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ABSTRACT 

This twin paper investigates key parameters that may affect the pressure waveform predicted by 

the classical theory of water-hammer. Shortcomings in the prediction of pressure wave 

attenuation, shape and timing originate from violation of assumptions made in the derivation of 

the classical water-hammer equations. Possible mechanisms that may significantly affect pressure 

waveforms include unsteady friction, cavitation (including column separation and trapped air 

pockets), a number of fluid-structure interaction (FSI) effects, viscoelastic behaviour of the pipe-

wall material, leakages and blockages. Engineers should be able to identify and evaluate the 

influence of these mechanisms, because first these are usually not included in standard water-

hammer software packages and second these are often "hidden" in practical systems. 

 This Part 1 of the twin paper describes mathematical tools for modelling the aforementioned 

mechanisms. The method of characteristics (MOC) transformation of the classical water-hammer 

equations is used herein as the basic solution tool. In separate additions: a convolution-based 

unsteady friction model is explicitly incorporated; discrete vapour and gas cavity models allow 

cavities to form at computational sections; coupled extended water-hammer and steel-hammer 

equations describe FSI; viscoelastic behaviour of the pipe-wall material is governed by a 

generalised Kelvin-Voigt model; and blockages and leakages are modelled as end or internal 

boundary conditions. 

 



 2

RÉSUMÉ 

Cet article, publié en deux parties, étudie les paramètres clés qui ne sont pas considérés par la 

théorie classique du coup de bélier et qui peuvent cependant avoir un effet significatif sur la 

forme de l'onde de pression. Les différences entre les valeurs calculées et observées dans 

l'atténuation, la forme et le retard de l’onde de pression sont expliquées par ces paramètres. Les 

ingénieurs devraient être capables d’identifier et évaluer l'influence de ces phénomènes puisque, 

tout d’abord, ils ne sont généralement pas considérés dans les logiciels commerciaux de calcul du 

coup de bélier, et, ensuite, ils se manifestent, souvent sous forme « masquée », dans les systèmes 

réels. Ces phénomènes sont notamment la friction transitoire, la cavitation (y compris la 

séparation de la colonne et les poches d’air), l'interaction de fluide structure (FSI), le 

comportement viscoélastique du matériel de la conduite, les fuites et les blocages.   

La première partie décrit les modèles mathématiques nécessaires pour calculer les effets 

de ces phénomènes. La méthode de caractéristiques (MOC) est utilisée comme outil base pour la 

transformation des équations classiques du coup de bélier. Le modèle pour le calcul de la friction 

transitoire, basé sur l’opération de circonvolution, y est explicitement incorporé. Les modèles 

discrets de cavité de vapeur et de gaz permettent de simuler la cavitation aux sections définies. La 

FSI est décrite par les équations élargies combinées du coup de bélier et du coup d'acier tandis 

que le comportement viscoélastique du matériel de la conduite est décrit par un modèle généralisé 

de Kelvin-Voigt. Les fuites et les blocages sont considérés comme condition de frontière 

d’extrémité ou intérieure. 

 

Keywords: Water hammer, unsteady friction, cavitation, column separation, air pocket, fluid-

structure interaction, viscoelastic behaviour of the pipe-wall, leakage, blockage. 

 

 

1 Introduction 

 

1.1 Classical water-hammer 

 

The classical water-hammer equations in terms of pressure head H and discharge Q are 
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with the quasi-steady frictional head loss per unit length 
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and the wave speed a given by 
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where A = cross-sectional flow area, D = internal pipe diameter, E = Young’s modulus of 

elasticity of pipe-wall material, e = pipe-wall thickness, f = friction coefficient according to 

Darcy-Weisbach, g = gravitational acceleration, K = bulk modulus of elasticity of liquid, and α 

= axial pipe-constraint parameter dependent on Poisson's ratio ν and relative wall thickness e/D. 

