.70E+09		K2 0.5 Factors that account for slab location.
I (NS) 3 2.56E+09	Long term factors	kcs <u>1.7</u>
top reo 12		short term load factor 0.5
lower reo 12	Shrinkage strain 400 Microstrain	long term load factor 0.25
£n 8.35	Creep Factor 2.6	
		Factors for C & H [2] Factors for C and M Long term E for camber
depth of slab		c1 600 mm kc 0.7
deffective 161.1		11 9.6 m H 70 %
		c1/l1
		beta 1.14 ti 7 days
		alpha1 (1) 0 Ka 2 0.002087 Φ(10000,7) 1.674 kf
•		alpha2 (1) 0 Ka 3 0.00218
		alpha1 (2) 1
		alpha2 (2) 1
		alpha1 (3) 1.13
		alpha2 (3) 0.53
		V-/ harmoniand

					Fin	al out	put
		OUTF	PUT NS	OUTP	UT EW	OUTP	UT MID
		MEAN	STDEV	MEAN	STDEV	MEAN	STD
		(mm)		(mm)		(mm)	1
1	C & M (d is whole span)	33.6	3.8	40.6	4.5	74.3	5.9
2	C & M (d is drop panel width	119.6	13.4	93.1	10.4	212.7	17.
3	C & M (d is 0.2 x span)	84.1	9.4	74.9	8.4	158.9	12.
4	Naaman (d is whole span)	13.1	1.8	17.3	2.3	30.4	2.9
5	Naaman (d is drop panel wit	46.6	6.3	39.6	5.3	86.1	8.2
6	Naaman (d is 0.2 x span)	32.7	4.4	31.8	4.3	64.6	6.2
377							
1	C & H [1] (d is whole slab)	-11.8	1.6	-13.5	1.8	-25.2	2.4
2	C & H [1] (d is drop panel w	-41.8	5,6	-30.9	4.2	-72.7	7.0
3	C & H [1] (d is 0.2 x width)	-29.4	4.0	-24.9	3.4	-54.2	5.2
4a	C & H [2] (using a[1])					-68.2	9.2
4b	C & H [2] (using a[2])					-31.3	4.2
4c	C & H [2] (Using a[3])					-32.7	4.4
5	C & M [1] (d is whole slab)	-41.6	5.6	-45.9	6.2	-87.5	8.4
6	C & M [1] (d is drop panel w	-148.0	20.0	-105.2	14.2	-253.2	24.
7	C & M [1] (d is 0.2 x width)	-104.1	14.0	-84.6	11.4	-188.7	18.
8	Naaman (d is whole slab)	-80.1	10.8	-88.3	11.9	-168.4	16.
9	Naaman (d is drop panel wi	-284.6	38.4	-202.3	27.3	-486.9	47.
10	Naaman [1] (d is 0.2 x width	-200.1	27.0	-162.7	21.9	-362.8	34.
11	Warner					-178.0	24.
2000	20 Y 18 TO 1						
NS	North - South Direction	-1.7					
EW	East - West Direction			-1.3			
Both	Both Directions					-3.0	

		SUMMARY (Total Deformation) NS mean NS stdev EW mean EW stdev MID mean MID stdev										
	NS mean											
C & M (d is whole span)	-9.7	6.8	-6.6	7.7	-16.2	10.2						
C & M (d is drop panel width)	-30.1	24.0	-13.4	17.6	-43.5	29.8						
C & M (d is 0.2 x span)	-21.7	16.9	-11.0	14.2	-32.7	22.0						
Warner	-178.0 24.0											

N40, Strips 3 and 8, Short Term

INPUTS Slab Geometry Prestress factors Loads Tendon force EW 3443.9 kN length (EW length (NS 9.6 8.4 3576.3 kN Live load LL reduction Tendon force NS 3 kPa (unfactored) 3 kPa (unfactored) 0.4 4.8 kPa (unfactored) 1.4 kPa (unfactored) 7.4 MPa drop dist(EV drop dist(NS eccentricity (EW direct 130 mm 55.55 mm 2.4 625 Extra dead Total column size -74.45 mm column size 625 eccentricity #2 (EW dir Miscellaneous Concrete properties cover I (EW) 1 25 eccentricity (NS directive eccentricity #1 (NS directive eccentricity #2 (NS directive eccentricity eccentri 100 mm 40.55 mm -59.45 mm 8.66E+09 6.40E+09 I (NS) 1 Poisson's ratio I (EW) 2 I (NS) 2 3.78E+09 1.80E+09 Density K1 2400 4.70E+09 I (EW) 3 K2 0.5 I (NS) 3 2.56E+09 Long term factors 1.7 top reo short term load factor 400 Microstrain 2.6 Shrinkage strain lower reo long term load factor 0.25 8.35 Creep Factor Factors for C & H [2] c1 600 l1 9.6 c1/l1 0.0625 Factors for C and M Long term E for camber depth of slab mm 0.7 deffective 161.1 1000 7 days 1.14 1.15 beta days Ka 1 0.004553 Ka 2 0.002087 Ka 3 0.00218 beta n alpha1 (1) Φ(10000,7) **1.674** kf alpha2 (1) alpha1 (2) 0 alpha2 (2) 1.13 alpha1 (3) 1.13 alpha2 (3) 0.53

									200.00	N	DXXD-M24X4444EUS	200000000000000000000000000000000000000	4	
	l.	OUTP	UT NS	OUTP	UT EW	OUTP	JT MID							
		MEAN	STDEV	MEAN	STDEV	MEAN	STDEV			SUMM.	ARY (To	al Defo	rmation)	
	3335	(mm)		(mm)		(mm)			NS mean	VS stdev	EW mean	EW stdev	MID mean	MI
1 C&M	(d is whole span)	12.7	1.7	15.3	2.1	28.0	2.7	C & M (d is whole span)		2.3	1.3		0.8	
	(d is drop panel width		6.1	35.1	4.7	80.3	7.7	C & M (d is drop panel width)		8.2	4.6	6.2	7.0	
	(d is 0.2 x span)	31.7	4.3	28.3	3.8	60.0	5.7	C & M (d is 0.2 x span)		5.8	3.5		4.6	
	an (d is whole span)	3.6	0.5	4.8	0.6	8.4	8.0	Warner					-49.4	
	an (d is drop panel wi		1.7	11.0	1.5	23.9	2.3							
6 Naama	an (d is 0.2 x span)	9.1	1.2	8.8	1.2	17.9	1.7							
E. 1656.621														
	[1] (d is whole slab)	-3.3	0.4	-3.7	0.5	-7.0	0.7							
2 C&H	[1] (d is drop panel w	-11.6	1.6	-8.6	1.2	-20.2	1.9							
	[1] (d is 0.2 x width)	-8.2	1.1	-6.9	0.9	-15.1	1.4							
	[2] (using a[1])					-19.0	2.6							
	[2] (using a[2])					-8.7	1.2							
	[2] (using a[3])					-9.1	1.2							
	[1] (d is whole slab)	-11.6	1.6	-12.8	1.7	-24.3	2.3							
	[1] (d is drop panel w	-41.1	5.5	-29.2	3.9	-70.3	6.8							
	[1] (d is 0.2 x width)	-28.9	3.9	-23.5	3.2	-52.4	5.0							
	an (d is whole slab)	-22.2	3.0	-24.5	3.3	-46.8	4.5							
	an (d is drop panel wi	-79.1	10.7	-56.2	7.6	-135.3	13.1							
10 Naama	an [1] (d is 0.2 x width	-55.6	7.5	-45.2	6.1	-100.8	9.7							
11 Warne	#					-49.4	6.7							
2000 ta/20	\$10 P													
	- South Direction	-1.7												
	West Direction			-1.3										
	Directions					-3.0								

N40, Strips 4 and 9, Long Term

INPUTS Slab Geometry Prestress factors Loads Tendon force NS Tendon force EW 3443.9 kN length (EW length (NS 9.6 8.4 3178.9 kN Live load LL reduction 3 kPa (unfactored) 4.8 kPa (unfactored) drop dist(E\ Dead load 1.4 kPa (unfactored) 7.4 MPa eccentricity (NS directi 100 mm 40.55 mm Extra dea drop dist(NS column size 2.4 625 -59.45 mm column size 625 eccentricity #2 (NS dir Miscellaneous Concrete properties cover I (EW) 1 25 5.60E+09 9.83E+09 130 mm 55.55 mm -74.45 mm I (NS) 1 eccentricity (EW direct Poisson's ratio 1 (EW) 2 1 (NS) 2 1.60E+09 4.49E+09 eccentricity #1 (EW direccentricity #2 (EW directed) Density K1 2400 0.5 2.24E+09 1 (EW) 3 K2 Factors that account for slab location 1.7 I (NS) 3 5.29E+09 Long term factors kcs short term load factor top reo Shrinkage strain 400 Microstrain long term load factor 0.25 lower reo 8.35 Creep Factor 2.6 Factors for C & H [2] c1 600 l1 9.6 c1//1 0.0625 Factors for C and M Long term E for camber kc 0.7 % kc H t depth of slab 161.1 deffective [1000 7 days 1.14 1.15 beta ti days Ka 1 0.004553 Ka 2 0.002087 Ka 3 0.00218 beta n alpha1 (1) Φ(10000,7) **1.674** kf ō alpha2 (1) alpha1 (2) alpha2 (2) alpha1 (3) alpha2 (3) 0.53

				Fir	ial out	put		
	OUTF	PUT NS	OUTP	UT EW	OUTP	UT MID		
	MEAN	STDEV	MEAN	STDEV	MEAN	STDEV	SUMMARY (Total Deformat	ion)
	(mm)	 	(mm)	†	(mm)		NS mean NS stdev EW mean EW stdev MID r	
1 C & M (d is whole spa		2.4	58.1	6.6	79.2	7.0		-21.7
2 C & M (d is drop pane		5.3	203.4	23.1	249.6	23.7	C & M (d is drop panel width) -14.7 9.2 -46.0 39.0	-60,7
3 C & M (d is 0.2 x spar		4.5	145.3	16.5	184.5	17.1	C & M (d is 0.2 x span) -12.7 7.8 -33.2 27.9	-45.9
4 Naaman (d is whole s		1.0	24.6	3.1	32.8	3,3	Warner -	177.7
5 Naaman (d is drop pa		2.3	86.1	10.9	104.1	11.1		
6 Naaman (d is 0.2 x sp	an) 15.2	1.9	61.5	7.8	76.7	8.0		
1 C & H [1] (d is whole s 2 C & H [1] (d is drop pa		1.0	-20.8 -72.9	2.6 9.2	-28.5 -89.6	2.8 9.5		
3 C&H[1](dis 0.2 x w		1.8	-52.1	6,6	-66.3	6.8		
4a C&H [2] (using o[1]		1	02:		-68.1	8.6		
4b C&H[2] (using a[2]					-31.2	4.0		
4C C & Η [2] (ueling α[3]					-32.6	4.1		
5 C & M [1] (d is whole:	slab) -27.1	3.4	-70.9	9.0	-97.9	9.6		
6 C&M[1](disdropp		7.5	-248.1	31.4	-307.3	32.3		
7 C&M[1](dis0.2xw		6.4	-177.2	22.4	-227.5	23.3		
8 Naaman (d is whole s		6.6	-136.3	17.3	-188,4	18.5 62.1		
9 Naaman (d is drop pa 10 Naaman (1) (d is 0.2 >		14.4	-477.1 -340.8	60.4 43.1	-591.1 -437.5	44.8		
10 Naaman [1] (d is 0.2 x	-90.7	1 1Z.Z	-340.0	1 40.1	-177.7	22.5		
NS North - South Directio	n -1.7							
EW East - West Direction			-1.3					
Both Both Directions		1		1	-3.0	1		

N40, Strips 4 and 9, Short Term

INPUTS Slab Geometry Prestress factors Loads 3443.9 kN 3178.9 kN slab depth length (EW length (NS Tendon force NS Tendon force EW Live load 3 kPa (unfactored) 0.4 4.8 kPa (unfactored) 8.4 LL reduction drop dist(E Dead load 1.4 kPa (unfactored) 7.4 MPa drop dist(NS eccentricity (NS directi **100** mm Extra dead eccentricity #1 (NS dire **40.55** mm column siz 625 eccentricity #2 (NS dir -59.45 mm **Miscellaneous Concrete properties** cover 25 I (EW) 1 5.60E+09 130 mm 55.55 mm -74.45 mm I (NS) 1 9.83E+09 eccentricity (EW direct Poisson's ratio 0.15 I (EW) 2 I (NS) 2 eccentricity #1 (EW dir eccentricity #2 (EW dir 1.60E+09 Density 2400 4.49E+09 K1 0.5 1.7 1 (EW) 3 2.24E+09 K2 Factors that account for slab location. I (NS) 3 5.29E+09 Long term factors kcs top reo 12 short term load factor 0.5 400 Microstrain 2.6 lower reo 12 Shrinkage strain Creep Factor long term load factor 0.25 8.35 Ln Factors for C and M Long term E for camber kc 0.7 Factors for C & H [2] kc H depth of slab c1 |1 600 mm 9.6 m 161.1 70 c1/l1 0.0625 1000 days 1.14 1.15 beta Ka 1 0.004553 Ka 2 0.002087 Ka 3 0.00218 beta n alpha1 (1) Φ(10000,7) **1.674** kf alpha2 (1) alpha1 (2) 0 alpha2 (2) alpha1 (3) alpha2 (3) 1.13 0.53

					Fin	al out	pι
		OUTP	UT NS	OUTP	UT EW	OUTP	UT N
		MEAN	STDEV	MEAN	STDEV	MEAN	ST
Market T		(mm)		(mm)		(mm)	-
1	C & M (d is whole span)	7.9	1.0	21.9	2.8	29.8	-
2	C & M (d is drop panel width	17.4	2.2	76.5	9.7	93.9	
3	C & M (d is 0.2 x span)	14.8	1.9	54.6	6.9	69.4	
4	Naaman (d is whole span)	2.3	0.3	6.8	0.9	9.1	
5	Naaman (d is drop panel wi	5.0	0.6	23.9	3.0	28.9	
6	Naaman (d is 0.2 x span)	4.2	0.5	17.1	2.2	21.3	
1	C & H [1] (d is whole slab)	-2.1	0.3	-5.8	0.7	-7.9	
******************	Section 15	0.4	0.0	- E O	0.7	7.0	
2	C & H [1] (d is drop panel w	-4.6	0.6	-20.3	2.6	-24.9	
3	C & H [1] (d is 0.2 x width)	-3.9	0.5	-14.5	1.8	-18.4	1
4a	C & H [2] (using a[1])					-18.9	
45	C & H [2] (using a[2])					-8.7	
4c	C & H [2] (using a[3])					-9.1	\vdash
5	C & M [1] (d is whole slab)	-7.5	1.0	-19.7	2.5	-27.2	_
6	C & M [1] (d is drop panel w	-16.5	2.1	-68.9	8.7	-85.4	
7	C & M [1] (d is 0.2 x width)	-14.0	1.8	-49.2	6.2	-63.2	
8	Naaman (d is whole slab)	-14.5	1.8	-37.9	4.8	-52.3	
9	Naaman (d is drop panel wi	-31.6	4.0	-132.5	16.8	-164.2	1
10	Naaman [1] (d is 0.2 x width	-26.9	3.4	-94.7	12.0	-121.5	1
11	Warner					-49.4	
							_
graf á ál							
NS	North - South Direction	-1.7					<u> </u>
EW	East - West Direction			-1.3			<u> </u>
Both	Both Directions					-3.0	L

	SUMMARY (Total Deformation)											
•	NS mean	NS stdev	EW mean	EW stdev	MID mean	MID stdev						
C & M (d is whole span)	-1.2	1.4	0.9	3.7	-0.4	4.0						
C & M (d is drop panel width)	-0.7	3.0	6.3	13.0	5.6	13.4						
C & M (d is 0.2 x span)	-0.9	2.6	4.1	9.3	3.2	9.7						
Warner					-49.4	6.2						

N40, Strips 4 and 11, Long Term

		INPUTS	
Slab Geometry slab depth 200 length (EW 9.6 length (NS 8.4 drop dist(EV 3 drop dist(NS 2.4 column size 625 column size 625	Prestress factors Tendon force NS 3443.9 kN Tendon force EW 3178.9 kN eccentricity (NS direct 40.55 mm eccentricity #2 (NS dir 59.45 mm	Live load LI. reductic Dead load Extra dead Total LI. veload 3 kPa (unfactored) 4.8 kPa (unfactored) 4.8 kPa (unfactored) 7.4 kPa (unfactored)	
cover 25 I (EW) 1 5.60E+09 I (NS) 2 9.83E+09 I (EW) 2 1.60E+09 I (NS) 2 4.49E+09 I (EW) 3 2.24E+09 I (NS) 3 5.29E+09 top reo 12 lower reo 12 Ln 8.35	eccentricity (EW direct eccentricity #1 (EW direct eccentricity #1 (EW direct eccentricity #2 (EW dire	Miscellaneous Concrete properties Poisson's ratio 0.15 Density 2400 K1 1 K2 0.5 kcs 1.7 short term load factor 0.5 long term load factor 0.25	S Factors that account for slab location.
depth of slab deffective 161.1		Factors for C & H [2] c1 600 mm	Φ (10000,7) 1.674 kf

					Fin	al out	put
		OUTP	UT NS	OUTP	UT EW	OUTP	UT MID
		MEAN	STDEV	MEAN	STDEV	MEAN	STDE
	141000000000	(mm)		(mm)		(mm)	
1	C & M (d is whole span)	21.1	2.4	58.1	6.6	79.2	7.0
2	C & M (d is drop panel width	46.2	5.3	203.4	23.1	249.6	23.7
3	C & M (d is 0.2 x span)	39.2	4.5	145.3	16.5	184.5	17.1
4	Naaman (d is whole span)	8.2	1.0	24.6	3.1	32.8	3.3
5	Naaman (d is drop panel wi	17.9	2.3	86.1	10.9	104.1	11.1
6	Naaman (d is 0.2 x span)	15.2	1.9	61.5	7.8	76.7	8.0
2 3 4a 4b	C & H [1] (d is drop panel w C & H [1] (d is 0.2 x width) C & H [2] (using a[1]) C & H [2] (using a[2])	-16.7 -14.2	2.1 1.8	-72.9 -52.1	9,2 6,6	-89.6 -66.3 -68.1 -31.2	9.5 6.8 8.6 4.0
4c	C & H [2] (using a[3])					-32.6	4.1
5	C & M [1] (d is whole slab)	-27.1	3.4	-70.9	9.0	-97.9	9.6
6	C & M [1] (d is drop panel w	-59.2	7.5	-248.1	31.4	-307.3	32.3
7	C & M [1] (d is 0.2 x width)	-50.3	6.4	-177.2	22.4	-227.5	23.3
8	Naaman (d is whole slab)	-52.0	6.6	-136.3	17.3	-188.4	18.5
9	Naaman (d is drop panel wi	-113.9	14.4	-477.1	60.4	-591.1	62.1
10	Naaman [1] (d is 0.2 x width	-96.7	12.2	-340.8	43.1	-437.5	44.8
11	Warner					-177.7	22.5
(S648) N							
NS	North - South Direction	-1.7					
EW	East - West Direction			-1.3			
Both	Both Directions					-3.0	

		SUMMARY (Total Deformation)											
	NS mean	NS stdev	EW mean	EW stdev	MID mean	MID stdev							
C & M (d is whole span)	-7.6	4.2	-14.1	11.1	-21.7	11.9							
C & M (d is drop panel width)	-14.7	9.2	~46.0	39.0	-60.7	40.1							
C & M (d is 0.2 x span)	-12.7	7.8	-33.2	27.9	-45.9	28.9							
Warner					-177.7	22.5							

N40, Strips 4 and 11, Short Term

		INPUTS
Slab Geometry	Prestress factors	Loads
slab depth 200	Tendon force NS 3443.9 kN	
length (EW 9.6	Tendon force EW 3178.9 kN	Live load 3kPa (unfactored)
length (NS 8.4		LL reductid 0.4
drop dist(EV 3		Dead load 4.8 kPa (unfactored)
drop dist(NS 2.4	eccentricity (NS directi 100 mm	Extra dead 1.4 kPa (unfactored)
column size 625	eccentricity #1 (NS dir 40.55 mm	Total 7.4 MPa
column size 625	eccentricity #2 (NS dir	
cover 25		Miscellaneous Concrete properties
I (EW) 1 5.60E+09		
I (NS) 1 9.83E+09	eccentricity (EW direct 130 mm	Poisson's ratio 0.15
1 (EW) 2 1.60E+09	eccentricity #1 (EW dir 55.55 mm	Density 2400
I (NS) 2 4.49E+09	eccentricity #2 (EW dit -74.45 mm	K1 1
1 (EW) 3 2.24E+09		K2 0.5 Factors that account for slab location.
I (NS) 3 5.29E+09	Long term factors	kcs 1.7
top reo 12		short term load factor 0.5
lower reo 12	Shrinkage strain 400 Microstrain	long term load factor 0.25
Ln 8.35	Creep Factor 2.6	
		Factors for C & H [2] Factors for C and M Long term E for camber
depth of slab		
deffective 161.1		
		c1/l1
		beta n 1.15 Ka 1 0.004553
		alpha1 (1) 0 Ka 2 0.002087 Φ(10000,7) 1.674 kf
		alpha2 (1) 0 Ka 3 0.00218
		alpha1 (2) 1
		alpha2 (2) 1
		alpha1 (3) 1.13
		alpha2 (3) 0.53
		· ···

