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Chapte

Transmission Line &
Network Theory

HE previous chapter describes a constrained lens as a number of an-
tenna arrays and antenna elements, referred to as ports, connected
in series by transmission lines. Efficient power transfer through a
beamformer, and an array of antenna elements, is achieved by minimising
the reflected power at every junction within the system. This is achieved by
impedance matching each port, antenna element, and interconnecting trans-
mission line to the impedance of the network at the connection point. This

requires a detailed knowledge of microwave transmission line theory.

This chapter describes the principles of transmission line theory in detail.
The most common methods of representing such networks, and how these
are manipulated, is explained. The concepts of power wave S-parameters
and pseudo wave S-parameters are described. Power and pseudo wave S-
parameters are distinctly different to the common form of travelling wave S-
parameters because they allow the performance of networks to be represented

in terms of incident and reflected waves in the presence of complex port loads.
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3.1 Transmission Line Theory

3.1 Transmission Line Theory

Transmission line theory describes the properties of electrical connections that experi-
ence voltage and current changes that vary faster than the time taken for these changes
to propagate along the connections length. Therefore, the length of the connection is
important when the signal includes frequency components for which the corresponding

wavelengths are comparable to the length of the connection.

3.1.1 Telegraph Equations and Lumped-Element Circuit Model

The telegraph equations are a pair of linear differential equations, Equations (3.1) and
(3.2), that describe the voltage and current on an electrical transmission line in terms of
distance and time. They were developed by Oliver Heaviside who created the transmission
line model, and are based on Maxwell’s Equations (Heaviside 1885, Weber and Nebeker

1994).

The transmission line model represents the transmission line as an infinite series of two-
port elementary components, each representing an infinitesimally short segment of the
transmission line, as illustrated in Figure 3.1, where 7 = R+ jwL and Y = G + jwC.
The distributed resistance R of the conductors is represented by a series resistor. The
distributed inductance L, due to the magnetic field around the wires, is represented by a
series inductor. The capacitance C' between the two conductors is represented by a shunt
capacitor. The conductance GG of the dielectric material separating the two conductors is
represented by a conductance shunted between the signal wire and the return wire. These

component values are all specified per unit length, and are functions of frequency.

The line voltage v(z) and the current i(z) of Figure 3.1 can be expressed in the frequency

domain as:
ag(? = —(R+ jwlL)i(2), (3.1)

= —Zi(2),
8(;(5) = —(G+ jwC)(z), (3.2)

= V()

where the series impedance and shunt admittance per unit length is:

Z = R+ jwl,
Y = G+ jwC.
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Chapter 3 Transmission Line & Network Theory
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Figure 3.1: Transmission line circuits. The lumped equivalent circuit, shown here, is used to model
the behaviour of a short length, Az, of transmission line. Large transmission line cir-
cuits are modelled by replacing the transmission lines with many of these equivalent
circuit elements in series. Each circuit element consists of a small series inductance and

resistance, Za, with a shunt capacitance and conductance, Ya..

If we eliminate ¢ between Equations (3.1) and (3.2) we obtain
0*v(z)

92 Y (z), (3.3)

where

v = V(R+jwL)(G + jwC),
= V7Y, (3.4)
- Of"’jﬁ,

is called the propagation constant (IEEE Standard 1990). The variable « is called the
attenuation constant and the variable [3 is the phase constant (IEEE Standard 1990).

A solution of Equation (3.3) is
v(z) = vie 4 ve™ (3.5)

The subscripts f and r are chosen because vy represents the amplitude and the phase
of a forward propagating wave, while v, represents the amplitude and phase of a reverse
propagating wave. These are wave equations that represent waves with equal propagation

speed in the forward and reverse directions.

The current i(z) which accompanies this voltage can be derived from Equations (3.1) and

(3.5) to be

1
i(z) = —7 —)\vfe_)‘z—i-)\vre“z].
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3.1 Transmission Line Theory

We substitute for A from Equation (3.4), and obtain

Y
i(z) = Q/E[vfe_’\z—vre“z],

1 —Az +)\zi|
= —|VUre€ — Up€
ZO[ ! r

v(z)

I

where

which we call the characteristic impedance of the line. The wavelength on the line is

2

A= —

B

and the phase velocity is

w

v, = =

8 5

= Af.

3.1.2 Reflection Coefficient and Impedance Transformation

A transmission line supports both the forward and reverse, or reflected, propagating
waves. When a forward propagating wave encounters a load, a portion of the wave’s
energy is absorbed by the load. Unless the transmission line is perfectly matched, some
of the energy is reflected back into the line, exciting the reflected wave. The relationship
between the forward and reverse propagating wave is known as the voltage reflection factor

denoted by I',. At any point on a transmission line the reflection factor is

complex amplitude of the reverse voltage wave at z

Ly(z) =

~ complex amplitude of the forward voltage wave at 2’

For a passive circuit as depicted in Figure 3.2, the reflection coefficient is related to the

transmission line characteristic impedance, Z, and load, Z;, and is calculated using

(3.6)
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Chapter 3 Transmission Line & Network Theory

In a similar way, the impedance at any point on the line is calculated from the relative
forward and reverse waves using

Z(z 1+T,(z

% - = Fvgz;' 0
In this way the load impedance is transformed by the transmission line. The input
impedance, Z; at any point on a line terminated with the load impedance 7, is calculated
using the formula

Z1, cosh Al + Zysinh A\l
Zoycosh A\l + Z; sinh A\l

Z
This result applies to a line of arbitrary length, losses, and load impedance.

i ]

Zi 2o /L

o)

T Q

[

Figure 3.2: Reflection coefficient of a transmission line. The input impedance of the transmission
line, Zy, is determined by the load Z; connected to the end of the transmission line, the
length of the transmission line [ and the characteristic impedance of the transmission

line Zg.

Normalised Impedance

These formulae are simplified by normalising impedances by the characteristic impedance
of the transmission line. The normalised impedance z corresponding to an actual impedance

7 as

.z
Zy
The Equations (3.6) and (3.7) above then simplify to
LY
v T LI
and
. _ 4L
1-T,

This normalised z is dimensionless. It is convenient parameter to use because I is also

dimensionless.
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3.1 Transmission Line Theory

Figure 3.3: Smith chart. The Smith chart is a powerful visualisation tool. It plots polar reflection
coefficients, |I'| and ZI" on axis of real and imaginary normalised impedance or admit-
tance. Many impedance matching networks can be represented by following the lines of
constant impedance, admittance, reactance, and susceptance lines, or rotating I about

the origin.

3.1.3 Smith Chart

The Smith chart provides a graphical method for the visualisation of transmission line
circuits and for the solution of transmission line problems. It also provides a graphical
representation of the impedance locus as a function of frequency. The Smith chart is a
polar plot of ', with lines of constant real and imaginary normalised impedance and/or
normalised admittance (Smith 1931, Smith 1944). A normalised impedance Smith chart

is shown in Figure 3.4.

The Smith chart is widely used to display S-parameters, stability circles, gain circles, and
noise figure circles of microwave amplifiers. The Smith chart is also used to design and

visualise matching circuits.
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Chapter 3 Transmission Line & Network Theory

3.2 Network Parameters

In order to characterise the behavior of a N-port network, a number of equivalent circuit
parameters have been used. At frequencies where it is possible to directly measure the
voltages and currents at each port, the impedance matriz and admittance matrixz are cal-
culated. These parameters cannot be measured accurately at higher frequencies because
the voltage and current can no longer be measured directly and the broadband open and
shorts required become difficult to build. In the 1970’s the popularity of scattering pa-
rameters increased because of the appearance of new network analysers that performed

these measurements with ease.

3.2.1 Impedance and Admittance Matrix

The N-port network can be represented in several ways. The most common representa-
tions are the impedance matrix (Z parameters), and admittance matrix (Y parameters).

These parameters are defined as:

v = leil + ZlgiQ + ...+ Zlnin
Vo = Zglil —+ 2227;2 + ...+ Zgnin
Up = anil + aniz 4+ ...+ Znnin
or in matrix form
U1 211 212 ... ZlIn 11
(D] 221 %22 ... Zon 19
Unp, Znl ”n2 .-+ Rnn in

The admittance matrix is simply the inverse of the impedance matrix, ¥ = Z~1,

0 yii Y2 - Yin ()
19 Y21 Y22 - Yon (%)
Z.n Z/m yn2 o ynn Un,

At microwave and millimetre wave frequencies the Z and Y parameters cannot be easily
measured. Therefore, another measurement method is needed that is capable of charac-
terising circuits at any frequency. The appropriate representation is called the scattering

matriz and the scattering parameters are defined in terms of travelling waves.
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3.2 Network Parameters

3.2.2 S-Parameters Based on Travelling-Waves

Like the impedance or admittance matrix, the scattering matrix combined with its refer-
ence impedances, provides a complete description of the network. While the impedance
and admittance matrices relate the voltages and currents at the ports, the scattering
matrix relates the voltage waves entering the ports to those reflected from the ports
(Oliner 1984). Once the scattering parameters of the network are known, conversion to

other matrix parameters may be performed as required.

To correctly relate incident and reflected voltage waves to incident and reflected currents
and power, the measurements at each port are conducted using a constant reference
impedance. In practice, the reference impedance is generally chosen to be Z; = 50(.
The two-port scattering parameters can be measured by embedding the network in a
transmission line, whose characteristic impedance is 50 €2, and connecting the ends to a

network analyser.

Travelling waves refer to the unidirectional, single mode waves that form the basis for
scattering matrix analysis. Circuit theory based on travelling waves describes the electro-
magnetic interactions of a transmission line circuit and has led to the standard methodol-
ogy of handling RF and microwave problems. The scattering matrix relates the outgoing

waves b, to the incoming waves a,, that are incident on the N-port network:

by St Sz ... S a1
o e (3.8)
bn Snl Sn2 Snn Qp,

The matrix elements S,,,,, for n = 1,2, .., N are referred to as the scattering parameters or
the S-parameters. The parameters 5,,,, have the same meaning as the reflection coefficient

described earlier, and S,,,,, for n # m, are the transmission coefficients.

The travelling wave variables a and b are defined in terms of v, and ¢ and a real-valued
positive reference impedance Zj, as follows:

afz) = v(2) + Zpi(2)
2v/Zy
SEEECEAC)

where v(z) and i(z) are the voltage and current at a point z along the line and 7, is the
characteristic impedance. The reference plane is the position along the transmission line

where all measurements are made, the position is defined by the variable z.