Eqs. (1) and (2) describe the acoustic behaviour of weakly compressible (elastic) low-Mach-

number flows in prismatic pipes of circular cross-section. The pipe-wall is assumed to behave 

in a linearly elastic manner, and cavitation (including column separation and trapped air 

pockets), leakages, blockages, and FSI are assumed not occur. In fact, Eqs. (1) and (2) are 

simplified unsteady pipe flow equations in which the convective transport terms have been 

neglected. A full derivation of these equations can be found in any textbook on water hammer 

(e.g., Wylie and Streeter 1993; Almeida and Koelle 1992; Chaudhry 1987).  

 

 The standard procedure to solve Eqs. (1) and (2) is the method of characteristics (MOC). 

This procedure yields water-hammer compatibility equations that are valid along characteristic 

lines in the distance (x) − time (t) plane. The compatibility equations are numerically integrated to 

give for the i-th computational section at time t (Fig. 1): 

 

−  along the C+ characteristic line (Δx/Δt = a): 
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−  along the C− characteristic line (Δx/Δt = −a): 
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The discharges at the upstream ((Qu)i) and downstream (Qi) sides of the i-th computational 

section have been introduced to accommodate the discrete cavity models described in Section 3. 

They are identical for the classical water-hammer case, i.e. Qu ≡ Q. Using appropriate boundary 

and junction conditions, the numerical solution is calculated by time-marching from a given 

initial condition. It is noted that slightly different computational grids and numerical 

integration schemes have been used herein, dependent on the computer code used. 
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Figure 1  The method of characteristics staggered grid for a reservoir-pipe-valve system. 

 

1.2 Extended water-hammer 

 

In practice, the conditions in a pipeline system can be far from the idealised situation 

described by the classical water-hammer equations. Friction, in the classical sense of Eq. (3), 

gives rise to wave attenuation and line pack. However, occasionally Eq. (3) is not sufficient 

and more advanced models, referred to as unsteady or frequency-dependent friction, have to 

be applied. Many other complications may exist in practical situations, such as: air (free and 

dissolved) in the liquid, cavitation and column-separation (low-pressure phenomena), fluid-
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structure interaction (if unrestrained pipes move), viscoelastic pipe-wall behaviour (if pipes 

are made of plastic or if steel pipes deform plastically), and unnoticed leaks, hidden 

blockages, and thefts at unidentified locations in the system. The modelling of all of these 

phenomena is the subject of this Part 1, whereas Part 2 concentrates on the effects on the 

pressure signals. Other complications that may affect the water-hammer waveform include: 

acoustic radiation, for example in rock-bored tunnels (Fanelli 1973; Suo and Wylie 1990), 

solidified sediment deposit at the pipe walls, and tapered pipes (Adamkowski 2003). These 

are beyond the scope of the present paper. 

 

1.3 Aims of the twin paper 

 

Undesirable water-hammer effects may disturb the overall operation of hydraulic systems and 

cause damage of fluid machinery, pipe displacement or even pipe rupture. Calibration and 

monitoring of hydraulic systems require a detailed knowledge of water-hammer wave 

attenuation, shape and timing. Engineers should be able to identify parameters that may violate 

the underlying assumptions in standard water-hammer software packages. 

Part 1 presents one-dimensional mathematical models in the framework of the MOC. 

Numerical models including all of the aforementioned phenomena do not exist (to the 

authors’ knowledge) in commercial software. Therefore, the different models presented in 

Part 1 are made suitable for easy implementation in standard water-hammer codes. Part 2 

presents case studies with numerical results showing how a number of important parameters 

affect water hammer. It is for the first time that these complicating aspects have been brought 

together in one paper and applied to one water-hammer test system. 

