PREDICTION OF DEFORMATIONS IN POST-TENSIONED PRESTRESSED SUSPENDED SLABS IN TALL BUILDINGS

Thomas J. Vincent B.E. Civil Engineering (Hons.)

A thesis submitted in fulfilment of the requirements for the degree of Master of Engineering

at

The University of Adelaide (Faculty of Engineering)

July 2008

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

.....

.....

John VINCENT, Thomas

Date

Acknowledgements

I would like to thank all those people who have assisted me throughout the preparation and completion of this thesis. In particular, I wish to extend my gratitude and appreciation to my primary supervisors; Dr. Togay Ozbakkaloglu and Dr Rudolf Seracino who guided me through my research and helped expand my knowledge, confidence and expertise. I am very appreciative of their help, guidance and constructive criticism in producing this thesis and associated papers. My appreciation is also extended to my secondary supervisors; Dr Daksh Baweja and Dr.William Kaggwa who supported this research with contributions in their specific fields of knowledge.

I am very grateful for the contribution to this thesis by both Built Environs Pt Ltd and Readymix, Rinker. The support supplied from these companies was vital for obtaining the vast amount of data required in this research as well as guidance and management from the concrete construction industry. My gratitude is also extended to Engineering Surveys Pty Ltd for completing the essential stage of accurately surveying the slab deformations.

I would like to thank the Civil, Environmental and Mining Engineering laboratory staff at The University of Adelaide. The laboratory training and guidance provided by the laboratory staff was a crucial requirement in the completion of this research.

Publications

The following three journal publications have been prepared from the research performed and displayed in this thesis. At the time of completion of this thesis the papers are still being finalised and hence are unpublished.

Vincent, T. J., Ozbakkaloglu, T. and Seracino, R. *Design and Construction Challenges of a Partially Prestressed Building*.

Vincent, T. J., Ozbakkaloglu, T. and Seracino, R. *Statistical Variance of Concrete Material Properties and their effect on Member Performance.*

Vincent, T. J., Ozbakkaloglu, T. and Seracino, R. Advances in Predicting Concrete Member Deformations Accurately Under Service Loads.

Abstract

The research presented in this thesis focuses on the accuracy of predicting deflections and cambers in partially prestressed suspended slabs. Precision in predicting this behaviour accurately is complex due to the large number of variables which affect the behaviour of suspended prestressed slabs. This level of complexity is particularly relevant for post tensioned slabs due to the numerous on site construction steps. Many of the variables are hard to determine accurately due to their tendency to be unique for each construction site. Variables such as ambient temperatures, concrete material properties, stressing times, applied loads, loading times, prop movement and humidity are all examples of these properties. Hence, when predicting the behaviour of post tensioned suspended slabs of a multi storey building there always remains a degree of uncertainty. The research presented in this thesis addresses crucial areas of this topic and ultimately aims to supply reinforced concrete designers and constructors with additional confidence when predicting this behaviour.

The requirement for this project surfaced during the design stages of 151 Pirie, a multistorey building constructed in Adelaide, Australia. The design project for 151 Pirie was particularly complex due to a very ambitious construction timeline. The strict construction timeline was imposed due to the contractual agreement of early occupancy of the top three floors (of a 9 storey building). The client purchasing the top floors required functioning office space within a matter of months. This contract created a construction priority of erecting the bare structural requirements up to and including the top three floors in the shortest possible time. Fittings and services to the top three floors was then the secondary priority. Fitting and services to the lower floors (which would usually be achieved before the upper floors) would be performed at a later date. Excessive deflection limits of the slabs due to the accelerated construction were a major concern for the client. The effect on the deformation performance due to the accelerated construction was difficult to predict for the designer. Therefore, this project was born to help supply confidence to the designer and concrete supplier for this construction scenario.

This research project was designed to assist in the close monitoring and recording of the construction process of 151 Pirie. Due to the nature of data collection, data from this construction site would be limited in its benefits for the current construction. However, the data obtained would be vital for future projects by providing a log of onsite slab performance data as well as explanations of delays or other general outcomes with the construction process. Therefore, the aim of this research is to present the issues that were faced, the methods used to overcome these issues

iv

as well as displaying the vast amounts of site specific data documented within this project for future reference.