Page 52



Chapter 3 Transmission Line & Network Theory

Shift of Reference Planes

S-parameters describe the incident and reflected waves on identical lossless transmission
lines connected to each port of the network. Therefore, it is a simple matter to shift the

reference plane of each port by any distance [.

The theory of travelling waves on a lossless transmission line allows the shifted voltage

waves to be related to the unshifted voltage waves by
an = al,e
b, = bue 7,

where 6 = 3,1, is the electrical length of the outward shift of the reference plane of port

n. Equation (3.8) becomes

by e 0 e 1 0 aq
b 0 eI 0 0 eI 0 ay
b, 0 0 e=90n 0 0 e=10n ap
Therefore the shifted scattering parameters are
[ =it 0 o | [e® o ]
) 0 e % 0 e % 0
S = S
0 0 e 0 0 0 e 0

Power and Matching

Power flow into the nth-port of a network whose ports are terminated with impedance
Zy, is expressed in terms of the travelling wave amplitudes:

1

1
Pn = 3 n2__bn27
aaf? — Sl

1
= §|an|2(1 - |Snn|2)-

The maximum power that can be delivered by the generator to a connected load is called
the available power of the generator, P,,, and is obtained when the load is conjugate-
matched to the generator, that is, P,, = P, when Z;, = Z. Further, since the travelling
wave reflection coefficient is given by:

2L —Zy

r—2—2%
21, + Zy
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3.2 Network Parameters

P,y = Py when Iy, = I't,. While all other ports in a n-port network are terminated
in their reference impedance, a generator connected to port n experiences [y, = Sy,
the input impedance is then calculated using Equation (3.7). If the other ports of the
network are not terminated in their reference impedance, I'y, # S, and Equation (3.7)
is no longer appropriate. Therefore, to solve this problem using the classical travelling
wave S-parameters, signal flow graphs must be used (Pozar 1998). This is a very time
consuming approach that grows in complexity as the number of ports increase. A more
convenient solution is to represent the system using scattering parameters with a reference

impedance at each port equal to the load or generator impedance at that port Ze,,.

3.2.3 S-Parameters Pseudo-waves

Pseudo-waves are linear combinations of travelling waves that are sometimes convenient
to use in lieu of travelling waves. These can be referenced to an arbitrary port impedance
for use in a wider range of applications. Vector network analyser calibrations and mea-
surements for example are derived from pseudo-waves (Marks and Williams 1992, Frickey
1994, Marks et al. 1995). These are more loosely based on the electromagnetic inter-
actions than travelling waves but are a practical abstraction for measurement and other

purposes.

The pseudo-wave method is derived from the physical travelling wave analysis and has

the wave variables expressed as:

o éR(Zref) .
CL(Z) Km(v + eref)

o §R(Zref) .
b(z) Km(v - ZZref)

where R(Z) is the real component of the reference impedance Zr and K is a normalising
term dependent on how voltage is measured on the transmission structure, and is unity
for most cases. The real part of Z, is restricted to positive values. This results in the

reflection coefficient, and its inverse, being calculated using the formulae:

r — ZL_Zref
B ZL+Zref’
1+T

Z = Zre [P —
,f1 T

where both are identical to the travelling wave case.
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Chapter 3 Transmission Line & Network Theory

It is possible for passive pseudo S-parameters to contain coefficients greater than 1 for
complex reference impedances. This leads to the less than intuitive expression for the

delivered power into a port, expressed by:
%(Zref)
§R<Zref) 7

where J& denotes the real component and & denotes the imaginary component.

P =la]* |1 —|T]*—23(T)

(3.9)

Note that Z-parameters are independent of reference impedance since they depend purely
on the voltage and current at each port. While a network’s S-parameters vary depending
on each port’s reference impedance, the Z-parameters will not vary. Conversions between

pseudo-wave S-parameters and Z-parameters are governed by the following relations:
S = UZ-Z)(Z+Z)'U™!,
Z = I-U'sSU)'(I1+U'SU)Z,

where
§R(Z]ref n)
Unn - —77
|Zref,n|
U,n = 0forn#m,
and

Zr,nn - Zref,na
Zyypm = 0forn#m.

These equations are extended to express the power-wave S-parameters in terms of new

reference impedances,

S = P YS—9)(I-+S)'P, (3.10)
(3.11)
where
R(Zlog) | Zoin | 2Zretn
P, = ( of, ) of, f, / 7 (3_12)
%(Zref,n) Zref,n Zref,n + Zref,n
P,. = 0forn#m,
and
;-ef,n - Zref,n
nn Zief,n + Zrefv”7

Yom = 0 for n # m.

Here the original S-parameters and reference impedances are denoted by S and Z.e and

the new ones by S’ and Z/ .
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3.2 Network Parameters

3.2.4 S-Parameters Based on Power-Waves

The travelling-wave and pseudo-wave concept is more closely related to the voltage or
current along the line than to the power in a stationary state. If a circuit that terminates
a transmission line at the far end is not matched to the characteristic impedance of the
line, even if the circuit has no source at all, two waves travelling in opposite directions

along the line must be considered.

In contrast to both pseudo-waves and travelling waves, power-waves do not represent
the electromagnetic interactions at all. Instead they are derived as if the voltages and
currents associated with the waves are already known. Like pseudo-waves, the power-
waves make use of a port reference impedance, however the implications are quite different

(Kurokawa 1965).

These wave-like variables can no longer be interpreted as incoming and outgoing waves
from the two sides of the two-port. However they have a convenient interpretation in
terms of power transfer and simplify the expressions for the power gains. The power wave

construct expresses the incident and reflected wave-like variables as:

a(z) = ————(v + 14
()= 5 v i)
1
b(z2) = ————=(v — iZ,).
)= 5 v~ %)
This results in the reflection coefficient being calculated using the formula:
I = Zy — Z;kef.
ZL + Zref

Note the presence of the conjugate of the reference impedance. In contrast to travelling-

waves and pseudo-waves, the reflection coefficient becomes zero when Z; = Z* . for com-

ref
plex values. The inverse relation used to calculate the load impedance from I is a little
more complicated:

7y, = R(Zet)R(2) + J(R(Zret)S(2) — S(Zret)),

As stated earlier, the delivered power is expressed very simply by:

ya =

P =|a]* — |b]*.
Conversions to and from Z-parameters is governed by the following relations:
S = F(Z-Z)Z+Z,)'F,
Z = F'(I-S)'(SZ, +Z))F,
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where
1
an = T
2 |§R(Zref,n>|
F... = 0forn#m,
and

Zr,nn - Zref,na

Zypm = 0forn#m.

Again, these equations have been extended to express the pseudo wave S-parameters in

terms of new reference impedances,

S = QYS-I")(I-TI,9'Q",

where
Q §R(Z;eﬁn) Zref,n + Z;kef,n
" §R(Zref,n) Z;gf,n + Zref,n7
Q.m = 0 for n #m,
and

F Z;‘ef’n - Zref,n
nn - Z/ + Z* )

ref,n ref,n

., = 0forn#m.

3.2.5 Summary

To match each port of a constrained lens the load at each port is varied until maximum
power transfer is achieved. This is carried out by changing the reference impedance at
each port and renormalising the S-parameters to show the new behaviour of the lens.
This cannot be carried out using travelling-wave S-parameters and therefore pseudo-wave

or power-wave S-parameters must be used.

When Z, is real, the three definitions are identical. However, there are differences be-
tween the pseudo-wave and power-wave definitions when Z,.¢ is complex. These differences
manifest themselves in the power transfer equations, Smith chart geometry, and transfer

matrix behaviour.
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3.2 Network Parameters

The expression for power transfer for the pseudo-wave computation is not intuitive if Z,q¢
is not real:

3(Zret)
§R(Zref)

P=la]* |1 —|T]*—23(T)

This means that it is possible for |I'| to be greater than 1 for a passive device if the reference
impedance is not real. The third term allows this without violating conservation of energy.

In contrast, power wave formulation has a very simple expression for delivered power:

P = fal*— b
= la|[1—|T].

The pseudo-wave formulation of the Smith chart behaves in much the same way as for
the travelling wave. Figure 3.4(a) shows that like the travelling wave Smith chart, the
magnitude of the reflection coefficient will be zero if the input impedance is equal to the
reference impedance. Further, the open and short circuit will also correspond to reflection
coefficients of 1 and —1. However, the lines of constant resistance and admittance are
significantly different. The Smith chart appears to be enlarged and moved but it is
interesting to note that the complex conjugate of the reference impedance still appears in
the centre of the chart. These unusual properties are because |I'| is allowed to be greater

than unity for a passive element.

The power-wave plot of the Smith chart is shown in Figure 3.4(b). While it appears to
resemble the travelling wave Smith chart, there are significant differences. The reflection
coefficient is no longer zero if the input impedance is equal to the reference impedance.
Instead, it is the complex conjugate of the reference impedance that reduces the reflection
coefficient to zero. This corresponds to the impedance required to achieve maximum
power transfer. Closer inspection reveals that while the open circuit will be represented
by a reflection coefficient of 1, a short will be represented by:

%
ref

Z ref

Fshor‘c -

Transfer matrices are not used in this thesis, however, they are an important computa-
tional tool that is often used with travelling wave scattering parameters. Transfer matrices
behave quite differently in the two S-parameter formulations. The process of multiplying
two such matrices works in the pseudo-wave formulation in the same way that travelling

wave formulation does. In both these cases, the output port reference impedance of the
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Chapter 3 Transmission Line & Network Theory

(a) Pseudo wave (b) Power wave

Fig. 3.4: Pseudo and power Smith chart. The Smith chart has been replotted using the pseudo wave
definition for reflection coefficient, Subfigure (a), and the power wave reflection coefficient,
Subfigure (b). A reference impedance of 1 + 0.55 is shown on each plot by the green
dot. The load required for maximum power transfer is the complex conjugate, and the
position of this load is shown by the blue dot. The original Smith chart with real Zj,
reference impedance of 1, is shown in black. The (Z) = 0 and R(Z) = 1 lines are
shown in red. Like the standard Smith chart, the pseudo wave definition places the open
circuit at 120 and reference impedance at 0. In contrast, the magnitude of the reflection
coefficient becomes greater than one for some loads. The power wave definition places the

load required for maximum power transfer at the origin and |I'| < 1 for all passive networks.

first set of S-parameters must be equal to that of the input port of the second set of
S-parameters. In the power wave construct, one must be the complex conjugate of the

other.

