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Chapte

Contributions to Rotman
Lens Theory

HE previous chapter introduced the Rotman equations in their stan-
dard form and described the three levels of analysis used to predict
the performance of the Rotman lens. This chapter first rewrites the
Rotman equations to suit the intended application of a feed network for a

linear antenna array. It then uses these equations to examine the aberration

performance of an ideal Rotman lens feed network.

An improved method of lens geometrical aberration characterisation is de-
scribed that correctly separates beam pointing error, which does not degrade
the beam-forming capability of the lens, from higher order errors that are re-
sponsible for increasing sidelobes and widening the main beam. This method
is used to show how the parameter g, in the Rotman equations, is manipulated

to minimise lens path length errors.

The new method of characterising geometrical aberration is then used to find
the optimal focal arc for any set of Rotman variable values. This analysis
demonstrates that the circular focal arc benefits very little from refocusing

and is the best focal arc choice for the Rotman lens.
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5.1 Normalisation by Aperture Size

5.1 Normalisation by Aperture Size

The original Rotman lens path length equations were normalised by the focal length
F'. Although this approach is consistent with lens specifications in optics, and simplifies
the solution to the path length equations, it means design studies involving the Rotman
parameters result in different sized linear array apertures. As a multiple beam-forming
network for a linear antenna array, it is convenient to rewrite these equations normalised

by the size of the array aperture 2/Nyax.

The focal arc, lens contours and antenna aperture interrelationship for four lens geome-
tries with different ratios of focal length, F', and aperture size, 2N, ., are illustrated in
Figure 5.1. Figure 5.1(a) presents these four lenses using the standard form of the Rot-
man equations while Figure 5.1(b) shows the same four lens geometries scaled to drive
an antenna aperture size of 1. The standard Rotman equations allow the size of the ar-
ray aperture and lens contour to vary while the focal arc is kept fixed. In contrast, the
renormalised equations allow the focal arc and beam port spacing to vary, while the lens

contour remains approximately the same width and the array aperture is fixed.

The Rotman equations set the angular positions of the three perfect focal points to the
angular direction of the excited wavefront. This limitation has been removed by varying
the field-of-view independently to the angle of the three perfect focal points. This is
achieved by scaling the dimensions of the lens without scaling the linear antenna array.
The scaling factor is calculated as a trigonometric ratio of «, associated with focal points

Fy and F5, and (3, the angular offset of the resultant planar wave.

Consequently, Rotman designs presented in this thesis introduce two new parameters
illustrated in Figure 5.2. The parameter f is introduced as the ratio of focal length to
aperture size, and the variable 3 as the angular direction of the wavefront associated with

the perfect focal point at a. The parameter F' defined in terms of N,,., becomes

sin(f3)
F =2fNpax—=, 5.1
/ sin(a) (5.1)
and n becomes
N
= —. 5.2
T 2 N 52
The condition that ensures real x and y is rewritten as
1 1
> min (0.5, 5, - ). 5.3
2 min(05. 50 50 63
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Fig. 5.1: Lens renormalisation. The Rotman equations normalise the lens by the distance of the
outer focal points to the origin of the lens. This approach causes the array aperture to vary
with different choices of F, as shown in Subfigure (a). To compare the the performance
of the different sets of Rotman parameters, the size of the array aperture should remain
constant. To this end, the Rotman equations have been rewritten to normalise the lens by
the length of the aperture. The result, shown in Subfigure (b), maintains constant aperture
size and antenna element position for any set of Rotman parameters. Subfigure (a) shows
four lenses with 2nmax = ﬁ, 1, ﬁ, ﬁ, for a = 40°, and g = 1.2633, while Subfigure (b)
presents the equivalent lenses in the new Rotman equations with f = 1.2,1,0.8333, 0.6,
« = 40°, and g = 1.2633.

By redefining the variables F' and n in this way, all lens dimensions are normalised by the
size of the aperture. This formulation highlights the intended application of the Rotman

equations and consequently the process of design and optimisation are greatly simplified.

5.2 Geometric Error Characterisation

The accepted wavefront aberration curve (Rotman and Turner 1963) results from two
different error sources, beam pointing error and higher order error. Beam pointing or
linear error does not undermine the beam pattern, but instead results in an angular
offset of the beam and can be easily corrected by moving the beam port along the focal
arc. Higher order errors are reduced by correctly refocusing the focal arc, but cannot
be completely removed from the system and are the true limit of the theoretical lens
performance. Figure 5.3 is a plot of normalised error as a function of aperture position,

demonstrating that the linear offset caused by beam pointing error, plotted in blue, quickly
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5.2 Geometric Error Characterisation

Figure 5.2: Renormalisation of Rotman equations. The renormalisation of the Rotman equations
results in the new variable 5 to define the beam angle associated with the outer focal
points, F| and F5. The parameter F' is now defined in terms of Npmax, « and 3. This
allows the antenna element spacing to be defined independently to the antenna port

spacing.

dominates the higher order error in green. As a result, optimisation of the Rotman lens
using the approach described by Rotman and Turner (1963), minimises pointing error

3

rather than the higher order error.

To better represent lens errors, the path length error is redefined as the difference in
path length between the linear wavefront and the realised wavefront at each antenna
element. In contrast to the accepted definition described by Rotman and Turner (1963),
no assumption of wavefront direction is made, and the errors are not renormalised by the

focal length F'.

To calculate the aberration of a single beam within a theoretical lens design, the path
length between the desired beam port and each antenna element is calculated. The linear
wavefront that minimises RMS path length error is then calculated and the remaining

RMS path length error is taken as the beam port aberration performance. This procedure
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Figure 5.3: Path length error curves. The accepted definition of path length error includes a linear
component that can be easily removed by moving the beam port along the focal arc.
This linear error causes a shift in the angle of the beam, it does not reduce the gain
or increase the sidelobes. The new definition of path length error is more appropriate
because it recognises this effect. The new definition of path length error is separated

into beam pointing error and RMS path length error.

is repeated for each beam port of the lens, the maximum RMS path length error within

the field-of-view of the lens is referred to as the geometric error of the lens.