In this research a wide range of concrete material properties were collected and monitored closely on site as well as in the laboratory. The experimental testing created large detailed database of concrete material properties as well as other relevant factors such as surveyed deflections and construction timing. Concrete material properties were the primary focus of this research due to their direct effect on member performance. The database was sufficiently large to allow a meaningful statistical data analysis to be performed on the compressive strength (f_c), modulus of elasticity (E_c) and tensile strength (f_t) of the concrete samples. This analysis supplied a detailed understanding of the statistical relationship between different concrete material properties.

A Monte Carlo simulation was performed, with multiple deflection and camber models, to create a statistical distribution of predicted deflections and cambers from the statistical distribution of concrete material properties. This statistical output is then critically analysed and compared to the surveyed data. Proposed improvements to the process of predicting deflections and cambers have been outlined. These improvements have then been utilised in the construction of a finite element style program.

Finally, the multiple predictions of column strip and mid panel deformation are compared to the short term surveyed deflections. It is summarised that the improvements suggested and implemented in the finite style analysis yield results with a higher degree of accuracy. The accuracy and benefits of the suggested improvements has been justified and proven by the application of multiple examples and a parametric study.

Table of Contents

Declaratio	Dn	i
Acknowle	edgements	ii
Publicatio	ons	iii
Abstract		iv
Table of C	Contents	vi
List of Fig	gures	ix
List of Tal	bles	xii
List of No	otation	xiii
1. INTR	RODUCTION	1
1.1. ′	The research topic	1
1.2.	Research methodology	4
1.3.	Structure of thesis	5
2. LITE	ERATURE REVIEW	6
2.1.	Introduction	6
2.2.	History of Prestressing	6
2.3.	Deflection and camber control of slabs	
2.3.1	. Past	
2.3.2	. Present	
2.4.	Material properties of concrete	
2.4.1	. Compressive Strength (f _c)	
2.4.2	. Modulus of Elasticity (E _c)	
2.4.3	. Tensile Strength (f _t)	16
2.4.4	. Shrinkage	19
2.4.5	. Creep	
2.5.	Maturity of concrete	
2.6.	Effect of Construction methods on deflections	
2.7.	Applied Loads	
2.8.	Conclusion	
3. EXPL	ERIMENTAL PROGRAM	
3.1.	Introduction	
3.2.	Site Specific Details	
3.2.1	. The Site	
3.2.2	. 151 Pirie Slab Detailing	
Thomas Vincent	vi	2008

Prediction of Deform	nations in Post-Tensioned Prestressed Suspended Slabs in Tall Buildings.	Table of Contents
3.2.3.	Strength Specifications	31
3.2.4.	Concrete Mixes and Materials	32
3.2.5.	Concrete Placement and Levelling	
3.2.6.	Experimental Testing Program	
3.2.7.	Surveying Plan	
3.3. Co	oncrete Material Properties Results	
3.3.1.	Compressive Strength (f _c)	
3.3.2.	Modulus of Elasticity (E _c)	47
3.3.3.	Tensile Strength (f _t)	
3.3.3.1	Splitting Tensile Strength (STS) test results	
3.3.3.2	Flexural Tensile Strength (FTS) conversion results	56
3.3.4.	Creep	
3.3.5.	Shrinkage	59
3.3.6.	Summary of Acquired Material Property Data	59
3.4. Aı	nalysis of Concrete Material Properties	63
3.4.1.	Introduction	63
3.4.2.	Compressive strength (f _c)	63
3.4.3.	Modulus of Elasticity (E _c)	66
3.4.4.	Tensile Strength (f _t)	70
3.5. Si	te Specific Recorded Data	74
3.5.1.	Cycle Time Monitoring	74
3.5.2.	The Effect of Concrete Performance on Member Performance	76
3.5.3.	Temperature Monitoring	77
3.5.4.	Slab Deformation Surveying	80
3.6. Su	ımmary	
4. PREDI	CTION OF SLAB DEFORMATIONS	
4.1. In	troduction	
4.2. De	etermination of Accurate Inputs for Deflection Prediction	
4.2.1.	Post-tensioned Tendon Force Calculations	85
4.2.2.	Applied Loads Calculations	
4.2.3.	Determining Accurate Moment of Inertia	
4.3. Aı	nalysis of Slab Deformation Prediction Methods	91
4.3.1.	Numerical Approach to Slab Deformation Prediction	
4.3.2.	Monte Carlo Simulation of Slab Deformation Prediction	100
4.3.2.1	Introduction of Monte Carlo Simulation Method	