(d is whole span) (d is drop panel width (d is 0.2 x span) n (d is drop panel win n (d is whole span) n (d is drop panel win n (d is 0.2 x span) 1] (d is whole slab) 1] (d is drop panel w 1] (d is 0.2 x wddn) 1] (d is 0.2 x wddn)	MEAN (mm) 7.9 17.4 14.8 2.3 5.0 4.2	1.0 2.2 1.9 0.3 0.6 0.5	MEAN (mm) 21.9 76.5 54.6 6.8 23.9 17.1	2.8 9.7 6.9 0.9 3.0 2.2	OUTPU MEAN (mm) 29.8 93.9 69.4 9.1 28.9 21.3	STDI 2.9 9.9 7.2 0.9 3.1 2.2
(d is whole span) (d is drop panel width (d is 0.2 x span) n (d is whole span) n (d is drop panel wi n (d is 0.2 x span) 1] (d is whole slab) 1] (d is drop panel w 1] (d is drop panel w 1] (d is 0.2 x width)	(mm) 7.9 17.4 14.8 2.3 5.0 4.2 -2.1 -4.6	1.0 2.2 1.9 0.3 0.6 0.5	(mm) 21.9 76.5 54.6 6.8 23.9 17.1	2.8 9.7 6.9 0.9 3.0 2.2	(mm) 29.8 93.9 69.4 9.1 28.9 21.3	2.9 9.9 7.2 0.9 3.1 2.2
(d is whole span) (d is drop panel width (d is 0.2 x span) n (d is whole span) n (d is drop panel wi n (d is 0.2 x span) 1] (d is whole slab) 1] (d is drop panel w 1] (d is drop panel w 1] (d is 0.2 x width)	7.9 17.4 14.8 2.3 5.0 4.2	2.2 1.9 0.3 0.6 0.5	21.9 76.5 54.6 6.8 23.9 17.1	9.7 6.9 0.9 3.0 2.2	29.8 93.9 69.4 9.1 28.9 21.3	9.9 7.2 0.9 3.1 2.2
d is drop panel width (d is 0.2 x span) n (d is whole span) n (d is drop panel wi n (d is 0.2 x span) 1] (d is whole slab) 1] (d is drop panel w 1) (d is 0.2 x width)	17.4 14.8 2.3 5.0 4.2	2.2 1.9 0.3 0.6 0.5	76.5 54.6 6.8 23.9 17.1	9.7 6.9 0.9 3.0 2.2	93.9 69.4 9.1 28.9 21.3	9.9 7.2 0.9 3.1 2.2
(d is 0.2 x span) n (d is whole span) n (d is drop panel wi n (d is 0.2 x span) 1] (d is whole slab) 1] (d is drop panel w 1] (d is 0.2 x width)	14.8 2.3 5.0 4.2	1.9 0.3 0.6 0.5	54.6 6.8 23.9 17.1	6.9 0.9 3.0 2.2	69.4 9.1 28.9 21.3	7.2 0.9 3.1 2.2
n (d is whole span) n (d is drop panel wi n (d is 0.2 x span) 1] (d is whole slab) 1] (d is drop panel w 1] (d is drop panel w 1] (d is 0.2 x width)	2.3 5.0 4.2 -2.1 -4.6	0.3 0.6 0.5	6.8 23.9 17.1	0.9 3.0 2.2	9.1 28.9 21.3	0.9 3.1 2.2
n (d is drop panel wi n (d is 0.2 x span) 1] (d is whole slab) 1] (d is drop panel w 1) (d is 0.2 x width)	5.0 4.2 -2.1 -4.6	0.6 0.5 0.3 0.6	23.9 17.1	3.0 2.2	28.9 21.3	3.1
n (d is 0.2 x span) 1] (d is whole slab) 1] (d is drop panel w 1] (d is 0.2 x width)	-2.1 -4.6	0.5 0.3 0.6	17.1 -5,8	2.2	21.3	2.2
1] (d is whole slab) 1] (d is drop panel w 1] (d is 0.2 x width)	-2.1 -4.6	0.3	-5.8			
1] (d is whole slab) 1] (d is drop panel w 1] (d is 0.2 x width)	-4.6	0.6		0.7	-7.9	
1] (d is drop panel w 1] (d is 0.2 x width)	-4.6	0.6		0.7	-/.9	
1) (d is 0.2 x width)						
	-3.9		-20.3	2.6	-24.9	2.6
27 (USING a[1])	WAY CONTRACTOR CONTRAC	0.5	-14.5	1.8	-18.4	1.9
					-18.9	2.4
[2] (esing a[2])					-8.7	1.1
	75	1 10	10.7	7.5		2.7
						9.0
						6.5
						5.1
						17.
						12.
11 [1] (d 15 0.2 X Widu	20.0	1 07	34.1	12.0		6.2
	1] (d is 0.2 x width) n (d is whole slab) n (d is drop panel wi n [1] (d is 0.2 x width	1] (d is whole slab)	11 (d is whole slab)	1] (d is whote slab) 7.5 1.0 1-19.7 1) (d is drop panel w 1-6.5 2.1 -68.9 1) (d is 0.2 x width) 14.0 1.8 49.2 n (d is whote slab) 14.5 1.8 37.9 n (d is drop panel w 31.6 4.0 -132.5 n (1) (d is 0.2 x width 26.9 3.4 9-94.7	1] (d is whole slab)	1 (d is whole slab) 7.5 1.0 -19.7 2.5 -27.2 1 (d is fore panel w -16.5 2.1 -68.9 8.7 -85.4 1 (d is 0.2 x width) -14.0 1.8 -49.2 6.2 -63.2 1 (d is 0.2 x width) -14.5 1.8 -37.9 4.8 -52.3 1 (d is drop panel w -31.6 4.0 -132.5 16.8 -164.2 1 (d is 0.2 x width -26.9 3.4 -94.7 12.0 -121.5

	SUMMARY (Total Deformation)											
	NS mean	NS stdev	EW mean	EW stdev	MID mean	MID stdev						
C & M (d is whole span)	-1.2	1.4	0.9	3.7	-0.4	4.0						
C & M (d is drop panel width)	-0.7	3.0	6.3	13.0	5.6	13.4						
C & M (d is 0.2 x span)	-0.9	2.6	4.1	9.3	3.2	9.7						
Warner					-49.4	6.2						

N40, Strips 5 and 10, Long Term

INPUTS Slab Geometry Prestress factors Loads 2649.1 kN 3178.9 kN slab depth length (EW length (NS drop dist(EV Tendon force EW Tendon force NS Live load LL reduction 3 kPa (unfactored) 0.4 4.8 kPa (unfactored) 1.4 kPa (unfactored) 7.4 MPa Dead load 2.4 625 eccentricity (EW direct eccentricity #1 (EW direct 130 mm 55.55 mm -74.45 mm Extra dead Total drop dist(NS column size eccentricity #2 (EW dir column size 625 Miscellaneous Concrete properties cover I (EW) 1 25 25 8.66E+09 6.40E+09 3.78E+09 1.80E+09 4.70E+09 eccentricity (NS directi eccentricity #1 (NS dir eccentricity #2 (NS dir 100 mm 40.55 mm -59.45 mm Poisson's ratio Density I (NS) 1 I (EW) 2 0.15 2400 I (NS) 2 I (EW) 3 I (NS) 3 K1 K2 0.5 Factors that account for slab location. 2.56E+09 Long term factors kcs 1.7 top reo short term load factor 0.5 0.25 400 Microstrain 2.6 Shrinkage strain Creep Factor long term load factor lower reo Ln Factors for C & H [2] c1 600 11 9.6 c1/11 0.0625 beta 1.14 beta n 1.15 alpha1 (1) 0 alpha2 (1) 0 alpha1 (2) 1 depth of slab deffective 161.1 Ka 1 0.004553 Ka 2 0.002087 Ka 3 0.00218 Φ(10000,7) **1.674** kf alpha1 (2) alpha2 (2) alpha2 (2) 1 alpha1 (3) 1.13 alpha2 (3) 0.53

	386				Fin	al out	put
		OUTP	UT NS	OUTP	UT EW	OUTP	UT MIC
		MEAN	STDEV	MEAN	STDEV	MEAN	STD
3 B 5 2 3 2 3		(mm)		(mm)		(mm)	
1	C & M (d is whole span)	29.8	3.4	31.2	3.6	61.1	4.9
2	C & M (d is drop panel width	106.1	12.1	71.5	8.1	177.6	14.
3	C & M (d is 0.2 x span)	74.6	8.5	57.5	6.6	132.1	10.
4	Naaman (d is whole span)	11.6	1.4	13,2	1.6	24.8	2.2
5	Naaman (d is drop panel wi	41.2	5.1	30.3	3.7	71.5	6.3
6	Naaman (d is 0.2 x span)	29.0	3.6	24.4	3.0	53.3	4.7
***************************************	Action						
1	C & H [1] (d is whole slab)	-11.7	1.4	-13.4	1.7	-25.1	2.2
2	C & H [1] (d is drop panel w	-41.6	5.1	-30.8	3.8	-72.4	6.4
3	C & H [1] (d is 0.2 x width)	-29.3	3.6	-24.8	3.1	-54.0	4.7
48	C & N (2) (using a[1])					-67.9	8.4
4b	C & H [2] (using a[2])					-31.1	3.8
4c	C & H [2] (using a[3])					-32.5	4.0
5	C & M [1] (d is whole slab)	-41.4	5.1	-45.7	5.6	-87.2	7.6
6	C & M [1] (d is drop panel w	-147.4	18.2	-104.8	12.9	-252.1	22.
7	C & M [1] (d is 0.2 x width)	-103.6	12.8	-84.3	10.4	-187.9	16.
8	Naaman (d is whole slab)	-79.7	9.8	-87.9	10.9	-167.6	14.0
9	Naaman (d is drop panel wi	-283.4	35.0	-201.5	24.9	-484.9	42.
10	Naaman [1] (d is 0.2 x width	-199.3	24.6	-162.0	20.0	-361.3	31.
	Warner					-177.3	21.
NS	North - South Direction	-1.7	l ""				Γ .
EW	East - West Direction			-1.3			
Both	Both Directions					-3.0	
20111	Dati Directoria		l	1		3.0	

		SUMM	ARY (To	tal Defo	rmation)	
l		NS stdev			MID mean	
C & M (d is whole span)	-13.3	6.1	-15.8	6.7	-29.1	9.1
C & M (d is drop panel width)	-42.9	21.8	-34.5	15.3	-77.4	26.7
C & M (d is 0.2 x span)	-30.7	15.4	-28.0	12.3	-58.7	19.7
Warner					-177.3	21.9

N40, Strips 5 and 10, Short Term

		INPUTS
Slab Geometry	Prestress factors	Loads
slab depth 200	Tendon force EW 2649.1 kN	
length (EW 9.6	Tendon force NS 3178.9 kN	Live load 3 kPa (unfactored)
length (NS 8.4		£L reductid 0.4
drop dist(EV 3		Dead load 4.8 kPa (unfactored)
drop dist(NS 2.4	eccentricity (EW direct 130 mm	Extra dead1.4 kPa (unfactored)
column size 625	eccentricity #1 (EW dir 55.55 mm	Total 7.4 MPa
column size 625	eccentricity #2 (EW dit -74.45 mm	
cover 25		Miscellaneous Concrete properties
i (EW) 1 8.66E+09	eccentricity (NS directi 100 mm	
I (NS) 1 6.40E+09	eccentricity #1 (NS dir 40.55 mm	Poisson's ratio 0.15
I (EW) 2 3.78E+09	eccentricity #2 (NS dir -59.45 mm	Density 2400
I (NS) 2 1.80E+09		K1 1
I (EW) 3 4.70E+09		K2 0.5 Factors that account for slab location.
I (NS) 3 2.56E+09	Long term factors	kcs <u>1.7</u>
top reo 12		short term load factor 0.5
lower reo 12	Shrinkage strain 400 Microstrain	long term load factor 0.25
Ln 8.35	Creep Factor 2.6	
dente exclusion		Factors for C & H [2] Factors for C and M Long term E for camber
depth of slab deffective 161.1		c1 600 mm kc 0.7
deffective 161.1		
		c1/l1
		beta n 1.15 Ka 1 0.004553
		alpha1 (1) 0 Ka 2 0.002087 Φ(10000,7) 1.674 kf
		alpha2 (1) 0 Ka 3 0.00218
		alpha1 (2) 1
		alpha2 (2) 1
		alpha1 (3) 1.13
		alpha2 (3) 0.53
		•

				#	Fin	al out	put
		OUTF	UT NS	OUTP	UT EW	OUTP	UT MID
		MEAN	STDEV	MEAN	STDEV	MEAN	STDE
		(mm)		(mm)		(mm)	
1	C & M (d is whole span)	11.2	1.4	11.7	1.4	23.0	2.0
2	C & M (d is drop panel width	39.9	4.9	26.9	3.3	66.9	5.9
3	C&M (dis 0.2 x span)	28.1	3.5	21.6	2.7	49.7	4.4
4	Naaman (d is whole span)	3.2	0.4	3.7	0.5	6.9	0.6
5	Naaman (d is drop panel w	11.4	1.4	8.4	1.0	19.9	1.8
6	Naaman (d is 0.2 x span)	8.0	1.0	6.8	0.8	14.8	1.3
1	C & H [1] (d is whole slab) C & H [1] (d is drop panel w	-3.3 -11.6	0.4 1.4	-3.7 -8.5	0.5 1.1	-7.0 -20.1	
2	C & H [1] (d is drop panel w	-11.6	1.4	-8.5	1.1	-20.1	1.8
3	C & H [1] (d is 0.2 x width)	-8.1	1.0	-6.9	0.8	-15.0	1.3
48	C & H (2) (using a[1])					-18.9	2.3
4b	C & H [2] (using a[2])					-8.7	1.1
4c	C & H [2] (using a[3])					-9.0	1.1
5	C & M [1] (d is whole slab)	-11.5	1.4	-12.7	1.6	-24.2	2.1
6	C & M [1] (d is drop panel w	-40.9	5.1	-29.1	3.6	-70.0	6.2
7	C & M [1] (d is 0.2 x width)	-28.8	3.6	-23.4	2.9	-52.2	4.6
8	Naaman (d is whole slab)	-22.1	2.7	-24.4	3.0	-46.6	4.1
9	Naaman (d is drop panel wi	-78.7	9.7	-56.0	6.9	-134.7	11.9
10	Naaman [1] (d is 0.2 x width	-55.4	6.8	-45.0	5.6	-100.4	8.8
11	Warner					-49.2	6.1
	CONTRACT.						
NS	North - South Direction	-1.7					
EW	East - West Direction			-1,3			
Both	Both Directions					-3.0	

	SUMMARY (Total Deformation)								
	NS mean	NS stdev	EW mean	EW stdev	MID mean	MID stdev			
C & M (d is whole span)	-2.0	2.0	-2.2	2.1	-4.2	2.9			
C & M (d is drop panel width)	-2.7	7.1	-3,5	4.9	-6.1	8.6			
C & M (d is 0.2 x span)	-2.4	5.0	-3.0	3.9	-5.4	6.3			
Warner					-49.2	6.1			

N40, Strips 6 and 10, Long Term

INPUTS Loads Slab Geometry Prestress factors 3178.9 kN 3178.9 kN slab depth length (EW 200 Tendon force EW Tendon force NS 3 kPa (unfactored) 0.4 4.8 kPa (unfactored) Live load 9.6 8.4 length (NS LL reduction Dead load drop dist(E 2.4 625 130 mm 55.55 mm -74.45 mm 1.4 kPa (unfactored) 7.4 MPa drop dist(NS eccentricity (EW direct Extra dead eccentricity #1 (EW directed) eccentricity #2 (EW directed) column size Total 625 column siz **Miscellaneous Concrete properties** 25 cover 100 mm 40.55 mm -59.45 mm 8.66E+09 I (EW) 1 eccentricity (NS directi 6.40E+09 3.78E+09 1.80E+09 4.70E+09 Poisson's ratio Density 0.15 2400 I (NS) 1 I (EW) 2 eccentricity #1 (NS direccentricity #2 (NS direccentricity #2) K1 K2 I (NS) 2 0.5 I (EW) 3 Factors that account for slab location. I (NS) 3 2.56E+09 Long term factors kcs 1.7 short term load factor 0.5 top reo lower reo 12 8.35 400 Microstrain Shrinkage strain long term load factor 0.25 Ln Creep Factor 2.6 Factors for C & H [2] c1 600 mm 11 9.6 m Factors for C and M Long term E for camber kc 0.7 % depth of slab 161.1 0.0625 1.14 1.15 1000 7 c1/l1 days beta days Ka 1 0.004553 Ka 2 0.002087 Ka 3 0.00218 beta n alpha1 (1) alpha2 (1) Φ(10000,7) **1.674** kf 0 alpha1 (2) alpha2 (2) alpha1 (3) alpha2 (3) 0.53

					Fin	al out	put
		OUTP	UT NS	OUTP	UT EW	OUTP	UT MID
		MEAN	STDEV	MEAN	STDEV	MEAN	STDE
		(mm)		(mm)		(mm)	
1	C & M (d is whole span)	29.9	3.4	37.5	4.3	67.4	5.5
2	C & M (d is drop panel width	106.3	12.1	85.9	9.8	192.2	15.6
3	C & M (d is 0,2 x span)	74.7	8,5	69.1	7.9	143.9	11.6
4	Naaman (d is whole span)	11.6	1.4	15.9	1.9	27.5	2.4
5	Naaman (d is drop panel wi	41.2	4.9	36.4	4.4	77.6	6.6
6	Naaman (d is 0.2 x span)	29.0	3.5	29.3	3.5	58.2	4.9
1 2 3 4a 4b 4c	C & H [1] (d is whole slab) C & H [1] (d is drop panel w C & H [1] (d is 0.2 x width) C & H [2] (using q[1]) C & H [2] (using q[2]) C & H [2] (using q[3])	-11.7 -41.6 -29.3	1.4 5.0 3.5	-13.4 -30.8 -24.8	1.6 3.7 3.0	-25.1 -72.4 -54.0 -68.0 -31.2 -32.5	2.1 6.2 4.6 8.1 3.7 3.9
5	C & M [1] (d is whole slab)	-41.5	5.0	-45.7	5.5	-87.2	7.4
6	C & M [1] (d is drop panel w	-147.4	17.6	-104.8	12.5	-252.2	21.7
7	C & M [1] (d is 0.2 x width)	-103.7	12.4	-84.3	10.1	-188.0	16.0
8	Naaman (d is whole slab)	-79.7	9.5	-88.0	10.5	-167.7	14.2
9	Naaman (d is drop panel wi	-283.5	33.9	-201.5	24.1	-485.1	41.6
10	Naaman [1] (d is 0.2 x width	-199.4	23.9	-162.1	19.4	-361.5	30.8
11	Warrier					-177.3	21.2
					,		
NS	North - South Direction	-1.7					
EW	East - West Direction			-1.3			
Both	Both Directions		1			-3.0	1

		SUMM	ARY (To	tal Defo	rmation)	
	NS mean	NS stdev	EW mean	EW stdev	MID mean	MID stdev
C & M (d is whole span)	-13.2	6.0	-9.5	6.9	-22.8	9.2
C & M (d is drop panel width)	-42.8	21.4	-20.1	15.9	-63.0	26.7
C & M (d is 0.2 x span)	-30.6	15.1	-16.4	12.8	-47.0	19.8
Warner					-177.3	21.2

N40, Strips 6 and 10, Short Term

INPUTS Loads Slab Geometry Prestress factors 3178.9 kN 3178.9 kN siab depth length (EV 200 9.6 Tendon force EW Tendon force NS Live load 3 kPa (unfactored) LL reduction 0.4 4.8 kPa (unfactored) length (NS drop dist(E 130 mm 55.55 mm -74.45 mm 1.4 kPa (unfactored)
7.4 MPa drop dist(N eccentricity (EW direct Extra dead column size 625 625 eccentricity #1 (EW direccentricity #2 (EW directed) Total 25 8.66E+09 Miscellaneous Concrete properties cover 100 mm 40.55 mm -59.45 mm I (EW) 1 eccentricity (NS direc 0.15 2400 Poisson's ratio I (NS) 1 I (EW) 2 6.40E+09 3.78E+09 eccentricity #1 (NS dir eccentricity #2 (NS dir Density 1.80E+09 4.70E+09 K1 K2 1 (NS) 2 0.5 I (EW) 3 Factors that account for slab location. I (NS) 3 2.56E+09 Long term factors kcs 1.7 12 short term load factor 0.5 top reo 12 8.35 400 Microstrain lower reo Shrinkage strain long term load factor 0.25 2.6 Creep Factor Factors for C and M Long term E for camber kc 0.7 H 70 % C & H [2] c1 11 600 9.6 depth of slab 161.1 deffective 0.0625 1.14 c1/l1 days beta Ka 1 0.004553 Ka 2 0.002087 Ka 3 0.00218 beta n 1.15 alpha1 (1) alpha2 (1) Φ(10000,7) **1.674** kf 0 alpha2 (2) alpha1 (3) 0.53 alpha2 (3)

> C & M (d is whole spar C & M (d is drop panel width C & M (d is 0.2 x spar

SUMMARY (Total Deformation)