The path length errors are proportional to aperture size. For small apertures and wide
beam widths, these errors are insignificant. As the desired aperture becomes larger, these
errors become an important consideration of the lens design. The four parameters «, (3, g

and f not only define the shape of the lens contours, they also strongly effect aberrations.

5.2.1 Geometric Errors and Optimum g

The parameter ¢ is chosen to minimise the aberrations for all beam port positions on
the focal arc. Equations (4.21) and (4.22) have been suggested to calculate g that are
reported to minimise the path length errors. However, little work has been carried out to
substantiate this. Figure 5.4 plots the geometric error as a function of g for an aperture
and focal length of 1 and o = [ = 40°. A clear minimum is present demonstrating that a
simple gradient optimisation effectively finds the optimal value of ¢ for any combination
of Nyax, f, a and [.
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Figure 5.4: Aberrations and g. Discussion about the optimal choice of g have been popular in the
literature. This figure shows the maximum RMS path length error, normalised to aperture
length, for a range of g, & = 40° and f = 1. The figure shows that there is a single

optimal value of g that can be found using a gradient optimiser.

To evaluate the accuracy of the two approximations for g, g = 1 + %2 made by Rotman
and Turner (1963) and g = 1/ cos(«) made by Smith (1982), the optimal value for ¢ has
been found for a range of o and f. The optimum value of g is chosen to minimise the
RMS path length error for a focal arc covering +«. Figure 5.5(a) shows the value of
g suggested by Rotman and Turner (1963) in red and by Smith (1982) in blue. These
approximations are a function of o and independent of f. This results in only one line
for each approximation. Figure 5.5(b) shows the optimal value of g for 0 < o < 70 and
f =0.501,0.6,1,2. The optimal value for g closely follows the approximation suggested
by Smith for f > 1. Rotman’s approximation yields better results for f < 1 and a <
40°.

For lens designs driving a small aperture, the lens aberrations are small and need not
be optimised as both approximations yield acceptable results. Since most Rotman lenses
are designed for limited field-of-view and compactness, the approximation suggested by

Rotman will generally result in smaller errors.

When large apertures are being excited, the approximations are inadequate, causing
degradation of the lens performance. Consequently, the optimal value of g should be

found using numerical optimisation.
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Fig. 5.5: Estimate of optimal g. Subfigure (a) shows the value of g that Rotman and Turner (1963)
and Smith (1982) suggested should be used, and Subfigure (b) compares these to the
optimal value of g found using numerical optimisation. The optimal value of g converges
on 1/ cos(«), the value suggested by Smith, as f >> 1. As f — 0.5 the optimal value of
g — 1. Since most practical implementations of a Rotman lens will choose 0.6 < f < 1,

numerical optimisation must be used to find the optimal value of g.

5.2.2 Geometric Errors Associated with f

The design parameter f is the normalised distance from the origin of the lens to the two off-
axis focal points. Thus, f is effectively a scaling factor that varies the size of the Rotman
lens relative to the aperture size. Figure 5.6(a) shows lens contours for different values of
f, demonstrating that while the shape of the lens contour and focal arc remain constant,
the portion of the lens contour that is utilised by the aperture is inversely proportional
to f. By varying f, the lens contour and focal arc can be made to have similar widths.
Although the antenna port spacings remain relatively constant, the beam port spacings
vary considerably. Care must be taken to ensure that the port spacing allows enough
space for practical port implementation. Figure 5.6(b) shows the normalised delay line
length associated with each set of lens contours shown in Figure 5.6(a). While the lens
contour is approximately circular, the delay line lengths remain small. As f is reduced

the lenses curvature becomes stronger and the length of the outer delay lines increase.

Minimum f

The size of the lens is often required to be compact. Lens size can be reduced significantly

by reducing the value of f. Practical lens geometries are achieved using values of f
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Fig. 5.6: Effect of parameter f. The variable f controls the size of the lens relative to the size of the
aperture as seen in Subfigure (a). Subfigure (b) demonstrates that the length of the delay
lines must be increased as the lens becomes smaller in response to the increased curvature

of the array arc. These figures show the effect of varying f while & = 40°, and g = 1.2633.

approaching that defined by Equation (5.3). Figure 5.7 plots the minimum value of f
for a range of g and a. The most compact lens implementations should define the focal
length to be one fourth the aperture size or f = 0.5. However design flexibility is limited

since the parameter g must be kept close to unity for small values of a.
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Figure 5.7: Minimum f. The length of the lens is minimised by choosing f to be small. The minimum
value of f for which a solution to the Rotman equations exists, is shown in this figure
for g = 0.8,1,1.05,1.1,1.15,1.2. The length of the Rotman lens body can be reduced

to approximately half the aperture width.
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Chapter 5 Contributions to Rotman Lens Theory

By making f small, path length errors are increased. The increasing error is a consequence
of increasing n in the original equations. Figure 5.8 plots the worst case RMS path length
error, for a range of f and a = 15°, 30°, 45°, 60° for a field-of-view of +a, and shows that

low errors are achieved in designs with narrow fields of view and where f is large.
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Figure 5.8: RMS path length error versus f. The error performance of the lens is inversely propor-
tional to the variable f and therefore the size of the lens. This figure shows the minimum
achievable error as f and « are varied, showing that errors are reduced as f becomes

larger and o becomes smaller.

Care must be taken to ensure that the increased aberrations, as f is reduced, do not
adversely effect the performance of the lens. Size reduction using this technique is only

practical when the systems aberration requirements are relaxed.