 

 

2 Unsteady friction 

 

The importance of skin friction in one-dimensional pipe flow models depends on the system 

considered and on the operating conditions. In the majority of the laboratory water-hammer test 

rigs unsteady friction dominates over steady friction. Unsteady friction arises from the extra 

losses caused by the two-dimensional nature of the unsteady velocity profile. In turbulent flow 

unsteady friction is even a three-dimensional problem. However, fully modelling both the two-

dimensional and three-dimensional cases is complicated, computationally expensive and defining 

the boundary conditions in more complex systems can become difficult. It is therefore desirable 

to have a model that takes into account higher-dimensional velocity profile behaviour and that 
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still can be efficiently incorporated in a one-dimensional analysis.  There are many types of 

unsteady friction models (Bergant et al. 2001). In this paper the convolution-based unsteady 

friction type of model is considered. 

 

2.1 Convolution-based model 

 

The friction head loss can be thought of as comprising a steady part and an unsteady part as 

follows: 
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where ν = kinematic viscosity, W = weighting function (of time) and "∗" denotes convolution. 

The Darcy-Weisbach relation (3) defines the steady-state component and the unsteady 

component follows from the convolution of a weighting function (W) with past temporal 

discharge variations (∂Q/∂t). Zielke (1968) derived the following approximate time-domain 

weighting function equation based on analytical solutions obtained for laminar flow: 
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where mj = {0.282095, −1.250000, 1.057855, 0.937500, 0.396696, −0.351563}, j = 1, …, 6, and 

nj = {26.3744, 70.8493, 135.0198, 218.9216, 322.5544}, j = 1, …, 5. The weighting function is 

defined in terms of the dimensionless time τ = 4ν t/D2.  

 Vardy and Brown (1995) used the frozen viscosity assumption to derive a weighting 

function for smooth-pipe turbulent flow. Their approximate weighting function was  
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where A* and B* depend on the Reynolds number (Re0 = Q0D/(νA)) of the pre-transient flow. 

Vardy and Brown (2003) defined the coefficients A* and B* for smooth-pipe turbulent flow as   
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These coefficients are accurate in the range 2⋅103 < Re0 < 108. 

 For fully rough-pipe turbulent flow Vardy and Brown (2004) proposed 
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where ε/D = relative pipe-wall roughness. These coefficients are valid for 10−6 < ε/D < 10−2. 

 Although convolution-based models for unsteady friction are only approximate and have a 

finite time-duration of validity, they have resulted in good matches with previous numerical and 

experimental studies. Vardy and Hwang (1991) showed good matches between a two-

dimensional shell model of transient flow and results obtained with the Zielke weighting 

function. Ghidaoui and Mansour (2002) showed that the Vardy-Brown weighting function 

produced good matches with experimental data and with the quasi-2D model of Pezzinga (1999) 

for smooth-pipe turbulent flow.  

 

2.2 Method of characteristics implementation 

 

 The finite-difference approximation of the convolution-based unsteady frictional head loss term 

for the i-th computational section in a staggered characteristic grid (Fig. 1) is 
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where M = t/Δt − 1. A first order approximation term fΔx/(2gDA2)Qt-Δt| Qt-Δt | is used in Eqs. (5) 

and (6) (Bergant et al. 2001). Equation (12), called the full-convolution scheme and first 

implemented by Zielke (1968), is computationally expensive. Trikha (1975) and Kagawa et al. 

(1983) improved computational efficiency by further approximating Zielke’s weighting function. 

Ghidaoui and Mansour (2002) presented an efficient implementation of the Vardy and Brown 

(1995) weighting function. Vítkovský et al. (2004) developed computationally efficient and 

accurate approximations of both the Zielke and any of the Vardy-Brown weighting functions. 
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3 Cavitation 

 

Low pressures during transient events in pipelines often result in cavitating flow. Cavitation 

significantly changes the pressure waveform and the water-hammer equations developed for 

pure liquid flow are not valid anymore. Two basic types of transient cavitating flow can be 

distinguished: one-component two-phase transient flow (vaporous cavitation; liquid column 

separation) and two-component two-phase transient flow (gaseous cavitation; free gas in 

liquid flow). A historical review of the subject is given by Bergant et al. (2006). 