Linear multi-port networks are characterised by a number of equivalent circuit parame-
ters, such as their transfer matrix, impedance matrix, admittance matrix, and scattering
matrix. Scattering parameters based on travelling waves do not facilitate matching such a
complex system. Instead pseudo-wave and power-wave allow S-parameters to be expressed
in terms of the load impedance of each port. This greatly simplifies the optimisation of

the system. The power-wave representation also simplifies the representation of power

Page 59



3.3 Impedance Matching Circuits

flow to and from the n-port network. These reasons make power-waves the obvious choice

for the design and optimisation of constrained lenses.

3.3 Impedance Matching Circuits

Impedance matching is used to ensure maximum power from a generator is transferred to
the load. The condition that achieves maximum power transfer from generator to load is
know as conjugate matching. This means that the load seen by the generator, Z;,, is the

complex conjugate of the generator impedance,

If the load and generator are connected together using a transmission line, two matching
networks are generally used to match both to the characteristic impedance of the trans-
mission line. This means that the forward propagating wave excited by the generator
does not excite a reverse propagating wave at the interface of the load matching network.
This is known as reflectionless matching because no energy is reflected from either end
of the line. Therefore, the length of the interconnecting transmission line can be varied
without effecting the behaviour of the system. In general, both generator and load need
not be matched to the transmission line. In this case, the condition for maximum power
transfer from the generator to the load will excite reflections at both ends of the line and

a standing wave will be present.

The following section will give an overview of transmission line based impedance matching
networks that are useful for the design of constrained lenses at microwave frequencies.
Series transmission line matching networks are used because they are easily implemented,

in a confined space, in the same process as the microstrip or stripline constrained lens.

3.3.1 Quarter-Wavelength Transformers

The quarter wavelength transformer is the basic building block of transmission line match-
ing. It is well known and widely used as a narrow-band matching network between real

impedances.

The quarter wavelength transformer matches two real impedances, R; and R,, with a

quarter wavelength transmission line having characteristic impedance Z,. The well-known
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equation, describing the relationship between these three variables and the length of the
transmission line [ (Orfanidis 2008), is

R R cos Bl + jZo sin Bl
Zo  ZocosfBl+ jRysin Bl

When [ = %, pl = 7, and the above equation reduces to
ZQ
Ry =2
Ry
By not restricting the length of the series transmission line to %, the series transmission

line transforms between two complex impedances.

3.3.2 Series Transformer

The series impedance transformer is the generalised form of the quarter wavelength trans-
former but is rarely mentioned in text books. The characteristic impedance of the series
section line needed to match a complex load to a real impedance has been reported
(Balabanian 1955, French and Fooks 1968) and the benefits of using a series transformer
compared to a series line followed by a quarter wavelength transformer has been demon-
strated (Hamid and Yunik 1967). However, a general solution that allows matching be-

tween two complex impedances, and its solution space, has only briefly been presented

(Rosloniec 1994).

The series transformer that matches two impedances, Z; and Z,, with a length of trans-
mission line [, having characteristic impedance Zp, is shown in Figure 3.5. The equation
describing the relationship between these four variables (Orfanidis 2008), is

Zy _ Zpcos Bl + jZosin Sl

Zo  ZocosBl+ jZysin Bl

The expression for determining the characteristic impedance Zp, and the length of the

line [ matching Z;, and Z,, is presented as follows.

Characteristic impedance formulae

The reflection coefficients of Z; and Z,, when connected to the transmission line with

characteristic impedance Zp, are given by the following formulae:
Zy — Zo

r, = 2L_“20 3.13

1 Z1+ZO7 ( )
To— 7o

r, — 2229 3.14

2 T+ 70 (3.14)
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3.3 Impedance Matching Circuits

—° ’“l

Z1 yde) Z2

.

!

[

Figure 3.5: Series connected transmission line. The quarter wavelength impedance transformer
matches two real impedances by a A/4 length of transmission line. The quarter wave-
length transformer is an example of the series impedance transformer. The series
impedance transformer matches two complex impedances, Z; and Z5 using a single

section of transmission line with characteristic impedance Zy and length [.

Substituting Z; and Z; with their real and imaginary parts,

Z1 = Rl —|—le, (315)
Zy = Ry+jXo, (3.16)

and noting that for the matched case, the magnitude of I'y and I's will be equal, ie.
IT4[2 = [T, then

(Ry — Zo)* + X? (Ry— Zo)*+ X3

(Ri+ Zo)?+ X7 (Ro+Zo)? + X3

follows. This expression rearranges to

,  RolR2+ X3) — Ri(F3+ X3)

Z 3.17
O R1 _ RQ Y ( )

demonstrating that it is possible to transform from Z; to Z, with a transmission line
of characteristic impedance Z;, provided Z; is real. Calculating I'y and I's using Equa-
tions (3.13) and (3.14), the length of the line is obtained from
) Iy
el = = 3.18
. .19
If Zy is complex, this circuit cannot be implemented and other techniques must be used.

A viable solution exists if

Ry Ry
R R d —
S AR A
or
Ry Ry
R R d > .
A VACR VAR
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In the case that Z; is real (X; = 0),

X2
Zo=1|Ri | Ry + —2—
o \/ 1( 2+R2—R1>’

and a solution exists if Ry > Ry or

R\’ R?
m<&am(&—§)+ﬁ<j.
In the case where Z; is complex, the solution space is a circle of radius % instead of %

and hence intersects the R; line at +X.In the case that Xy = X; = X then the solution

is ZO =V R1R2 — X2

X1 R2+jX2

Z

Figure 3.6: Solution space of the series impedance transformer. The series impedance transformer

cannot be used to match between any two impedances. The hatched area shows the
range of input impedances, Z; = R; + jX;, that can be achieved using a series
impedance transformer connected to a load of Zo = Ry + X5j. The hatched area
is inside a circle, connecting the origin and Rz & j X5, and less than Rz. The remaining

hatched area is outside of the circle and greater than Rs.

Characteristic Admittance Formulae

In terms of admittances, Equations (3.13) and (3.14) become

Yo— Y
I = ——,
Yo+ Y,
Yo — Y-
r, = 2 °2
Yo +Ys
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3.3 Impedance Matching Circuits

Equations (3.15) and (3.16) become Y} = G + jB; and Yy = G5 + jBs. Similarly,

Go(G} + B}) — G1(G3 + B3)
G — Go ’

vg =
replaces Equations (3.17) and (3.18) in the same way to yield the line length .

A solution exists if

G G4
Gy > G and |Y,2|2 < Wa
or
G G4
Gg < G1 and |Y,2|2 > |Y,1|2

These are the same solutions as for the impedance case but with R replaced by G, and
X replaced by B.

3.3.3 Multi-section Impedance Transformers

The series impedance transformers described above achieve an acceptable impedance
match for a narrow frequency band. Multi-section impedance transformers such as the
Chebyshev and binomial impedance transformers (Solymar 1958, Young 1962), consist of
a number of transmission line lengths connected in series. They both act as a bandpass
filter, where each length is a quarter wavelength at the centre frequency of the pass band.
The number of sections is increased to improve the reflection coefficient or increase the

bandwidth of the matching network.

The binomial impedance transformer is mazimally flat, this means that the impedance of
each quarter wavelength segment is chosen to minimise the change in reflection coefficient
around the centre frequency. With increasing number of line segments the reflection coeffi-
cient changes more slowly and therefore the impedance match and bandwidth is improved.
An example of two, four and six segment matching networks are shown in Figure 3.7
(Riblet 1960, Young 1960, Young 1962, Gledhill 1969b, Gledhill 1969a, Gledhill 1970).
As expected, the reflection coefficient becomes that of the direct impedance connection
at DC and twice the centre frequency. This corresponds to when the line segment length

becomes electromagnetically short, and when the line segments become half wavelength.

A Chebyshev multi-section impedance transformer can provide larger bandwidths than a

binomial multi-section impedance transformer for the same number of transmission line
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Fig. 3.7: Binomial impedance taper performance. Three binomial impedance matching networks are
shown here that transform between 102 and 50€2. The characteristic of the binomial
matching network is a smooth pass-band and higher bandwidth is achieved at the expense
of length. Subfigure (a) shows the variation in transmission line characteristic impedance
along the length of the three impedance transformers. Subfigure (b) clearly shows the

bandwidth improvement as the number of quarter wavelength sections is increased.

sections. The increased bandwidth of the Chebyshev transformer comes at the cost of
increased ripple over the networks pass-band. The Chebyshev multi-section impedance
transformer behaviour is shown in Figure 3.8 for 2, 4 and 6 line segments and constant
bandwidth of 1. The number of segments improves the reflection coefficient across the
pass band defined in the design equations (Cohn 1955, Young 1959, Riblet 1965, Levy
1965, Orfanidis 2008).

Multi-segment impedance transformers are often used to implement bandpass filters. The
Chebyshev transformer is well suited to this task because the bandwidth is defined in the
design equations. The steepness of the cutoff is defined by the number of elements and

the out of band rejection is equal to (Z; — Zy)/(Z1 + Zp).

3.3.4 Impedance Tapers

While single and multi-section quarter wavelength impedance transformers exhibit a band-
pass frequency response, an impedance taper exhibits a high pass frequency response. An
impedance taper is a smooth characteristic impedance change along the length of the
transmission line, connecting two real impedances. The taper function, Zy(z), is com-

monly the linear (Matsumaru 1958), exponential (Wheeler 1939), Hecken (Hecken 1972,
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Fig. 3.8: Chebyshev impedance taper performance. Three Chebyshev impedance matching networks
are shown here that transform between 10 Q2 and 50 2. The Chebyshev matching network is
optimal in the sense that it achieves the broadest bandwidth for a given number of segments
and maximum return loss. Subfigure (a) shows the variation in transmission line charac-
teristic impedance along the length of the three impedance transformers. Subfigure (b)
clearly shows the bandwidth improvement as the number of quarter wavelength sections is

increased.

Hecken and Anuff 1973) (not shown), or Klopfenstein (Klopfenstein 1956, Kajfez and
Prewitt 1973, Razmafrouz et al. 1996) taper seen in Figure 3.9. If the length of the taper
is large, and the low frequency cut off is not important, a good match will be achieved
using a linear physical taper leaving Zy(z) to be defined by the physical properties of the

transmission line.