5.2.3 Geometric Errors Associated with o, § and Beam Port Po-
sition

Although the original Rotman lens equations set the two angles, a and (3, to be equal,
the design equations become much more flexible when 3 is set to meet the field-of-view
requirements and « is defined independently. Figure 5.9 shows lens contour diagrams
for a typical lens design, f =1, g = 1.2, # = 40°, and « is varied for a fixed field-of-
view. Equation (5.1) shows that as « is reduced the distance between the outer focal
points and the origin of the lenses is increased. Figure 5.9(a) shows that the focal arc
width and beam port spacing remain almost constant. Unlike the beam port spacing, the

antenna port spacing varies considerably. The difference between « and [ is achieved by
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5.2 Geometric Error Characterisation

varying the antenna port spacing along the lens contour while keeping the array element
spacing constant. This results in more compact lenses with closely spaced antenna ports
for large values of a, and larger lenses with widely spaced antenna ports for small values
of a. Figure 5.9(b) shows the delay line lengths associated with the lens contours of
Figure 5.9(a). As expected, the delay line lengths closely resemble the case where o = [

shown in Figure 4.5.
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(a) Lens contour curves. (b) Delay line lengths.

Fig. 5.9: Effect of parameter o. The variable « defines the angle between the central focal point and
outer focal points. When « is varied while keeping (3 constant, the variable « also scales
the size of the lens. This figure shows the effect of varying o on the lens contour and
delay line lengths of the Rotman lens for o = 30°, 40°, 60°, f =1, and g = 1.2633 while
keeping field-of-view constant, 8 = 40°. Both lens contour curves and delay line lengths

are normalised by the aperture size.

The focal arc is assumed to be circular, joining the three focal points of the Rotman lens.
The beam ports are placed at positions on this focal arc corresponding to the required
beam angles. Figure 5.10(a) shows how the RMS path length error varies with beam
angle, and the corresponding beam port position on the focal arc, for § = a. The phase
error versus beam angle show errors increase rapidly past «. For this reason, most Rotman
lens implementations make « equal or only slightly less than the maximum scan angle

required by the system (Rotman and Turner 1963).

The work so far has assumed that 3 = a. By defining 3 independently there is more
freedom to optimise the lens design. Figure 5.10(b) shows the RMS path length error as
a function of beam angle for four lenses, o = 25°, 30°, 40°, 60°, while setting 5 = 40°.

The error increases almost linearly as o becomes larger. This shows that by setting [
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Fig. 5.10: Relationship between aberrations, f and g. The error performance of each beam of the
Rotman lens is effected by the beam angle and the variables o and 3. Subfigure (a)
demonstrates the relationship between beam angle and oo = 3 while Subfigure (b) shows

the relationship between beam angle and a while 5 = 40°.

to satisfy the field-of-view requirement of the lens, a may be varied to optimise the lens

without substantial degradation of performance.

5.3 Alternate Focal Arc and Refocusing

Rotman and Turner (1963) assume a circular focal arc connecting the three perfect focal
points, however other focal arcs have been used in the literature. Singhal et al. (1998),
using parabolic, hyperbolic, elliptical and straight focal arcs, conclude that a lens designed
using an elliptical focal arc is more compact compared to the circular focal arc lens, with
comparable path length errors. Another approach used extensively in the design of dual
focal point lenses is refocusing (Ruze 1950). Surprisingly, refocusing of the Rotman lens
has attracted very little attention in the literature. A convincing argument has not been

presented to suggest one focal arc design is superior to any other.

Refocusing the focal arc of the Rotman lens yields the focal arc exhibiting the minimum
path length error and, by definition, the optimal focal arc. In this way, refocusing is
used here to select the best focal arc approximation. Figure 5.11 shows the minimum
achievable error using a refocused focal arc compared to a circular focal arc. The figure
clearly shows that the circular focal arc results in the same optimal ¢ as the refocused
focal arc, at the same magnitude of error. Figures 5.11(a) and 5.11(b) show that small

improvements in aberration performance can be achieved for field-of-view less than 30°.
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5.3 Alternate Focal Arc and Refocusing

However, the focal arc closely resembles the circular focal arc and does not substantially

reduce size of the lens.
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Fig. 5.11: Aberration performance of circular and refocused focal arcs. The minimum phase error
cannot be improved significantly by refocusing of the focal arc. The size of the lens can be
reduced by selecting the second local minimum of the refocused focal arc. These figures
show the relationship between the normalised worst case RMS path length error at any
point on the focal arc for the circular and optimised focal arc. These plots show the

additional local minimum at a lower g for the optimised focal arc

Figures 5.11(c) and 5.11(d) show that for large fields of view, the second local minima in
path length error as a function of g remains. Figure 5.12(a) demonstrates the refocused
focal arc compared to the circular focal arc design. The refocused focal arc does not
resemble any of the alternate focal arcs suggested in the literature. Although the errors
are slightly greater than that of the optimal circular focal arc, the value of g is reduced

significantly resulting in a more compact lens. The position of the second local minima
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for the refocused lens is shown in Figure 5.12(b) compared to the optimal ¢ and the

approximations for ¢ made by Rotman and Turner (1963) and Smith (1982).
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Fig. 5.12: Refocused Rotman lens size reduction. Refocusing of the focal arc allows smaller values
of g to be used without substantial increases in phase error. This is clearly seen in
Subfigure (a) showing the optimal circular and optimal refocused focal arc for o = 60°.
Subfigure (b) shows the estimate of optimal values of g suggested by Rotman and Turner
(1963) and Smith (1982), and optimal values of g found using optimisation of circular

focal arc and optimised focal arc.

There are two choices when selecting the best focal arc for the Rotman lens, the circular
focal arc or the refocused focal arc. The circular focal arc results in the smallest errors
and is easy to implement. If size constraints or other limitations make the circular focal
arc unsuitable, the refocused focal arc has comparable performance resulting in a more
compact lens. The difficulty and computation time involved in optimising the value of ¢

for the Rotman lens using a refocused focal arc makes this option unattractive.

5.3.1 Symmetric Rotman Lens

The symmetric Rotman lens connects the three focal points with a reflection of the lens
contour. The front-to-back symmetry makes this Rotman lens implementation ideal for
reflection-based lenses and applications requiring focusing in both directions. The sym-
metrical Rotman lens is also claimed to have a number of performance advantages over

standard Rotman lens designs.

To compare the performance of the symmetrical Rotman lens to the asymmetric lens a

set of equations expressing g, @ and n in terms of A and C, must be defined. Following
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5.3 Alternate Focal Arc and Refocusing

this an error analysis of the symmetrical Rotman lens is performed in the same way as

the asymmetrical lens.