4.3	3.2.2.	Explanation and Justification of Monte Carlo Simulation	
4.3	3.2.3.	Results of the Monte Carlo Simulation	
4.3	3.2.4.	Summary of Monte Carlo Simulation	
4.3	3.3.	Finite Element Method to Slab Deformation Prediction	
4.3	3.3.1.	Introduction to Finite Element Method	
4.3	3.3.2.	Explanation of Finite Element Method	
4.3	3.3.3.	Finite Element Method Results	
4.3	3.3.4.	Summary of the Finite Element Method	
4.3	3.4.	Summary of Deformation prediction methods	
4.4.	Con	parison of Deformation Predictions to Surveyed Values	
4.5.	Lim	itations of Accuracy	
5. CC	ONCLU	JSION AND RECOMMENDATIONS	
5.1.	Rese	earch Conclusion	
5.2.	Reco	ommendations for future research	
Referen	nces		

APPENDICES

Appendix A - Long Term Deflection Prediction Method Proposed by Hwang and Chang (1996).

- Appendix B Examples of modelling construction effect of propping and back propping by the use of load factors (k) from J.F.M.A. Prado et al (2003).
- Appendix C 151 Pirie Slab Structural Plans Incorporating Photos of Slab Details.
- Appendix D Concrete Mixtures and Slab Pour Details.
- Appendix E Concrete Compressive Strength (f_c) Results from the Experimental Analysis.
- Appendix F Concrete Modulus of Elasticity (E_c) Results from the Experimental Analysis.
- Appendix G Detailed Outcomes of Data Analysis.
- Appendix H Results of Deformation Prediction Methods.

List of Figures

Figure 1-1 Examples of concrete compressive strength gain2
Figure 2-1 Growth of prestressed concrete industry in United States and Canada7
Figure 2-2 Mid panel deflection prediction methods10
Figure 2-3 Comparison of Modulus of Elasticity (E _c) Models
Figure 2-4 Typical instantaneous stress strain response and associated slope, E_c 16
Figure 2-5 Typical long term stress strain response and associated slope, E_c
Figure 2-6 Comparison of Splitting Tensile Strength Models
Figure 2-7 Comparison of Flexural Tensile Strength Models
Figure 2-8 Relationship between STS and FTS for NSC (Narrow and Ullberg, 1963)19
Figure 2-9 Creep and shrinkage effects under constant sustained stress (Warner et al. 1998)21
Figure 2-10 Time-Temperature relationships of curing concrete
Figure 2-11 Dead end Failure in a prestressed slab (Choong J, 2003)
Figure 2-12 Load and deflection histories for partially prestressed members (Warner et al, 1998)27
Figure 3-1 151 Pirie Construction (mid 2005)
Figure 3-2 151 Pirie Completed (June 2006)
Figure 3-3 Examples of concrete compressive strength gain
Figure 3-4 Compressive strength gain of N32 and N40 concrete mixes
Figure 3-5 Concrete placement and finishing techniques used for the PPS slabs at 151 Pirie34
Figure 3-6 Curing conditions of concrete cylinders
Figure 3-7 Long Term Deflection Prediction Plot from Initial Design Stages using RAM Concept 38
Figure 3-8 Surveying Grid Established based on Long Term Deflection Predictions
Figure 3-9 Experimental testing apparatus at the University of Adelaide Annex Laboratory
Figure 3-10 Premature failure of early age concrete compression tests
Figure 3-11 Premature failure due to eccentric loading41
Figure 3-12 Comparison of Strength results from Readymix and Adelaide University laboratories.
Figure 3-13 Example f' _c gain for differently cured N32 and N40 concrete
Figure 3-14 A summary of experimentally tested f' _c 44
Figure 3-15 Compressive strength performance of the N32 and N40 mixes
Figure 3-16 f _c performance of the N32 and N40 mixes for Readymix's samples
Figure 3-17 Modulus of elasticity two ring test rig47
Figure 3-18 Data acquisition process for fc and E_c
Figure 3-19 Example E_c gain for differently cured N32 and N40 concrete
Thomas Vincent is 2008