 

3.1 Vaporous cavitation and DVCM 

 

Vaporous cavitation (including column separation) occurs in pipelines when the liquid 

pressure suddenly drops to the vapour pressure. Cavitation may occur as a local vapour cavity 

(large void fraction, often leading to a column separation) and/or as distributed vaporous 

cavitation (small void fractions). A large local (discrete) vapour cavity may form at a 

boundary (shut-off gate or valve, draft tube of a water turbine), at a high point or knee, or at 

any place in a pipe (intermediate cavity) when two low-pressure waves meet (Bergant and 

Simpson 1999). Distributed vaporous cavitation occurs when a rarefaction wave drops the 

pressure to vapour pressure in an extended length of pipe. Pressure waves do not propagate 

through an established mixture of liquid and vapour bubbles, because the pressure simply 

stays constant; this inability distinguishes vaporous cavitation from gaseous cavitation. Both 

the inertia-driven collapse of a large vapour cavity and the movement of a pressure wave front 

into a vaporous cavitation zone make the vapour condense back to liquid. A number of 

vaporous cavitation models have been developed (Wylie and Streeter 1993; Simpson and 

Bergant 1994; Bergant and Simpson 1999) including discrete cavity and interface models. 

 The discrete vapour cavity model (DVCM) is widely used in standard water-hammer 

software packages. It allows vapour cavities to form at computational sections in the MOC 

when the pressure drops to the liquid’s vapour pressure. Pure liquid with a constant wave 

speed a is assumed to occupy the reach in between two computational sections. The discrete 

vapour cavity is described by Eqs. (5) and (6), with Qu ≠ Q and H set to the vapour head Hv, 

and its volume ∀v is governed by the continuity equation: 
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which is numerically approximated by (Fig. 1): 
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in which tin = time of cavitation inception and ψ = weighting factor. The weighting factor ψ is  

taken between 0.5 to 1.0 to obtain numerical stability. The cavity collapses when its 

calculated volume becomes less than zero. The liquid phase is re-established and the water-

hammer solution using Eqs. (5) and (6) (with Q ≡ Qu) is valid again. The DVCM may 

generate unrealistic pressure pulses (spikes) due to the collapse of multi-cavities, but the 

model gives reasonably accurate results when the number of reaches is restricted. It is 

recommended that the maximum volume of discrete cavities at sections is less than 10% of 

the reach volume (Simpson and Bergant 1994).  

 

3.2 Gaseous cavitation and DGCM 

  

Gaseous cavitation occurs in fluid flows when free gas is either distributed throughout the 

liquid (small void fractions) or trapped at distinct positions along the pipe and at boundaries 

(larger void fractions). Trapped gas pockets are known to cause severe operational problems 

in piping systems. During low-pressure transients the gas bubbles grow and dissolved gas may 

come out of solution (gas release). Transient gaseous cavitation is associated with wave 

dispersion and shock waves. The wave speed in a gas-liquid mixture is pressure dependent and 

generally it is significantly lower than the liquid wave speed a.  Gas release takes several 

seconds whereas vapour formation takes only a few milliseconds (for water at room 

temperature). The effect of gas release during transients is important in long pipelines for which 

the wave reflection time is at least in the order of several seconds. Empirical methods for 

describing the amount of gas release were, amongst others, developed by Zielke and Perko 

(1985).  

Transient flow of a homogeneous gas-liquid mixture with a low gas fraction may be 

described by the classical water-hammer equations (1) and (2) in which the liquid wave speed a 

is replaced by the wave speed am (Wylie 1984): 
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where αg = gas void fraction, z = pipeline elevation, and Hv = gauge vapour head. The pressure-

head dependent wave speed am makes the system of equations highly nonlinear. A number of 

numerical schemes including the MOC have been used for solving the problem of the gas-liquid 

mixture (Wylie 1980; Chaudhry et al. 1990; Wylie and Streeter 1993). These methods are 

complex and cannot be easily incorporated into a standard water-hammer code. Alternatively, 

the distributed free gas can be lumped at computational sections leading to the discrete gas 

cavity model (DGCM). 