Fo(0,24 - C)

Figure 5.13: Symmetrical Rotman lens geometry. The symmetrical Rotman lens replaces the focal

arc with a mirrored array arc. The symmetrical Rotman lens equations are based on

the two variables A and C. For the first time, these variables are related to the Rotman

variables F', GG, and «. This has allowed the performance of the symmetrical Rotman

lens to be compared to the standard Rotman lens.

Derivation of Equations

Using a similar approach to Shelton and Kelleher (1961), equations defining ¢g and f in

terms of o can be found. From Figure 5.13, we can write the equations that collimate the

wavefronts from the two off-axis focal points:

ll - lg—i—L—'—]{},
i = I3+ L~k

By subtracting Equation (5.5) from Equation (5.4)

0 — lg—lg—f—Zk',

1

- 5([3 - l2>
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Expressions for the path lengths are:

I, = C, (5.7)
s = V(A= (A-0)2+22,
N EwY (5.8)

Combining Equations (5.7) and (5.8) with Equation (5.6) gives
1
ko= S(VOPEi-0).

The wavefront originating from F should leave the aperture at an angle «. The length

of the aperture can then be found from:

k in(a) 1
- = sin(a) = ——,
8 VA2 +1
s = kVvA2+1.
From Figure 5.13, G = 2A — C' and F = /1 + A? therefore
G
g - F7
_ 2A-C
V14 AT
Also from Figure 5.13 the aperture size is 2s therefore
F
f - %7
o V1+ A2
2k A2+ 1
1
= o5
B 1
Vo ri-C
Shelton’s equations connecting the two variables A and C' are
1 1 C
A = cot(2arctan (5 tan (5 arccot (§)>)), and (5.9)
1
C' = 2cot(2arctan (2 tan (5 arccot(A)))). (5.10)

Now, A = cot(a) and a = arccot(A) therefore Equations (5.9) and (5.10) become

1 1 C
a = 2 arctan(§ tan (5 arccot (5))),

C' = 2cot(2arctan (2 tan (%)))
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5.3 Alternate Focal Arc and Refocusing

The design equations for the symmetrical Rotman lens based on the single parameter «

becomes:

A = cot(a),
C = QCot(Qarctan(Qtan (%)))7
2A - C
it
;= 1 ‘ (5.11)

VC2+4-C

The case for C' = 0 yields the most compact solution to the Rotman equations:

1
a = 2 arctan(é),

~ 53.13°,
f = 0.5,
g = 1.2

Size and Errors

While the width of the lens remains reasonably constant, the depth of the lens varies
considerably with «. The lens contour curves shown in Figure 5.14(a) indicate that the
lens becomes larger as « is decreased, making the symmetrical lens impractically large for
narrow fields of view. Another important feature is that the focal arc and lens contour
remain approximately circular. Figure 5.14(b) shows that while the lens contours change

significantly, the lengths of the delay lines vary only slightly.

The design equations presented above define the parameters f and g from the single
variable a. Figure 5.15 shows how these variables change with o and compare them with
the values of g suggested by Rotman and Turner (1963) and Smith (1982) and the optimal
value of g found using the method described in Section 5.2. The curve for optimal g does
not resemble that from Figure 5.5(b) because the value of f is also changing. The optimal

g becomes equal to the symmetrical case as a — 53.13°.

Unlike the circular focal arc, the symmetrical lens cannot easily correct beam pointing
error. This is because the position of the beam ports are the same for that of the antenna
ports. To correct beam pointing error, the position of the beam port is moved along
the focal arc, in the case of the symmetrical lens, this results in nonuniform spacing of

the antenna elements. The worst case beam offset is shown in Figure 5.16(a). For small
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Fig. 5.14: Effect of parameter o on symmetrical lens. The symmetrical Rotman lens closely resembles
a Rotman lens with a circular focal arc. The position of each beam port must mirror the
antenna port so beam pointing errors can no longer be corrected. If the lens contour
is allowed to extend past the outer focal points, aberrations increase significantly in the

same way they do for the standard Rotman lens.

aperture sizes the beam pointing error is small, however for applications requiring narrow

beams and large field-of-view, the beam pointing error becomes significant.

The remaining error, measured by the maximum standard deviation of the wavefront from
the ideal planar wave, is shown in Figure 5.16(b). The errors are significantly larger than
what is achievable using a circular focal arc. As o — 53.13° the errors become identical.
Figure 5.16(a) also shows the error performance of the circular focal arc using the same

f, g, and « as the symmetrical lens. The error performance of the two is almost identical.

The equation for f assumes that the lens contour and focal arc do not extend past the
outer focal points. By choosing f to be smaller than the value defined by Equation (5.11),
the lens contour continues past the focal points F; and F,. Larger values truncate the
focal arc before it reaches the outer focal points. Figure 5.17(a) demonstrates how the
parameter f effects the symmetric Rotman lens geometry. Figure 5.17(b) shows that
while f is kept less than Equation (5.11), the error remains very similar for symmetrical
and asymmetrical lens designs. The error performance is significantly degraded by using
the symmetrical lens if the focal arc extends beyond the outer focal points when compared
to an equivalent circular focal arc. In all cases the optimised circular focal arc displays

improved aberration performance. These trends are seen for all values of a.
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Figure 5.15: Symmetrical and non-symmetrical lens parameters. This figure shows the relationship
between the Rotman variables of the symmetrical Rotman lens. This is compared to
the optimal g of the circular and optimal refocused focal arc. The values of g suggested
by Rotman and Turner (1963), g = 1+ %2 and Smith (1982), g = 1/ cos(«), are also

shown.

Shelton and Kelleher (1961) suggests six reasons for choosing the symmetric configuration
over the asymmetric lens. Because the design equations for the symmetric lens described
by Shelton are so different from the original Rotman lens equations, a comparison of the
two approaches is difficult. Using the design equations presented in Section 5.3.1 we can
see that the focal arc of any symmetrical lens can be replaced with a circular focal arc
resulting in a lens of equal size. As the focal arc for the symmetrical lens is very close to
circular, the equivalent circular focal arc is almost indistinguishable from the symmetrical

arc.