An exponential impedance taper is a half-wavelength line, at the lowest frequency of
operation, whose impedance varies in an exponential fashion between the load and source

impedance. The exponential taper function is expressed by:
Zo(Z) = Z()eaz,

where

a = %ln(é—i).
The exponential impedance taper does not have a step in characteristic impedance at
the beginning or end of the taper ensuring a smooth transmission line. The first null
appears at the frequency with a wavelength twice the length of the taper. The simple
taper function of the exponential taper, absence of steps in characteristic impedance, and

convenient high-pass properties produce a simple and effective transition.
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Fig. 3.9: Impedance taper performance. Three continuous impedance tapers, between 10 2 and
50 €, are shown here. Subfigure (a) shows the variation of Zy with position. While the
linear and exponential tapers begin and end at 50 Q2 and 10 (2, the Klopfenstein taper has an
impedance discontinuity at each end. Subfigure (b) demonstrates the poor performance of
the linear taper compared to the exponential and Klopfenstein tapers. While the exponential
achieves a perfect match at every multiple of Fj/2, the first return loss lobe may be
significant. The Klopfenstein taper is optimal in the sense that the return loss drops below

a given value at at the lowest possible frequency for a fixed taper length.

The Klopfenstein taper is an optimum impedance transformer that is widely used in the
design of couplers, baluns and mixers (Grossberg 1968). The performance of this taper
is optimum in the sense that for a fixed taper length the input reflection coefficient has
minimum magnitude throughout the pass band, and for a specified maximum reflection
coefficient magnitude the taper has minimum length (Klopfenstein 1956). The Klopfen-

stein taper is expressed by:

Ln(2: o
Zo(z) = exp (% In(Z,25) + (f()sT((Zflli(A%b(%’ A))),

where
. . le(A\/l—y2)
¢(2,4) = —o(=24) = | ——=="dy,
o A1 —1y?
for |z] < 1, and I, is a first order modified Bessel function of the first kind, and A is

calculated using:

r
cosh(4) = 2%

Fmax

The parameter A defines the difference between the DC reflection coefficient, I'pc, and the

maximum reflection coefficient in the pass band, I'},... The length of the taper, L, moves
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Fig. 3.10: Klopfenstein impedance taper design. Three Klopfenstein impedance tapers, with varying
values of A, are shown here. By setting A = 0 the taper is reduced to length of trans-
mission line with same characteristic impedance as a quarter wavelength transformer. At
higher values of A the magnitude of the minimum return loss is reduced at the expense of
low frequency performance. Subfigure (a) shows the variation of Z; with position. Sub-
figure (b) demonstrates the improvement in S1; as A is increased, while the frequency of

the first minima also increases.

the low frequency cut off of the impedance transformer. Figure 3.10 demonstrates the
effect of A for a constant length taper. An interesting observation is that the Klopfenstein
taper reduces to a quarter wavelength transformer for A = 0. Further, as I',,,.« is reduced
the characteristic impedance step at each end of the taper is reduced and the frequency

of the first null increases.

3.3.5 Summary

Series matching networks must be used to match the closely spaced ports of a constrained
lens. Complex port loads are implemented using the series transformer supplemented by
an extra line segment if required. Real port loads are most compactly implemented using
a quarter wavelength transformer for very narrow-band designs. The medium bandwidth
lens should use binomial or Chebyshev multi-section quarter wavelength impedance trans-
formers since they double as band-pass filters. Extreme bandwidth dictates the use of
exponential or Klopfenstein tapers since they act as a high-pass filter. The minimum size

of these tapers is decided by the performance of the lowest frequency of interest.
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3.4 Chapter Summary

Network theory is used to represent the interactions between the Rotman lens, transmis-
sion lines, and antenna elements. S-parameter representation is ideally suited to high
frequency lens designs. S-parameters are easily manipulated to determine lens beam-
forming performance, insertion loss, and return loss. S-parameters and network theory

are fundamental tools in the design and analysis of constrained lenses.

To maximise the performance and bandwidth of the lenses described in Chapter 7, the
load of each transmission line connected to the lens must be precisely defined. The
desired port impedances have been found using the power-wave formulation to express
the S-parameters in terms of arbitrary complex port impedances. Having defined the
load impedance required at each port, matching networks are employed to transform this
impedance to the characteristic impedance of the interconnecting transmission line. This
chapter has presented a number of transmission line matching networks useful in this role.
Before a detailed description of lens construction techniques can be presented, a review
of the theory and techniques available in the literature is summarised in the following

chapter.
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Chapte

Rotman Lens Review

HIS chapter describes the operation of the Rotman lens and intro-

duces the variables and equations that define its shape and size.

Three methods for predicting the performance of the Rotman lens are pre-
sented. The first, ray optics, represents each port as an independent point
source. Ray optics underpins the Rotman equations and is the most simplistic
of the three methods. The second, two dimensional aperture theory replaces
each point source with a two dimensional aperture antenna. This is carried out
in an attempt to more realistically model the coupling between ports. Finally,
electromagnetic simulation is used to predict the impact of port geometry on
lens performance and to correctly account for the interaction of incident and

reflected waves at every point within the lens.

These three models have been used to improve the performance of the Rotman
lens. Significant advancements have been made in the design of the antenna
and beam ports. This has lead to the development of low sidelobe lens designs
and improved understanding of port matching and sidewall design. The chap-
ter ends with a description of the Rotman lens applications and advancements

presented in the literature.

Page 71



4.1 Introduction

4.1 Introduction

Lens design relies on modelling in order to replicate the performance of the lens to some
degree of accuracy. This thesis considers three modelling approaches. Each successive

model is more complex, but is also a more accurate representation of the physical device.

A geometrical optics model assumes that each port is connected to all other ports with
unity magnitude and a time delay proportional to the distance between the two ports of

interest. The geometrical optics model is used to optimise the:

size of the lens relative to the aperture size,

shape of the lens,

length of the antenna delay lines, and

idealised path length error.

The two dimensional aperture model treats each port as a two dimensional antenna with
an aperture equal to the port width. In this way the coupling coefficient between any two

ports is calculated. This model is used to optimise the:

e width and orientation of each port,

e excitation taper across array aperture,

e peak gain and sidelobes associated with each beam,
e insertion loss of each beam port, and

e idealised efficiency of the lens.

An electromagnetic model is used to accurately simulate the final structure. The accuracy
of these simulations vary depending on the software and the proficiency of the user. The

electromagnetic model is used to accurately predict:

e reflections within the body of the lens,
e port impedances and matching,

e mutual coupling between ports,

Page 72



Chapter 4 Rotman Lens Review

e coupling between delay lines,

the optimal shape of the lens sidewalls,

the effect of manufacturing variations,

the performance of transmission line transitions, and

beam pattern and mutual coupling of antenna elements.

The following sections will describe each of these three models in detail.

4.2 Geometrical Optics Model

The Rotman equations are based on geometrical optics. This approach assumes that a
beam port and antenna port are connected by a single direct path. The coupling coefficient
between a beam port and all antenna ports is assumed to be equal. Finally, all energy
leaving a beam port is assumed to be coupled to the antenna ports resulting in a lens with

no loss. In practice these assumptions are all idealisations that are impossible to achieve.

The geometrical optics, or path length model, has been used extensively to compare the
optimal performance of constrained lenses. The path length from each beam port through
the lens to the antenna element is calculated, as shown in Figure 4.1(a). If a beam port
at position A is a perfect focal point, the path length will be a linear function of antenna
element position. For all other points on the focal arc, the path length will not be a linear
function of antenna element position. The deviations from the expected linear relation

are referred to as path length errors or aberrations.

A typical wavefront aberration curve produced by a Rotman lens is shown in Figure 4.1(b)
for a number of positions on the focal arc. The aberration curve is obtained by computing
the difference between the wavefront as it leaves the array aperture and the expected ideal
linear wavefront. The path-length difference is normalised relative to the focal length F.
The accepted measure of path length error of a Rotman lens is the maximum deviation

of this curve (Rotman and Turner 1963).

The normalisation of path length error by the focal length is not suited to optimisation of
the Rotman lens as a linear antenna array feed. In this role, the path length errors scale
with aperture size, not focal length. It is more appropriate then, to normalise the path

length errors by the aperture size. Further, characterising the path length error by the
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(a) Geometrical optics model. (b) Typical aberration curves.

Fig. 4.1: Geometrical optics model and aberrations. The geometrical optics model uses the ray paths
between each beam port and all antenna ports to calculate the phase performance of the
Rotman lens. The ray paths of a single beam port are shown in Subfigure (a). Aberrations
are the deviation of the phase of each antenna port from that of the ideal wavefront.
Typical aberration curves associated with different positions on the focal arc are shown in
Subfigure (b).

maximum deviation at any single element does not differentiate between beam pointing
error and higher order errors. Beam pointing errors are easily corrected by moving the
beam port along the focal arc, and higher order errors cannot be removed by geometrical
optimisation. It is the higher order errors that are the true limitation of the Rotman
lens and an error analysis that identifies this would significantly improve the selection of

optimal lens variables.

The geometrical optics model only gives information about the phase of the signal at each
element of the antenna array. This model does not predict port coupling or magnitude
of the antenna excitation. These effects are predicted using the two dimensional aperture

model described in Section 4.3.1.

4.2.1 The Rotman Lens Design Equations

The Rotman lens design equations are provided by the geometric optics model. To cor-
rectly achieve beam-forming, the Rotman lens path length equality must be satisfied. The
path length equality requires that all paths, originating at one of the three perfect focal
points and terminating in a planar wave, be equal in length. Each path is a sum of three

lengths: the distance between beam port and antenna port through the body of the lens,
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the length of the transmission line segment, and the free space distance from the antenna
element to the planar wavefront. The Rotman lens geometry in Figure 4.2 shows the
parameters used to define the lens. The lens geometry is defined by the position of the
three focal points and the width of the lens contour. The input variables are the position
of each antenna element, N, and the position of the perfect focal points specified by «,
F and G. The solution results in expressions for the antenna port locations P(X,Y") and
each transmission line length W. The focal arc is chosen to be circular, connecting the

three focal points.