 The DGCM allows gas cavities to exist at computational sections. As in the DVCM, 

pure liquid with a constant wave speed a is assumed to occupy the computational reaches in 

between. The discrete gas cavity is described by the water-hammer compatibility equations 

(5) and (6), the continuity equation for the gas cavity volume (14) (index g replaces v), and 

the ideal gas equation (assuming isothermal conditions): 

 

0 0( ) ( )v g v gH z H H z H− − ∀ = − − ∀                                                                                       (16) 

 

in which ∀g = gas volume and subscript "0" indicates the initial situation. The treatment of gas 

release in the DGCM using the method proposed by Zielke and Perko (1985) is 

straightforward (Barbero and Ciaponi 1991). Naturally, DGCM can be used to model a single 

air pocket (air pocket volume to be less than 10% of the reach volume). In addition, the 

DGCM can be successfully used for the simulation of vaporous cavitation by utilizing a low 

initial gas void fraction (αg0 = 0 reach/g∀ ∀  ≤ 10−7) at all computational sections (Wylie 1984; 

Simpson and Bergant 1994). 

 

 

4 Fluid-structure interaction 

 

The quality of results obtained with the classical water-hammer equations (1) and (2) depends 

highly on a good estimate of the magnitude of the pressure wave speed a. Consequently, it is best 

to determine a directly from measurements. Theoretical estimates of a are usually valid for thin-

walled pipes with either zero axial stress (α = 0) or zero axial strain (α = 1 − ν 2). If non-zero 
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dynamic axial stresses and strains in the pipe-wall are taken into account, the following extended 

water-hammer equations are obtained 
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where a is defined by Eq. (4) with α = 1 − ν 2. The right-hand term in Eq. (17) is the time 

derivative of the axial strain, which is equal to the spatial derivative of the axial pipe-wall 

velocity xu& , multiplied by two times Poisson's ratio ν and a2/g. To determine the pipe velocity 

xu& , two additional equations have to be solved. These may be named extended steel-hammer 

equations, because they are mathematically equivalent to the Eqs. (17) and (18), 

 

2

2
x x

ss
  u D  H   a        g    
 t  x e  t
σ ν ρρ

∂ ∂ ∂
− =

∂ ∂ ∂
&

                                                                                       (19) 

2 sin 0
8

x rel rel
s s

f    |  |Q Q  u     +    g    
 x  t  e A

ρσ θρ ρ
∂ ∂

− − =
∂ ∂

&
                                                                      (20) 

 

in which σx = axial stress, ρs = mass density of the pipe-wall material, as = √(E/ρs) = stress wave 

speed, and Qrel = discharge relative to the moving pipe-wall. The MOC transforms the four 

coupled Eqs. (17-20) to compatibility equations which, disregarding skin friction and gravity, and 

in terms of pressures (p) and fluid velocities (V) to see the mathematical analogy with stresses 

and structural velocities, read as follows 
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Equations (21) and (22) are valid along characteristic lines with atx ~  d / d ±=  and 

atx s
~  d / d ±= , respectively, and the Poisson coupling factors Gf and Gs are: 

 

2 12 [ ( 1) ] s
f

s

a                   G a
ρν
ρ

−= − −
%

    and    2 1[ ( 1 ])
2

 s
s

D a                G e a
ν −= −%                              (23) 



 12

 

The modified wave speeds a~  and a s
~  follow directly from the characteristic equation of the 

coupled system of Eqs. (17-20). In water-filled steel pipes, the modified wave speeds a~  and a s
~   

are slightly different from a and as (Stuckenbruck et al. 1985; Leslie and Tijsseling 1999): a~  < a 

because of added (pipe) mass and a s
~  > as because of added (liquid) stiffness. Each jump in 

pressure travelling at speed a~  is now accompanied with a jump in axial pipe stress according to 

(Tijsseling 1993) 

 

p  G    sx Δ−=Δσ                                                                                                                          (24) 

 

Similarly, each jump in axial stress travelling at speed a s
~  is accompanied with a jump in pressure 

(precursor) according to 

 

xf   G   p σΔ−=Δ                                                                                                                        (25) 

 

The relations (24, 25), together with the definitions (23), say something about the importance of 

distributed fluid-structure interaction (FSI). 