The symmetrical Rotman lens has few advantages over standard Rotman lens topologies.
The symmetrical topology is ideally suited to reflection based and reversible lens imple-

mentations Shelton and Kelleher (1961). The symmetrical lens equations define values for
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Fig. 5.16: Symmetrical focal arc performance comparison. This figure shows the performance of
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symmetrical Rotman lens compared to circular focal arc and circular focal arc with optimal

g. Subfigure (b) clearly shows that the performance of the the non-symmetrical Rotman

lens is superior while replacing the symmetrical focal arc with a circular focal arc achieves

similar RMS path length error without the pointing error shown in Subfigure (a).
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Fig. 5.17: Effect of f and aberrations. As the symmetrical Rotman lens contour is allowed to increase

beyond the outer focal points, f < 1, the magnitude of the phase aberrations increase

quickly. Subfigure (a) demonstrates how the area of the lens body is reduced as the outer

beam ports and antenna ports are drawn closer together. Subfigure (b) clearly shows that

the standard Rotman lens, shown in light blue, performs better under all conditions.
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f and g where the focal arc and lens contour have identical lengths. This may be useful

in many lens designs as a starting point.

5.4 Chapter Summary

There are many claims in the literature that focal arcs other than the circular solution
offer improved performance and more compact lenses. By finding the optimal focal arc
numerically, for a large range of f, g, and «, results have been compared to the circular
focal arc and symmetrical lens design. This comparison revealed that path length error
improvements are insignificant when the circular focal arc is replaced with the optimal
focal arc. The presence of a second minima in error using the refocused lens does allow
a more compact lens to be implemented. This is especially advantageous for large values
of o where the circular focal arc requires large g to minimise errors. The only other focal
arc implementation of merit is the symmetrical focal arc. The symmetrical topology is
ideally suited to reflection based and reversible lens implementations, but is of little use

for general lens applications.

This chapter has rewritten the Rotman equations to reflect that the requirements of a
Rotman lens are set by the requirements of the antenna array it drives. To this end two
new variables have been introduced, f, the ratio of focal length to array aperture size, and
0, the beam angle associated with the perfect focal point at angle a. Illustrative examples

were then used to demonstrate how each parameter effects the Rotman lens geometry.

The need for a rigorous method of measuring Rotman lens aberration has been highlighted.
The practise of measuring normalised path length error referenced to the linear wavefront
that minimises the RMS path length error, is a significant improvement over the currently
accepted method of using the maximum path length deviation from the theoretical linear
wavefront. Using this technique, the influence of the Rotman parameters on the aberration

performance has been clarified.

The error analysis revealed the existence of an optimal value of g. This allows aberrations
to be minimised for a circular focal arc. The analysis shows that the approximation
by Smith (1982) is very close to the optimal value of g for large values of f. Both
approximations of ¢ made by Rotman and Turner (1963) and Smith (1982) can be used

for lens designs with relaxed error requirements.

The discussion surrounding the selection of an optimal focal arc has been addressed.

Refocusing has been used to show that the Rotman lens constructed using an optimised
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circular focal arc yields lower aberrations than any other focal arc approximation suggested
in the literature. This analysis also shows that a more compact Rotman lens is achievable

using a refocused focal arc, without a substantial increase in aberrations.

Comparing the symmetric and asymmetric Rotman lens geometries is made difficult be-
cause the equations describing the symmetric and asymmetric Rotman lens geometries
are based on very different variables. The asymmetric lens equations have been rewrit-
ten based on the single parameter «. To simplify the comparison between the two lens
topologies, equations have also been derived for g and f. Performance analysis of the

symmetric and asymmetric Rotman lens geometries have been provided.

Chapter 7 applies these insights to the practical implementation of three Rotman lenses.
Before this can be attempted, an assortment of tools must be chosen or, if nothing satis-
factory is available, tools must be created. Further a set of measurement standards should
be defined so that the Rotman lens performance may be judged. The following chapter
presents the chosen software tools and the measurement standards used to evaluate the

performance of the Rotman lenses presented in this thesis.
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Chapte

Methods

HIS chapter presents the software tools, equipment, and methods
used to design, simulate, and measure the performance of the con-
strained lenses presented in this thesis. The chapter begins with the

software packages used to design and simulate these lenses. The equipment

and procedure used to measure the realised lens designs are then described.
The lenses are tested against a number of performance measures. These are

explained in detail and the procedures used to evaluate them are described.
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6.1 Software Tools

6.1.1 Numerical Analysis and Layout

The production of our first Rotman lens used Protel (Altium 2002) for the layout and each
microstrip line was entered manually. Manual layout greatly limited the lens complexity
and size. The designs implemented in this way were simplistic, even naive. However,
they did highlight the need for an automated layout facility and a more rigorous design
methodology.

A number of software tools are available to automate the layout of microstrip lines and the
body of the lens. The approach taken in this thesis is to use Matlab to generate a simple
two dimensional layout tool that is able to export this layout in DXF (Autodesk 1992) or
GERBER (Buchanan 1996) file format for use in any number of simulators or for man-
ufacture. The advantage of this approach is that Matlab is also able to calculate and
display the performance of the design using both the geometrical optics model described
in Section 4.2 and the two dimensional aperture model in Section 4.3.1. Results of elec-
tromagnetic simulation has been integrated into the layout tool for the design of the many
matching networks and antenna elements used in these designs. In this way Matlab has
been used to create a design environment that could accommodate the growing complexity

of lens designs.

6.1.2 Electromagnetic Simulator Packages

Electromagnetic field solvers provide the means to look inside a structure and display
surface currents, various electric and magnetic field plots or other quantities derived from
the fields. Visualisation capabilities are built into most field solvers, which can lead to

new insights into how RF and high speed digital components behave.

While significant work has been carried out in the literature on the design of boundary
integral method (BEM) solvers for the design of Rotman lenses, the development of an
electromagnetic simulation package is a very time consuming process. The availability
of commercial electromagnetic simulation packages provides access to quick and highly

accurate EM models without this significant investment in time.