Figure 4.2: Rotman lens geometry. The array arc of the Rotman lens, P(X,Y), is calculated based
on the angle and distance, o and F', of the outer perfect focal point, and the distance,
G, of the central focal point. Antenna ports are placed on the array arc and connected
to the corresponding antenna element by a transmission line of length W. A circular
wavefront with its origin at F7 will propagate through the body of the Rotman lens

producing a delay/advance of N sin(«a) at antenna element distance NV from the origin.
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Antenna Port Positions and Delays

The two off axis focal points are located a distance F' from the origin and angle a from

the axis, and the the third focal point is located on the axis at a distance G from the

origin. The three focal points will produce plane wave fronts directed at angles «,

_a’

and 0°. The equations for optical path-length equality between the ray passing through

the point P(X,Y’) and the ray through the origin are

—
FiP+W + Nsin(a) = F + W,
—_—

F,P+W — Nsin(a) = F+ W,

and
—
FEP+W = G+ W,
where
(Z_71—1_3>)2 = (Fcos(a) —Y)*+ (Fsin(a) — X)?,
= F24+Y? 4 X? - 2FY cos(a) — 2F X sin(a),
(P = (Fcos(a)—Y)?+ (Fsin(a) + X)?,
= F?24+Y? 4+ X? - 2FY cos(a) + 2F X sin(a),
and

(FP)? = (G-Y)+ X2

(4.4)

(4.5)

(4.6)

By normalising N, X, Y, (W — W) and G relative to the focal length F, the following

parameters are defined,

Y

n =
G W —

«

I
)=
Sz

Na}
|
1
&
=
o
S
I

B
T

For convenience we will also define
ap = cos(a), and by = sin(«).

Equation (4.1) to (4.3) become
= 1—w—byn,

—
P
F
F,P
2T = 1—w+bn,

(4.7)
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and
—
FyP
T = g+w
Equation (4.4) to (4.6) become
(FyP)?
1172 = 1+9*+ 2% —2apy — 2y,
—
F,P)?
( ;2> = 149+ 2% — 2apy + 2oz,
and
—
FyP)?
( %2) = (g—y)2+$2

By combining the normalised forms of Equations (4.7) and (4.9),

(1—w—0bn)? = 1+y*+2°—2apy — 2by,
1+w2+b3n2—2b0wn—2w = 149>+ 2% —2apy — 2byx.

(4.8)

(4.9)

(4.10)

Since the off axis focal points are located symmetrically about he centre axis, the lens

contours must also be symmetrical. Therefore, Equation (4.10) remains unchanged and

can be separated into two independent equations if z is replaced by —x and n by —n. One

equation contains only odd powers of x and n while the other contains the even terms.

Therefore,

— 2bgn + 2bpwn = —2byx,

r = n(l—w),
and
Y4 a? —2a0y = w’+bin® - 2w.
Equations (4.6) and (4.8) may be combined in the same way resulting in

ey
FyP?
F2

=(g—w)’=(g-y) +2°,
and
y: + 22— 29y = w® — 2qw.

By subtracting Equations (4.12) and (4.13), the following relation is derived,

b +2w(g — 1)
2(g — ao)

(4.11)

(4.12)

(4.13)

(4.14)
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Equations (4.11) and (4.14) are substituted into Equation (4.12) and the resultant quadratic

equation is solved to find w. The quadratic equation is

Aw® + Bw + C =0, (4.15)
where
A = 1—%—#, (4.16)
B = —2g— R (gg—_a(l))2 + 2ggg__a10 + 22, (4.17)
o= - e (4.18)

4(9—a0)* “g—ag
By noting that the lens arc must pass through the origin, the value of w can be calculated

using the formulae

—B —VB?—-4AC

= >
w 24 (g et &0),
—B+ vB? - 4AC
w = 54 (9 < agp).

These equations have been further simplified (Katagi et al. 1982, Katagi et al. 1984) by

4
B? —4AC = (g—b—oao)2(1 — 77/2> (n% - n2> (ng - n2)7

g(1 —ap) + (g —1)* £ (g — 1)y/(g — ag)* + b
0 '

showing that

where

For the Rotman equations to yield real values for z and y, B*> — 4AC > 0. This leads to
the result that 0 < |n| < min(1,ny,ny).

Once the design parameters a and g are chosen, w can be computed as a function of n
from Equation (4.15). These values are substituted into Equations (4.10) and (4.11) to

determine z and y.

Beam Port Positions and Delays

The work of Rotman and Turner (1963) suggests that the beam ports should be positioned
on the focal arc at the desired beam pointing angle 6 from the axis. The radius of the
focal arc is calculated using the equation

(Fa — G)* + F*?

R 2(G — Fa)

(4.19)
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Figure 4.3: Focal arc geometry. The Rotman equations do not define the shape of the focal arc
connecting the three perfect focal points. The focal arc is normally chosen to be a circle
connecting all three points. This figure shows the focal arc, Ppp(X,Y), with radius R,
centred on the point G — R from the origin. If multiple beam ports are fed together with
a common array phase centre, the additional delay lines must be added to each beam

port of G — H.

The beam ports are placed at an angle 6 from the axis and length H from the origin as
shown in Figure 4.3. The length H is found using the trigonometric law of cosines, from

the triangle with sides R, H, and G — R. The equation is

—By + /B3 — 44;C
H (4.20)

B 2A; ’

where

By = —2(G — R)cos(),
C; = G*-2RG.
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The coordinates of the beam port, Ppp(X,Y), are then found using

Xy = Hsin(h),
Yy = Hcos(0).

Applications involving beam synthesis, achieved using combinations of beams, require
that all beams must have the same far-field phase reference. This is achieved by adding
delay lines to each beam port so that the path length from any input port to the origin

of the lens is constant. The beam port delay line length is calculated using the formula

Wy =G — H.

4.2.2 Effect of Parameters and Lens Shape

The Rotman lens geometry provides five parameters that are varied in order to achieve
optimal lens design. These parameters are «, (3, f, g and nma,. The parameter .y
is defined by the size of the desired aperture. The remaining variables are optimised to

ensure that the lens is realisable and the performance is maximised.

Effect of ¢

The parameter g changes the distance of the central focal point from the origin of the
lens. The factor g determines the extent of the focal arc curvature. Figure 4.4(a) shows
that increasing ¢ results in stronger curvature of the focal arc and reducing the curvature
of the lens contour. When selecting the value of g, the primary goal is the minimisation

of path length errors for all points on the focal arc.

The Rotman equations result in a lens with three perfect focal points at Fy, F} and
F5. The equations do not specify an optimum value of ¢ that minimises the path length
aberrations on the focal arc between these points. Rotman uses the phase error analysis
of the Ruze lens to suggest an optimum value of

(0]
g = 1+

;. (4.21)

Rotman and Turner (1963) demonstrated numerically that path length errors of less than
+0.0001F' can be achieved for a field-of-view of £ 35° using |n| < 0.53, @ = 30°, and ¢
calculated with Equation (4.21). Ruze (1950) demonstrated that his lens is capable of
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Fig. 4.4: Effect of parameter g. The parameter g defines the distance of the central focal point from
the origin. Subfigure (a) shows the effect of varying g on the lens contour and Subfigure (b)
shows the effect on the delay line lengths of the Rotman lens. The parameters used to
generate these figures are g = 0.866,1,1.137,1.25, a = 30°, and nmax = 0.6. Both lens

contour curves and delay line lengths are normalised by the focal length F.

scanning one-degree beams over angles as great as 100 beamwidths. Rotman and Turner
(1963) used similar arguments to show the their lens can be used to scan 0.1 degree beams

over 800 beamwidths.

A geometrical optics error analysis of a number of constrained lenses (Smith 1982) suggests

that the optimal ¢ is given by,
g = 1/cos(a). (4.22)

Smith (1982) concludes that this will result in aberrations of the same magnitude (6x107%)
but higher order than that of ¢ = 1. No comparison was made to the value for g suggested

by Rotman in Equation (4.21).

Little work has been carried out to test the values of g suggested by Rotman and Turner
(1963) and Smith (1982). Further, an effective method to find the optimal value of ¢ for
any value of o and f would be an important contribution to the design of wide aperture

lenses. This will be discussed further in Section 5.2.

Effect of o

The angle between the outer focal points and the origin is defined by «. The variable «

is generally considered to define the field-of-view of the Rotman lens because aberrations

Page 81



4.2 Geometrical Optics Model

increase rapidly for beam angles greater than «. For this reason, the selection of « is
limited by the scanning requirements of the lens and the maximum acceptable error.
Figure 4.5(a) shows that as « is increased the width of the lens is increased. The choice

of a also strongly varies the lens contour and the delay line length.
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Fig. 4.5: Effect of parameter o. The parameter « defines the angle between the central focal point
and the outer focal points when viewed from the origin of the lens. This is generally set to
be equal to the maximum scan angle of the lens. The parameters used to generate these
figures are o = 25°, 30°, 40°, 60°, nmax = 0.6, and g = 1.137. Both lens contours and
delay line lengths are normalised by focal length F.

Effect of n

The position of the antenna element on the aperture and its associated port on the antenna
arc of the Rotman lens is defined by n. The largest value, n., dictates the portion of the
total antenna arc used by the lens. Larger values of ny,, produce impractical antenna arc
shape as seen in Figure 4.6(a). Moreover, Figure 4.6(b) shows that the increased length

of the outer delay lines make the lens difficult to implement for larger nax.

The parameter n,,,, varies the size of the antenna aperture because the lens dimensions
have been normalised by the focal length F. After the lens is designed it must be scaled
to match the antenna aperture. The error analysis and lens design are simplified by
normalising the lens by the aperture size. The effect of varying the antenna element
spacing relative to the antenna port spacing has also been neglected in this analysis.

These points will be discussed further in Section 5.1.
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(a) Normalised lens contour curves. (b) Normalised delay line lengths.

Fig. 4.6: Effect of parameter nmayx. The size of the array aperture, and therefore the size of the
lens contour, is defined by the parameter nmay. This variable has no effect on the three
focal points or the delay line length. The parameters used to generate these figures are
Nmax = 0.5,0.6,0.7,0.8, « = 30°, and g = 1.137. Both lens contour curves and delay line
lengths are normalised by focal length F'.

4.2.3 Alternate Focal Arcs

The Rotman lens equations define a lens contour based on the positions of three perfect
focal points, one on the axis and two symmetrically either side. The focal arc passing
through these three focal points is not defined by the Rotman equations, however it is
commonly implemented using a circular geometry. Although other focal arcs have been
demonstrated in the literature, no systematic analysis of the problem has been carried

out. The following sections will describe the alternatives to the circular focal arc.

Parabolic, Hyperbolic, Elliptical & Straight Focal Arcs

Parabolic, hyperbolic, elliptical and straight focal arcs have been compared in the litera-
ture (Singhal et al. 1998). Singhal et al. (1998) concluded that a more compact Rotman
lens is obtainable using an elliptical focal arc while maintaining comparable aberrations.
The analysis is based on the results of contour integral simulations where the beam ports
are implemented as tapered transmission lines connected to the body of the lens. The
contour integral simulation includes the effects of port mismatch and reflections within
the body of the lens. The path length errors associated with the Rotman lens are very

small compared to the phase errors introduced by these effects. Although the results
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described by Singhal et al. (1998) are valid for a single lens implementation, they do not

provide any insight into the optimal focal arc for the Rotman lens.