NS stdev EW mean EW stdev MID mean MID stdev

MEAN STDEV MEAN STDEV MEAN						Fin	al out	put
(mm) (mm) (mm) (nm) (nm) (nm) (nm) (nm)			OUTP	UT NS	OUTP	UT EW	OUTP	UT MIC
1 C & M (d is whole span) 2 C & M (d is drop panel width 40.0 4.8 32.3 3.9 7 3 C & M (d is 0.2 x span) 4 Naaman (d is whole span) 5 Naaman (d is whole span) 6 Naaman (d is drop panel width 11.5 1.4 10.1 1.2 2 6 Naaman (d is 0.2 x span) 7 C & H [1] (d is whole slab) 7 C & H [1] (d is whole slab) 8 C & H [2] (using o[1]) 8 C & H [3] (using o[2]) 9 C & M [1] (d is vhole slab) 7 C & M [1] (d is vhole slab) 8 Naaman (d is 0.2 x width) 9 Naaman (d is 0.2 x width) 8 Naaman (d is 0.2 x width) 9 Naaman (d is 0.2 x width) 10 Naaman (1] (d is 0.2 x width) 11.2 1.3 14.1 1.7 2.2 13.4 2.6 0.3.1 5.7 14.4 10.1 1.2 2 15.5 1.4 10.1 1.2 2 16.6 0.6 0.6 7. 1.1 17.5 1.4 1.2 7 1.5 1.2 18.7 1.5 1.4 1.2 7 1.5 1.2 18.7 1.5 1.4 1.2 7 1.5 1.2 18.8 1.4 1.5 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.5 1.4 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		1	MEAN	STDEV	MEAN	STDEV	MEAN	STD
2 C & M (d is drop panel width 40.0 4.8 32.3 3.9 7 3 C & M (d is 0.2 x span) 28.1 3.4 26.0 3.1 5 4 Naaman (d is vhole span) 3.2 0.4 4.4 0.5 7 5 Naaman (d is drop panel width 11.5 1.4 10.1 1.2 2 6 Naaman (d is 0.2 x span) 8.1 1.0 8.1 1.0 1.2 2 C & H (1) (d is whole slab) 2 C & H (1) (d is drop panel width 11.5 1.4 10.1 1.2 2 3 C & H (1) (d is drop panel width 11.5 1.4 10.1 1.2 2 4 C & H (1) (d is drop panel width 11.5 1.4 10.1 1.2 2 5 C & H (1) (d is drop panel width 11.5 1.4 10.1 1.2 2 6 C & H (1) (d is drop panel width 11.5 1.4 10.1 1.2 2 7 C & M (1) (d is drop panel width 11.5 1.4 10.1 1.2 2 8 C & H (2) (using q (1)) 2 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		800000	(mm)		(mm)		(mm)	
2 C & M (d is drop panel widt 3 C & M (d is 0.2 x span) 28.1 3.4 26.0 3.1 5 4 Naaman (d is vhole span) 5 Naaman (d is drop panel widt 6 Naaman (d is vhole slab) 7 C & H (1) (d is whole slab) 7 C & H (1) (d is whole slab) 7 C & H (1) (d is drop panel widt 8 C & H (2) (using q (1)) 9 C & H (2) (using q (2)) 9 C & M (1) (d is whole slab) 1 C & M (1) (d is vhole slab) 1 C & M (1) (d is drop panel width) 1 C & M (1) (d is drop panel width) 1 C & M (2) (using q (2)) 1 C & M (1) (d is vhole slab) 1 C & M (1) (d is vhole slab) 2 C & M (1) (d is drop panel width) 1 C & M (1) (d is vhole slab) 2 C & M (1) (d is drop panel width) 1 C & M (1) (d is vhole slab) 2 C & M (1) (d is drop panel width) 1 C & M (1) (d is vhole slab) 2 C & M (1) (d is drop panel width) 2 C & M (1) (d is drop panel width) 3 C & M (1) (d is drop panel width) 4 C & M (1) (d is drop panel width) 4 C & M (1) (d is drop panel width) 4 C & M (1) (d is drop panel width) 4 C & M (1) (d is drop panel width) 4 C & M (1) (d is drop panel width) 4 C & M (1) (d is drop panel width) 4 C & M (1) (d is drop panel width) 4 C & M (1) (d is drop panel width) 4 C & M (1) (d is drop panel width) 5 C & M (1) (d is drop panel width) 6 C & M (1) (d is drop panel width) 7 C & M (1) (d is drop panel width) 8 Naaman (d is drop panel width) 9 Naaman (d is drop panel width) 10 Naaman (1) (d is 0.2 x width) 10 Naaman (1) (1) (10 S (2 x width) 10 Naaman (1) (10 S (2 x width) 11 Naaman (1) (10 S (2 x width) 12 Naaman (10 S (2 x width) 13 Naaman (10 S (2 x width) 14 Naaman (10 S (2 x width) 15 Naaman (10 S (2 x width) 16 Naaman (10 S (2 x width) 17 Naaman (10 S (2 x width) 18 Naaman (10 S (2 x width) 18 Naaman (10 S (2 x width) 19 Naaman (10 S (2 x width) 10 Naaman (10 S (2 x width) 11 Naaman (10 S (2 x width) 11 Naaman (10 S (2 x width) 12 Naaman (10 S (2 x width) 13 Naaman	1 с&	M (d is whole span)	11.2	1.3	14.1	1.7	25.3	2.:
4 Naaman (d is whole span) 5 Naaman (d is drop panel wide 1.1.0	2 C&	M (d is drop panel width	40.0	4.8	32.3	3.9	72.3	6.
5 Naaman (d is drop panel wi Naaman (d is 0.2 x span)		· · · · ·	28.1	3.4	26.0	3.1	54.1	4.0
1	4 Naa	man (d is whole span)	3.2	0.4	4.4	0.5	7.6	0.
1	5 Naa	man (d is drop panel wi	11.5	1.4	10.1	1.2	21.6	1.
1 C & H [1] (d is whote slab)	6 Naa	man (d is 0.2 x span)	8.1	1.0	8.1	1.0	16.2	1.
2 C & H [1] (d is drop panel w -11.6 1.4 -8.6 1.0 -2 3 C & H [1] (d is 0.2 x width) -8.1 1.0 -6.9 0.8 -1 43 C & H [2] (using q(1)) -1 44 C & H [2] (using q(2)) -1 45 C & H [2] (using q(3)) -1 5 C & M [1] (d is whole slab) -11.5 1.4 -12.7 1.5 -2 6 C & M [1] (d is forp panel w -41.0 4.9 -29.1 3.5 -7 7 C & M [1] (d is drop panel w -41.0 4.9 -29.1 3.5 -7 9 Naaman (d is whole slab) -22.2 2.7 -24.4 2.9 -4 9 Naaman (d is drop panel w -78.8 9.4 -56.0 6.7 -11 10 Naaman [1] (d is 0.2 x width -55.4 6.6 -45.0 5.4 -11	i de l'actio							
3 C & H [1] (d is 0.2 x width) 48 C & H [2] (willing of [1]) 40 C & H [2] (willing of [2]) 40 C & H [2] (willing of [3]) 5 C & M [1] (d is whole slab) 6 C & M [1] (d is frop panel w 41.0 4.9 -29.1 3.5 -7 7 C & M [1] (d is frop panel w 41.0 4.9 -29.1 3.5 -7 8 Naaman (d is drop panel w 41.0 4.9 -24.4 2.8 -5 9 Naaman (d is drop panel w 78.8 9.4 -56.0 6.7 -1 10 Naaman [1] (d is 0.2 x width) 10 Naaman [1] (d is 0.2 x width) 11 Naaman [1] (d is 0.2 x width) 12 Naaman [1] (d is 0.2 x width) 13 Naaman [1] (d is 0.2 x width) 14 Naaman [1] (d is 0.2 x width) 15 Naaman [1] (d is 0.2 x width) 16 Naaman [1] (d is 0.2 x width) 17 Naaman [1] (d is 0.2 x width) 18 Naaman [1] (d is 0.2 x width) 19 Naaman [1] (d is 0.2 x width) 10 Naaman [1] (d is 0.2 x width)	1 c&	H [1] (d is whole slab)	-3.3	0.4	-3.7	0.4	-7.0	0.
48	2 ca	H [1] (d is drop panel w	-11.6	1.4	-8.6	1.0	-20.1	1.
4b C & H[2] (using o[2]) 4c C & H[2] (using o[3]) 5 C & M[1] (di s whote slab) 6 C & M[1] (di s whote slab) 7 C & M[1] (di s 0.2 x width) 8 Naaman (d is whote slab) 9 Naaman (di swhote slab) 9 Naaman (di swhote slab) 10 Naaman [1] (di s 0.2 x width) 10 Naaman [1] (di s 0.2 x width) 11 S S S S S S S S S S S S S S S S S S	3 ca	H [1] (d is 0.2 x width)	-8.1	1.0	-6.9	0.8	-15.0	1.
40 C & H [2] (using q[3]) 5 C & M [1] (id is whole slab) -11.5 1.4 -12.7 1.5 -2.6 6 C & M [1] (id is frop panel w -41.0 4.9 -29.1 3.5 -7 7 C & M [1] (id is 0.2 x width) -28.8 3.4 -23.4 2.8 -5 8 Naaman (a is whole slab) -222.2 2.7 -24.4 2.9 4 9 Naaman (d is drop panel wi -78.8 9.4 -56.0 6.7 -1: 10 Naaman [1] (d is 0.2 x width) -55.4 6.6 -45.0 5.4 -10	a ca	tt (2) (using a(1))					-18.9	2.
5 C & M [1] (d is whole slab) -11.5 1.4 -12.7 1.5 -2 6 C & M [1] (d is drop panel w -41.0 4.9 -29.1 3.5 -7 7 C & M [1] (d is 0.2 x width) -28.8 3.4 -23.4 2.8 -5 8 Naaman (d is whole slab) -22.2 2.7 -24.4 2.9 -4 9 Naaman (d is drop panel wi -78.8 9.4 -56.0 6.7 -1 10 Naaman [1] (d is 0.2 x width -55.4 6.6 -45.0 5.4 -16	b ca	H [2] (using a[2])					-8.7	1.
6 C & M [1] (d is drop panel w -41.0 4.9 -29.1 3.5 -7 7 C & M [1] (d is 0.2 x width) -28.8 3.4 -23.4 2.8 -5 8 Naaman (d is whole slab) -22.2 2.7 -24.4 2.9 -4 9 Naaman (d is drop panel wi -78.8 9.4 -56.0 6.7 -1 10 Naaman [1] (d is 0.2 x width -55.4 6.6 -45.0 5.4 -10	c ca	H [2] (using a[3])					-9.0	1.
7 C & M [1] (d is 0.2 x width)	5 с&	M [1] (d is whole slab)					-24.2	2.
8 Naaman (d is whole slab) -22.2 2.7 -24.4 2.9 -4 9 Naaman (d is drop panel wi -78.8 9.4 -56.0 6.7 -1: 10 Naaman (1) (d is 0.2 x width -55.4 6.6 -45.0 5.4 -16		M [1] (d is drop panel w					-70.1	6.
9 Naaman (d is drop panel wi -78.8 9.4 -56.0 6.7 -1 10 Naaman [1] (d is 0.2 x width -55.4 6.6 -45.0 5.4 -10		M [1] (d is 0.2 x width)					-52.2	4.
10 Naaman [1] (d is 0.2 x width -55.4 6.6 -45.0 5.4 -10		man (d is whole slab)			-24.4		-46.6	3.
		man (d is drop panel wi					-134.7	11.
11 Warner -4		man [1] (d is 0.2 x width	-55.4	6.6	-45.0	5.4	-100.4	8.
	1 War	ner					-49.3	5.
		121032						
NS North - South Direction -1.7	IS Nort	h - South Direction	-1.7					
EW East - West Direction -1.3	W Eas	- West Direction			-1.3			

N40, Strips 7 and 11, Long Term

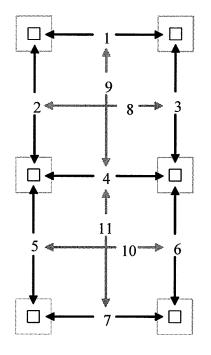
Slab Geometry	
Ingth (EW 9.6 Feet 9.6 9.6 Feet	
LL reductic 0.4 Care 1.4 Care 1.	
Dead load 4.8 RPa (unfactored) Architecture 1.30 mm Extra dead 1.4 RPa (unfactored) Extr	
drop dist(NS 2.4 eccentricity (EW direc 130 mm Extra dead 1.4 kPa (unfactored)	
Column size 625 eccentricity #1 (EW dis 55.55 mm Total 7.4 MPa	
Column size 625 eccentricity #2 (EW dit -74.45 mm Miscellaneous Concrete properties (EW) 1 5.60E+09 eccentricity (NS dir 40.55 mm Poisson's ratio 0.15 (EW) 2 1.60E+09 eccentricity #2 (NS dir -59.45 mm Density 2400	
Cover 25	
I (EW) 1 5.60E+09 eccentricity (NS direct 100 mm I (NS) 1 9.26E+09 eccentricity #1 (NS dir 40.55 mm Poisson's ratio 0.15 I (EW) 2 1.60E+09 eccentricity #2 (NS dir -59.45 mm Density 2400	
I (NS) 1 9.26E+09 eccentricity #1 (NS dir 40.55 mm Poisson's ratio 0.15 I (EW) 2 1.60E+09 eccentricity #2 (NS dir 59.45 mm Density 2400	
1 (EV/) 2 1.60E+09 eccentricity #2 (NS dir 59.45 mm Density 2400	
1 (NS) 2 3.59E+09 K1 1	
1 (EW) 3 2.24E+09 K2 0.5 Factors that account for slab location.	
I (NS) 3 4.89E+09 Long term factors kcs 1.7	
top reo 12 short term load factor 0.5	
lower reo 12 Shrinkage strain 400 Microstrain long term load factor 0.25	
Ln 8.35 Creep Factor 2.6	
Factors for C & H [2] Factors for C and M Long term E	for camber
depth of slab c1 600 mm kc 0.7 deffective 161.1 11 9.6 m H 70 %	
c///1 0.0625 t 1000 days	
beta 1.14 ti 7 days	
beta n 1.15 Ka 1 0.004553	
alpha1 (1) 0 Ka 2 0.002087 Φ(10000,7) 1.674 kf	
alpha2 (1) 0 Ka 3 0.00218	
alpha1 (2) 1	
alpha2 (2) 1 alpha1 (3) 1.13	
alpha1 (3) 1.13 alpha2 (3) 0.53	
aipiraz (3) (3) (3)	

26060000					Fin	al out	put		
		OUTP	UT NS	OUTP	UT EW	OUTP	UT MID		
		MEAN	STDEV	MEAN	STDEV	MEAN	STDEV	SUMMARY (Total D	eformation)
S#318XX	Y215/Y658/52/2	(mm)		(mm)		(mm)		NS mean NS stdev EW mean EW st	dev MID mean MID s
1	C & M (d is whole span)	17.2	2,0	58.1	6.9	75.4	7.2	C & M (d is whole span) -13.1 4.2 -14.0 11.	
2	C & M (d is drop panel width	44.5	5.3	203.4	24.0	247.9	24.6	C & M (d is drop panel width) -31.2 10.8 -45.9 39.	8 -77.2 41
3	C & M (d is 0.2 x span)	32.7	3.9	145.3	17.2	177.9	17.6	C & M (d is 0.2 x span) -23.4 7.9 -33.2 28	4 -56.6 29
4	Naaman (d is whole span)	6.7	0.9	24.6	3.1	31.3	3.3	Wamer	-177.7 22
5	Naaman (d is drop panel wi	17.3	2.2	86.1	11.0	103.4	11.2		
6	Naaman (d is 0.2 x span)	12.7	1.6	61.5	7.9	74.2	8.0		
	CHO.								
1	C & H [1] (d is whole slab)	-8.1	1.0	-20.8	2.7	-28.9	2.9		
2	C & H [1] (d is drop panel w	-20.9	2.7	-72.9	9.3	-93.8	9.7		
3	C & H [1] (d is 0.2 x width)	-15.3	2.0	-52.1	6.7	-67.4	6.9		
4a	C & H [2] (using a[1])					-68.1	8.7		
45	C & H [2] (using a[2])					-31.2	4.0		
4c	C & H [2] (using a[3])					-32.6	4.2		
5	C & M [1] (d is whole slab)	-28.7	3.7	-70.9	9.1	-99.6	9.8		
6	C & M [1] (d is drop panel w	-74.1	9.5	-248.0	31.7	-322.1	33.1		
7	C & M [1] (d is 0.2 x width)	-54.4	7.0	-177.2	22.7	-231.5	23.7		
8	Naaman (d is whole slab)	-55.2	7.1	-136.3	17.4	-191.5	18.8		
9	Naaman (d is drop panel wi	-142.4	18.2	-477.0	61.0	-619.4	63.6		
10	Naaman [1] (d is 0.2 x width	-104.6	13.4	-340.7	43.6	-445.3	45.6		
11	Warner					-177.7	22.7		
2.72.000.2	College Anna College								
NS	North - South Direction	-1.7			I		1		
EW	East - West Direction	-1.7		-1.3					
Both	Both Directions		—	-1.0	 	-3.0	 		

N40, Strips 7 and 11, Short Term

INPUTS Slab Geometry Prestress factors Loads 3178.9 kN Tendon force EW 3 kPa (unfactored) 0.4 4.8 kPa (unfactored) 1.4 kPa (unfactored) length (EV Tendon force NS 2649.1 kN Live load LL reduction length (NS drop dist(E\ 8.4 Dead load 130 mm 55.55 mm 2.4 625 eccentricity (EW direct drop dist(N Extra dead 7.4 MPa column size eccentricity #2 (EW dir -74.45 mm column siz 625 Miscellaneous Concrete properties cover 25 5.60E+09 9.26E+09 1.60E+09 3.59E+09 2.24E+09 100 mm 40.55 mm i (EW) 1 i (NS) 1 eccentricity (NS directi Poisson's ratio Density K1 K2 -59.45 mm I (EW) 2 eccentricity #2 (NS dir 2400 I (NS) 2 I (EW) 3 0.5 4.89E+09 I (NS) 3 Long term factors short term load factor 0.5 0.25 top reo Shrinkage strain Creep Factor 400 Microstrain long term load factor lower reo 8.35 2.6 Factors for C and M Long term E for camber kc 0.7 H 70 % Factors for C & H [2] c1 600 depth of slab deffective c1 I1 161.1 9.6 0.0625 c1/l1 1000 davs 1.14 1.15 beta days Ka 1 0.004553 Ka 2 0.002087 Ka 3 0.00218 beta n Φ(10000,7) **1.674** kf alpha1 (1) alpha2 (1) alpha1 (2) alpha2 (2) 1.13 alpha1 (3) alpha2 (3)

					Fin	al out	put
		OUTP	UT NS	OUTP	UT EW	OUTP	UT MID
		MEAN	STDEV	MEAN	STDEV	MEAN	STDE
(8889)87	TORESTERNISHA	(mm)		(mm)		(mm)	
1	C & M (d is whole span)	6.5	0.8	21.8	2.8	28.3	2.9
2	C & M (d is drop panel width	16.7	2.1	76.5	9.8	93.2	10.0
3	C & M (d is 0.2 x span)	12.3	1.6	54.6	7.0	66.9	7.2
4	Naaman (d is whole span)	1.9	0.2	6.8	0.9	8.7	0.9
5	Naaman (d is drop panel wi	4.8	0.6	23.9	3.1	28.7	3.1
6	Naaman (d is 0.2 x span)	3.5	0.4	17.1	2.2	20,6	2.2
2 3 4a 4b	C & H [1] (d is drop panel w C & H [1] (d is 0.2 x width) C & H [2] (using q[1]) C & H [2] (using q[2])	-5.8 -4.3	0.7 0.5	-20.2 -14.5	2.6 1.8	-26.1 -18.7 -18.9 -8.7	2.7 1.9 2.4 1.1
40	C & H [2] (using a[3])					-9.1	1.2
5	C & M [1] (d is whole stab)	-8.0	1.0	-19.7	2.5	-27.7	2.7
6	C & M [1] (d is drop panel w	-20.6	2.6	-68.9	8.8	-89.5	9.2
7	C & M [1] (d is 0.2 x width)	-15.1	1.9	-49.2	6.3	-64.3	6.6
8	Naaman (d is whole slab)	-15.3	2.0	-37.9	4.8	-53.2	5.2
9	Naaman (d is drop panel wi	-39.6	5.1	-132.5	16.9	-172.1	17.7
10	Naaman [1] (d is 0.2 x width	-29.0	3.7	-94.6	12.1	-123.7	12.7
- 11	Warner					-49.3	6.3
					,		····
NS	North - South Direction	-1.7	ļ			ļ	
EW	East - West Direction			-1.3		-3.0	
Both	Both Directions		L	L		-3.0	<u> </u>


	SUMMARY (Total Deformation)						
	NS mean	NS stdev	EW mean	EW stdev	MID mean	MID stdev	
C & M (d is whole span)	-3.2	1.3	0.9	3.8	-2.3	4.0	
C & M (d is drop panel width)	-5.5	3.4	6.3	13.2	8.0	13.6	
C & M (d is 0.2 x span)	-4.5	2.5	4.1	9.4	-0.4	9.7	
Warner					-49.3	6.3	

September 1991 Supermanager statement (·) Sagar research control of * . Input and Output from Finite Element Analysis