Figure 3-20 A summary of experimentally tested E _c .	50
Figure 3-21 Modulus of Elasticity performance of the N32 and N40 mixes.	51
Figure 3-22 The Splitting Tensile Strength (STS) testing rig	52
Figure 3-23 An example of a failed specimen from the STS test.	53
Figure 3-24 Australian Standards testing rig requirement for obtaining STS (AS 1012.10, 1985)) 53
Figure 3-25 A summary of experimentally tested STS values.	55
Figure 3-26 A summary of experimentally tested FTS values.	57
Figure 3-27 Creep rig arrangement	58
Figure 3-28 Material Property testing schedule for 151 Pirie	60
Figure 3-29 Material Property testing schedule for 151 Pirie continued	61
Figure 3-30– Compressive strength variability (Warner et al. 1998)	65
Figure 3-31 Modelling E_c from experimental values of compressive strength.	67
Figure 3-32 Simplified E _c Model	68
Figure 3-33 Scatter of E_c values from the obtained model	69
Figure 3-34 Determination of E_c model's dependence on f_c	69
Figure 3-35 ft modelling from the experimental data	72
Figure 3-36 Scatter of f_t values from the obtained model	72
Figure 3-37 Determination of the STS prediction model's dependence on f_c	73
Figure 3-38 Cycle times experienced at 151 Pirie	75
Figure 3-39 RAM Concept's model of tensile strength	77
Figure 3-40 Thermocouple equipment and arrangement on site	78
Figure 3-41 Thermocouple readings obtained from 151 Pirie	79
Figure 3-42 Surveyed grid on each slab	80
Figure 4-1 Labelling of the 2 bay grid points as well as the mid and column strips	84
Figure 4-2 Prestressing arrangement under analysis for the 2 bay grid (measurements are in m	m)
	86
Figure 4-3 Prestressing stress for each strand in tendons situated in North-South direction	86
Figure 4-4 Prestressing stress for each strand in tendons situated in East-West direction	86
Figure 4-5 Factors considered in determining effective width (Oehlers and Bradford, 1999)	89
Figure 4-6 Factors considered by Eurocode 4 (1994) in determining effective width (Oehlers and	ıd
Bradford, 1999)	89
Figure 4-7 Graphical representation of the deformations predicted via numerical analysis	98
Figure 4-8 Flow diagram of numerical serviceability behaviour prediction	. 101
Figure 4-9 Flow diagram of statistical approach to serviceability behaviour prediction	. 101
Figure 4-10 Flow diagram of the Monte Carlo Simulation.	. 102

х

	-
Figure 4-11 Justifying the accuracy of statistical array of compressive strengths	103
Figure 4-12 Justifying the accuracy of material property models	103
Figure 4-13 Results of Monte Carlo simulation for predicting slab deformations	105
Figure 4-14 Definition of slab strip and point labelling	108
Figure 4-15 Mid point deformations utilising the complete Collins and Mitchell (1997)	method110
Figure 4-16 Creep data from Eblen et al. (2004)	115
Figure 4-17 Graphical representation of accurate determination of E_c under sustained	<i>loads</i> 118
Figure 4-18 An example of E_c values for camber and deflection	120
Figure 4-19 Sample output from the First Principle Approach Program	121
Figure 4-20 Comparison of deformation profiles utilising I average and I sectional	122
Figure 4-21 Results of First Principles Approach for predicting slab deformations	123
Figure 4-22 Comparative summary of deformation predictions and surveyed values	130
Figure 4-23 Experimentally measured E_c scatter	136
Figure 4-24 Simulated 28 day E _c scatter	137
Figure 4-25 Simulated 7 day E _c scatter	137

List of Tables

Table 2-1 Expressions for predicting slab deflections exposed to UDL loadings
Table 2-2 Expressions for predicting slab camber. 11
Table 2-3 Factors which affect deflections in PPS Slabs
Table 2-4 Expressions for Modulus of Elasticity (E_c) 14
Table 2-5 Expressions for Tensile Strength
Table 2-6 Expressions for Curvature caused due to Shrinkage 20
Table 3-1 Concrete mix details
Table 3-2 Summary of testing cylinders for each pour
Table 3-3 Statistical arrangement of 7 day f_c from separate laboratories.64
Table 3-4 Summary of statistical arrangement of 7 day f_c values.64
Table 3-5 Statistical arrangement of 28 day f_c from separate laboratories.64
Table 3-6 Summary of statistical arrangement of 28 day f_c values.64
Table 3-7 Models for obtaining E_c from 28 day values of compressive strength
Table 3-8 Modelling 28 day values of E_c from f'_c
Table 3-9 Final Outcomes of Modelling E_c from f'_c 70
Table 3-10 A comparison of modelled values of STS to measured values
Table 3-11 A comparison of modelled values of FTS to converted values of FTS from STS values. 71
Table 3-12 Final outcomes from modelling f_t from f_c
Table 3-13 Comparison of survey deformations to initially prediction deformations
Table 3-14 Surveyed deformation values at column points
Table 4-1 Summary of Accurate Material Properties 85
Table 4-2 Prestressing summary for each column strip and middle strip
Table 4-3 Applied Loads utilised in 151 Pirie's deformation analysis 88
Table 4-4 Comparison of Column Strip Moment of Inertias 90
Table 4-5 Example comparison of I_{gross} to I_{trans} for the PPS slab
Table 4-6 Expressions for predicting slab deflection and camber for use in numerical analysis93
Table 4-7 Initial comparison of Camber and Deflection equations for short and long term loading
Table 4-8 Comparison of deflection and camber predictions with altered material property inputs97
Table 4-9 Percentage of full creep for application of prestress 115
Table 4-10 Summary of input for first principle style analysis 116