Symmetric Rotman Lens

Equations describing a symmetric Rotman lens that produces lens and feed curves identi-
cal with opposite orientations have been presented in the literature (Shelton 1978). The
port locations and delay at each point on the lens and feed curves are also identical.
The resulting lens exhibits front-back and right-left symmetry. This makes it possible to

interchange the input ports and array ports.

Shelton (1978) suggests six reasons for choosing the symmetric configuration over the

asymmetric lens:

1. asymmetric lenses have the lens arc or feed arc more strongly curved than the arcs

obtained for the symmetric solution;
2. symmetric lenses exhibit better aberration characteristics;

3. the self-illumination problem—the tendency for feed ports to illuminate other feed

ports, is more severe for asymmetric lenses;
4. the symmetric lens is smaller than an equivalent asymmetric lens;

5. it is possible to divide a symmetric lens on its line of symmetry with a reflecting

plane and realise a reflection-type collimating system; and

6. beam synthesis, such as the formation of monopulse patterns using combinations of

beams, can only be achieved using the symmetric configuration.

Shelton (1978) states that the first four items are not rigorously proven. This will be
addressed in Section 5.3.1. Shelton (1978) presented design equations that demonstrate
that these symmetrically configured lenses form a one-parameter family. The design
equations are not simply an extension of the Rotman equations, defining ¢, o and n,
instead they define the lens in terms of A and C', shown in Figure 4.7. From A and C,
the lens contours are defined and the lens dimensions are then scaled so that the lens has
transmission characteristics equivalent to those of a Butler matrix with the same number

of ports.
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Figure 4.7: Symmetrical Rotman lens geometry. The symmetrical Rotman lens replaces the circular
focal arc with the array arc. The resultant lens is symmetrical and therefore beam ports
and antenna ports are interchangeable. The symmetrical lens is very different from that
of Rotman and Turner (1963). Instead of defining the lens based on F', GG, and «, the

symmetrical lens uses the variables A and C' shown above.

A set of equations relating the asymmetric Rotman lens variables, g, o and n to the sym-
metric variables A and C', has not been defined; further, a comparison of the performance
of the symmetrical and asymmetrical lens, and confirmation of Shelton’s six points, have

not been presented in the literature.

Refocusing

There are many examples in the literature regarding the refocusing of single and dual
focal point lenses to improve the lens aberration performance (Kock 1946, Ruze 1950).
Similar effort has not been applied to the Rotman lens architecture. This may be due to
the significant performance improvement of the Rotman lens in comparison to single and

dual focal point lenses. Refocusing is a problem space that warrants closer attention.
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4.3 Electromagnetic Models

4.3.1 Two Dimensional Aperture Model

The analysis of the Rotman lens so far, has concentrated on the path length performance,
but has not considered the amplitude performance. To improve the accuracy of the
lens model, a number of attempts have been made to predict the coupling coefficients
between any two ports (Maybell 1981, Tomasic and Hessel 1982). Smith and Fong (1983)
approximated the waveguide ports as two-dimensional antennas with a cosine aperture
field distribution, and uniform aperture field distribution to approximate a microstrip or
stripline port (Smith and Fong 1984). This approach predicts the primary amplitude
distribution across the array ports of the lens allowing predictions of insertion loss and

sidelobe levels of the lens fed array.

This model treats the lens ports as two-dimensional antennas as shown in Figure 4.8. The
coupling between all ports on the lens is calculated using the two-dimensional equivalent
of the Friis transmission equation. From this, approximate values for insertion loss and

excitation taper across the antenna elements can be determined.

Beam Contour

R Parallel plate region

Array Contour

Figure 4.8: Two dimensional aperture model. Beam port and antenna port of the lens represented
as two-dimensional transmitting and receiving antennas. This allows predictions of port

coupling, lens insertion loss, and sidelobe levels.
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We first define the two-dimensional antenna gain G() by

by

g, — 1t
4T orrh’

where S; = power flux density, P, = power transmitted, r = distance away from the

antenna, and h is the parallel plate separation.

The maximum gain of a uniformly illuminated aperture of width L is

2w L
Gmax = 1
A
compared to
AT A
Gmax - 77

for the three dimensional case (Smith and Fong 1984).

The two-dimensional equivalent of the Friss transmission formula can now be derived:

P = Sa(0)A,(¢)
PG(0)

" 2 Le(9)h,

and

= o Gl0)Gi(0),
where 6 and ¢ are angles from the normals to the beam and array port apertures. As
expected this closely resembles the three dimensional case
P, A2
B~ e e
The function G(0), describing the radiation pattern for a flared microstrip port, is found
using two dimensional aperture theory (Clarke and Brown 1980). The junction between
the flared microstrip line and the parallel plate region of the lens is approximated as a
uniform aperture field distribution across the width [ of the microstrip line or stripline

(Fong and Smith 1984). This leads to the following formula

) i ( Tlsin @
G(6) = %l{smjl Oy g,

When using waveguide feed horns we assume a half cosine aperture distribution (Smith
and Fong 1983), this yields

orl 8  cos(Tnl)
G(@) = Tﬁ 1_(2ls}i\n0)2} cos” 6.
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The two dimensional aperture model is a valuable visualisation tool providing a quick and
intuitive method of exploring the phase and magnitude performance of different Rotman
lens geometries. However, the two dimensional aperture model assumes that all ports are
perfectly matched to lossless transmission lines. This model does not predict reflections

and scattering within the body of the lens.

4.3.2 Planar Electromagnetic Models

The geometrical optics and two dimensional aperture models yield only an approximate
design because the effect of port reflections, mutual coupling, and scattering between
ports is not included. A number of attempts have been made to combat this with limited
success (Richards et al. 1987, Tripp et al. 1989, Shishegar and Safavi Naeini 1996, Penney
et al. 2005, Silvestro et al. 2005, Schulwitz and Mortazawi 2006). The models based on
planar circuit analysis have proved effective. For the first time, internal lens reflections
and mutual coupling between ports could be accurately predicted. Planar circuit analysis
assumes that the electric and magnetic fields within microstrip or stripline devices are
invariant across the depth of the substrate. This permits these devices to be modelled as

two-dimensional structures.

Early work involving microstrip and stripline transverse electromagnetic (TEM) lenses
introduced two-dimensional integral equations relating the electric and magnetic fields
along the periphery of the lens (Chan 1989a, Sharma et al. 1992). Chan’s (1989b) ap-
proach offered the improvement of using waveguide-like modes in the lens feeds, enhancing
the efficiency of analysis. This approach has been used extensively in the design of mi-
crostrip and stripline Rotman lenses (Yuan and Liang 1999, Yuan et al. 1999). A similar
approach was adapted by the authors in the design of lenses using rectangular waveguide

at millimetre-wave frequencies (Peterson and Rausch 1999b, Peterson and Rausch 1999a).

Recent work (Yuan et al. 2001) improves the accuracy of the analysis significantly, based
on a hybrid procedure that combines the least squares finite element method (LSFEM)
(Wendland 1979) and the transfinite element method (Cendes and Lee 1988), which is
appropriate for any planar beam-forming lens structure. In contrast to earlier methods,
the LSFEM method solves the full first-order Maxwell system by incorporating the two
divergence equations explicitly in the functional, and has been shown to be free from

spurious solutions even when standard nodal finite elements are used (Jiang 1998).
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To demonstrate that the method produces accurate results, Chan (1989a) applied the
method to the analysis of a multiple beam-forming Rotman lens. The results begin to
converge when the area of each element becomes smaller than approximately A/50. Yuan
et al. (2001) state that accurate results are obtained when the element area is reduced to
A2/150. The procedure yields the distribution of the electromagnetic fields in the lens, as

well as the scattering parameters.

While significant work has been carried out in the literature on the design of efficient
solvers capable of calculating the performance of a Rotman lens, there are many commer-
cial electromagnetic simulation packages available that are capable of this task (Penney
2008). The open boundary methods of moments solver, such as Ansoft Designer (Ansoft
2008a), is particularly well suited, since it is capable of accurately representing angled

ports and edges.

4.3.3 Monolithic Port Design

Port design, after beam port position is determined, is the second stage of lens design and
it will be shown in Section 7.1 that port design is the most challenging aspect of mono-
lithic constrained lens implementation. Before electromagnetic simulation techniques be-
came available, port design was reliant on measured results of realised structures. While
this approach worked very well for E-plane probe port designs, the physical structure
of microstrip and stripline ports is not easily tuned. Electromagnetic analysis has made
it practical to tune the virtual structures and confidently predict the effects on a con-
strained lens design. It is for these reasons that little work was carried out in this area
before (1989a).

The port connects the microstrip or stripline to the parallel plate region of the lens pro-
viding a transformation between the two. Poorly designed ports result in beam pattern
degradation due to internal reflections and increased return loss. The problem is ex-
acerbated by the need for electromagnetic simulation or construction of a prototype to
measure the performance of a given port implementation. This thesis is significant in
that it explores port design independent of lens implementation, which is necessary if

broadband Rotman lenses are to emerge.
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Tapered port

Early lens designs used flared waveguide to implement the beam ports. Early monolithic
lens designs used the same approach. Unlike the impedance tapers described in Sec-
tion 3.3.4, the characteristic impedance at each point on the taper is not known. This
approach gently flares the microstrip or stripline to half the guided wavelength where
it attaches to the body of the lens (Niazi 1980, Maybell 1981, Niazi 1981, Herd and
Pozar 1984). The layout of this port design is shown in Figure 4.9. By gradually increas-
ing the width of the transmission line the characteristic impedance is slowly changed to
resemble the impedance at the interface between the port and lens body. Reducing the
port angle reduces the discontinuity in the impedance taper and results in an improved
match (Musa and Smith 1986). Experimental results demonstrate that a taper angle of

less than 12.5° is required for a good match (Musa and Smith 1989).

Parallel plate region

Array Contour

Figure 4.9: Tapered port. Early lens designs use a simple tapered port. The gradual increase in
transmission line width acts as a slow impedance taper and improves the impedance

match of the port.