INPUT FOR FINITE ELEMENT ANALYSIS

	<u> </u>	Momen	t of Inertia (mm^4)	en [J-II -	pt-1-1	Total Length			Length of Left Drop panel	
	T	b = drop panel width	left 8.58E+09	middle 1.60E+09	right 8.58E+09	(m)	Width (m)	(mm)	(m)	(m)
	Sectional Moment of	b = 0.4*span	1.07E+10	2.56E+09	1.07E+10			ŀ		
	Inertia	b= span	1.64E+10	6.40E+09	1.64E+10					
		b= Weff (Eurocode) b= Weff (Ansourian's)	5.25E+09 4.20E+09	9.80E+08 7.84E+08	5.25E+09 4.20E+09					
1		b = drop panel width	11	3.59E+09	1	7.8	7.35	7.8, 7.35 200 1.2	1.2	
	Average Moment of	b = 0.4*span		4.89E+09]				
	Inertia	b= span b= Weff (Eurocode)		9.26E+09 2.20E+09		4				
		b= Weff (Ansourian's)		1.76E+09		1				
		b = drop panel width	8.58E+09	1.60E+09	8.58E+09					
		b = 0.4*span b= span	1.01E+10 1.54E+10	2.24E+09 5.60E+09	1.01E+10 1.54E+10	-				
		b= Weff (Eurocode)	6.00E+09	1.12E+09	6.00E+09	┪				
2		b= Weff (Ansourian's)	4.80E+09	8.96E+08	4.80E+09	8.975	6.7	200	1.5	1.5
-		b = drop panel width b = 0.4*span		3.78E+09 4.70E+09			J	200		1.5
	Average Moment of	b= 0.4 span b= span		8.66E+09		-				
	Inertia	b= Weff (Eurocode)		2.65E+09						
		b= Weff (Ansourian's)		2.12E+09						
		b = drop panel width b = 0.4*span	8.58E+09 1.01E+10	1.60E+09 2.24E+09	8.58E+09 1.01E+10					
	Sectional Moment of	b= span	1.54E+10	5.60E+09	1.54E+10	-				
	inertia	b= Weff (Eurocode)	6.00E+09	1.12E+09	6.00E+09	1			1	
3		b= Weff (Ansourian's)	4.80E+09	8.96E+08	4.80E+09	8.975	8.4	200	1.5	1.5
		b = drop panel width b = 0.4*span		3.78E+09 4.70E+09		-				
	Average Moment of	b= span		8.66E+09		1				
		b= Weff (Eurocode)		2.65E+09]				
		b= Weff (Ansourian's)	1.075 : 40	2.12E+09	1 075.40					
		b = drop panel width b = 0.4*span	1.07E+10 1.21E+10	2.00E+09 2.56E+09	1.07E+10 1.21E+10	+				
	Sectional Moment of	b= span	1.84E+10	6.40E+09	1.84E+10	1	9.6			
	Inertia	b= Weff (Eurocode)	5.25E+09	9.80E+08	5.25E+09			200	1.2	
4		b= Weff (Ansourian's)	4.20E+09	7.84E+08	4.20E+09	7.75				1.2
		b = drop panel width b = 0.4*span		4.49E+09 5.29E+09		-				
	Average Moment of	b= span		9.83E+09		1				
	Inertia	b= Weff (Eurocode)		2.20E+09]				
		b= Weff (Ansourian's)	0.505.00	1.76E+09	0.505.00					
		b = drop panel width b = 0.4*span	8.58E+09 1.01E+10	1.60E+09 2.24E+09	8.58E+09 1.01E+10	-				
	Sectional Moment of	b= span	1.54E+10	5.60E+09	1.54E+10	┪.				
		b= Weff (Eurocode)	6.00E+09	1.12E+09	6.00E+09					
5		b= Weff (Ansourian's)	4.80E+09	8.96E+08	4.80E+09	8.975	6.7	200	1.5	1.5
		b = drop panel width b = 0.4*span		3.78E+09 4.70E+09		4				
	Average Moment of	b= span		8.66E+09		-				
	Inertia	b= Weff (Eurocode)		2.65E+09						
		b= Weff (Ansourian's)	0.505.00	2.12E+09	0.505.00					
		b = drop panel width	8.58E+09 1.01E+10	1.60E+09 2.24E+09	8.58E+09 1.01E+10	-				
	Sectional Moment of	b = 0.4*span b= span	1.54E+10	5.60E+09	1.54E+10	1				
	Inortio	b= span b= Weff (Eurocode)	1.54E+10 6.00E+09	1.12E+09	6.00E+09					
6	Inortio	b= span b= Weff (Eurocode) b= Weff (Ansourian's)	1.54E+10	1.12E+09 8.96E+08		8.975	8.4	200	1.5	1.5
6	Inertia	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width	1.54E+10 6.00E+09	1.12E+09 8.96E+08 3.78E+09	6.00E+09	8.975	8.4	200	1.5	1.5
6	Inertia Average Moment of	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span	1.54E+10 6.00E+09	1.12E+09 8.96E+08 3.78E+09 4.70E+09 8.66E+09	6.00E+09	8.975	8.4	200	1.5	1.5
6	Inertia	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Eurocode)	1.54E+10 6.00E+09	1.12E+09 8.96E+08 3.78E+09 4.70E+09 8.66E+09 2.65E+09	6.00E+09	8.975	8.4	200	1.5	1.5
6	Inertia Average Moment of	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Eurocode) b= Weff (Ansourian's)	1.54E+10 6.00E+09 4.80E+09	1.12E+09 8.96E+08 3.78E+09 4.70E+09 8.66E+09 2.65E+09 2.12E+09	6.00E+09 4.80E+09	8.975	8.4	200	1.5	1.5
6	Inertia Average Moment of Inertia	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Eurocode)	1.54E+10 6.00E+09 4.80E+09 8.58E+09 1.07E+10	1.12E+09 8.96E+08 3.78E+09 4.70E+09 8.66E+09 2.65E+09 2.12E+09 1.60E+09 2.56E+09	6.00E+09	8.975	8.4	200	1.5	1.5
6	Average Moment of Inertia Sectional Moment of Inertia	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b = 9.4*span	1.54E+10 6.00E+09 4.80E+09 8.58E+09 1.07E+10 1.64E+10	1.12E+09 8.96E+08 3.78E+09 4.70E+09 8.66E+09 2.65E+09 2.12E+09 1.60E+09 2.56E+09 6.40E+09	6.00E+09 4.80E+09 8.58E+09 1.07E+10 1.64E+10	8.975	8.4	200	1.5	1.5
	Average Moment of Inertia Sectional Moment of Inertia	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= Weff (Eurocode) b= Weff (Eurocode)	1.54E+10 6.00E+09 4.80E+09 8.58E+09 1.07E+10 1.64E+10 5.25E+09	1.12E+09 8.96E+08 3.78E+09 4.70E+09 8.66E+09 2.65E+09 2.12E+09 1.60E+09 2.56E+09 6.40E+09 9.80E+08	6.00E+09 4.80E+09 4.80E+09 1.07E+10 1.64E+10 5.25E+09		8.4		1.5	1.5
7	Average Moment of Inertia Sectional Moment of Inertia	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= span b= Weff (Eurocode) b= Weff (Ansourian's)	1.54E+10 6.00E+09 4.80E+09 8.58E+09 1.07E+10 1.64E+10	1.12E+09 8.96E+08 3.78E+09 4.70E+09 8.66E+09 2.65E+09 1.60E+09 2.56E+09 6.40E+09 9.80E+08 7.84E+08	6.00E+09 4.80E+09 8.58E+09 1.07E+10 1.64E+10	8.975	8.4 7.35	200	1.5	1.5
	Average Moment of Inertia Sectional Moment of Inertia	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= Weff (Eurocode) b= Weff (Eurocode)	1.54E+10 6.00E+09 4.80E+09 8.58E+09 1.07E+10 1.64E+10 5.25E+09	1.12E+09 8.96E+08 8.96E+08 4.70E+09 8.66E+09 2.65E+09 2.12E+09 1.60E+09 2.56E+09 9.80E+08 7.84E+08 3.59E+09 4.89E+09	6.00E+09 4.80E+09 4.80E+09 1.07E+10 1.64E+10 5.25E+09					
	Average Moment of Inertia Sectional Moment of Inertia	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= span b= Weff (Eurocode) b= Weff (Edrocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b = span	1.54E+10 6.00E+09 4.80E+09 8.58E+09 1.07E+10 1.64E+10 5.25E+09	1.12E+09 8.96E+08 3.78E+09 4.70E+09 8.66E+09 2.65E+09 2.12E+09 1.60E+09 9.80E+08 7.84E+08 3.59E+09 4.89E+09 9.26E+09	6.00E+09 4.80E+09 4.80E+09 1.07E+10 1.64E+10 5.25E+09					
	Average Moment of Inertia Sectional Moment of Inertia Average Moment of	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= Weff (Ansourian's) b = drop panel width b = 0.4*span b = span b = Span	1.54E+10 6.00E+09 4.80E+09 8.58E+09 1.07E+10 1.64E+10 5.25E+09	1.12E+09 8.96E+08 3.78E+09 4.70E+09 8.66E+09 2.65E+09 2.12E+09 1.60E+09 6.40E+09 9.80E+08 7.84E+08 3.59E+09 4.89E+09 9.26E+09	6.00E+09 4.80E+09 4.80E+09 1.07E+10 1.64E+10 5.25E+09					
	Average Moment of Inertia Sectional Moment of Inertia Average Moment of	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= Span b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= weff (Eurocode) b= Weff (Eurocode) b= Weff (Ansourian's) b = span b= span b= span b= Span b= Weff (Eurocode) b= Weff (Ansourian's)	1.54E+10 6.00E+09 4.80E+09 8.58E+09 1.07E+10 1.64E+10 5.25E+09	1.12E+09 8.96E+08 3.78E+09 4.70E+09 8.66E+09 2.65E+09 2.12E+09 1.60E+09 9.80E+08 7.84E+08 3.59E+09 4.89E+09 9.26E+09	6.00E+09 4.80E+09 4.80E+09 1.07E+10 1.64E+10 5.25E+09					
7	Average Moment of Inertia Sectional Moment of Inertia Average Moment of Inertia	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= span b= weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= weff (Eurocode) b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span	1.54E+10 6.00E+09 4.80E+09 8.58E+09 1.07E+10 1.64E+10 5.25E+09	1.12E+09 8.96E+08 3.78E+09 4.70E+09 8.66E+09 2.65E+09 2.12E+09 1.60E+09 9.80E+08 7.84E+08 3.59E+09 9.26E+09 1.76E+09 9.26E+09 1.76E+09	6.00E+09 4.80E+09 4.80E+09 1.07E+10 1.64E+10 5.25E+09	7.8	7.35	200	1.2	1.2
	Average Moment of Inertia Sectional Moment of Inertia Average Moment of Inertia	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b = 0.4*span b= span b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= Weff (Eurocode) b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= span b= Weff (Ansourian's) b= drop panel width b = 0.4*span b= span b= span	1.54E+10 6.00E+09 4.80E+09 8.58E+09 1.07E+10 1.64E+10 5.25E+09	1.12E+09 8.96E+08 8.96E+08 8.96E+09 4.70E+09 8.66E+09 2.65E+09 1.60E+09 2.56E+09 9.80E+08 7.84E+08 3.59E+09 4.89E+09 9.26E+09 1.76E+09 1.80E+09 1.80E+09 2.56E+09 6.40E+09	6.00E+09 4.80E+09 4.80E+09 1.07E+10 1.64E+10 5.25E+09					
7	Average Moment of Inertia Sectional Moment of Inertia Average Moment of Inertia Average Moment of Inertia	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= Weff (Eurocode) b= o.4*span b= span b= Weff (Eurocode) b= O.4*span b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= Weff (Eurocode)	1.54E+10 6.00E+09 4.80E+09 8.58E+09 1.07E+10 1.64E+10 5.25E+09	1.12E+09 8.96E+08 3.78E+09 4.70E+09 8.66E+09 2.65E+09 2.12E+09 1.60E+09 9.80E+08 3.59E+09 4.89E+08 3.59E+09 1.76E+09 1.80E+09 2.20E+09 1.76E+09 1.80E+09 9.80E+09	6.00E+09 4.80E+09 4.80E+09 1.07E+10 1.64E+10 5.25E+09	7.8	7.35	200	1.2	1.2
7	Average Moment of Inertia Sectional Moment of Inertia Average Moment of Inertia Average Moment of Inertia	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b = 0.4*span b= span b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= Weff (Eurocode) b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= span b= Weff (Ansourian's) b= drop panel width b = 0.4*span b= span b= span	1.54E+10 6.00E+09 4.80E+09 8.58E+09 1.07E+10 1.64E+10 5.25E+09	1.12E+09 8.96E+08 8.96E+08 8.96E+09 4.70E+09 8.66E+09 2.65E+09 1.60E+09 2.56E+09 9.80E+08 7.84E+08 3.59E+09 4.89E+09 9.26E+09 1.76E+09 1.80E+09 1.80E+09 2.56E+09 6.40E+09	6.00E+09 4.80E+09 4.80E+09 1.07E+10 1.64E+10 5.25E+09	7.8	7.35	200	1.2	1.2
7	Average Moment of Inertia Average Moment of Inertia Average Moment of Inertia Average Moment of Inertia	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Eurocode) b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= weff (Eurocode) b= weff (Ansourian's) b = drop panel width b = 0.4*span b= weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span	1.54E+10 6.00E+09 4.80E+09 8.58E+09 1.07E+10 1.64E+10 5.25E+09	1.12E+09 8.96E+08 3.78E+09 4.70E+09 8.66E+09 2.65E+09 2.12E+09 1.60E+09 9.80E+08 3.59E+09 4.89E+08 3.59E+09 1.76E+09 2.20E+09 1.76E+09 2.56E+09 6.40E+09 9.80E+08 1.76E+09 1.80E+09 1.80E+09 1.80E+09 2.24E+09 1.60E+09	6.00E+09 4.80E+09 4.80E+09 1.07E+10 1.64E+10 5.25E+09	7.8	7.35 9.6	200	1.2 n/a	1.2 n/a
7	Average Moment of Inertia Sectional Moment of Inertia Average Moment of Inertia Average Moment of Inertia Average Moment of Inertia	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Eurocode) b= Span b= span b= span b= weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Eurocode)	1.54E+10 6.00E+09 4.80E+09 8.58E+09 1.07E+10 1.64E+10 5.25E+09	1.12E+09 8.96E+08 3.78E+09 4.70E+09 8.66E+09 2.65E+09 2.12E+09 1.60E+09 9.80E+08 3.59E+09 4.89E+09 9.26E+09 1.76E+09 1.80E+09	6.00E+09 4.80E+09 4.80E+09 1.07E+10 1.64E+10 5.25E+09	7.8	7.35	200	1.2	1.2
7	Average Moment of Inertia Sectional Moment of Inertia Average Moment of Inertia Average Moment of Inertia Average Moment of Inertia	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= Weff (Eurocode) b= Weff (Eurocode) b= Weff (Eurocode) b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= weff (Ansourian's) b = drop panel width b = 0.4*span b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= Weff (Eurocode) b= Weff (Eurocode) b= Weff (Eurocode) b= Weff (Eurocode)	1.54E+10 6.00E+09 4.80E+09 8.58E+09 1.07E+10 1.64E+10 5.25E+09	1.12E+09 8.96E+08 8.96E+09 8.96E+09 4.70E+09 8.66E+09 2.65E+09 2.12E+09 1.60E+09 2.56E+09 9.80E+08 7.84E+08 3.59E+09 4.89E+09 9.26E+09 1.76E+09 1.80E+09 9.80E+08 1.40E+09 9.80E+08 1.40E+09 9.80E+08 1.60E+09 9.80E+08 1.60E+09 1.60E+09 1.60E+09	6.00E+09 4.80E+09 4.80E+09 1.07E+10 1.64E+10 5.25E+09	7.8	7.35 9.6	200	1.2 n/a	1.2 n/a
7	Average Moment of Inertia Sectional Moment of Inertia Average Moment of Inertia Average Moment of Inertia Average Moment of Inertia	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Eurocode) b= Span b= span b= span b= weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Eurocode)	1.54E+10 6.00E+09 4.80E+09 8.58E+09 1.07E+10 1.64E+10 5.25E+09	1.12E+09 8.96E+08 3.78E+09 4.70E+09 8.66E+09 2.65E+09 2.12E+09 1.60E+09 9.80E+08 3.59E+09 4.89E+09 9.26E+09 1.76E+09 1.80E+09	6.00E+09 4.80E+09 4.80E+09 1.07E+10 1.64E+10 5.25E+09	7.8	7.35 9.6	200	1.2 n/a	1.2 n/a
7	Average Moment of Inertia	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b = 0.4*span b= Weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b = 0.4*span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Eurocode)	1.54E+10 6.00E+09 4.80E+09 8.58E+09 1.07E+10 1.64E+10 5.25E+09	1.12E+09 8.96E+08 8.96E+08 8.78E+09 4.70E+09 8.66E+09 2.65E+09 2.12E+09 1.60E+09 2.56E+09 4.89E+08 7.84E+08 3.59E+09 4.89E+09 9.26E+09 1.76E+09 1.80E+09 9.80E+08 1.40E+09 9.80E+08 1.56E+09	6.00E+09 4.80E+09 4.80E+09 1.07E+10 1.64E+10 5.25E+09	7.8 8.4 9.6	7.35 9.6 8.4	200	1.2 n/a	1.2 n/a
7	Average Moment of Inertia Sectional Moment of Inertia Average Moment of Inertia Average Moment of Inertia Average Moment of Inertia	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Eurocode) b= weff (Ansourian's) b = drop panel width b = 0.4*span b= weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b = 0.4*span b= span b= weff (Eurocode)	1.54E+10 6.00E+09 4.80E+09 8.58E+09 1.07E+10 1.64E+10 5.25E+09	1.12E+09 8.96E+08 3.78E+09 4.70E+09 8.66E+09 2.65E+09 2.12E+09 1.60E+09 9.80E+08 3.59E+09 4.89E+08 3.59E+09 1.76E+09 2.26E+09 1.80E+08 1.60E+09 2.56E+09 1.80E+08 1.80E+09	6.00E+09 4.80E+09 4.80E+09 1.07E+10 1.64E+10 5.25E+09	7.8	7.35 9.6	200	1.2 n/a	1.2 n/a
7	Average Moment of Inertia Sectional Moment of Inertia Average Moment of Inertia Average Moment of Inertia Average Moment of Inertia Average Moment of Inertia	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b = 0.4*span b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= span b= Weff (Eurocode) b= Weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= span b= weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= span b= Weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= span b= Weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= Weff (Eurocode)	1.54E+10 6.00E+09 4.80E+09 8.58E+09 1.07E+10 1.64E+10 5.25E+09	1.12E+09 8.96E+08 8.96E+08 8.78E+09 4.70E+09 8.66E+09 2.65E+09 2.12E+09 1.60E+09 9.80E+08 3.59E+09 4.89E+09 9.26E+09 1.76E+09 9.80E+08 1.60E+09 9.80E+08 1.60E+09 1.80E+09	6.00E+09 4.80E+09 4.80E+09 1.07E+10 1.64E+10 5.25E+09	7.8 8.4 9.6	7.35 9.6 8.4	200	1.2 n/a n/a	n/a
7	Average Moment of Inertia Sectional Moment of Inertia Average Moment of Inertia Average Moment of Inertia Average Moment of Inertia Average Moment of Inertia	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= Span b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= Weff (Eurocode) b= Weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= Span b= Weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= Span b= Weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= Span b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= Weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= Span b= Weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= Span b= Weff (Eurocode)	1.54E+10 6.00E+09 4.80E+09 8.58E+09 1.07E+10 1.64E+10 5.25E+09	1.12E+09 8.96E+08 8.96E+08 8.78E+09 4.70E+09 8.66E+09 2.65E+09 2.12E+09 1.60E+09 9.80E+08 7.84E+08 3.59E+09 4.89E+09 9.26E+09 1.76E+09 1.80E+09 9.80E+08 r/a 1.60E+09 1.12E+09 r/a 1.80E+09 1.12E+09 r/a 1.80E+09 9.256E+09 6.40E+09 9.80E+08 1.80E+09 9.80E+08 1.80E+09 9.80E+08	6.00E+09 4.80E+09 4.80E+09 1.07E+10 1.64E+10 5.25E+09	7.8 8.4 9.6	7.35 9.6 8.4	200	1.2 n/a n/a	n/a
7 8 8 9	Average Moment of Inertia	b= span b= Weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b = 0.4*span b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= span b= Weff (Eurocode) b= Weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= span b= weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= span b= Weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= span b= Weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b= 0.4*span b= Weff (Eurocode)	1.54E+10 6.00E+09 4.80E+09 8.58E+09 1.07E+10 1.64E+10 5.25E+09	1.12E+09 8.96E+08 8.96E+08 8.78E+09 4.70E+09 8.66E+09 2.65E+09 2.12E+09 1.60E+09 9.80E+08 3.59E+09 4.89E+09 9.26E+09 1.76E+09 9.80E+08 1.60E+09 9.80E+08 1.60E+09 1.80E+09	6.00E+09 4.80E+09 4.80E+09 1.07E+10 1.64E+10 5.25E+09	7.8 8.4 9.6	7.35 9.6 8.4	200	1.2 n/a n/a	n/a
7	Average Moment of Inertia b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Eurocode) b= Weff (Ansourian's) b = drop panel width b = 0.4*span b= span b= Weff (Eurocode) b= Weff (Ansourian's) b= drop panel width b = 0.4*span b= span b= weff (Eurocode) b= Span b= Weff (Eurocode)	1.54E+10 6.00E+09 4.80E+09 8.58E+09 1.07E+10 1.64E+10 5.25E+09	1.12E+09 8.96E+08 3.78E+09 4.70E+09 8.66E+09 2.65E+09 2.12E+09 1.60E+09 9.80E+08 3.59E+09 4.89E+08 3.59E+09 1.76E+09 2.26E+09 2.26E+09 2.26E+09 1.80E+08 r/a 1.60E+09 1.12E+09 1.80E+09 1.2E+09 1.80E+09	6.00E+09 4.80E+09 4.80E+09 1.07E+10 1.64E+10 5.25E+09	7.8 8.4 9.6	7.35 9.6 8.4	200	1.2 n/a n/a	n/a	

	Prestressin	g Properties
Strip	e1 + e1	Tendon Force P
1	(mm) 100	(kN) 3708.8
2	. 130	2649.1
3	130	3443.9
4	100	3443.9
5	130	2649.1
6	130	3178.9
7	100	2649.1
8	100	3576.3
9	130	3178.9
10	100	3178.9
11	130	3178.9

OUTPUT FOR FINITE ELEMENT ANALYSIS

STRIP 1

		INPUT		
RANGE OF	Ē			
	Ec1 (MPa)	Ec2 (MPa)	Ec3 (MPa)	Ec4 (MPa)
Ec (28days)	35,700	31,300	40,100	33,100
Eci (7days)	29,200	26,800	33,200	29,900
'				

D۸	NIC	ソヒリ

	I1 (mm^4)	I2 (mm^4)	I3 (mm^4)
laverage	3.59E+09	4.89E+09	9.26E+09
Idrop panel	8.58E+09	1.07E+10	1.64E+10
İslab	1.60E+09	2.56E+09	6.40E+09

		At trans			T	Short Te	um 1			Short Te	rm 2		1	Short Te	- m 2		·	Lona Te		
ᄂ			er				1111 1		A		1111 2		A		11111 3		A		1111	
	erage				Average				Average				Average				Average			monnous crease
		ON VALUE			DEFLECTI				DEFLECT			7.0		ON VALUE		*	DEFLECT			
	nge of		nge of I (mn		Range of		nge of I (mn		Range of		nge of I (mn		Range of		nge of I (mr		Range of		nge of I (mn	
	(MPa)	11	···· 12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	l1	12	13
	Ec1	-4.9	-3.6	-1.9	Ec1	-13.1	-9.6	-5.1	Ec1	-14.9	-11.0	-5.8	Ec1	-15.5	-11.4	-6.0	Ec1	-18.7	-13.7	-7.2
	Ec2	-5.3	-3.9	-2.1	Ec2	-14.3	-10.5	-5.6	Ec2	-16.3	-12.0	-6.3	Ec2	-17.0	-12.5	-6.6	Ec2	-20.4	-15.0	-7.9
	Ec3	-4.3	-3.1	-1.7	Ec3	-11.5	-8.5	-4.5	Ec3	-13.1	-9.7	-5.1	Ec3	-13.7	-10.1	-5.3	Ec3	-16.4	-12.1	-6.4
	Ec4	-4.7	-3.5	-1.8	Ec4	-12.9	-9.5	-5.0	Ec4	-14.7	-10.8	-5.7	Ec4	-15.3	-11.2	-5.9	Ec4	-18.3	-13.5	-7.1
Se	ctiona	11			Sectiona				Sectiona				Sectiona				Sectiona			
DE	FLECTION	ON VALUE			DEFLECTI				DEFLECT	*****				ON VALUE	A CONTRACTOR OF THE CONTRACTOR		DEFLECT			
	nge of		nge of I (mn		Range of		nge of I (mn		Range of		nge of I (mn		Range of		nge of I (mn		Range of		nge of I (mn	
E	(MPa)	! 1	12	13	E (MPa)	l1	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	. 11	12	13
	Ec1	-8.5	-5.4	-2.3	Ec1	-22.9	-14.6	-6.1	Ec1	-26.1	-16.6	-7.0	Ec1	-27.2	-17.3	-7.3	Ec1	-32.6	-20.8	-8.7
	Ec2	-9.3	-5.9	-2.5	Ec2	-25.1	-15.9	-6.7	Ec2	-28.6	-18.2	-7.7	Ec2	-29.7	-18,9	-8.0	Ec2	-35.7	-22.7	-9.5
	Ec3	-7.5	-4.8	-2.0	Ec3	-20.2	-12.8	-5.4	Ec3	-23.0	-14.6	-6.2	Ec3	-23.9	-15.2	-6.4	Ec3	-28.7	-18.3	-7.7
	Ec4	-8.3	-5.3	-2.2	Ec4	-22.6	-14.4	-6.0	Ec4	-25.7	-16.4	-6.9	Ec4	-26.7	-17.0	-7.2	Ec4	-32.1	-20.4	-8.6
		At trans	er		1	Short Te	rm 1			Short Te	rm 2			Short Te	rm 3			Long Te	m	1
Āv	erage	1			Average	1			Average	1			Average	1			Average	1		
		/ALUES (n	m)	SOME SOURCES	CAMBER		ml	=0.02A 00.065	CAMBER		im)	0.74(75%)0.04550		VALUES (n	m)	101-122/01/05/98	CAMBER		m)	::K:::::::::::::::::::::::::::::::::::
	nge of		nge of I (mn	n^4\	Range of		nge of I (mn	n^4)	Range of		nge of I (mn	1^41	Range of		nge of I (mn	n^4\	Range of		nge of I (mn	
	(MPa)	11	12	1 13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13
	Ec1	4.5	3.3	1.7	Ec1	10.9	8.0	4.2	Ec1	12.5	9.2	4.9	Ec1	12.9	9.5	5,0	Ec1	15.6	11.5	6.1
	Ec2	4.9	3.6	1.9	Ec2	11.9	8.7	4.6	Ec2	13.6	10.0	5,3	Ec2	14.1	10.4	5.5	Ec2	17.0	12.5	6.6
	Ec3	3.9	2.9	1.5	Ec3	9.6	7.0	3.7	Ec3	11.0	8.1	4.3	Ec3	11.4	8.4	4.4	Ec3	13.8	10.1	5.3
	Ec4	4.4	3.2	1.7	Ec4	10.6	7.8	4.1	Ec4	12.2	9.0	4.7	Ec4	12.6	9.3	4.9	Ec4	15.3	11.2	5.9
	ctiona			1	Sectiona				Sectiona				Sectiona				Sectiona			
		/ALUES (n	COLOR COLOR CO	V575048-0048-09	CAMBER 1		um)	0150450-0A55469	CAMBER		uml	CONTRACTOR ME		VALUES (n	AND AND AND AND A	974400000000000000	CAMBER !		m)	e dad vas exektis
	nge of		nge of I (mn	004)	Range of		nge of I (mr	n^4)	Range of		nge of I (mn	١٨٨١	Range of		nge of I (mn	2^4\	Range of		ige of I (mn	n^4\
	(MPa)	11	12	13	E (MPa)	I1	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13
	Ec1	7.8	5,0	2.1	Ec1	19.0	12.1	5.1	Ec1	21.9	13.9	5.9	Ec1	22.7	14.4	6.1	Ec1	27.4	17.4	7.3
	Ec2	8.5	5.4	2.3	Ec2	20.7	13.2	5.6	Ec2	23.8	15.2	6.4	Ec2	24.7	15.7	6.6	Ec2	29.8	19.0	8.0
	Ec3	6.9	4.4	1.8	Ec3	16.7	10.7	4.5	Ec3	19.2	12.2	5.2	Ec3	19.9	12.7	5.3	Ec3	24.1	15.3	6.4
	Ec4	7.7	4.9	2.0	Ec4	18.6	11.8	5.0	Ec4	21.4	13.6	5.7	Ec4	22.1	14.1	5.9	Ec4	26.7	17.0	7.2
-		At trans		20		Short Te		0.0		Short Te		V./		Short Te		0.0		Long Te		
<u> </u>			eı		<u> </u>		1111 1		L		1111 2		<u> </u>		illi S		<u> </u>		441	
	erage				Average		***		Average		~~~	***************************************	Average		~~~~~~~~~~	***************************************	Average		**************************************	
************	************	FORMATH			TOTAL DE				TOTAL DE				TOTAL DE				TOTAL DE			44)
	nge of		nge of I (mn		Range of		nge of I (mn	,	Range of		nge of I (mn		Range of		nge of i (mn		Range of		ige of I (mm	
_	(MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	<u> 1</u>	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13
	Ec1	-0.4	-0.3	-0.1	Ec1	-2.2	-1.6	-0.9	Ec1	-2.4	-1.8	-0.9	Ec1	-2.6	-1.9	-1.0	Ec1	-3.0	-2.2	-1.2
	Ec2	-0.4	-0.3	-0.2	Ec2	-2.5	-1.8	-1.0	Ec2	-2.7	-2.0	-1.1	Ec2	-2.9	-2.1	-1.1	Ec2	-3.3	-2.5	-1.3
	Ec3	-0.3	-0.2	-0.1	Ec3	-1.9 -2.3	-1.4	-0.8 -0.9	Ec3 Ec4	-2.1 -2.5	-1.6 -1.8	-0.8 -1.0	Ec3 Ec4	-2.3 -2.6	-1.7 -1.9	-0.9 -1.0	Ec3 Ec4	-2.7 -3.1	-2.0 -2.3	-1.0 -1.2
	Ec4	-0.4	-0.3	-0.1	Ec4		-1.7	-0.9			-1.8	-1.U			-1.9	-1.0			-2.3	-1.2
	ctiona				Sectiona				Sectiona		~ > ~ > ~ >		Sectiona		Y > 27 **********************************		Sectiona			
		FORMATI			TOTAL DE					FORMATIC				FORMATIC			TOTAL DE			
	nge of		nge of I (mn		Range of		nge of I (mn		Range of		nge of I (mn		Range of		nge of I (mn		Range of		ge of I (mm	
_	(MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13
	Ec1	-0.7	-0.4	-0.2	Ec1	-3.8	-2.4	-1.0	Ec1	-4.2	-2.7	-1.1	Ec1	-4.5	-2.9	-1.2	Ec1	-5.3	-3.4	-1.4
1	Ec2	-0.7	-0.5	-0.2	Ec2	-4.3	-2.7	-1.2	Ec2	-4.7	-3.0	-1.3	Ec2	-5.0	-3.2	-1.3	Ec2	-5.8	-3.7	-1.6
	Ec3 Ec4	-0.6 -0.7	-0.4 -0.4	-0.2 -0.2	Ec3 Ec4	-3.4 -4.0	-2.2 -2.5	-0.9 -1.1	Ec3 Ec4	-3.8 -4.4	-2.4 -2.8	-1.0 -1.2	Ec3 Ec4	-4.0 -4.6	-2.5 -2.9	-1.1 -1.2	Ec3 Ec4	-4.7 -5.4	-3.0 -3.4	-1.2 -1.4

		INPUT		
RANGE OF	E	· · · · · · · · · · · · · · · · · · ·		
	Ec1 (MPa)	Ec2 (MPa)	Ec3 (MPa)	Ec4 (MPa)
Ec (28days)	35,700	31,300	40,100	33,100
Eci (7days)	29,200	26,800	33,200	29,900
RANGE OF	=	10 / 45		