What follows is a brief description of numerical methods that are used to treat Maxwell’s

equations and examples of the popular software packages that use them. Based on this
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brief overview the reasoning behind the choice of electromagnetic simulation packages

used in the lens designs described in Chapter 7.

Classification by Solution Domain

Electromagnetic field solvers are generally grouped according to the types of geometries
they solve and the method used to simplify Maxwell’s equations. Moreover, three dimen-
sional arbitrary field solvers such as CST, Optimal O-Wave, HFSS, and Microstripes can

be divided into three solution domain categories:

e frequency domain,
e time domain and

e cigenmode or modal solvers.

Frequency domain solvers generally solve Maxwell’s equations in their integral form. The
problem is divided into small segments and represented in matrix form that is then solved
iteratively, or using matrix inversion. This process is repeated for each frequency point
resulting in long simulation times for broadband or fine frequency resolution simulations.
This is improved using a fast sweep option that is based on finding a rational polynomial
that describes the solution behavior using a minimum set of computed frequency points
(Hazdra et al. 2005). The numerical method used in these simulators is typically Method
of Moments (MoM) (Harrington 1968, Burke and Poggio 1981), Finite Element Method
(FEM) (Silvester 1973, Silvester and Ferrari 1996), or Spectral Domain Method (SDM)
(Mosig 1989).

Popular frequency domain simulators are:

e Zeland TE3D (Zeland Software 2008b),

Ansoft HFSS (Ansoft 2008b),

Ansoft Designer (Ansoft 2008a),

e FEKO (Feko 2008),

SuperNEC (Poynting Software 2008),

Momentum-ADS (Agilent Technologies 2008),
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o EMSight-AWR (AWR 2008), and

e Sonnet Suite (Sonnet Software 2008b).

Time domain solvers generally solve Maxwell’s equations in their differential form. After
the problem has been divided into small segments, the structure is excited by a time
domain waveform and the field quantities of each segment are varied until convergence
is reached. The time domain response is then easily converted to the frequency domain
using the discrete or fast Fourier transform over the desired band. Structures that are
highly resonant or have many ports or excitations are slow to simulate in the time do-
main. Typical methods are Finite Difference Time Domain (FDTD) (Yee 1966), Finite
Integration Technique (FIT) (Computer Simulation Technology 2008), and Transmission
Line Matrix (TLM) method (Johns and Beurle 1971, Hoefer 1989).

Popular time domain simulators are:

e CST Microwave Studio (Sonnet Software 2008a),

Semcad (Semcad 2008),

IMST Empire (IMST 2008),

Fidelity (Zeland Software 2008a),

QuickWave (QWED 2008),

Mefisto (FAUSTUS Scientific Corporation 2008), and

MicroStripes (Flomerics 2008).

Eigenmode or modal solvers calculate the eigennumbers and eigenmodes of the problem’s
homogenous wave equation. This is usually the choice for modelling of resonators, however
two dimensional modal analysis is widely used to calculate and identify supported modes
of transmission lines. Eigenmode solvers are included in Ansoft HFSS, FEMLAB and
CST Microwave Studio.

Classification by Geometry

Electromagnetic simulation packages are also classified by the number of independent

space variables or dimensions on which the field and source functions are dependent. By
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simplifying a three dimensional model to a two dimensional problem, the solution accuracy
in increased or the computational expense is decreased. Consequently much larger and

complex problems may be solved when compared to a three dimensional solver.

Single dimensional methods are used for solving problems where the field and source
functions depend on one space dimensions only. Typical examples are transmission line
problems, uniform plane wave propagation or spherically or cylindrically symmetrical

problems with only radial dependence.

Two dimensional methods are used for solving problems where the fields and source func-
tions depend on two dimensions. Typical applications are planar structures, such as
transmission line cross section problems, where the method is used to calculate the trans-

mission lines characteristic impedance and propagation constant.

Three dimensional planar or 2.5D methods are used to solve problems with three dimen-
sional fields, while the sources and currents are mainly confined to conductive planes with
two dimensions. These problems tend to consist of a number of dielectric layers with arbi-
trary planar conductive geometries between them. These simulators are generally closed
boundary MoM or open boundary MoM. The closed-boundary method uses a uniform
rectangular mesh and a fast Fourier transform based solution method. This approach
leads to very fast and accurate solutions, for problems in correctly meshed conductive
boxes. This method is less effective for problems with curved surfaces or that require
angled ports. While the open boundary method is slower, it assumes the structure is
unshielded, or in a free space environment, and often uses triangular meshing to represent

curved edges and angled ports.

Three dimensional methods are used for solving problems where fields, sources and cur-
rents vary in three dimensions. This category includes all volumetric full-wave general-
purpose formulations. While these are able to solve any conceivable structure, they are the
most computationally inefficient and as a result they are generally restricted to relatively

small problems.

Electromagnetic Simulator Selection

For the purposes of this work, three problems must be solved using an electromagnetic
simulation software package. The microstrip based lens designs, the port to lens interface,

and various transmission line geometries must all be modelled.
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The microstrip based constrained lenses, described in Section 7.5, are a two dimensional
planar structure. Although it is the largest and most computationally expensive task,
it is relatively simple with the correct software choice. Not all 2.5D frequency domain
packages are appropriate for this task. The need to accurately represent angled ports
restricts the choice to an open boundary MoM simulator. Ansoft Designer (Ansoft 2008a)
meets these requirements and has been used to predict the scattering parameters for all

lens simulations.

A simple 2.5D simulator is not convenient for the task of exploring the port to parallel
plate interface described in Section 7.1. HFSS has been chosen for this task because of
its tight control of boundary conditions, excellent visualisation capabilities and flexibility

at the expense of model complexity and simulation time (Ansoft 2008b).

The large number of transmission lines used in Section 7.5 require a fast two dimensional
eigenmode method. While HFSS is much better known for its FEM three dimensional
simulation capability, its ports only solution is perfect for this task (Ansoft 2008b).