Beam ports positioned on the edge of the focal arc do not illuminate the lens contour
ideally. Some authors have rotated the beam port in an attempt to direct the energy
more favourably. Experimental results showed this to be quite an effective technique
(Musa and Smith 1986). Other designers used H-plane sectoral horn antenna data to
approximate the position of the port phase centre relative to the port mouth (Herd and
Pozar 1984). By placing the beam ports in front of the focal arc by a small margin, the

phase centre of the port is exactly on the focal arc and phase errors are reduced.
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Port Impedance Matching

The impedance matched port is used in an attempt to directly match the impedance at the
periphery of the lens body to the transmission line using a series impedance transformer
(Chan et al. 1990b, Chan et al. 1990a, Chan et al. 1994, Chan and Rao 2002, Chio
and Chan 2004, Maybell et al. 2005), using techniques described in Section 3.3.3. The
challenge with this approach is finding the required impedance of each port. Chan (1989a)
uses boundary integral equation method to generate the S-matrix representing the lens
body (Chan 1989b). The reflection coefficient of each port is converted to an impedance
and this value is assumed to achieve a perfect match. By repeating this at a number of
frequencies a broadband port impedance is defined that provides sufficient information for
the multi stage quarter wavelength series impedance transformer, as seen in Figure 4.10,

to be designed.

Parallel plate region

Array Contour

Figure 4.10: Impedance matched port design. If the port impedance is known, a multi-segment
impedance matching network can be used to implement a broadband match. This
technique allows the impedance the port presents to the body of the lens to be defined

precisely.

This matching method is appropriate for matching ports of the Rotman lens that are
excited only when no other port is excited. An example is shown in Figure 4.11 where
only a single beam port is being excited. The matching method begins by examining the
lens power-wave S-parameters, described in Section 3.2.4. The input impedance of the

port of interest, port 4, is calculated using the formula:
Zin,i = %(Zref,i)%(z) +j(8%<zref,i)%(z> - S(Zref,z'))

where
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Figure 4.11: Beam port matching. Beam ports are treated as if they are the only driven port in the
system. The input impedance is calculated from the reflected power-wave at port i
which is equal to S;;. By repeating this process for each beam port, an effective match

is achieved across all beam ports.

The S-parameters are recalculated using new reference impedances. By setting
/ —
ref — ZSv

S’ is calculated using Equations (3.10) and (3.12) and represents the behaviour of the
system with the new source impedances. By setting the source impedance Zg;, of port ¢,
equal to the conjugate of the input impedance Z;, ; a perfect match for port ¢ is achieved.
To match all beam ports of the lens, this procedure must be repeated for each beam port.
However, changing the source impedance of any beam port alters the input impedance of
all others. For this reason, none of the beam ports are perfectly matched and the process

must be repeated until all individually excited ports are effectively matched.

The problem with this approach is that the impedance experienced at each port is depen-
dent on the terminated impedance of all other ports. Despite each port being individually
matched, the process described by Chan et al. (1994) does not achieve a match when
multiple ports are excited simultaneously. A significant contribution of this thesis is that
it will establish a procedure that correctly accounts for multiple port excitation while

effectively matching all ports of a constrained lens.
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Sidelobe Reduction

The width of monolithic ports is limited to A/2 to prevent coupling to second order
modes. As the width of the beam port increases, its two dimensional beam pattern
becomes narrower. This causes excitation taper across the antenna array that resembles
a cosine taper. The cosine taper exhibits lower sidelobes than the uniformly excited array
aperture (Musa and Smith 1986, Musa and Smith 1989). An example of this is seen
in Figure 4.12(a). The main beam width is increased while the sidelobes are reduced
Figure 4.12(b). The excitation taper also results in a greater proportion of the energy
coupling with the antenna ports, decreasing the insertion loss. To achieve a cosine taper,
the beam port must be made larger than half a wavelength by feeding two or more adjacent

ports.
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(a) Multi-port implementation. (b) Beam pattern.

Fig. 4.12: Multi-port beam port implementation. Constructing a beam port by combining two adja-
cent ports together using a power divider or combiner results in a more directional beam
pattern. This helps prevent second order modes and reduces the energy lost to the sidewall
of the lens. The coupling between each sub-port must be considered to achieve a good
match. Subfigure (a) demonstrates a focal arc consisting of linear tapered sub-ports con-
nected in pairs to form beam ports. Subfigure (b) demonstrates the increase in directivity

of the port as the number of sub-ports is increased.

A number of authors have reduced the sidelobe performance of the lens by combining three
to five beam ports to implement a Taylor series approximation (Thomas 1978, Tomasic
and Hessel 1982, Troychak 1987, Peterson and Rausch 1999b). Thomas (1978) showed
that a 8th order Taylor series beam port excitation, designed to achieve -45 dB sidelobes,

could be approximated by three ports and still achieve -43 dB sidelobes. Experimental
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results showed that sidelobes were increased further to -29.9 dB, for a 10 % bandwidth at

6 GHz, due to phase errors in the antenna feed lines.

The effect of feeding multiple beam ports is that the cross over points between adjacent
beams become unacceptably low for most applications. To counter this, complex feed
networks must be implemented to allow beam ports to be connected to multiple feeds.
Smith (1985) suggested using Wilkinson dividers back to back to implement N feeds,
utilising N + 1 beam ports, as seen in Figure 4.13(a). This results in each beam port
being fed while maintaining closely spaced beams at the cost of 3dB insertion loss. The
loss occurs in the resistive terminations of the two way hybrid junctions connected to each

beam port.

Other feed networks have been suggested for feeding triple sub-port systems. Figure 4.13(b)
uses two and three way hybrid power splitters to implement 0.7:1:0.7 amplitude excita-
tion. This power splitting network results in 1.76 dB insertion loss. A 0.5:1:0.5 amplitude
excitation taper is generated by the power dividing network shown in Figure 4.13(c).
This network is simple to implement in microstrip as it uses only two way hybrids. This
network has a 1.25dB insertion loss (Smith 1985). Despite the potential benefits, the
insertion loss, cost, and complexity has prevented more than passing interest in these feed

networks.

4.3.4 Dummy ports and sidewalls

It has become standard practice in waveguide based lens design, to reduce the reflections
from the sidewalls of the lens by replacing the air dielectric with Radiation Absorbing
Material (RAM). This is not practical for monolithic lens designs, instead dummy ports
terminated in a matched load are positioned along the lens sidewall (Niazi 1980, Fong
and Smith 1984, Musa and Smith 1989). Chan et al. (1994) connected the dummy ports

to lossy microstrip lines resulting in significant cost and size reduction.

Like beam and antenna ports, dummy ports exhibit a directional two dimensional beam
pattern. This results in much of the energy incident on the ports from oblique angles
to be reflected back into the body of the lens. These effects combined with the material
cost and substantial design effort has motivated other sidewall designs. The sidewalls of
the lens shown in Figure 4.14, (dubbed batman), trap and dissipate energy that would
otherwise be reflected back into the body of the lens (Abbott and Parfitt 1997). Other
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Fig. 4.13: Multi-port feed networks. Three methods of implementing overlapped sub-port feeds is
shown here. Subfigure (a) uses a linear excitation taper feeding two sub-ports and has a
3dB insertion loss. Subfigures (b) and (c) feed three sub-ports using a tapered excita-
tion. The feed shown in Subfigure (b) has an insertion loss of 1.76 dB while the feed in

Subfigure (b) achieves 1.25dB.
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authors use resistive foil placed over the sidewalls to reduce the strength of the reflected

energy (Metz et al. 2001a).

NOTE:
Thisfigureisincluded on page 96
of the print copy of the thesisheld in
the University of Adelaide Library.

Figure 4.14: Batman sidewall. Attempts to reduce design effort and complexity of sidewall absorbers
and dummy ports motivated some interesting designs. The above batman design was

reported by Abbott and Parfitt (1997).

The poor performance of dummy ports or sidewall absorbing material can significantly

limit the performance of Rotman lens architectures.

4.4 Rotman lens designs in the literature

The Rotman lens has been implemented using a large range of transmission lines and
antenna elements. These lenses have been built to operate from microwave frequencies
to near visible light. Despite the apparent simplicity of the Rotman lens concept, the
implementation of these devices provides many challenges. To better understand these
challenges, this section provides a summary of constrained lens designs presented in the

literature.

4.4.1 E-plane Probe and Waveguide Horn

Despite the simplicity of reflector backed E-plane probes, used to implement the ports of

the first Rotman lens (Rotman and Turner 1963), the literature does not report any new
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lenses built until the work carried out by Thomas (1978) on reducing sidelobe levels of
multi-beam arrays and the construction of wide angle array feeds (Thomas 1978). The
E-plane probe feed structure was examined in detail by Tomasic and Hessel (1982) with
the intention of reducing the lens sidelobe levels and improving matching. The Rotman
lens has also been used as the transform feed for a 9 GHz dual lens Fourier transform
antenna array (Thomas 1979, Southall and McGrath 1986). A detailed explanation of
the completely overlapped sub-array antenna is beyond the scope of this thesis. How-
ever, Southall and McGrath (1986) utilised dummy ports to significantly improve the

illumination of the antenna ports by the outermost beam ports.

4.4.2 \Waveguide

The quest for ever higher frequencies and reduced insertion loss motivated the construction
of Rotman lenses using waveguide (Rausch and Peterson 1992). These designs operate
at 37 GHz, have 32 array elements, 17 beams and a maximum scan angle of 22.2°. These
lenses are realised in aluminum using electrical discharge machining techniques. The lens
is fed using WR22 rectangular waveguide, with a folded magic-T used to split each feed
into two ports to eliminate the possibility of higher order waveguide modes. The regions
along the sidewall are specially shaped and lined with absorber material to eliminate

reflections within the body of the lens.

The electromagnetic model used to design these lenses is similar to that proposed by Chan
(1989a). This model was used to optimise the port widths and predict the side lobe level
and insertion loss (Peterson and Rausch 1999b, Peterson and Rausch 1999b).

Rausch et al. (1996) highlighted the importance of sidewall design and maximum port
width. Beam patterns were calculated after applying a 3rd order Taylor series excitation
taper designed to achieve sidelobes of -45dB, compared to -15dB without the taper
(Rausch 1998), and -21 dB by exciting two adjacent phase equalised beam ports (Wiebach
and Rausch 1998). Experiment showed a greater than 15dB increase in sidelobes due to
reflections from the sidewalls of the lens when straight sidewalls are used and absorbing
material is removed. A similar result is seen when ports widths are increased beyond half a
wavelength due to excitation of higher order modes in the ports. Over the frequency range
32.8 GHz to 36.8 GHz the insertion loss ranges from 0.8 dB to 2.3dB with an increase in
insertion loss of 2dB, due to the Taylor series taper. Typical port isolation is said to be

-21dB at 33 GHz reducing to -28 dB at 37 GHz (Rausch et al. 1997a, Rausch et al. 1997b).
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This design approach has been repeated in other papers (Phuong et al. 1999, Kilic and
Dahlstrom 2005, Weiss et al. 2002, Weiss and Dahlstrom 2006 ).