4.70E+09

1.01E+10

2.24E+09

1.54E+10

5.60E+09

laverage

Islab

8.58E+09

1.60E+09

Idrop panel

At transf	er			Short Te	erm 1		1	Short Te	rm 2		т	Short Te	erm 3		1	Long Te	m	 ,
I		-	Average				Average				Average		II V		Average		1111	
ONLYALISE	S (mm)		DEFLECT		-C/mm\ 2-		DEFLECT		(mm\2	0.000.000000000000000000000000000000000	DEFLECT		(mm) 2		DEFLECT		e (mm)	000000000000000000000000000000000000000
	ae of I (mn		Range of		nge of I (mr		Range of		nge of I (mr		Range of		nge of I (m	m^4\	Range of		nge of I (mr	m^4\
11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	1 13	E (MPa)	11	12 I2	1 13
-7.4	-5.9	-3.2	Ec1	-19.9	-16.0	-8.7	Ec1	-22.7	-18.2	-9.9	Ec1	-23.6	-19.0	-10.3	Ec1	-28.3	-22.8	-12.4
-8.0	-6.5	-3.5	Ec2	-21.8	-17.5	-9.5	Ec2	-24.8	-20.0	-10.8	Ec2	-25.8	-20.7	-11.3	Ec2	-31.0	-24.9	-13.5
-6.5	-5.2	-2.8	Ec3	-17.5	-14.1	-7.6	Ec3	-20.0	-16.1	-8.7	Ec3	-20.8	-16.7	-9.1	Ec3	-24.9	-20.1	-10.9
-7.2	-5.8	-3.1	Ec4	-19.6	-15.8	-8.6	Ec4	-22.3	-18.0	-9.8	Ec4	-23.2	-18.7	-10.1	Ec4	-27.9	-22.4	-12.2
ıl I			Sectiona	III			Sectiona	tl I			Sectiona	all			Sectiona	al I		***************************************
ON VALUE	S (mm)		DEFLECTI	ON VALUE	S (mm)		DEFLECT	ON VALUE	S (mm)		DEFLECT	ION VALUE	S (mm)		DEFLECT	ON VALUE	S (mm)	
Ra	nge of I (mn	1^4)	Range of	Ra	nge of I (mr	n^4)	Range of	Ra	nge of I (mr	n^4)	Range of	Ra	nge of I (mi	m^4)	Range of	Ra	nge of I (mr	n^4)
1	12	13	E (MPa)	- 11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13
-13.0	-9.4	-4.0	Ec1	-35.1	-25.4	-10.8	Ec1	-40.1	-29.0	-12.3	Ec1	-41.6	-30.2	-12.8	Ec1	-50.0	-36.3	-15.3
-14.2	-10.3	-4.4	Ec2	-38.4	-27.8	-11.8	Ec2	-43.8	-31.7	-13.4	Ec2	-45.5	-33.0	-14.0	Ec2	-54.7	-39.6	-16.8
-11.5	-8.3	-3.5	Ec3	-30.9	-22.4	-9.5	Ec3	-35.3	-25.6	-10.8	Ec3	-36.7	-26.6	-11.2	Ec3	-44.0	-31.9	-13.5
-12.7	-9.2	-3.9	Ec4	-34.6	-25.1	-10.6	Ec4	-39.5	-28.6	-12.1	Ec4	-41.0	-29.7	-12.6	Ec4	-49.2	-35.6	-15.1
At transf	er			Short Te	erm 1			Short Te	rm 2		l	Short Te	erm 3			Long Te	rm	
1			Average	I			Average				Average	1			Average	I		
/ALUES (n	m)	W. 22.2.2.18	CAMBER	VALUES (n	nm)	302000	CAMBER '	VALUES (n	nm)		CAMBER	VALUES (n	nm)	ara statie	CAMBER	VALUES (n	nm)	2.278851 (FR
Ra	nge of I (mn	1^4)	Range of	Ra	nge of I (mr	n^4)	Range of	Rai	nge of I (mr	n^4)	Range of	Ra	nge of I (mr	n^4)	Range of	Ra	nge of I (mr	n^4)
11	12	13	E (MPa)	l1	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13
5.2	4.2	2.3	Ec1	12.7	10.2	5.6	Ec1	14.6	11.8	6.4	Ec1	15.1	12.2	6.6	Ec1	18.3	14.7	8.0
5.7	4.6	2.5	Ec2	13.9	11.1	6.1	Ec2	15.9	12.8	7.0	Ec2	16.5	13.3	7.2	Ec2	19.9	16.0	8.7
4.6	3.7	2.0	Ec3	11.2	9.0	4.9	Ec3	12.9	10.3	5.6	Ec3	13.3	10.7	5.8	Ec3	16.1	12.9	7.0
5.1	4.1	2.2	Ec4	12.4	10.0	5.4	Ec4	14.3	11.5	6.2	Ec4	14.8	11.9	6.5	Ec4	17.9	14.4	7.8
111			Sectiona				Sectiona				Sectiona				Sectiona			
/ALUES (n			The spirit and the state of	VALUES (n		#5 (2)(2)	CAMBER			31.75	CAMBER			6.7 SYST	CAMBER 1			
	nge of I (mn		Range of		nge of I (mr		Range of		nge of I (mn		Range of		nge of I (mr		Range of		nge of I (mn	
<u> 11</u>	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	I2	13
9.2	6.7	2.8	Ec1	22.5 24.5	16.3 17.7	6.9	Ec1 Ec2	25.8	18.7	7.9 8.6	Ec1	26.7	19.4	8.2	Ec1	32,3	23.4	9.9
10.1 8.1	7.3	3.1	Ec2	19.8	14.3	7.5 6.1	Ec2 Ec3	28.1 22.7	20.4 16.5	7.0	Ec2	29.1	21.1	8.9	Ec2	35.2	25.5	10.8
9.0	5.9 6.5	2.5 2.8	Ec3 Ec4	21.9	15.9	6.7	Ec3	25.2	18.3	7.7	Ec3 Ec4	23.5 26.1	17.0 18.9	7.2 8.0	Ec3 Ec4	28.4 31.5	20.6 22.8	8.7 9.7
At transi		2.0	1 207	Short Te		0.7		Short Te		7.7	207	Short Te		1 0.0	204			9.1
ALLIANS	er		ــــــــــــــــــــــــــــــــــــــ		71111 1		<u> </u>		1111 2				1111 3		Ļ	Long Te	(III)	
l .			Average				Average				Average				Average			
FORMATIO			TOTAL DE				TOTAL DE				TOTAL DE		******		TOTAL DE		CONTRACTOR CONTRACTOR	
	nge of I (mn		Range of		nge of I (mn		Range of		nge of I (mn		Range of		nge of I (mr		Range of		nge of I (mn	
11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13
-2.1 -2.3	-1.7 -1.9	-0.9 -1.0	Ec1 Ec2	-7.2 -7.9	-5.8 -6.3	-3.1 -3.4	Ec1 Ec2	-8.1 -8.9	-6.5 -7.1	-3.5 -3.9	Ec1 Ec2	-8.5 -9.3	-6.8	-3.7	Ec1	-10.1	-8.1	-4.4
-1.9	-1.9 -1.5	-1.0 -0.8	Ec2 Ec3	-7.9 -6.3	-6.3 -5.1	-3.4	Ec2 Ec3	-8.9 -7.1	-7.1 -5.7	-3.9	Ec2 Ec3	-9.3 -7.5	-7.5 -6.0	-4.1 -3.3	Ec2 Ec3	-11.0 -8.9	-8.9 -7.1	-4.8 -3.9
-2.1	-1.7	-0.8	Ec4	-7.2	-5.8	-2.6	Ec4	-8.1	-6.5	-3.5	Ec3	-7.5 -8.4	-6.8	-3.7	Ec3	-8.9 -10.0	-/.1 -8.0	-3.9
111	1.,		Sectiona			· ··	Sectiona		0.0	<u> </u>	Sectiona				Sectiona		-0.0	-7.7
FORMATIO	77.7 (V converse Name		TOTAL DE		ORI (manu)		TOTAL DE		William William		TOTAL DE		ON Favors		TOTAL DE		SM Property Comments	
	nge of I (mn		Range of	CONTRACTOR OF THE PROPERTY.	nge of I (mn	n^4\	Range of		nge of I (mn	n^A\	Range of		⊒ห≀ุยายา) nge of I(mr		Range of			
. II	ige or i (min	13	E (MPa)	I1	12	13	E (MPa)	I1	12	13	E (MPa)	I1	ige or i (mir	I 13	E (MPa)	l1	nge of I (mn	13
-3.8	-2.7	-1.2	Ec1	-12.6	-9.2	-3.9	E (MPa)	-14.2	-10.3	-4.4	Ec1	-14.9	-10.8	-4.6	E (MPa)	-17.8	-12.9	-5.4
-3.8 -4.1	-3.0	-1.2	Ec2	-13.9	-10.1	-4.3	Ec2	-15.7	-11.4	-4.4	Ec2	-16.4	-11.9	-5.0	Ec2	-17.8	-12.9	-5.4 -6.0
-3.3	-2.4	-1.0	Ec3	-11.1	-8.1	-3.4	Ec3	-12.6	-9.1	-3.9	Ec3	-13.2	-9.5	-4.0	Ec3	-15.6	-11.3	-6.0 -4.8

| INPUT | RANGE OF E | Ec1 (MPa) | Ec2 (MPa) | Ec3 (MPa) | Ec4 (MPa) | Ec (28days) | 35,700 | 31,300 | 40,100 | 33,100 | Eci (7days) | 29,200 | 26,800 | 33,200 | 29,900 |

		-			
RΔ	N	വ	= 1	റ	FI

	I1 (mm^4)	I2 (mm^4)	I3 (mm^4)
laverage	3.78E+09	4.70E+09	8.66E+09
Idrop panel	8.58E+09	1.01E+10	1.54E+10
İslab	1.60E+09	2.24E+09	5.60E+09

	At transf	fer			Short Te	rm 1			Short Te	rm 2		I	Short Te	erm 3			Long Te	rm	
Average	1			Average	I			Average	1			Average	1			Average	i		
DEFLECTI	ON VALUE	S (mm)		DEFLECT	ON VALUE	S (mm)		DEFLECT	ON VALUE	S (mm)		DEFLECT	ON VALUE	S (mm)		DEFLECT	ON VALUE	S (mm)	
Range of	Rar	nge of I (mr	n^4)	Range of	Ra	nge of I (mr	π^4)	Range of	Ra	nge of I (mn	1^4)	Range of	Ra	nge of I (mi	m^4)	Range of	Ra	nge of I (mn	n^4)
E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	l1	12	13
Ec1	-9.3	-7.4	-4.0	Ec1	-24.9	-20.0	-10.9	Ec1	-28.4	-22.9	-12.4	Ec1	-29.6	-23.8	-12.9	Ec1	-35.5	-28.6	-15.5
Ec2	-10.1	-8.1	-4.4	Ec2	-27.3	-21.9	-11.9	Ec2	-31.1	-25.0	-13.6	Ec2	-32.3	-26.0	-14.1	Ec2	-38.8	-31,2	-16.9
Ec3	-8,1	-6.5	-3.6	Ec3	-21.9 -24.6	-17.6 -19.8	-9.6 -10.7	Ec3 Ec4	-25.0 -28.0	-20.1 -22.5	-10.9 -12.2	Ec3 Ec4	-26.0 -29.1	-20.9 -23.4	-11.4 -12.7	Ec3 Ec4	-31.3 -34.9	-25.2 -28.1	-13.7 -15.2
Sectiona	-9.0	-7.3	-3.9	Sectional		-19.8	-10.7	Sectiona		-22.5	-12.2	Sections		-23.4	-12.7	Section a		-28.1	-15.2
DEFLECTI		S/mm\	commence sur-	DEFLECTI		S (mm)	o na da Caractelo (esta	DEFLECT		S (mm)	DESCRIPTION OF THE PERSON OF T		ION VALUE	S (mm)	6-12-10-x 1-x 1-x 1-x 1-x 1-x 1-x 1-x 1-x 1-x 1	DEFLECTI		S (mm)	portected to the control of
Range of		nge of i (mr	n^4\	Range of		nge of I (mr	n^4\	Range of		nge of I (mn	ነ^4)	Range of		nge of I (mi	m^4)	Range of		nge of I (mn	
E (MPa)	11	12	1 13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	I 13	E (MPa)	11	12	1 13
Ec1	-16.3	-11.8	-5.0	Ec1	-44.0	-31.9	-13.5	Ec1	-50.2	-36.4	-15.4	Ec1	-52.2	-37.8	-16.0	Ec1	-62.7	-45.5	-19.2
Ec2	-17.8	-12.9	-5.5	Ec2	-48.2	-34.9	-14.8	Ec2	-54.9	-39.8	-16.8	Ec2	-57.1	-41.4	-17.5	Ec2	-68.5	-49.7	-21.0
Ec3	-14.4	-10.4	-4.4	Ec3	-38.7	-28.1	-11.9	Ec3	-44.2	-32.0	-13.6	Ec3	-46.0	-33.3	-14.1	Ec3	-55.2	-40.0	-16.9
Ec4	-16.0	-11.6	-4.9	Ec4	-43.4	-31.5	-13.3	Ec4	-49.5	-35.8	-15.2	Ec4	-51.4	-37.3	-15.8	Ec4	-61.7	-44.7	-18.9
	At transf	fer		1	Short Te	rm 1			Short Te	rm 2			Short Te	rm 3			Long Te	rm	
Average	1			Average				Average				Average				Average			
CAMBER V	VALUES (m	ım)	(AN)	CAMBER				CAMBER					VALUES (n			CAMBER 1	/ALUES (n	ım)	180 XIX 240
Range of	Rar	nge of I (mr	n^4)	Range of		nge of I (mr		Range of		nge of I (mn		Range of		nge of I (mi		Range of		nge of I (mn	
E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	i1	12	13	E (MPa)	l1	12	13	E (MPa)	i 1	12	13
Ec1	6.8	5.5	3.0	Ec1	16.5	13.3	7.2	Ec1	19,0	15,3	8.3	Ec1	19.7	15.8	8.6	Ec1	23.8	19.1	10.4
Ec2	7.4	6.0	3.2	Ec2	18.0	14.5	7.9	Ec2	20.7	16.7	9.0	Ec2	21.4	17.2	9.4	Ec2	25.9	20.8	11.3
Ec3 Ec4	6.0 6.6	4.8 5.3	2.6	Ec3 Ec4	14.5 16.2	11.7 13.0	6.3 7.1	Ec3 Ec4	16.7 18.6	13.4	7.3 8.1	Ec3 Ec4	17.3 19.2	13.9 15.5	7.6 8.4	Ec3 Ec4	20.9 23.2	16.8 18.7	9.1 10.1
Sectiona		3.3	2.9	Sectiona		13.0	7.1	Sectiona		14.3	0.1	Sectiona		13.3	0.4	Sectiona		10.1	10.1
CAMBER		44410000000000	onapastar (1986	ICAMBER V		1001	ancine o sopreno			nm)	Vyennantasuno		VALUES (n	arm)	S3-4-100-100-00-00	CAMBER		1993	uSepvenovalesci
Range of		nge of I (mr		Range of		nge of I (mr	n^4\	Range of		nge of I (mn		Range of		nge of I (mr	n^4\	Range of		nge of I (mn	n^4)
E (MPa)	l1	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	1 13	E (MPa)	11	12	13
Ec1	12.0	8.7	3.7	Ec1	29.2	21.2	9.0	Ec1	33.6	24.3	10.3	Ec1	34.7	25.2	10.7	Ec1	42.0	30.4	12.9
Ec2	13.1	9.5	4.0	Ec2	31.8	23.1	9.8	Ec2	36.6	26.5	11.2	Ec2	37.9	27.4	11.6	Ec2	45.7	33.1	14.0
Ec3	10.6	7.7	3.2	Ec3	25.7	18.6	7.9	Ec3	29.5	21.4	9.1	Ec3	30.6	22.1	9.4	Ec3	36.9	26.8	11.3
Ec4	11.7	8.5	3.6	Ec4	28.5	20.7	8.7	Ec4	32.8	23.7	10.0	Ec4	33.9	24.6	10.4	Ec4	41.0	29.7	12.6
	At transf	fer			Short Te	rm 1			Short Te	rm 2			Short Te	rm 3			Long Te	rm	
Average				Average				Average				Average				Average			
	FORMATIC							TOTAL DE					FORMATIC			TOTAL DE			
Range of		nge of I (mr		Range of		nge of I (mr		Range of		nge of I (mn		Range of		nge of I (mr		Range of		ige of I (mn	
E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13
Ec1	-2.5	-2.0	-1.1	Ec1	-8.4	-6.7	-3.7	Ec1	-9.4	-7.6	-4.1	Ec1	-9.9 -10.9	-8.0	-4.3	Ec1	-11.8	-9.5	-5.1
Ec2 Ec3	-2.7 -2.2	-2.1 -1.7	-1.2 -0.9	Ec2 Ec3	-9.3 -7.4	-7.4 -5.9	-4.0 -3.2	Ec2 Ec3	-10.4 -8.3	-8.4 -6.7	-4.5 -3.6	Ec2 Ec3	-10.9 -8.7	-8.8 -7.0	-4.8 -3.8	Ec2 Ec3	-12.9 -10.4	-10.4 -8.3	-5.6 -4.5
Ec4	-2.2	-1.7	-1.0	Ec4	-8.4	-6.8	-3.7	Ec4	-9.5	-7.6	-3.0 -4.1	Ec4	-9.9	-8.0	-4.3	Ec4	-11.7	-0.3 -9.4	-5.1
		-1.5	1 -1.0	Sectiona		0.0	<u> </u>	Sectiona			<u> </u>	Sectiona		0.0	4.0	Sectiona		0.4	0.1
Sectiona						ON (mm)		TOTAL DE		ON (mm)			FORMATI	ON (mm)		TOTAL DE		N (mm)	
Sectiona	FORMATIC	ON HEIM						Range of		nge of I (mn	1^4}	Range of		nge of I (mr	n^4)	Range of		ge of I (mm	
Sectiona TOTAL DE Range of		ON (ram) nge of I (mi		Range of	Ra	nge of I (mr	II'' 4)	Eraniae or	i va							I range or	rsai	ige or ramm	
TOTAL DE					Ra I1	nge of I (mr	13	E (MPa)	I1	12	13	E (MPa)	11	12	13	E (MPa)	l1	ige of i (itilii i2	13
TOTAL DE	Rar	nge of I (mi	n^4)	Range of	l1 -14.8	12 -10.7	13 -4.5	E (MPa) Ec1	I1 -16.7	-12.1	3 -5.1	E (MPa) Ec1	l1 -17.5	-12.7	13 -5.4	E (MPa) Ec1	l1 -20.8	12 -15.1	13 -6.4
Range of E (MPa) Ec1 Ec2	Rar 11 -4.3 -4.7	nge of I (mr I2 -3.1 -3.4	n^4) i3 -1.3 -1.4	Range of E (MPa) Ec1 Ec2	11 -14.8 -16.3	12 -10.7 -11.8	-4.5 -5.0	E (MPa) Ec1 Ec2	11 -16.7 -18.4	12 -12.1 -13.3	13 -5.1 -5.6	E (MPa) Ec1 Ec2	11 -17.5 -19.2	-12.7 -13.9	-5.4 -5.9	E (MPa) Ec1 Ec2	-20.8 -22.8	12 -15.1 -16.5	13 -6.4 -7.0
TOTAL DE Range of E (MPa) Ec1	Rar 11 -4.3	nge of I (mr I2 -3.1	n^4) i3 -1.3	Range of E (MPa) Ec1	l1 -14.8	12 -10.7	13 -4.5	E (MPa) Ec1	I1 -16.7	-12.1	3 -5.1	E (MPa) Ec1	l1 -17.5	-12.7	13 -5.4	E (MPa) Ec1	l1 -20.8	12 -15.1	13 -6.4

| INPUT | RANGE OF E | | Ec1 (MPa) | Ec2 (MPa) | Ec3 (MPa) | Ec4 (MPa) | Ec (28days) | 35,700 | 31,300 | 40,100 | 33,100 | Ec (7days) | 29,200 | 26,800 | 33,200 | 29,900 |

	l1 (mm^4)	I2 (mm^4)	I3 (mm^4)
laverage	4.49E+09	5.29E+09	9.83E+09
Idrop panel	1.07E+10	1.21E+10	1.84E+10
İslab	2.00E+09	2.56E+09	6.40E+09