6.2 Lens Construction

The production of transmission line circuits, at millimetre wave frequencies, must be done
carefully to ensure that lens performance is not degraded. The characteristic impedance
of microstrip transmission line is dependent on the substrate height, dielectric constant
and the width of the line. Substrate height and dielectric constant are controlled by the
choice of the substrate manufacturer and substrate type. The accuracy of the microstrip
transmission line impedance is dependent on the process tolerances of the printed circuit

board manufacturer.

The important parameters defining quality of workmanship are minimum track width,
minimum track spacing, plating thickness, and alignment tolerance of the upper and
lower layers. The lens designs presented in this thesis are produced by Lintek Pty Ltd.
Lintek’s standard process uses a plating thickness of 35 um and is able to achieve a track

width tolerance of £12 ym and minimum width of 200 ym.

The substrate chosen for the microstrip constrained lenses designed in this thesis, is
RT /Duroid 5870 supplied by the Rogers Corporation. This material is attractive due to
the low dielectric constant, €, = 2.20, that increases the transmission line width compared

to higher dielectric constants, the low dissipation factor, tand = 0.0009 at 10 GHz, to
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keep dielectric losses to a minimum, and the availability of thicknesses of 127 pm, 254 um,
381 pm, 508 pm, and 787 um. All lenses have been built using the dielectric thickness of

787 um allowing a three fold increase in operation frequency by scaling the design.

The first two lenses described in Section 7.5.1 implement the dummy port loads using a
25 Q) /square thin film impedance called Ohmega-Ply (Ohmega 2008). Ohmega-Ply is a
laminated thin foil of NiCrAlSi and comes in standard impedances of 10, 25, 50, 100, and
250 §2/square. The thin film terminations are added to the lens at the expense of two
additional process steps. Unfortunately the additional chemicals are difficult to dispose

of in an environmentally friendly manner and Lintek has ceased using this process.

The broadband lens described in Section 7.5.2 has replaced the Ohmega-Ply with screen
printed carbon polymer thick film ink called Electrodag PR-406. This material has an
impedance of < 10€2/square and due to the inaccuracy of screen printing may suffer

alignment errors up to 200 pm.

6.3 Lens Characterisation

The performance of lens described in Section 7.5.2 is completely described by the S-
parameters measured using a vector network analyser (VNA). However, the two lenses
described in Section 7.5.1 use integrated antenna elements that deny access to the antenna
ports. In this case the combination of beam pattern and the S-parameter measurements

must be used to judge the performance.

6.3.1 S-Parameters Measurement

The S-parameters are measured using a vector network analyser. The VNA measures the
voltage magnitude of the reflected and transmitted signals compared to the incident signal.
Therefore, a properly calibrated two port vector network analyser directly measures the
values of the two port scattering parameters described in Section 3.2.2. The Rotman
lens presented in Section 7.5.2 is a 16 port device, therefore it cannot be characterised
by a single two port measurement. Instead, many measurements must be combined to

construct the 16 port S-parameters.

The 16 element Rotman lens is characterised by measuring each element of the 16 port
S-parameters separately. The S-parameters have 256 elements relating the incident, re-

flected, and coupled energy between any two ports. The procedure used to measure the 16
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port Rotman lens makes use of the property that S-parameters are measured with a 50 2
load connected to each port. By placing broadband 50 €2 loads at all ports not connected
to the VNA, 4 elements of the 16 port S-parameters are defined with each measurement.
Because the reflected energy at each port must be measured multiple times, 112 measure-
ments must be taken to completely define the S-parameters of the lens. Using a 4-port

VNA the number of measurements is reduced to 35.

Two vector network analysers have been used to measure the performance of the lenses
presented in this thesis. The two narrow-band lenses, presented in Section 7.5.1, have
been characterised using a two port Wiltron 37369A VNA, calibrated using the Wiltron
3652 calibration kit. The broadband lens, presented in Section 7.5.2, has been measured
using a four port Agilent 8364B Performance Network Analyzer (PNA), calibrated using
the N4693A 2-port electronic calibration module. All ports not being measured by the
VNA have been terminated using Radiall R-404212, DC-18 GHz, 50 €2 loads.

6.3.2 S-Parameter Performance

The electromagnetic simulation package and network analyser measurements generate a

set of S-parameters for every frequency point, f, expressed by:

-Sbl,bl(f) Sb1,bn(f) Sb17a1(f> Sbham(f)

St (f) oo Sbubn (f) Star (f) o Shpam ()

(6.1)
Sal,bl(f) Sfllﬁn(f) Sal,a1(f) Sﬂl:“m(f)

L Sam i (1) Sanbn(F) Sapar(F) -+ Sapan (f)

The subscripts b;...b, refer to each of the n beam ports and a;...a,, refer to each
of the m antenna ports. The various performance measures are obtained directly from

Equation (6.1) or calculated, in some part, by evaluating the following equation:

b = Sa, (6.2)

Page 132



Chapter 6 Methods

where

Output Voltage Magnitude Performance

The output voltage magnitude performance is measured by evaluating Equation (6.2)
while exciting each beam port in turn. This is achieved by setting a;, = 1 while a;, =0
for y # x and ag, ...a,, = 0. The output voltage magnitude performance is evaluated

by examining the magnitudes b,,, bg,, . ..0b,, at each beam port and frequency point.

The lens performance may be evaluated while driving multiple beam ports simultaneously

by setting a’ to the required magnitude and setting the total power to 1 using the equation

1
a=a——" (6.3)

2221 |al2)x|

While an ideal lens exhibits a constant excitation taper when driving any single beam
port, a realised lens will have considerable difference in excitation taper at different beam
ports and frequencies. The shape of the desired excitation taper depends on the intended
application. Requirements such as orthogonal beams or maximum power output of an
active antenna array require a uniform power distribution across the antenna ports b,, =
bo, ...=D

to port to resemble a sinc or raised cosine function.