The highest frequency Rotman lens to date is designed for 94 GHz (Fuchs and Nussler
1999, Nubler et al. 2007). This lens is built in the same way as those of Rausch and
Peterson (1992). The lens consists of 15 beam ports covering a scan range of + 23.3° in
steps of 3.3° and 10 array ports. Beam ports have been rotated so that they point at the
centre of the output arc to reduce asymmetrical illumination of the array ports. When
directly connected to a linear antenna array, an average sidelobe level of less than -10 dB

has been obtained, closely agreeing with theoretical results.

A new form of waveguide Rotman lens has emerged using substrate integrated waveguide
(Sbarra et al. 2007, Cheng et al. 2008). This waveguide solution is low cost since it

shares the same manufacturing process as microstrip and stripline lens implementations.

4.4.3 Stripline and Microstrip Lens Design

The size of the Rotman lens can be significantly reduced replacing the parallel plate
section with conductively clad dielectric. Beam ports and antenna ports have often been
implemented using flared microstrip (Niazi 1980, Maybell 1981, Niazi 1981, Herd and
Pozar 1984) or stripline (Maybell 1983). Monolithic construction techniques result in low
cost, reduced size and simple implementation of surface mount components. This has

made monolithic construction the standard form of Rotman lens construction today.

The first monolithic lens designs are very similar to earlier designs in waveguide. The two
dimensional aperture models adopted by designers treat each flared microstrip port as
the equivalent flared waveguide, except with a uniform aperture field distribution (Fong
and Smith 1984). Experiments to determine the effects of different port geometries and

the effectiveness of directional ports resulted in significant improvements in performance
(Musa and Smith 1986, Musa and Smith 1989).

The Rotman lens has also found applications in satellite communications and broadcast
reception at X-band and K-band frequencies (Gans and Amitay 1983, Sang-Gyu et al.
2005). Ome application uses a circularly polarised, two dimensional, planar array in a
polar scanning system. The angular scan is implemented mechanically while the elevation
scanning is implemented using a Rotman lens (Maddocks 1988, Maddocks and Smith
1989, Maddocks and Smith 1991). Early designs featured a single moveable beam port,
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or 7 fixed beam ports, implemented using flared waveguide and 24 antenna ports. Later

designs utilise triplate (stripline) implementation (Maddocks and Smith 1991).

The Rotman lens has been used to improve the performance of satellite communication
systems. One such example is base station beam tilting by the Rotman lens rather
than by adjusting mechanical brackets on the antenna array (Kim et al. 1998, Kim et
al. 2005, Kim and Barnes 2005). The relatively low frequency of these systems requires
a high dielectric substrate to minimise the size of the lens. Further, this application
requires that the relatively broad beam be steered over a narrow field-of-view by very
small increments. Experimental results showed good beam-forming however the close

proximity of beam ports had a detrimental effect on port matching and insertion loss.

The work by Chan (1989a) significantly altered the approach researchers took to designing
a Rotman lens by applying a boundary integral equation method to the analysis of stripline
and microstrip lenses. Prior to this work, a successful lens design had to rely largely
on experimental results obtained from testing, an expensive and cumbersome approach
(Chan 1989a). Chan (1989a) found that good port match could not be achieved for
significant bandwidths using tapered transmission lines alone (Chan et al. 1990b, Chan

et al. 1990a).

The new generation of compact, low cost, high frequency Rotman lenses have found
applications in a large number of devices. One of these is a sidelobe canceller for radar
applications in the frequency band 8.5 GHz to 10 GHz, constructed using a hexagonal
array of horn antennas for used for satellite communications (Chan et al. 1994). This two
dimensional array is excited by two banks of Rotman lenses connected in series and rotated
by 90° (Chan and Rao 1998, Chan 1999, Chan and Rao 2000, Chan and Rao 2002, Archer
and Maybell 2005, Chan et al. 2007).

Other applications that have been proposed include wireless communications (Olsen et
al. 2007, Anthony 2008), UHF beamformers (Singhal et al. 2007, Lambrecht et al. 2008),
automotive radar (Hall et al. 2004), military radar (Archer and Maybell 2005, Schulwitz
and Mortazawi 2005, Schulwitz and Mortazawi 2006, Dongkyu et al. 2007, Schulwitz and
Mortazawi 2007, Schulwitz and Mortazawi 2008), and insect vision systems (Goodfellow
et al. 1998). The Rotman lens has been used for shared aperture applications. Multiple
simultaneous beams are able to be transmitted in different directions and at different
frequencies (Jangsoo et al. 2007, Jangsoo et al. 2008). To test this, a 48 beam, 59
antenna element Rotman lens, with frequency range of 8 to 18 GHz, has been constructed

(Phuong et al. 1999). The antenna elements were implemented using Vivaldi-notch
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elements. The measured insertion loss of this device ranges from 6 to 12.5dB. After

implementing a Taylor weighting function, sidelobes <15dB were reported.

Modern wireless communications require high bit rates and multiple channels. To support
higher channel capacity, space division multiple access (SDMA) is proposed to increase
the signal to interference ratio. Rotman lenses have been proposed as the beam former
component for SDMA architecture (Jaecheung and Barnes 2001). Similar systems have
been proposed for high capacity, short range, millimetre wave systems (Tao and Delisle
1996, Tao and Delisle 1997). The wide field-of-view required of these systems means that
multiple lenses must be implemented to cover the full 360° sector. Again experiment
has shown that beam-forming performance is good, however beam isolation, impedance

matching, and insertion loss prove difficult (Tao and Delisle 1998).

A novel application for the Rotman lens in automated road toll systems has been suggested
(Peik and Heinstadt 1995). Currently each lane requires a five element array. Instead
a 12 element multiple beam microstrip array, fed by a Rotman lens, has been built to

simultaneously service five lanes.

Antenna systems for automotive intelligent cruise control applications have been proposed
(Williams 1992). The system consists of three switching beams providing coverage of own
lane and the two neighbouring lanes and a single wide beam transmit antenna. This
application requires a narrow field-of-view utilising 3 to 5 narrow beams operating at
77 GHz. The Rotman lens is ideally suited to this application, the major hurdle being
the integration of active devices at such a high frequency (Metz et al. 2001a, Metz et
al. 2001b, Denisenko et al. 2001, Zelubowski 1994, Schoebel et al. 2005, Sanghyo et
al. 2008, Sinjari and Chowdhury 2008a, Sinjari and Chowdhury 2008b). The feasibility
of a passive Ka-band collision avoidance sensor has also been explored in the literature.
One system combines the Rotman lens with insect vision processing techniques to detect

a potential collision between two vehicles (Hall et al. 2001, Hall et al. 2002).

Combining insect vision with the beam staring monolithic Rotman lens attracted sig-
nificant interest in the literature. Insect vision processing techniques do not attempt to
process an image, instead they rely on tracking moving edges. The processing tasks are less
hardware-intensive, resulting in a compact low-cost solution (Abbott and Parfitt 1997).
Early work targeted the 37 GHz transmission window and later moved to 94 GHz where

black body radiation power is higher. Applications for this technology include:

e guidance for aircraft landing systems,
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e guidance for unmanned aerial vehicles (Goodfellow et al. 1998),
e port navigation (Goodfellow et al. 1998), and

e collision avoidance for nanosatellite clusters (Goodfellow and Abbott 1999).

4.4.4 Novel lens architectures

Rotman lenses have been realised using air filled parallel plate and microstrip. Parallel
plate Rotman lens designs tend to be large, while microstrip designs tend to encounter
high conduction loss at millimetre wave frequencies. Conductive and dielectric loss asso-
ciated with nonradiative dielectric (NRD) guide decreases with frequency, while the loss
of microstrip lines increases with frequency. By implementing the 77 GHz Rotman lens
using NRD, conductive and dielectric losses can be reduced by 80 % when compared to
microstrip (Jae et al. 2001). Note that NRD guide tends to suffer much higher coupling
between beam ports compared to microstrip implementation and this must be taken
into account during the design of the lens. The NDR cannot easily be combined with
standard antenna elements. A gap-coupled unidirectional dielectric radiator suitable for
use at 77 GHz has been built (Jae et al. 2002, Jae et al. 2003). Similar designs have
been presented in later papers (Kilic and Weiss 2004, Kilic and Dahlstrom 2005, Kim et
al. 2005, Kim and Barnes 2005, Jaeheung et al. 2005, Weiss and Dahlstrom 2006, Schul-
witz and Mortazawi 2006, Worms et al. 2006, Jaeheung et al. 2007, Worms et al. 2007).

Rotman lenses have been implemented using fiber optic cables. The optical couplers
and delay lines are used to implement true-time-delay beam-forming. The delay lines
are trimmed to achieve the appropriate amplitudes and phase shift for a signal driving
a linear array antenna. A similar scheme has been described for RF direction finding
applications, and a holographic Rotman lens using diffractive optic elements in free space
has been demonstrated (Curtis 1995). This approach has been used to create a four beam,
four element, photonic beamformer to drive a 2 to 4 GHz array (Sparks et al. 1998). This
was expanded to an eight beam, sixteen element, photonic Rotman lens (Sparks et

al. 1999, Sparks 2000, van Vliet 2002, Rotman et al. 2005).

4.5 Chapter Summary

This chapter has reviewed the advancements made in Rotman lens theory and design.

It has presented the Rotman design equations, the effect each parameter has on lens
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geometry, and the accepted method of evaluating geometrical errors. This is a basis for
the contributions this thesis has made to geometrical optics analysis and optimisation of
the Rotman lens. In the following chapter the Rotman equations are rewritten in a form
suited to a feed network for a linear array and redefines the definition of aberrations to

have greater relevance to the beam-forming ability of the lens.

While the Rotman equations are based on geometrical optics, electromagnetic models
must be used to predict the behaviour of the lens. This is best carried out by treat-
ing each port as a two dimensional antenna element matched to a transmission line.
Coupling between ports has been found using a number of electromagnetic simulation
methods. However, there is little understanding of the precise mechanisms that limit lens
performance. It is the answer to this question that is the largest contribution of this

thesis, and is presented in the following chapter.
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