	At trans	fer			Short Te	rm 1		<u></u>	Short Te	rm 2		<u> </u>	Short Te	erm 3			Long Te	rm	
Average	1			Average	1			Average				Average	1			Average	I		
DEFLECT	ON VALUE	S (mm)		DEFLECT				DEFLECT				DEFLECT	ION VALUE	S (mm)		DEFLECT	ON VALUE	S (mm)	
Range of	Ra	nge of I (mr		Range of		nge of I (mr		Range of		nge of I (mr		Range of		nge of I (mi		Range of		nge of I (mr	
E (MPa)	i1	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	1	12	13
Ec1	-5.0	-4.2	-2.3	Ec1	-13.3	-11.3	-6.1	Ec1	-15.2	-12.9	-6.9	Ec1	-15.8	-13.4	-7.2	Ec1	-19.0	-16.1	-8.7
Ec2	-5.4	-4.6	-2.5	Ec2	-14.6	-12.4	-6.7	Ec2	-16.6	-14.1	-7.6	Ec2	-17.3	-14.7	-7.9	Ec2	-20.8	-17.6	-9.5
Ec3	-4.4	-3.7	-2.0	Ec3	-11.7	-10.0	-5.4	Ec3	-13.4	-11.4	-6.1	Ec3	-13.9	-11.8	-6.4	Ec3	-16.7	-14.2	-7.6
Ec4	-4.8	-4.1	-2.2	Ec4	-13.1	-11.2	-6.0	Ec4	-15.0	-12.7	-6.8	Ec4	-15.6	-13.2	-7.1	Ec4	-18.7	-15.9	-8.5
Sectiona				Sectiona				Sectiona				Sectiona				Sectiona			
DEFLECT				DEFLECT				DEFLECT				DEFLECT				DEFLECT			
Range of		nge of I (mr		Range of		nge of I (mr		Range of		nge of I (mr		Range of		nge of I (mi		Range of		nge of I (mr	
E (MPa)	i1	12	13	E (MPa)	11	12	13	E (MPa)		12	13	E (MPa)	11	12	13	E (MPa)	i1	12	13
Ec1	-8.6	-6.8	-2.9	Ec1	-23.2	-18.3	-7.7	Ec1	-26.5	-20.9	-8.8	Ec1	-27.6	-21.7	-9.1	Ec1	-33.1	-26.1	-10.9
Ec2	-9.4	-7.4	-3.1	Ec2	-25.4	-20.0	-8.4	Ec2	-29.0	-22.9	-9.6	Ec2	-30.2	-23.8	-10.0	Ec2	-36.2	-28.5	-12.0
Ec3 Ec4	-7.6 -8.4	-6.0 -6.6	-2.5 -2.8	Ec3 Ec4	-20.5 -22.9	-16.1 -18.1	-6.8 -7.6	Ec3 Ec4	-23.4 -26.1	-18.4 -20.6	-7.7 -8.6	Ec3 Ec4	-24.3 -27.2	-19.1 -21.4	-8.0 -9.0	Ec3 Ec4	-29.2	-23.0	-9.6
			-2.0	EC4			1 -7.0	EU4			~0.0	EU4			-9.U	EC4	-32.6	-25.7	-10.8
	At trans	rer		<u> </u>	Short Te	rm 1		<u> </u>	Short Te	rm 2		<u> </u>	Short Te	rm 3		<u> </u>	Long Te	rm	
Average				Average				Average				Average				Average			
CAMBER V				CAMBER '			335578833	CAMBER			\$\$2501A85185	CAMBER 1			100000000000000000000000000000000000000	CAMBER 1			ASSESSED M
Range of	Ra	nge of I (mr	1^4)	Range of		nge of I (mr		Range of		nge of I (mr		Range of	Ra	nge of I (mr	n^4)	Range of	Ra	nge of I (mn	n^4)
E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	l1	12	13	E (MPa)	i1	12	13	E (MPa)	11	12	13
Ec1	3.3	2.8	1.5	Ec1	8.0	6.8	3.6	Ec1	9.2	7.8	4.2	Ec1	9.5	8.1	4.3	Ec1	11.5	9.7	5.2
Ec2	3.6	3.0	1.6	Ec2	8.7	7.4	4.0	Ec2	10.0	8.5	4.6	Ec2	10.4	8.8	4.7	Ec2	12.5	10.6	5.7
Ec3	2.9	2.5	1.3	Ec3	7.0	6.0	3.2	Ec3	8.1	6.9	3.7	Ec3	8.4	7.1	3.8	Ec3	10,1	8.6	4.6
Ec4	3.2	2.7	1.5	Ec4	7.8	6,6	3.6	Ec4	9.0	7.6	4.1	Ec4	9.3	7.9	4.2	Ec4	11.2	9.5	5.1
Sectiona				Sectiona				Sectiona				Sectiona				Sectiona			
CAMBER V			CONTROL	CAMBER			***	CAMBER			928644655	CAMBER			55500000	CAMBER \			A 30 / 20 / X
Range of		nge of I (mr		Range of		nge of I (mr		Range of		nge of I (mr		Range of		nge of I (mr		Range of		ige of I (mn	
E (MPa)	<u>I1</u>	12	13	E (MPa)	l1	12	13	E (MPa)	11	12	13	E (MPa)		12	13	E (MPa)	l1	12	13
Ec1	5.7	4.5	1.9	Ec1	13.9	11.0	4.6	Ec1	16.0	12.6	5.3	Ec1	16.6	13.1	5.5	Ec1	20.0	15.8	6.6
Ec2	6.2 5.0	4.9	2.1	Ec2 Ec3	15.2 12.2	12.0 9.7	5.0 4.0	Ec2 Ec3	17.4 14.1	13.7 11.1	5.8 4.6	Ec2 Ec3	18.1 14.6	14.2 11.5	6.0 4.8	Ec2 Ec3	21.8 17.6	17.2	7.2
Ec3 Ec4	5.6	4.0	1.7	Ec4	13.6	10.7	4.0	Ec3	15.6	12.3	5.2	Ec3	16.2	12.8	5.3	Ec4	19.5	13.9 15.4	5.8 6.5
	At trans		1.0	LUA	Short Te		7.5	1 207	Short Te		J.Z	L04	Short Te		3.3		Long Te		- 6.5
Average		ier		Average		EIII 4		Average		1111 2		Average		1111 3		Average		III	
TOTAL DE		OAL (mm)			FORMATI	oh (mm)		TOTAL DE		M (mm)		TOTAL DE		M/mml		TOTAL DE		M (mm)	
Range of		nge of I (mr	n^ 4)	Range of		nge of i (mr	n^4)	Range of		nge of I (mr	1^4)	Range of		nge of I (mr	n^4\	Range of		ige of I (mm	0^4\
E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13
Ec1	-1.7	-1.4	-0.8	Ec1	-5.3	-4.5	-2.4	Ec1	-6.0	-5.1	-2.8	Ec1	-6.3	-5.4	-2.9	Ec1	-7.5	-6.4	-3.4
Ec2	-1.8	-1.5	-0.8	Ec2	-5.9	-5.0	-2.7	Ec2	-6.6	-5,6	-3.0	Ec2	-6.9	-5,9	-3.2	Ec2	-8.3	-7.0	-3.8
Ec3	-1.5	-1,2	-0.7	Ec3	-4.7	-4.0	-2.2	Ec3	-5.3	-4.5	-2.4	Ec3	-5.6	-4.7	-2.5	Ec3	-6.6	-5.6	-3.0
Ec4	-1.6	-1.4	-0.7	Ec4	-5.3	-4.5	-2.4	Ec4	-6.0	-5.1	-2.8	Ec4	-6.3	-5.3	-2.9	Ec4	-7.5	-6.3	-3.4
Sectiona	11	•		Sectiona	al I			Sectiona	11			Sectiona	11			Sectiona	11		
TOTAL DE	FORMATI	ON (mm)		TOTAL DE	FORMATI	ON (mm)		TOTAL DE	FORMATIC	ON (mm)		TOTAL DE	FORMATK	ON (mm)		TOTAL DE	FORMATK	N (mm)	
Range of	Ra	nge of I (mr	n^ 4)	Range of	Rai	nge of I (mr	n^4)	Range of	Ran	ige of I (mr	1^4)	Range of	Rai	nge of I (mr	n^4)	Range of	Rar	ge of I (mm	1^4)
E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	l1	12	13	E (MPa)	11	12	13
Ec1	-2.9	-2.3	-1.0	Ec1	-9.3	-7.3	-3.1	Ec1	-10.5	-8.3	-3.5	Ec1	-11.0	-8.7	-3.6	Ec1	-13.1	-10.3	-4.3
Ec2	-3.2	-2.5	-1.0	Ec2	-10.3	-8.1	-3.4	Ec2	-11.6	-9.1	-3.8	Ec2	-12.1	-9.5	-4.0	Ec2	-14.4	-11.4	-4.8
Ec3	-2.6	-2.0 -2.2	-0.8 -0.9	Ec3 Ec4	-8.2 -9.3	-6.5 -7.4	-2.7 -3.1	Ec3 Ec4	-9.3 -10.5	-7.3 -8.3	-3.1 -3.5	Ec3 Ec4	-9.7 -11.0	-7.7 -8.6	-3.2 -3.6	Ec3 Ec4	-11.6 -13.0	-9.1 -10.3	-3.8 -4.3
Ec4	-2.8																		

INPUT													
RANGE OF	- E												
	Ec1 (MPa)	Ec2 (MPa)	Ec3 (MPa)	Ec4 (MPa)									
Ec (28days)	35,700	31,300	40,100	33,100									
Eci (7days)	29,200	26,800	33,200	29,900									

	I1 (mm^4)	I2 (mm^4)	l3 (mm^4)
laverage	3.78E+09	4.70E+09	8.66E+09
Idrop panel	8.58E+09	1.01E+10	1.54E+10
İslab	1.60E+09	2.24E+09	5.60E+09

	At trans	fer			Short Te	rm 1			Short Te	erm 2			Short Te	erm 3		1	Long Te	erm	
Average	ı			Average	1			Average	1			Average	1			Average	1		
DEFLECT	ON VALUE	S (mm)		DEFLECTI	ON VALUE	S (mm)		DEFLECT	ON VALUE	S (mm)		DEFLECT	ON VALU	S (mm)		IDEFLECT	ION VALU	ES (mm)	
Range of	Ra	nge of I (mr	n^4)	Range of	Ra	nge of I (mr	n^4)	Range of	Ra	nge of I (mr	1^4)	Range of	Ra	nge of I (mr	n^4)	Range of	Ra	inge of I (mi	m^4)
E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13
Ec1	-7.4	-5.9	-3.2	Ec1	-19.9	-16.0	-8.7	Ec1	-22.7	-18.2	-9.9	Ec1	-23.6	-19.0	-10.3	Ec1	-28.3	-22.8	-12.4
Ec2	-8.0	-6.5	-3.5	Ec2	-21.8	-17.5	-9.5	Ec2	-24.8	-20.0	-10.8	Ec2	-25.8	-20.7	-11.3	Ec2	-31.0	-24.9	-13.5
Ec3	-6.5	-5.2	-2.8	Ec3	-17.5	-14.1	-7.6	Ec3	-20.0	-16.1	-8.7	Ec3	-20.8	-16.7	-9.1	Ec3	-24.9	-20.1	-10.9
Ec4	-7.2	-5.8	-3.1	Ec4	-19.6	-15.8	-8.6	Ec4	-22.3	-18.0	-9.8	Ec4	-23.2	-18.7	-10.1	Ec4	-27.9	-22.4	-12.2
Sectiona				Sectiona				Sectiona				Sectiona				Sectiona			
DEFLECT				DEFLECT					ON VALUE			DEFLECT				DEFLECT			
Range of		nge of I (mr		Range of		nge of I (mr		Range of		nge of i (mr		Range of		nge of I (mr		Range of		nge of I (m	
E (MPa)	11	12	13	E (MPa)	<u> 1</u>	12	13	E (MPa)	11	12	13	E (MPa)	1	12	i3	E (MPa)	1	12	13
Ec1	-13.0	-9.4	-4.0	Ec1	-35.1	-25.4	-10,8 -11,8	Ec1	-40.1 -43.8	-29.0	-12.3	Ec1	-41.6	-30.2	-12.8	Ec1	-50.0	-36.3	-15.3
Ec2 Ec3	-14.2 -11.5	-10.3 -8.3	-4.4 -3.5	Ec2 Ec3	-38.4 -30.9	-27.8 -22.4	-11.8	Ec2 Ec3	-43.8	-31.7 -25.6	-13.4 -10.8	Ec2 Ec3	-45.5 -36.7	-33.0 -26.6	-14.0 -11.2	Ec2	-54.7 -44.0	-39.6	-16.8
Ec4	-11.5	-8.3	-3.9	Ec3	-34.6	-25.1	-9.5 -10.6	Ec4	-39.5	-28.6	-10.8	Ec4	-30.7 -41.0	-20.6	-11.2	Ec3 Ec4	-44.0 -49.2	-31.9 -35.6	-13.5 -15.1
	At trans		-0.0	LUT	Short Te		-10.0		Short Te		-12.1	LOT	Short Te	1	-12.0	204	Long Te		-10.1
L		ler		<u> </u>		1111 1		<u> </u>		:1111 Z		4		am s		<u> </u>		<u>rm</u>	
Average				Average				Average				Average				Average			
CAMBER			Marie Color	CAMBER Y				CAMBER				CAMBER				CAMBER			55000000
Range of		nge of I (mr		Range of		nge of I (mr		Range of		nge of I (mr		Range of		nge of I (mr		Range of		nge of I (mr	
E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13
Ec1 Ec2	5.2 5.7	4.2	2.3	Ec1 Ec2	12.7 13.9	10.2	5.6 6.1	Ec1 Ec2	14.6 15.9	11.8 12.8	6.4 7.0	Ec1 Ec2	15.1 16.5	12.2 13.3	6.6 7.2	Ec1 Ec2	18.3 19.9	14.7	8.0 8.7
Ec2	4.6	3.7	2.0	Ec2	11.2	9.0	4.9	Ec3	12.9	10.3	5.6	Ec2 Ec3	13.3	10.7	5.8	Ec2	16.1	12.9	7.0
Ec4	5.1	4.1	2.2	Ec4	12.4	10.0	5.4	Ec4	14.3	11.5	6.2	Ec4	14.8	11.9	6.5	Ec4	17.9	14.4	7.8
Sectiona				Sectiona				Sectiona				Sectiona		1 1114	,	Sectiona			
CAMBER		am)	000000000000	CAMBER		om)	2250-000	CAMBER		nml	XXX 8 000 X 6 000	CAMBER		om)	05/3000000000	CAMBER		nm)	33345 ACA-68838
Range of		nge of I (mr	n^4\	Range of	7 to 100	nge of I (mr	a Entertainment of Anna	Range of		nge of I (mn	<u>۱</u> ۸4۱	Range of		nge of I (mr	n^4)	Range of		nge of I (mr	n^4)
E (MPa)	11	12	13	E (MPa)	11	12	1 13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	1 13
Ec1	9.2	6.7	2.8	Ec1	22.5	16.3	6.9	Ec1	25.8	18.7	7.9	Ec1	26.7	19.4	8.2	Ec1	32.3	23.4	9.9
Ec2	10.1	7.3	3.1	Ec2	24.5	17.7	7.5	Ec2	28.1	20.4	8.6	Ec2	29.1	21.1	8.9	Ec2	35.2	25.5	10.8
Ec3	8.1	5.9	2.5	Ec3	19.8	14.3	6.1	Ec3	22.7	16.5	7.0	Ec3	23.5	17.0	7.2	Ec3	28.4	20.6	8.7
Ec4	9.0	6.5	2.8	Ec4	21.9	15.9	6.7	Ec4	25.2	18.3	7.7	Ec4	26.1	18.9	8.0	Ec4	31.5	22.8	9.7
	At trans	fer			Short Te	rm 1			Short Te	rm 2			Short Te	rm 3			Long Te	rm	
Average	1			Average	ı			Average	l			Average	ı			Average	ı		
TOTAL DE	FORMATI	ON (mm)		TOTAL DE	FORMATION	ON (mm)		TOTAL DE	FORMATI	ON (mm)		TOTAL DE	FORMATI	ON (mm)		TOTAL DE	FORMATI	ON (mm)	
Range of	Ra	nge of I (mr	n^4)	Range of	Ra	nge of I (mr	n^4)	Range of	Ra	nge of I (mn	1^4)	Range of	Ra	nge of I (mr	n^4)	Range of	Rai	nge of I (mn	n^4)
E (MPa)	11	12	13	E (MPa)	l1	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13
Ec1	-2.1	-1.7	-0.9	Ec1	-7.2	-5.8	-3.1	Ec1	-8.1	-6.5	-3.5	Ec1	-8.5	-6.8	-3.7	Ec1	-10.1	-8.1	-4.4
Ec2	-2.3	-1.9	-1.0	Ec2	-7.9	-6.3	-3.4	Ec2	-8.9	-7.1	-3.9	Ec2	-9.3	-7.5	-4.1	Ec2	-11.0	-8.9	-4.8
Ec3	-1.9	-1.5	-0.8	Ec3	-6.3	-5.1	-2.8	Ec3	-7.1	-5.7	-3.1	Ec3	-7.5	-6.0	-3.3	Ec3	-8.9	-7.1	-3.9
Ec4	-2.1	-1.7	-0.9	Ec4	-7.2	-5.8	-3.1	Ec4	-8.1	-6.5	-3.5	Ec4	-8.4	-6.8	-3.7	Ec4	-10.0	-8.0	-4.4
Sectiona				Sectiona		614 S 12 MINISTRA		Sectiona				Sectiona				Sectiona			
	FORMATI		,.,.,.,,.,,.,.,,,,,,,,,,,,,,,,,,,,,,	TOTAL DE				TOTAL DE				TOTAL DE				TOTAL DE			
Range of		nge of I (mr		Range of		nge of I (mr		Range of		nge of I (mn		Range of		nge of I (mn		Range of		nge of I (mn	
E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	!1	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13
Ec1	-3.8	-2.7	-1.2	Ec1	-12.6	-9.2	-3.9	Ec1	-14.2	-10.3	-4.4	Ec1	-14.9	-10.8	-4.6	Ec1	-17.8	-12.9	-5.4
Ec2 Ec3	-4.1 -3.3	-3.0 -2.4	-1.3 -1.0	Ec2 Ec3	-13.9 -11.1	-10.1 -8.1	-4.3 -3.4	Ec2 Ec3	-15.7 -12.6	-11.4 -9.1	-4.8 -3.9	Ec2 Ec3	-16.4 -13.2	-11.9 -9.5	-5.0 -4.0	Ec2 Ec3	-19.5 -15.6	-14.1 -11.3	-6.0 -4.8
Ec3	-3.3	-2.4	-1.1	Ec3	-12.7	-9.2	-3.4	Ec4	-14.2	-10.3	-4.4	Ec4	-13.2	-10.8	-4.0 -4.6	Ec3 Ec4	-15.6 -17.7	-11.3	-5.4
1.04	-3.1	1 -2.1	1 -4.1		-12.7	-3.2	-0,0		-14.Z	-10.0	7.7		-14.5	-10.0	7	_04	-17.7	-12.0	-0.4

	INPUT										
RANGE OF	FE										
	Ec1 (MPa)	Ec2 (MPa)	Ec3 (MPa)	Ec4 (MPa)							
Ec (28days)	35,700	31,300	40,100	33,100							
Eci (7days)	29,200	26,800	33,200	29,900							

	I1 (mm^4)	l2 (mm^4)	13 (mm^4)
laverage	3.78E+09	4.70E+09	8.66E+09
Idrop panel	8.58E+09	1.01E+10	1.54E+10
İslab	1.60E+09	2.24E+09	5.60E+09

	At trans	er		T	Short Te	rm 1		1	Short Te	rm 2		I	Short Te	erm 3		T	Long Te	rm	
Average	I			Average	I			Average	1			Average	1			Average			
	ON VALUE	S (mm)		IDEFLECT		S/mm)	Market Companies		ON VALUE	S (mm)		DEFLECT		S/mm)	an kunya kana	DEFLECT		S (mm)	03/40/02/03/40
Range of	***************************************	nge of I (mr		Range of	201000000000000000000000000000000000000	nge of I (mr	ስ ላ ፈነ	Range of		nge of I (mr		Range of		nge of I (mi	m64\	Range of		nge of I (mr	~^4\
E (MPa)	11	12	1 13	E (MPa)	11	12	13	E (MPa)	11	12	1 13	E (MPa)	11	12	I 13	E (MPa)	I1	12	13
Ec1	-9.3	-7.4	-4.0	Ec1	-24.9	-20.0	-10.9	Ec1	-28.4	-22.9	-12.4	Ec1	-29.6	-23.8	-12.9	Ec1	-35,5	-28.6	-15.5
Ec2	-10.1	-8.1	-4.4	Ec2	-27.3	-21.9	-11.9	Ec2	-31.1	-25.0	-13.6	Ec2	-32.3	-26.0	-14.1	Ec2	-38.8	-31.2	-16.9
Ec3	-8.1	-6.5	-3.6	Ec3	-21.9	-17.6	-9.6	Ec3	-25.0	-20.1	-10.9	Ec3	-26.0	-20.9	-11.4	Ec3	-31.3	-25.2	-13.7
Ec4	-9.0	-7.3	-3.9	Ec4	-24.6	-19.8	-10.7	Ec4	-28.0	-22.5	-12.2	Ec4	-29.1	-23.4	-12.7	Ec4	-34.9	-28.1	-15.2
Sectiona	al I			Sectiona	11			Sectiona	al I			Sectiona	al I			Sectiona			1 12.00
	ION VALUE	S (mm)		TOEFLECT		S (mm)			ON VALUE	S (mm)	H1040000000	DEFLECT		S (mm)		DEFLECT		S (mm)	
Range of		nge of I (mr	n^4)	Range of		nge of I (mn		Range of		nge of I (mr		Range of		nge of I (mr		Range of		nge of i (mr	n^4\
E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13
Èc1	-16.3	-11.8	-5.0	Ec1	-44.0	-31.9	-13.5	Èc1	-50.2	-36.4	-15.4	Ec1	-52.2	-37.8	-16.0	Ec1	-62.7	-45.5	-19.2
Ec2	-17.8	-12.9	-5.5	Ec2	-48.2	-34.9	-14.8	Ec2	-54.9	-39.8	-16.8	Ec2	-57.1	-41.4	-17.5	Ec2	-68.5	-49.7	-21.0
Ec3	-14.4	-10.4	-4.4	Ec3	-38.7	-28.1	-11.9	Ec3	-44.2	-32.0	-13.6	Ec3	-46.0	-33.3	-14.1	Ec3	-55.2	-40.0	-16.9
Ec4	-16.0	-11.6	-4.9	Ec4	-43.4	-31.5	-13.3	Ec4	-49.5	-35.8	-15.2	Ec4	-51.4	-37.3	-15.8	Ec4	-61.7	-44.7	-18.9
	At trans	er			Short Te	rm 1			Short Te	rm 2			Short Te	rm 3			Long Te	rm	
Average	1			Average	Į			Average	ı			Average	1			Average	1		
CAMBER	VALUES (n	m)	X (0170 77500 H (170 77	CAMBER	VALUES (n	nm)	200000000000000000000000000000000000000	CAMBER	VALUES (n	ım)	(4/09/2009)	CAMBER 1	VALUES (n	nm)		CAMBER '		nm)	305500000000000000000000000000000000000
Range of	Rai	nge of I (mr	n^4)	Range of	Ra	nge of I (mn	1^4)	Range of		nge of I (mr	1^4)	Range of	Ra	nge of I (mr	n^4)	Range of		nge of I (mr	n^4)
E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	l 13	E (MPa)	- 11	12	13
Ec1	6.3	5.1	2.7	Ec1	15.3	12.3	6.7	Ec1	17.5	14.1	7.7	Ec1	18.2	14.6	7.9	Ec1	21.9	17.6	9.6
Ec2	6.8	5.5	3.0	Ec2	16.6	13.4	7.3	Ec2	19.1	15.4	8.3	Ec2	19.8	15.9	8.6	Ec2	23.9	19.2	10.4
Ec3	5.5	4.4	2.4	Ec3	13.4	10.8	5.9	Ec3	15.4	12.4	6.7	Ec3	16.0	12.8	7.0	Ec3	19.3	15.5	8.4
Ec4	6.1	4.9	2.7	Ec4	14.9	12.0	6.5	Ec4	17.1	13.8	7.5	Ec4	17.7	14.3	7.7	Ec4	21.4	17.2	9.4
Sectiona				Sectiona				Sectiona				Sectiona				Sectiona	11		
CAMBER	VALUES (n	m)	812350000022	CAMBER '			X (22 (32 (32 (32 (32 (32 (32 (32 (32 (32		VALUES (n		TONS YOUR	CAMBER 1	VALUES (n	nm)		CAMBER	/ALUES (n	ım)	3930 S23803
Range of		nge of i (mr		Range of		nge of I (mn		Range of		nge of I (mn		Range of		nge of I (mr		Range of	Rar	nge of I (mn	n^4)
E (MPa)	11	12	13	E (MPa)	i1	I2	13	E (MPa)	. 11	12	13	E (MPa)	- 11	12	13	E (MPa)	11	12	13
Ec1	11.1	8.0	3.4	Ec1	27.0	19.5	8.3	Ec1	31.0	22.4	9.5	Ec1	32.1	23.2	9.8	Ec1	38.7	28.1	11.9
Ec2	12.1	8.8	3.7	Ec2	29.4	21.3	9.0	Ec2	33.7	24.5	10.3	Ec2	34.9	25.3	10.7	Ec2	42.2	30.6	12.9
Ec3 Ec4	9.8 10.8	7.1 7.9	3.0	Ec3 Ec4	23.7 26.3	17.2 19.1	7.3 8.1	Ec3 Ec4	27.2 30.2	19.7 21.9	8.4 9.3	Ec3 Ec4	28.2	20.4 22.7	8.7	Ec3	34.1	24.7	10.4
			3.3	EC4			0.1	EC4			9.3		31.3		9.6	Ec4	37.8	27.4	11.6
	At trans	er		<u></u>	Short Te	rm 1		<u> </u>	Short Te	rm z			Short Te	rm 3			Long Te	rm	
Average				Average		~ ~ ~ ~		Average				Average	l			Average			
	FORMATI			TOTAL DE				TOTAL DE				TOTAL DE				TOTAL DE		(100000), (4000000), (400000)	
Range of		nge of I (mr		Range of		nge of I (mn		Range of		nge of I (mn		Range of		nge of I (mr		Range of		ige of I (mn	
E (MPa)	11	12	13	E (MPa)	11	12	13 -4.2	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13
Ec1 Ec2	-3.0 -3.2	-2.4 -2.6	-1.3 -1.4	Ec1 Ec2	-9.6 -10.6	-7.8 -8.6	-4.2 -4.6	Ec1 Ec2	-10.9 -12.0	-8.8 -9.6	-4.8 -5.2	Ec1 Ec2	-11.4 -12.5	-9.2 -10.1	-5.0 -5.5	Ec1 Ec2	-13.6	-10.9	-5.9
	-3./	-2.0			-10.6	-8.6 -6.8	-3.7	Ec2 Ec3	-12.0 -9.6	-9.6 -7.7	-5.2 -4.2	Ec2 Ec3	-12.5 -10.1	-10.1 -8.1	-5.5 -4.4	Ec2 Ec3	-14.9 -12.0	-12.0 -9.6	-6.5 -5.2
}		-21	-11	I Fc3															-5.2
Ec3	-2.6	-2.1 -2.3	-1.1	Ec3 Ec4															-5.0
Ec4	-2.6 -2.9	-2.1 -2.3	-1.1 -1.3	Ec4	-9.7	-7.8	-4.2	Ec4	-10.9	-8.8	-4.8	Ec4	-11.4	-9.1	-5.0	Ec4	-13.5	-10.9	-5.9
Ec4 Sectiona	-2.6 -2.9	-2.3		Ec4 Sectiona	-9.7	-7.8	-4.2	Ec4 Sectiona	-10.9	-8.8	-4.8	Ec4 Sectiona	-11.4	-9.1	-5.0	Ec4 Sectiona	-13.5 	-10.9	
Ec4 Sectiona TOTAL DE	-2.6 -2.9 al I FORMATE	-2.3 ON (mm)	-1.3	Ec4 Sectiona TOTAL DE	-9.7 III FORMATI	-7.8 ON (mm)	-4.2	Ec4 Sectiona TOTAL DE	-10.9 II I FORMATIO	-8.8 2N (mm)	-4.8	Ec4 Sectiona TOTAL DE	-11.4 III FORMATIO	-9.1 XV (mm)	-5.0	Ec4 Sectiona TOTAL DE	-13.5 I I FORMATIC	-10.9 N (mm)	
Ec4 Sectiona TOTAL DE Range of	-2.6 -2.9 III FORMATE Rai	-2.3 ON (mm) nge of I (mr	-1.3 n^4)	Ec4 Sectiona TOTAL DE	-9.7 III FORMATI Rai	-7.8 ON (mm) nge of I (mm	-4.2 1^4)	Ec4 Sectiona TOTAL DE Range of	-10.9 III FORMATIO Rai	-8.8 ON (mm) nge of I (mn	-4.8 1^4)	Ec4 Sectiona TOTAL DE Range of	-11.4 I I I FORMATIO Ran	-9.1 DN (mm) nge of I (mn	-5.0 n^4)	Ec4 Sectiona TOTAL DE Range of	-13.5 I I FORMATIO Rar	-10.9 DN (mm) age of I (mm	1^4)
Ec4 Sectiona TOTAL DE Range of E (MPa)	-2.6 -2.9 al I FORMATIO Rai I1	-2.3 ON (mm) nge of I (mr i2	-1.3 n^4)	Ec4 Sectiona TOTAL DE Range of E (MPa)	-9.7 III FORMATI Rai	-7.8 ON (mm) nge of I (mn	-4.2 1^4}	Ec4 Sectiona TOTAL DE Range of E (MPa)	-10.9 II I FORMATIO Rai	-8.8 ON (mm) nge of I (mn	-4.8 n^4)	Ec4 Sectiona TOTAL DE Range of E (MPa)	-11.4 III FORMATIO Ran I1	-9.1 ON (mm) nge of I (mn I2	-5.0 n^4)	Ec4 Sectiona TOTAL DE Range of E (MPa)	-13.5 I I FORMATIO Ran	-10.9 DN (mm) ige of I (mm	1^4) 3
Ec4 Sectiona TOTAL DE Range of	-2.6 -2.9 III FORMATE Rai	-2.3 ON (mm) nge of I (mr	-1.3 n^4)	Ec4 Sectiona TOTAL DE	-9.7 III FORMATI Rai	-7.8 ON (mm) nge of I (mm	-4.2 1^4)	Ec4 Sectiona TOTAL DE Range of	-10.9 III FORMATIO Rai	-8.8 ON (mm) nge of I (mn	-4.8 1^4)	Ec4 Sectiona TOTAL DE Range of E (MPa) Ec1	-11.4 III FORMATIO Rai I1 -20.1	-9.1 ON (mm) nge of I (mn I2 -14.6	-5.0 n^4) I3 -6.2	Ec4 Sectiona TOTAL DE Range of E (MPa) Ec1	-13.5 I I FORMATIC Ran I1 -24.0	-10.9 IN (mm) lige of I (mm I2 -17.4	1^4) 3 -7.4
Ec4 Sectiona TOTAL DE Range of E (MPa) Ec1	-2.6 -2.9 al I FORMATI Rai 11 -5.3	-2.3 ON (mm) nge of i (mr i2 -3.8	-1.3 n^4) 	Ec4 Sectiona TOTAL DE Range of E (MPa) Ec1	-9.7 II I FORMATIO Rai I1 -17.0	-7.8 ON (mm) nge of I (mn I2 -12.3	-4.2 1^4) 13 -5.2	Ec4 Sectiona TOTAL DE Range of E (MPa) Ec1	-10.9 II I FORMATIO Rai I1 -19.2	-8.8 2N (mm) nge of I (mn I2 -13.9	-4.8 1^4) 13 -5.9	Ec4 Sectiona TOTAL DE Range of E (MPa)	-11.4 III FORMATIO Ran I1	-9.1 ON (mm) nge of I (mn I2	-5.0 n^4)	Ec4 Sectiona TOTAL DE Range of E (MPa)	-13.5 I I FORMATIO Ran	-10.9 DN (mm) ige of I (mm	1^4) 3