List of Notation

$$\begin{split} &\alpha_{E} = \text{factor to account for aggregate type (CEB-FIB, 1993)} \\ &\beta_{sh} = \text{a factor representing the support conditions of the beam/slab (Warner et al. 1998).} \\ &\Delta = \text{member deflection} \\ &\Delta_{x} = \text{member deflection along strip x} \\ &\epsilon = \text{strain} \\ &\epsilon_{sh} = \text{strain due to concrete shrinkage} \\ &\epsilon_{s} = \text{compressive strain in steel reinforcement} \\ &\mu = \text{mean value} \\ &\sigma = \text{standard deviation} \\ &\sigma = \text{stress} \\ &\Phi = \text{member curvature} \\ &\Phi_{sh} = \text{member curvature due to shrinkage of concrete} \\ &\nu = \text{Poisson's ratio} \end{split}$$

- A_{sc} = area of steel reinforcement in compression
- A_{st} = area of steel reinforcement in tension
- C_{ca} = factor to account for aggregate type (Iravani, 1996)
- $C_x =$ Member camber at point x
- d = depth of slab to lower reinforcement
- D = total depth of slab
- D = concrete cylinder diameter
- DEMEC = <u>De</u>mountable <u>Mec</u>hanical Strain Gauge
- e = eccentricity of applied prestressing force
- E = modulus of elasticity
- E_c = modulus of elasticity of concrete (typically at 28 days)
- f'_c = characteristic compressive strength of concrete (typically at 28 days)
- f'_t = characteristic tensile strength of concrete
- f_c = compressive strength of a sample of concrete
- f_{ck} = characteristic compressive strength of concrete at 28 days, typically assumed to be $f_{cm} 8$ MPa
- f_{cm} = mean compressive strength of concrete

- f_t = tensile strength of a sample of concrete
- FTS = flexural tensile strength of concrete
- h = slab height
- H = relative humidity of concrete
- I = moment of inertia
- $I_{average}$ = Weighted average moment of inertia with respect to length
- I_{sectional} = Sectional values of moment of inertia
- $I_{trans} = Transformed moment of inertia$
- l = member length
- $L_{ef} = effective member length$
- FTS = flexural tensile strength of concrete
- I = moment of inertia
- I_{cr} = moment of inertia of cracked section
- $I_{ef} = effective moment of inertia$
- $I_g = gross moment of inertia$
- K1 = factor according to slab location (Warner et. al., 1998)
- K2 = factor according to slab dimensions (Warner et. al., 1998)
- $k_c = a$ factor which accounts for volume-to-surface ratio (Collins and Mitchell, 1997)
- $k_{cs} = long term deflection multiplier$
- k_f = factor which accounts for lower creep of higher strength concretes (Collins and Mitchell, 1997)
- l = length
- L = span of member, to centre of each support
- L_n = span of member, to face of each support or drop panel
- M = maturity index
- M_{cr} = applied moment to cause cracking
- M_s = applied moment at service load
- $p = tensile reinforcement ratio (A_{st}/bd)$
- $p_c = compressive reinforcement ratio (A_{sc}/bd)$
- P = Prestressing force
- PPS = Partially Prestressed Suspended
- RC = Reinforced Concrete
- STS = splitting tensile strength of concrete
- t = time
- t_{28} = time at 28 days
- T = indirect tensile strength of concrete cylinder

- TD_x = Total Deformation of the member at point x
- UDL = Uniformly Distributed Load
- UTS = Ultimate Tensile Strength
- w = applied uniformly distributed load
- $w_{eff} = effective width of slab$
- $\mathbf{w}_s = sustained uniformly distributed load$
- y = distance from neutral axis down to the member centroid