. Low sidelobes require an excitation taper that varies significantly from port

am
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Output Phase Performance

The phase performance uses the same procedure used above, except now the phase of
bay s bay, - - - ba,, is examined. Therefore, the result is expressed by 0,,,0,,...0,,, . The
phase gradient across the antenna array determines the direction of the antennas main
beam. Any deviation from a linear phase gradient causes the beam pattern to be distorted.
This can manifest itself as higher sidelobe or displaced maximum. The ideal phase per-
formance of the Rotman lens, calculated using the geometrical optics model, suggest that
the Rotman lens should be capable of driving apertures of &~ 1000 wavelengths (Rotman
and Turner 1963). In practice, the level of performance predicted using the geometrical

optics model is not achievable.

Insertion Loss

Insertion loss is easily calculated using the magnitude performance calculated above. Since
the total power into the lens has been set to unity, the insertion loss is easily obtained by

calculating the total power leaving the antenna ports, b, ,bq,, ... b,,, using the formula

Vam

P = az b2, (6.4)

r=ay

The insertion loss is then calculated using

Insertion Loss = —101og(Poyt)-

Rotman lenses are often used in applications where conventional beam-forming networks
are too lossy to be effective. In these cases insertion loss and port matching are critical
to the lens design. The insertion loss of a well matched lens is dominated by the amount

of energy absorbed by sidewalls or dummy ports.

Return Loss, Reflection Coefficient, and Array Return Loss

When only one port is excited at any time, or all excitations are considered independent,
the return loss of each beam port is a simple matter of examining the diagonal components
of Equation (6.1). The return loss of the antenna ports, or a multi beam port excitation, is
misleading if evaluated in this way since multiple ports are being excited simultaneously.
This is because coupled energy between ports may increase or decrease the magnitude of

return loss.
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To calculate the return loss of port y for a multiple port excitation, the excitation of port
y and all others is defined, a’, and normalised using Equation (6.3). The return loss can

then be calculated by evaluating
Return Loss = —20log(b,)

to calculate the return loss. It is generally accepted that return loss should be greater than
10dB in a well matched system. Return loss is easily confused with reflection coefficient

which is expressed in dB using

Reflection Coefficient = 201og(b,).

It is important to emphasise that the return loss for the combined antenna ports is very
different depending on the propagating waves incidence angle. The approach adopted is
to evaluate the return loss of the antenna ports for incident waves corresponding to each
beam port. The return loss of the antenna ports for incident angles away from bore-sight
is a significant performance limitation of the Rotman lens. To limit the confusion between
the single port return loss and the multi-port return loss, the latter will be referred to as

array return 0ss.

Port Isolation, Coupling, Coupling Loss and Reflection Loss

The beam port isolation, coupling, coupling loss, and reflection loss are closely related but
emphasise different properties. Port coupling describes amount of power coupled between
two ports. Port isolation is the minimum attenuation between a port of interest and a
defined set of ports. The coupling loss describes how much energy is lost due to coupling
between a port of interest and a defined set of ports. The array reflection loss is a term
created in this text to describe the energy lost due to reflection from a set of ports when

all ports in that set are excited.

The port coupling is the total power exiting a port when a single port or group of sub-
ports is excited. The coupling to a port b,, from an excitation of a with a total power of

1, is
Coupling = 201og(bs, ).
The beam port isolation is calculated based on the maximum coupling between the beam

port of interest and all other beam ports. Therefore, the isolation of port b, is calculated

using

Isolation = 20 log(max(by,,)).
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The isolation performance is particulary important for systems that are simultaneously

transmitting and receiving from different ports of the lens.

The beam port coupling loss is calculated by evaluating

bn
B, = —b + Y V.

r=b1

the coupling loss is then calculated using
Coupling Loss = —10log(1 — F,_, ).

The beam port coupling loss will be similar for all beam ports and tend to effect the low

frequency performance of the lens.

The antenna port reflection loss is calculated by evaluating

P = f: bazc'

r=ai

when all antenna ports are excited and normalised using Equation (6.3). The reflection

loss is then calculated using

Reflection Loss = —10log(1 — P,, ..)-

6.3.3 Beam Pattern Measurement

The Rotman lenses described in Section 7.5.1 are built with an integrated patch antenna
array. To characterise the performance of these lenses the beam patterns associated with
each beam port are measured using the automated antenna test facility run by the Elec-
tronic Warfare and Radar Division of the Defence Science and Technology Organisation
in Adelaide. All antenna measurements have been done in accordance with standard
practises (IEEE Standard 1979, Beste et al. 1985, Gillespie 1980, Peters 1981).

6.3.4 Beam Pattern Performance

The beam pattern of a lens is obtained by direct measurement, or by applying the results
of Equation (6.2) to a theoretical array of real or isotropic elements as described in Sec-
tion 2.2.2. The primary difference between these two approaches is the effect of mutual

coupling between antenna elements of the real antenna array. Like the antenna ports
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of the lens, the antenna elements of the array suffer from reflection loss. This reflected
energy may degrade the performance of the lens, specifically, the return loss and mutual

coupling of the beam ports.

The field-of-view of the lens is often the first requirement defined in the lens specification.
The design challenges grow as the desired field-of-view increases due to mutual coupling of
the antenna ports. While the beam associated with the central focal point of the lens tends
to perform well for all practical lens designs, it it the performance of the outermost beams
that will be significantly degraded. The 3dB field-of-view of the lens is the maximum
scan angle that is achievable before the insertion loss of the lens drops by 3 dB below the

lens’s minimum insertion loss.

6.4 Chapter Summary

This chapter has described the tools used in this work to design, build and characterise the
lenses presented in this thesis. Matlab is used to conduct all numerical analysis of the lens
designs. Matlab has also been used to create a custom layout tool capable of exporting
the lens designs to DXF or Gerber format. Electromagnetic simulation is carried out
using Ansoft Designer, or its predecessor Ansoft Ensemble, and HFSS. The equipment
and procedures used to measure S-parameters and beam patterns of the three lens designs
has also been described. Finally each performance measure used to compare the measured

and simulated results has been explained.

The following chapter focuses on the practical implementation of the Rotman lens. The
electromagnetic performance of the port to lens interface is explored and new matching
techniques are described. Finally the methods presented in this chapter are applied to
two narrow-band lens designs in Sections 7.5.1 and 7.5.1 and a broadband lens design in

Section 7.5.2.
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