| INPUT | RANGE OF E | Ec1 (MPa) | Ec2 (MPa) | Ec3 (MPa) | Ec4 (MPa) | Ec (28days) | 35,700 | 31,300 | 40,100 | 33,100 | Eci (7days) | 29,200 | 26,800 | 33,200 | 29,900 |

	I1 (mm^4)	l2 (mm^4)	I3 (mm^4)
laverage	3.59E+09	4.89E+09	9.26E+09
Idrop panel	8.58E+09	1.07E+10	1.64E+10
Islab	1.60E+09	2.56E+09	6.40E+09

	At transf	fer			Short Te	rm 1			Short Te	erm 2		T	Short Te	erm 3			Long Te	rm	
Average				Average				Average				Average	1			Average	1		
DEFLECTI				DEFLECT				DEFLECT					ION VALUE	:S (mm)		DEFLECT	ON VALU	ES (mm)	
Range of		nge of I (mr		Range of		nge of I (mr		Range of		inge of I (mi		Range of		nge of I (mr		Range of		nge of I (m	
E (MPa)	1	12	13	E (MPa)	- 11	12	3	E (MPa)	£1	12	13	E (MPa)	[1	12	13	E (MPa)	- 11	12	13
Ec1 Ec2	-4.9 -5.3	-3.6 -3.9	-1.9 -2.1	Ec1 Ec2	-13.1 -14.3	-9.6 -10.5	-5.1 -5.6	Ec1 Ec2	-14.9 -16.4	-11.0 -12.0	-5.8	Ec1	-15.5	-11.4	-6.0	Ec1	-18.7	-13.7	-7.2
Ec2	-5.3 -4.3	-3.9	-2.1	Ec2 Ec3	-14.3 -11,5	-10.5	-5.6 -4.5	Ec2 Ec3	-16.4	-12.0	-6.3 -5.1	Ec2 Ec3	-17.0 -13.7	-12.5 -10.0	-6.6 -5.3	Ec2 Ec3	-20.4	-15.0	-7.9
Ec4	-4.8	-3.5	-1.8	Ec4	-12.9	-9.5	-5.0	Ec4	-14.7	-10.8	-5.7	Ec4	-15.7	-11.2	-5.9	Ec3	-16.4 -18.4	-12.1 -13.5	-6.4 -7.1
Sectiona				Sectiona		0.0	1	Sectiona		1 10.0	1 -0.,	Sectiona		, -,,,,	1 -0.0	Sectiona		-13.3	1 -7.1
DEFLECTI		S (mm)	Militari ili	DEFLECT		S (mm)		DEFLECT		ES (mm)				S (mm)		DEFLECT		S (mm)	DED HINGESTRE
Range of		nge of I (mn	n^4)	Range of	Ra	nge of I (mr	n^4)	Range of		nge of i (mr	n^4)	Range of		nge of I (mr		Range of		nge of I (mi	n^4)
E (MPa)	i 1	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13
Ec1	-8.5	-5.4	-2.3	Ec1	-22.9	-14.6	-6.1	Ec1	-26.1	-16.6	-7.0	Ec1	-27.2	-17.3	-7.3	Ec1	-32.6	-20.8	-8.7
Ec2	-9.3	-5.9	-2.5	Ec2	-25.1	-15.9	-6.7	Ec2	-28.6	-18.2	-7.7	Ec2	-29,7	-18.9	-8.0	Ec2	-35.7	-22.7	-9.5
Ec3	-7.5	-4.8	-2.0	Ec3	-20.2	-12.8	-5.4	Ec3	-23.0	-14.6	-6.2	Ec3	-23.9	-15.2	-6.4	Ec3	-28.7	-18.3	-7.7
Ec4	-8,3	-5.3	-2.2	Ec4	-22.6	-14.4	-6.0	Ec4	-25.7	-16.4	-6.9	Ec4	-26.7	-17.0	-7.2	Ec4	-32.1	-20.4	-8.6
	At transi	rer		<u> </u>	Short Te	rm 1		ــــــــــــــــــــــــــــــــــــــ	Short Te	erm 2		<u> </u>	Short Te	rm 3		٠	Long Te	rm	
Average				Average				Average				Average				Average			
CAMBER V			- 4.4	CAMBER				CAMBER			33(332323)	CAMBER		own to the transfer of	X-X-(35)	CAMBER			45 XX44XXX
Range of		nge of I (mn		Range of		nge of I (mr		Range of		nge of I (mr		Range of		nge of I (mn		Range of		nge of I (mr	
E (MPa)	11 3.2	12 2.4	13	E (MPa)	7.8	12 5.7	3 3.0	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13
Ec1 Ec2	3.5	2.4	1.2	Ec1 Ec2	8.5	6.2	3.0	Ec1 Ec2	8.9 9.7	6.6 7.2	3.5 3.8	Ec1 Ec2	9.3 10.1	6.8	3.6	Ec1	11.2	8.2	4.3
Ec3	2.8	2.0	1.1	Ec3	6.8	5.0	2.7	Ec3	7.9	5.8	3.0	Ec3	8.1	7.4 6.0	3.9 3.2	Ec2 Ec3	12.2 9.8	8.9 7.2	4.7 3.8
Ec4	3.1	2.3	1.2	Ec4	7.6	5.6	2.9	Ec4	8.7	6.4	3.4	Ec4	9.0	6.6	3.5	Ec4	10.9	8.0	4.2
Sectiona				Sectiona	11			Sectiona				Sectiona		0.0	<u> </u>	Sectiona		0.0	7.2
CAMBER V	ALUES (n	im)	3563335050	CAMBER V	VALUES (n	im)	X2XXXX	CAMBER 1	/ALUES (n	nm)		CAMBER		im)	N. 6 (N. 100 (1900)	CAMBER		ım)	Consession and the
Range of		nge of I (mn	n^4)	Range of		ige of I (mi		Range of		nge of I (mr	n^4)	Range of		nge of I (mn	n^4)	Range of		nge of I (mr	n^4\
E (MPa)	11	12	13	E (MPa)	i1	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13
Ec1	5.6	3.6	1.5	Ec1	13.6	8.7	3.6	Ec1	15.6	9.9	4.2	Ec1	16.2	10.3	4.3	Ec1	19,5	12.4	5.2
Ec2	6.1	3.9	1.6	Ec2	14.8	9.4	4.0	Ec2	17.0	10.8	4.6	Ec2	17.6	11.2	4.7	Ec2	21.3	13.6	5.7
Ec3	4.9	3.1	1.3	Ec3	12.0	7.6	3.2	Ec3	13.7	8.7	3.7	Ec3	14.2	9.1	3,8	Ec3	17.2	10.9	4.6
Ec4	5.5	3.5	1.5	Ec4	13.3	8.5	3.6	Ec4	15.3	9.7	4.1	Ec4	15.8	10.1	4.2	Ec4	19.1	12.2	5.1
	At transf	er			Short Te	rm 1		<u> </u>	Short Te	erm 2		<u></u>	Short Te	rm 3			Long Te	rm	
Average		~~~	*************	Average TOTAL DE		~~~		Average		~~~		Average				Average			
TOTAL DE Range of		nge of I (mn	-04\	Range of		nae of I (mn		TOTAL DE		nge of I (mn	-440	TOTAL DE				TOTAL DE			
E (MPa)	i1	12	13	E (MPa)	I1	Ige of I (illii	13	E (MPa)	i1	lige of t (min	1'4)	E (MPa)	I1	nge of I (mm	174)	Range of	Har I1	nge of i (mn	
Ec1	-1.7	-1.2	-0.6	Ec1	-5.3	-3.9	-2.1	Ec1	-6.0	-4.4	-2.3	E (Wra)	-6,3	-4.6	-2.4	E (MPa) Ec1	-7.5	-5.5	13 -2.9
Ec2	-1.8	-1.3	-0.7	Ec2	-5.9	-4.3	-2.3	Ec2	-6.6	-4.9	-2.6	Ec2	-6.9	- 4 .6	-2.4	Ec2	-8.2	-5.5 -6.0	-3.2
Ec3	-1.5	-1.1	-0,6	Ec3	-4.7	-3.4	-1,8	Ec3	-5.3	-3.9	-2.1	Ec3	-5.5	-4.1	-2.1	Ec3	-6.6	-4.8	-2.6
Ec4	-1.6	-1.2	-0.6	Ec4	-5.3	-3.9	-2.1	Ec4	-6.0	-4.4	-2.3	Ec4	-6.3	-4.6	-2.4	Ec4	-7.4	-5.5	-2.9
Sectiona				Sectiona	11			Sectiona	11			Sectiona	11			Sectiona	11		
TOTAL DE	FORMATIC	ON (mm)		TOTAL DE	FORMATIC)N (mm)		TOTAL DE	FORMATH	ON (mm)		TOTAL DE	FORMATIC	ON (mm)		TOTAL DE	FORMATIC	N (mm)	
Range of		nge of I (mn		Range of		ige of I (mn		Range of		nge of I (mn	1^4)	Range of	Rar	ige of I (mir	1^4)	Range of	Ran	ge of I (mn	1^4)
E (MPa)	1	12	13	E (MPa)	11	12	13	E (MPa)	- 11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13
Ec1	-2.9	-1.8	-0.8	Ec1	-9.3	-5.9	-2.5	Ec1	-10.5	-6.7	-2.8	Ec1	-11.0	-7.0	-2.9	Ec1	-13.1	-8.3	-3.5
Ec2 Ec3	-3,2 -2,6	-2.0 -1.6	-0.8 -0.7	Ec2	-10.2 -8.2	-6.5 -5.2	-2.7 -2.2	Ec2	-11.5	-7.3	-3.1	Ec2	-12.1	-7.7	-3.2	Ec2	-14.4	-9.1	-3.8
Ec4	-2.6 -2.8	-1.6 -1.8	-0.7	Ec3 Ec4	-8.2 -9.3	-5.2 -5.9	-2.2 -2.5	Ec3 Ec4	-9.3 -10.5	-5.9 -6.7	-2.5 -2.8	Ec3 Ec4	-9.7 -10.9	-6.2 -7.0	-2.6 -2.9	Ec3 Ec4	-11.5 -13.0	-7.3 -8.3	-3.1 -3.5
	-2.0		0.0	1 207	-5.5	-0.0	-2.0		-10.5	L -0.7	-2.0	1 604	-10.8	-7.0	-2.5	EC4	-13.0	-0.3	-3.5

| INPUT | RANGE OF E | Ec1 (MPa) | Ec2 (MPa) | Ec3 (MPa) | Ec4 (MPa) | Ec (28days) | 35,700 | 31,300 | 40,100 | 33,100 | Ec (7days) | 29,200 | 26,800 | 33,200 | 29,900 |

	i1 (mm^4)	I2 (mm^4)	I3 (mm^4)
laverage	1.80E+09	2.56E+09	6.40E+09
Idrop panel	1.80E+09	2.56E+09	6.40E+09
İslab	1 80F+09	2 56F+09	6 40F+09

	At transf	er		1	Short Te	rm 1		1	Short Te	rm 2		T	Short Te	erm 3		1	Long Te	rm	
Average	ı			Average	1			Average	-			Average				Average		****	
DEFLECTI		S (mm)	200000000000000000000000000000000000000	DEFLECT		S (mm)	Auggenes	DEFLECT		S (mm)	mana time a simboli	DEFLECT		- (mm) 2-	CONTRACTOR OF THE PERSON OF TH	DEFLECT		e /mmi	YMOO DE MARKE
Range of		nge of I (mr		Range of		nge of I (mr		Range of		nge of I (mr		Range of		nge of I (mi	mA4\	Range of		nge of I (m	
E (MPa)	11	12	13	E (MPa)	11	12	1 13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	1 13
Ec1	-17.1	-12.0	-4.8	Ec1	-45.9	-32.3	-12.9	Ec1	-52.4	-36.8	-14.7	Ec1	-54.5	-38,3	-15.3	Ec1	-65.4	-46.0	-18.4
Ec2	-18.6	-13.1	-5.2	Ec2	-50.2	-35,3	-14.1	Ec2	-57.3	-40.3	-16.1	Ec2	-59.6	-41.9	-16.7	Ec2	-71.5	-50.3	-20.1
Ec3	-15.0	-10.5	-4.2	Ec3	-40.4	-28.4	-11.4	Ec3	-46.1	-32.4	-13.0	Ec3	-47.9	-33.7	-13.5	Ec3	-57.6	-40.5	-16.2
Ec4	-16.7	-11.7	-4.7	Ec4	-45.3	-31.8	-12.7	Ec4	-51.6	-36.3	-14.5	Ec4	-53.6	-37.7	-15.1	Ec4	-64.3	-45.2	-18.1
Sectiona				Sectiona	d I			Sectiona	al I			Sectiona	al I			Sectiona	al I		
DEFLECTI	ON VALUE	S (mm)		DEFLECT	ON VALUE	S (mm)		DEFLECT	ON VALUE	S (mm)		DEFLECT	ON VALUE	S (mm)		DEFLECT	ON VALUE	S (mm)	
Range of	Rar	nge of I (mr	n^4)	Range of	Ra	nge of I (mr	n^4)	Range of	Ra	nge of I (mn	ነ^4)	Range of	Ra	nge of I (mi		Range of		nge of I (ma	m^4)
E (MPa)	l1	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13
Ec1	-17.0	-12.0	-4.8	Ec1	-45.8	-32.2	-12.9	Ec1	-52.3	-36.7	-14.7	Ec1	-54.3	-38,2	-15.3	Ec1	-65.3	-45.9	-18.4
Ec2	-18.5	-13.0	-5.2	Ec2	-50.1	-35.2	-14.1	Ec2	-57.2	-40.2	-16.1	Ec2	-59.4	-41.8	-16.7	Ec2	-71.3	-50.2	-20.1
Ec3	-15.0	-10.5	-4.2	Ec3	-40.3	-28.3	-11.3	Ec3	-46.0	-32.4	-12.9	Ec3	-47.8	-33.6	-13.5	Ec3	-57.5	-40.4	-16.2
Ec4	-16.6	-11.7	-4.7	Ec4	-45.2	-31.8	-12.7	Ec4	-51.5	-36.2	-14.5	Ec4	-53.5	-37.6	-15.0	Ec4	-64.2	-45.1	-18.0
	At transf	er		1	Short Te	rm 1			Short Te	rm 2		<u> </u>	Short Te	rm 3			Long Te	rm	
Average				Average	1			Average	1			Average	1			Average	1		
CAMBER \	/ALUES (m	ım)		CAMBER	/ALUES (n	ım)	0000000	CAMBER 1	VALUES (n	ım)	ALEXAETE	CAMBER	VALUES (n	nm)		CAMBER	VALUES (n	ım)	0002552000
Range of	Rar	nge of I (mn	n^4)	Range of	Ra	nge of I (mr	n^4)	Range of	Ra	nge of I (mn	1^4)	Range of	Rai	nge of I (mr	n^4)	Range of	Ra	nge of I (mr	m^4)
E (MPa)	11	12	13	E (MPa)	1	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13
Ec1	10.0	7.0	2.8	Ec1	24,3	17.1	6,8	Ec1	27.9	19.6	7.9	Ec1	28.9	20.3	8.1	Ec1	34.9	24.6	9.8
Ec2	10.9	7.7	3.1	Ec2	26.5	18.6	7.4	Ec2	30.4	21.4	8.6	Ec2	31.5	22.2	8.9	Ec2	38.1	26.8	10.7
Ec3	8.8	6.2	2.5	Ec3	21.4	15.0	6.0	Ec3	24.6	17.3	6.9	Ec3	25.4	17.9	7.2	Ec3	30.7	21.6	8.6
Ec4	9.8	6.9	2.7	Ec4	23.7	16.7	6.7	Ec4	27.3	19.2	7.7	Ec4	28.2	19.9	7.9	Ec4	34.1	24.0	9.6
Sectiona				Sectiona				Sectiona				Sectiona				Sectiona			
CAMBER				CAMBER V					/ALUES (n		48.00	CAMBER			30.100 PR	CAMBER '			Y. 11 (Y. 17 ()
Range of		ige of I (mr		Range of		nge of I (mr		Range of		ige of I (mn		Range of		nge of I (mr		Range of		nge of I (mr	
E (MPa)	11	12	13	E (MPa)	<u>I1</u>	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13
Ec1	10.0	7.0	2.8	Ec1	24.3	17.1	6.8	Ec1	27.9	19.6	7.8	Ec1	28.9	20.3	8.1	Ec1	34.9	24.5	8,9
Ec2 Ec3	10.9 8.8	7.6 6.2	3.1 2.5	Ec2 Ec3	26.4 21.3	18.6 15.0	7.4 6.0	Ec2 Ec3	30.4 24.5	21.3 17.2	8.5 6.9	Ec2 Ec3	31.4 25.4	22.1 17.8	8.8	Ec2	38.0	26.7	10.7
Ec4	9.7	6.9	2.7	Ec4	23.7	16.7	6.7	Ec4	27.2	19.1	7.7	Ec4	28.2	19.8	7.1 7.9	Ec3 Ec4	30.7 34.0	21.6 23.9	8.6 9.6
	At transf				Short Te				Short Te				Short Te		1.5	LU			9,6
		C1		A		1161 1				1111 2				1111 3		<u> </u>	Long Te	rm	
Average TOTAL DE		***************************************		Average TOTAL DE			~~~	Average		~~~		Average				Average			
Range of								TOTAL DE				TOTAL DE				TOTAL DE			
E (MPa)	I1 Ran	ige of I (mn	n^4)	Range of E (MPa)	I1	nge of I (mn	13	Range of E (MPa)	I1	ige of I (mm	174)	Range of E (MPa)	Rar I1	nge of I (mr		Range of E (MPa)		ige of I (mr	
E (MPa)	-7.0	-5.0	-2.0	E (MPa)	-21.6	-15.2	-6.1	E (MPa)	-24.5	-17.2	-6.9	E (MPa)	-25.5	-18.0	-7.2		-30,5	12	13
Ec2	-7.0 -7.7	-5.0 -5.4	-2.0	Ec2	-23.7	-15.2	-6.7	Ec2	-24.5 -26.9	-17.2 -18.9	-6.9 -7.6	Ec2	-25.5 -28.0	-18.0 -19.7	-7.2 -7.9	Ec1 Ec2	-30.5 -33.4	-21.4 -23.5	-8.6 -9.4
Ec3	-6.2	-4.4	-1.7	Ec3	-19.0	-13.4	-5.4	Ec3	-21.6	-15.2	-6.1	Ec3	-22.5	-15.8	-6.3	Ec2 Ec3	-33.4	-23.5 -18.9	-9.4 -7.6
Ec4	-6.9	-4.8	-1.9	Ec4	-21.5	-15.1	-6.1	Ec4	-24.3	-17.1	-6,8	Ec4	-25.4	-17.8	-7.1	Ec4	-30.2	-21.2	-8.5
		·		Sectiona			•	Sectiona				Sectiona				Sectiona			, 5.5
Sectiona		ON (mm)		TOTAL DE		N (mm)		TOTAL DE		N (mm)		TOTAL DE		N (mm)		TOTAL DE		M (mon)	
		ige of I (min		Range of		nge of I (mn		Range of		ge of I (mm		Range of		age of I (mn		Range of		ige of I (mn	n^4\
TOTAL DE	Rar			E (MPa)	11	12	13	E (MPa)	I1	12	13	E (MPa)	11	12	13	E (MPa)	I1	ige of a (illin	13
TOTAL DE Range of			1 13							-17.2	-6.9			-17.9					
TOTAL DE	11	12	-2.0		-21.5	-15.1	-6.1	Ec1	-24.4	-1/.2	-6.9	f E:C1 ■			1 -72	I Fc1 1	-304	.214	
TOTAL DE Range of E (MPa)			-2.0 -2.2	Ec1 Ec2	-21.5 -23.7	-15.1 -16.7	-6.1 -6.7	Ec1 Ec2	-24.4 -26.8	-17.2 -18.8	-6.9 -7.5	Ec1 Ec2	-25.5 -28.0	-19.7	-7.2 -7.9	Ec1 Ec2	-30.4 -33.4	-21.4 -23.5	-8.6 -9.4
TOTAL DE Range of E (MPa) Ec1	-7.0	12 -4.9	-2.0	Ec1											-7.2 -7.9 -6.3	Ec1 Ec2 Ec3	-30.4 -33.4 -26.8	-21.4 -23.5 -18.9	-8.6 -9.4 -7.5

| INPUT | RANGE OF E | Ec1 (MPa) | Ec2 (MPa) | Ec3 (MPa) | Ec4 (MPa) | Ec (28days) | 35,700 | 31,300 | 40,100 | 33,100 | Eci (7days) | 29,200 | 26,800 | 33,200 | 29,900 |

	l1 (mm^4)	I2 (mm^4)	13 (mm^4)
laverage	1.60E+09	2.24E+09	5.60E+09
Idrop panel	1.60E+09	2.24E+09	5.60E+09
İslab	1.60E+09	2.24E+09	5,60E+09

	At transf	fer		l .	Short Te	rm 1			Short Te	rm 2			Short Te	rm 3			Long Te	rm	
Average	I			Average	ı			Average	ţ			Average	ī			Average	ī		
DEFLECTI	ON VALUE	S (mm)		DEFLECT	ON VALUE	S (mm)		DEFLECT		S (mm)		DEFLECT	ION VALUE	S (mm)		DEFLECT		S (mm)	
Range of	Rai	nge of I (mr	n^4)	Range of	Ra	nge of I (mr	n^4)	Range of	Ra	nge of I (mr	1^4)	Range of		nge of I (mi	n^4)	Range of		nge of I (mr	
E (MPa)	l1	12	13	E (MPa)	l1	12	13	E (MPa)	l1	i2	13	E (MPa)	11	12	13	E (MPa)	I 1	12	13
Ec1	-28.6	-20.5	-8.2	Ec1	-77.1	-55.0	-22.0	Ec1	-88.0	-62.8	-25.1	Ec1	-91.5	-65.3	-26.1	Ec1	-109.9	-78,5	-31.4
Ec2	-31.2	-22.3	-8.9	Ec2	-84.3	-60.2	-24.1	Ec2	-96.2	-68.7	-27.5	Ec2	-100.0	-71.4	-28.6	Ec2	-120.1	-85.8	-34.3
Ec3	-25.2	-18.0	-7.2	Ec3	-67.9	-48.5	-19.4	Ec3	-77.4	-55.3	-22.1	Ec3	-80.5	-57.5	-23.0	Ec3	~96.7	-69.1	-27.6
Sectiona	-28,0	-20.0	-8.0	Ec4	-76.0	-54.3	-21.7	Ec4	-86.6	-61.9	-24.8	Ec4	-90.0	-64.3	-25.7	Ec4	-108.0	-77.1	-30.9
DEFLECTI			RELEASE SHAPE AND AND AND AND AND AND AND AND AND AND	Sectiona		~~/	200714011002401174100441610	Sectiona				Section				Sectiona			
Range of		nge of I (mr	-04\	DEFLECT Range of		nge of I (mr	0m/100 (1864 1876 •∧4\	DEFLECT Range of		nge of I (mr	A41	Range of	ON VALUE			DEFLECT			
E (MPa)	I1	12	13	E (MPa)	I1	12	13	E (MPa)	11	12	13	E (MPa)	I1	nge of I (mr	13	Range of E (MPa)		nge of I (mn	
Ec1	-28.6	-20.4	-8.2	Ec1	-76.9	-54.9	-22.0	Ec1	-87.8	-62.7	-25.1	Ec1	-91.3	-65.2	-26.1	E(MFa)	-109.6	-78,3	-31.3
Ec2	-31.1	-22.2	-8.9	Ec2	-84.2	-60.1	-24.0	Ec2	-96.0	-68.6	-27.4	Ec2	-99.8	-71.3	-28.5	Ec2	-119.8	-78.3 -85.6	-31.3
Ec3	-25.1	-17.9	-7.2	Ec3	-67.7	-48.4	-19,3	Ec3	-77.3	-55.2	-22.1	Ec3	-80.3	-57.4	-23.0	Ec3	-96.5	-68.9	-27.6
Ec4	-27.9	-19.9	-8.0	Ec4	-75.8	-54.2	-21.7	Ec4	-86.4	-61.7	-24.7	Ec4	-89.8	-64.2	-25.7	Ec4	-107.8	-77.0	-30.8
	At transf	er			Short Te	rm 1			Short Te	rm 2		1	Short Te	rm 3			Long Te	m	
Average	1			Average	1			Average	I			Average	ı			Average			
CAMBER		ım)	10:10:20:20:46.06	CAMBER		nm)	6864 (1861-175)	CAMBER		im)	552005555935		VALUES (n	im)	S OCCUPAÇÃO ACA É	CAMBER		m\	100000000000000000000000000000000000000
Range of		nge of I (mn	n^4)	Range of		nge of I (mn		Range of		nge of I (mn	1^4)	Range of		nge of I (mr		Range of		ae of I (mn	n^4)
E (MPa)	i 1	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13
Ec1	17.0	12.1	4.9	Ec1	41.3	29,5	11.8	Ec1	47.4	33.9	13.5	Ec1	49.1	35.1	14.0	Ec1	59.3	42.4	16.9
Ec2	18.5	13.2	5.3	Ec2	45.0	32.1	12.8	Ec2	51.7	36.9	14.8	Ec2	53.5	38.2	15.3	Ec2	64.6	46.2	18.5
Ec3	14.9	10.7	4.3	Ec3	36.3	25.9	10.4	Ec3	41.7	29.8	11.9	Ec3	43.2	30.8	12.3	Ec3	52.2	37.3	14.9
Ec4	16.6	11.8	4.7	Ec4	40.3	28.8	11.5	Ec4	46.3	33.1	13.2	Ec4	47.9	34.2	13.7	Ec4	57.9	41.4	16.5
Sectiona				Sectiona				Sectiona				Sectiona				Sectiona			
CAMBER \			68,00000	CAMBER				CAMBER					VALUES (m		1000	CAMBER \			150000000000000000000000000000000000000
Range of		nge of I (mr		Range of		nge of I (mn		Range of		nge of I (mn		Range of		nge of I (mn		Range of		ge of I (mn	
E (MPa) Ec1	11 16.9	12 12.1	13	E (MPa) Ec1	11 41.2	12 29.4	i3 11.8	E (MPa) Ec1	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13
Ec2	18.5	13.2	4.8 5.3	Ec2	41.2	32.0	12.8	Ec2	47.3 51.5	33.8 36.8	13.5 14.7	Ec1 Ec2	49.0 53.4	35.0 38.1	14.0 15.3	Ec1	59.2 64.5	42.3	16.9
Ec3	14.9	10.6	4.3	Ec3	36.2	25.9	10.3	Ec3	41.6	29.7	11.9	Ec2	43.1	30.8	12.3	Ec2 Ec3	52.0	46.1 37.2	18.4 14.9
Ec4	16.5	11.8	4.7	Ec4	40.2	28.7	11.5	Ec4	46.2	33.0	13.2	Ec4	47.8	34.2	13.7	Ec4	57.8	41.3	16.5
	At transf	er			Short Te	rm 1			Short Te				Short Te				Long Ter		10.0
Average	1			Average				Average				Average				Average		•••	
TOTAL DE		M (mm)		TOTAL DE		2N (mm)		TOTAL DE		OM (mm)			FORMATIC	M (mm)		TOTAL DE		Ai ferent	
Range of		nge of I (mn	n^4)	Range of		nge of I (mn		Range of		nge of I (mn	^4)	Range of		ige of I (mn		Range of		ge of I (mm	2/4)
E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	[1]	12	13
Ec1	-11.6	-8.3	-3.3	Ec1	-35.8	-25.6	-10.2	Ec1	-40.5	-29.0	-11.6	Ec1	-42.4	-30.3	-12.1	Ec1	-50,6	-36.1	-14.5
Ec2	-12.7	-9.1	-3.6	Ec2	-39.4	-28.1	-11.3	Ec2	-44.5	-31.8	-12.7	Ec2	-46.5	-33.2	-13.3	Ec2	-55.5	-39.6	-15.8
Ec3	-10.2	-7.3	-2.9	Ec3	-31.6	-22.5	-9.0	Ec3	-35.7	-25.5	-10.2	Ec3	-37.3	-26.7	-10.7	Ec3	-44.6	-31.8	-12.7
Ec4	-11.4	-8.1	-3.3	Ec4	-35.7	-25.5	-10.2	Ec4	-40.3	-28.8	-11.5	Ec4	-42.1	-30.1	-12.0	Ec4	-50.1	-35.8	-14.3
Sectiona				Sectiona				Sectiona				Sectiona				Sectiona			
TOTAL DE								TOTAL DE	FORMATK	ON (mm)		TOTAL DE	FORMATIC	N (mm)		TOTAL DE	FORMATIC	N (mm)	
Range of		nge of I (mn		Range of		nge of I (mn		Range of		ige of I (mm		Range of		ge of I (mn	ገ^4)	Range of	Ran	ge of I (mm	1^4)
E (MPa)	1	12	13	E (MPa)	i1	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	1	12	13
Ec1	-11.6 -12.7	-8.3 -9.0	-3.3	Ec1	-35.7	-25.5	-10.2	Ec1	-40.5	-28.9	-11.6	Ec1	-42.3	-30.2	-12.1	Ec1	-50.5	-36.0	-14.4
F-0			-3.6	Ec2	-39.3	-28.1	-11.2	Ec2	-44.4	-31.7	-12.7	Ec2	-46.4	-33.1	-13.3	Ec2	-55.3	-39.5	-15.8
Ec2						20.5	0.0	F-0	05.7	25.5									
Ec2 Ec3 Ec4	-12.7 -10.2 -11.4	-7.3 -8.1	-2.9 -3.2	Ec3 Ec4	-31.5 -35.6	-22.5 -25.5	-9.0 -10.2	Ec3 Ec4	-35.7 -40.2	-25.5 -28.7	-10.2 -11.5	Ec3 Ec4	-37.2 -42.0	-26.6 -30.0	-10.6 -12.0	Ec3 Ec4	-44.5 -50.0	-31.8 -35.7	-12.7 -14.3

INPUT RANGE OF E Ec1 (MPa) Ec2 (MPa) Ec3 (MPa) 35,700 31,300 40,100 29,200 26,800 33,200 Ec4 (MPa) 33,100 29,900 Ec (28days)

RANGE OF I

Eci (7days)

	l1 (mm^4)	I2 (mm^4)	13 (mm^4)
laverage	1.80E+09	2.56E+09	6.40E+09
Idrop panel	1.80E+09	2.56E+09	6.40E+09
İslab	1.80E+09	2.56E+09	6.40E+09

F	At transf	fer		Short Term 1				Short Term 2				Short Term 3				Long Term					
Average I				Average I				Average I				Average I									
		S (mm)	LOSCOMA CONTRACTOR CONTRACTOR			S (mm)		DEFLECTION VALUES (mm)				DEFLECTION VALUES (mm)				Average I					
	DEFLECTION VALUES (mm) Range of Range of (mm^4)			DEFLECTION VALUES (mm) Range of Range of I (mm^4)				Range of Range of I (mm^4)			-04\	Range of Range of I (mm ⁴)				DEFLECTION VALUES (mm)					
E (MPa)	I1	1 12	13	E (MPa)	11	1 12	13	E (MPa)	11	12	13	E (MPa)	11 Ra	nge of i (mi	1 13	Range of E (MPa)		nge of I (mr			
Ec1	-17.1	-12.0	-4.8	Ec1	-45,9	-32.3	-12.9	Ec1	-52.4	-36.8	-14.7	Ec1	-54.5	-38.3	-15.3		11	12	13		
Ec2	-18.6	-13.1	-5.2	Ec2	-50.2	-35.3	-14.1	Ec2	-57.3	-40.3	-14.7	Ec2	-54.5	-38.3 -41.9	-15.3 -16.7	Ec1 Ec2	-65,4 -71,5	-46.0 -50.3	-18.4 -20.1		
Ec3	-15.0	-10.5	-4.2	Ec3	-40.4	-28.4	-11.4	Ec3	-46.1	-32.4	-13.0	Ec3	-47.9	-33.7	-13.5	Ec3	-71.5 -57.6	-40.5	-16.2		
Ec4	-16.7	-11.7	-4.7	Ec4	-45.3	-31.8	-12.7	Ec4	-51.6	-36.3	-14.5	Ec4	-53.6	-37.7	-15.1	Ec4	-64.3	-45.2	-18.1		
Sectional I				Sectional I				Sectional I				Sectional I				Sectional I					
DEFLECTION VALUES (mm)				IDEFLECTION VALUES (mm)				DEFLECTION VALUES (mm)				DEFLECTION VALUES (mm)				DEFLECTION VALUES (mm)					
	Range of Range of I (mm^4)			Range of Range of (mm^4)				Range of Range of I (mm^4)				Range of Range of I (mm^4)				Range of Range of I (mm^4)					
E (MPa)	11	12	I 13	E (MPa)	11	12	13	E (MPa)	11	12	1 13	E (MPa)	11	12	1 13	E (MPa)	11	12	13		
Ec1	-17.0	-12.0	-4.8	Ec1	-45.8	-32.2	-12.9	Ec1	-52.3	-36.7	-14.7	Ec1	-54.3	-38.2	-15.3	Ec1	-65.3	-45.9	-18.4		
Ec2	-18.5	-13.0	-5.2	Ec2	-50.1	-35.2	-14.1	Ec2	-57.2	-40.2	-16.1	Ec2	-59.4	-41.8	-16.7	Ec2	-71.3	-50.2	-20.1		
Ec3	-15.0	-10.5	-4.2	Ec3	-40.3	-28.3	-11.3	Ec3	-46.0	-32.4	-12.9	Ec3	-47.8	-33.6	-13,5	Ec3	-57.5	-40.4	-16.2		
Ec4	-16.6	-11.7	-4.7	Ec4	-45.2	-31.8	-12.7	Ec4	-51.5	-36.2	-14.5	Ec4	-53.5	-37.6	-15.0	Ec4	-64.2	-45.1	-18.0		
At transfer				Short Term 1				Short Term 2				Short Term 3				Long Term					
Average I				Average I				Average I				Average	Τ			Average I					
	CAMBER VALUES (mm)				VALUES (n	um)	8389,9850050	CAMBER		ım)	SOCIETA VAC	CAMBER		omi		CAMBER		uma)	2001-00000		
Range of		nae of I (mr	n^4)	Range of		nge of I (mr	n^4\	Range of		nge of I (mr	n^4)	Range of		nge of I (mr	mAA)	Range of		nge of I (mn	-A4)		
E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	I1	12	1 13	E (MPa)	I1	ige of t (till)	13		
Ec1	8.9	6.3	2.5	Ec1	21.6	15.2	6.1	Ec1	24.8	17.5	7.0	Ec1	25.7	18.1	7.2	Ec1	31,0	21.8	8.7		
Ec2	9.7	6.8	2.7	Ec2	23.5	16.6	6.6	Ec2	27.0	19.0	7.6	Ec2	28.0	19.7	7.9	Ec2	33.8	23.8	9.5		
Ec3	7.8	5.5	2.2	Ec3	19.0	13.4	5.3	Ec3	21.8	15.3	6.1	Ec3	22.6	15.9	6.4	Ec3	27.3	19.2	7.7		
Ec4	8.7	6.1	2.4	Ec4	21.1	14.8	5.9	Ec4	24.2	17.0	6.8	Ec4	25.1	17.6	7.1	Ec4	30.3	21.3	8.5		
Sectiona			•	Sectiona	11			Sectiona	Ш			Sectiona	TT .			Sectiona	11				
CAMBER VALUES (mm) CAM					:AMBER VALUES (mm)				CAMBER VALUES (mm)								CAMBER VALUES (mm)				
Range of				Range of Range of I (mm^4)				Range of Range of I (mm ⁴)									Range of Range of I (mm ⁴)				
E (MPa)	11	12	13	E (MPa)	l1	12	13	E (MPa)	11	12	13	E (MPa)	i1	12	1 13	E (MPa)	11	12	13		
Ec1	8.9	6.2	2.5	Ec1	21.6	15.2	6.1	Ec1	24.8	17.4	7.0	Ec1	25.6	18.0	7.2	Ec1	31.0	21.8	8.7		
Ec2	9.7	6.8	2.7	Ec2	23.5	16.5	6.6	Ec2	27.0	19.0	7.6	Ec2	27.9	19.6	7.9	Ec2	33.8	23.7	9.5		
Ec3	7.8	5.5	2.2	Ec3	19.0	13.3	5.3	Ec3	21.8	15.3	6.1	Ec3	22.6	15.9	6.3	Ec3	27.2	19.2	7.7		
Ec4	8.7	6.1	2.4	Ec4	21.1	14.8	5.9	Ec4	24.2	17.0	6.8	Ec4	25.0	17.6	7.0	Ec4	30.3	21.3	8.5		
At transfer				Short Term 1				Short Term 2				Short Term 3				Long Term					
Average I				Average	1			Average I				Average I				Average I					
TOTAL DEFORMATION (mm)				TOTAL DEFORMATION (mm)				TOTAL DEFORMATION (mm)								TOTAL DEFORMATION (mm)					
Range of				Range of Range of I (mm ⁴)			1^4)	Range of Range of I (mm ⁴)				Range of Range of I (mm^4)				Range of Range of I (mm^4)					
E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	12	13	E (MPa)	11	i2	13		
Ec1	-8.2	-5.7	-2.3	Ec1	-24.3	-17.1	-6.8	Ec1	-27.6	-19.4	-7.8	Ec1	-28.8	-20.2	-8.1	Ec1	-34.4	-24.2	-9.7		
Ec2	-8.9	-6.3	-2.5	Ec2	-26.7	-18.8	-7.5	Ec2	-30.2	-21.3	-8.5	Ec2	-31.5	-22.2	-8.9	Ec2	-37.7	-26.5	-10.6		
Ec3	-7.2	-5.0	-2.0	Ec3	-21.4	-15.1	-6.0	Ec3	-24.3	-17.1	-6.8	Ec3	-25.3	-17.8	-7.1	Ec3	-30.3	-21.3	-8.5		
Ec4	-8.0	-5.6	-2.2	Ec4	-24.2	-17.0	-6.8	Ec4	-27.4	-19.2	-7.7	Ec4	-28.5	-20.0	-8.0	Ec4	-34.0	-23.9	-9.6		
Sectiona	d I			Sectional I				Sectional I								Sectional I					
		TOTAL DEFORMATION (mm)				TOTAL DEFORMATION (mm)								TOTAL DEFORMATION (mm)				TOTAL DEFORMATION (mm)			
TOTAL DE	FORMATI	ON (mm)			COMMIN	ara da sanara (iliana)		Abdilit Amily to													
TOTAL DE		ON (mm) nge of I (mn		Range of		nge of I (mn		Range of		ge of I (mn	n^4)	Range of		ge of I (mn		Range of			1^4)		
	Rar I1	nge of I (mn			Rar I1	nge of I (mn I2	1^4) !3		Rar I1	ige of I (mn	n^4) I3								1 ⁴)		
Range of E (MPa) Ec1	Rar I1 -8.1	nge of I (mn I2 -5.7	n^4) 13 -2.3	Range of E (MPa) Ec1	Rar I1 -24.2	nge of I (mn 12 -17.0	1^4) -6.8	Range of E (MPa) Ec1	Rar I1 -27.5	ige of I (mn 12 -19.3	13 -7.7	Range of E (MPa) Ec1	Rar	nge of I (mn I2 -20.2	n^4)	Range of	Ran	ge of i (mm			
Range of E (MPa) Ec1 Ec2	Rar I1 -8.1 -8.9	nge of I (mn I2 -5.7 -6.2	n^4) -2.3 -2.5	Range of E (MPa) Ec1 Ec2	Rar 11 -24.2 -26.6	nge of I (mn I2 -17.0 -18.7	1^4) !3 -6.8 -7.5	Range of E (MPa) Ec1 Ec2	Rar I1 -27.5 -30.2	ige of I (mn I2 -19.3 -21.2	-7.7 -8.5	Range of E (MPa) Ec1 Ec2	Rar I1 -28.7 -31,5	nge of I (mn I2 -20.2 -22.1	n^4) 13 -8.1 -8.9	Range of E (MPa) Ec1 Ec2	Ran 11 -34.3 -37.6	ge of i (mm l2	13		
Range of E (MPa) Ec1	Rar I1 -8.1	nge of I (mn I2 -5.7	n^4) 13 -2.3	Range of E (MPa) Ec1	Rar I1 -24.2	nge of I (mn 12 -17.0	1^4) -6.8	Range of E (MPa) Ec1	Rar I1 -27.5	ige of I (mn 12 -19.3	13 -7.7	Range of E (MPa) Ec1	Rar I1 -28.7	nge of I (mn I2 -20.2	n^4) 13 -8.1	Range of E (MPa) Ec1	Ran I1 -34.3	ge of I (mm I2 -24.1	13 -9.6		

INPUT

Ec2 (MPa)

Ec3 (MPa)

Ec4 (MPa)

RANGE OF E

Ec1 (MPa)

35,700 31,300 40,100 33,100 Ec (28days) 29,200 26,800 33,200 29,900 Eci (7days) RANGE OF I l1 (mm^4) 12 (mm^4) 13 (mm⁴) laverage 1.60E+09 2.24E+09 5.60E+09 Idrop panel 1.60E+09 2.24E+09 5.60E+09 Islab 1.60E+09 2.24E+09 5.60E+09 At transfer Short Term 1 Short Term 2 Short Term 3 Long Term Average I DEFLECTION VALUES (mm) Average I Average I Average I DEFLECTION VALUES (mm) DEFLECTION VALUES (mm DEFLECTION VALUES (mm DEFLECTION VALUES (mm) Range of I (mm^4) Range of I (mm⁴ Range of E (MPa) Range of E (MPa) Range of E (MPa) E (MPa) E (MPa) Ec1 Ec2 Ec3 Ec4 -108.0 Sectional I DEFLECTION VALUES (mm) Range of Range of I (mi DEFLECTION VALUES (mm) DEFLECTION VALUES (mm) Range of Range of I (n DEFLECTION VALUES (r DEFLECTION VALUES (mm Range of E (MPa) Range of I (mm^4) E (MPa) E (MPa) E (MPa) E (MPa) -54.9 -60.1 -48.4 -54.2 -109.6 -119.8 At transfe Short Term 1 Short Term 2 Long Term Average I CAMBER VALUES (mm) Average I CAMBER VALUES (mm) Average I CAMBER VALUES (mm) Average I CAMBER VALUES (mm) CAMBER VALUES (mm) Range of E (MPa) Range of E (MPa) Range of E (MPa) E (MPa) E (MPa) Sectional I Sectional I Sectional I Sectional Sectional CAMBER VALUES (mm) CAMBER VALUES (mm) CAMBER VALUES (mm) CAMBER VALUES (mm) CAMBER VALUES (mm) Range of E (MPa) E (MPa) 33.8 36.8 29.7 33.0 13.5 49.0 53.4 14.0 15.3 12.3 16.9 18.4 14.9 16.5 Ec1 16.9 Ec1 At transfer Short Term 1 Short Term 2 Short Term 3 Long Term Average I TOTAL DEFO Average I TOTAL DEFO Average I TOTAL DEFORMATION (mm) Average I TOTAL DEFORMATION (mm) Average I MATION (mm) TOTAL DEFORMATION (mm) Range of E (MPa) Range of I (m E (MPa) E (MPa) Ec1 Ec2 -8.3 Ec1 Ec2 -35.8 -25.6 -10,2 -11.3 Ec1 -40.5 -29.0 -30,3 -33,2 Ec1 -36.1 -14.5 -44.5 -35.7 -40.3 -31.8 -25.5 -28.8 -39.4 -28.1 Sectional Sectional I Sectional I Sectional I Sectional I TOTAL DEFORMATION (mm) TOTAL DEFOR MATION (mm) TOTAL DEFORMATION (mm) TOTAL DEFORMATION (mm) TOTAL DEFORMATION (mm) Range of E (MPa) Range of I (mm⁴) Range of I (mm⁴) Range of I (mm^4) E (MPa) E (MPa) E (MPa) Ec1 -28.9

Ec1

-40.5 -44.4

-36.0