Local FSI occurs at valves, orifices, expansions, contractions, elbows, bends and branches, 

noting that under severe transients all these pipe components will vibrate to a certain extent. The 

dynamic interaction of a local component with flow unsteadiness is called junction coupling. The 

simplest example is the closed free end where fluid and structural velocities, and pressures and 

stresses, are proportional to each other 

 

= &xV   u      and     xs A  p A σ=                                                                                                   (26) 

 

Herein, FSI is related to axial modes of pipe vibration without wavefront distortion (Tijsseling et 

al. 2006). In general, pipe flexure and pipe torsion must be taken into consideration because of 

their coupling to axial modes. More information on the subject can be found in reviews by 

Wiggert (1996), Tijsseling (1996) and Wiggert and Tijsseling (2001). 
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5 Viscoelastic behaviour of the pipe-wall 

 

Plastic pipes are being increasingly used in water supply systems due to their high resistant 

properties (mechanical, chemical, temperature and abrasion) and low price. The viscoelastic 

behaviour of plastic pipes influences the water-hammer event by attenuating the pressure 

fluctuations and by increasing the dispersion of the travelling wave. Sections of viscoelastic 

pipe have been used to suppress dangerously large transients due to the high dispersion and 

damping exhibited by the pipe section’s viscoelasticity (Pezzinga and Scandura 1995). An 

approach based on the mechanical principle associated with viscoelasticity, in which strain 

can be decomposed into instantaneous elastic strain and retarded viscoelastic strain, is used 

herein. The elastic strain component is included in the wave speed, whereas the viscoelastic 

strain component is included as an additional term in the continuity equation (Rieutord and 

Blanchard 1979; Gally et al. 1979).  

 

5.1 Linear viscoelastic model 

 

Plastic pipes have a different constitutive behaviour compared to metal and concrete pipes. 

When subjected to an instantaneous stress σ, polymers do not respond according to Hooke’s 

law. Polymers have an instantaneous elastic response and a retarded viscous response.  

Consequently, the total strain ε can be decomposed into an elastic component εe and a 

retarded component εret as 

 

e retε ε ε= +                                                                                                                              (27) 

 

For small strains, a combination of stresses that act independently results in strains that can be 

added linearly. The total strain ε generated by a continuous application of stress σ is 

 

0
JJ
t

ε σ σ ∂
= + ∗

∂
                                                                                                                    (28) 

 

where J0 = instantaneous creep-compliance and J = creep-compliance function of time t, and 

"∗" denotes convolution. For linearly elastic materials, the constant creep-compliance J0 is 

equal to the inverse of Young’s modulus of elasticity, i.e. J0 = 1/E0. For a material that is 

homogeneous and isotropic, and for small strains, Poisson’s ratio ν is approximately constant. 
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The circumferential pipe stress σϕ is related to the gauge pressure by σϕ = pD/(2e). The 

circumferential strain defined by εϕ = 2ur/D, where ur is the radial displacement of the pipe 

wall, is related to the pipe stresses by εϕ = (σϕ−νσx)/E. The linear viscoelastic behaviour of 

the pipe wall for small strains and no dynamic FSI effects may now be approximated as 

(Güney 1983) 

 

( ) ( )
*

* *
0 0 0 *0

( )[ ] [ ( ) ] d
2 2

tD D J tt p t p J p t t p t
e e tϕ

α αε ∂
= − + − −

∂∫                           (29) 

 

The subscript "0" corresponds to steady-state conditions. The first term on the right-hand side 

of Eq. (29) corresponds to the elastic circumferential strain (εϕ)e and the second term to the 

retarded circumferential strain (εϕ)ret. The creep-compliance function J(t), which describes the 

viscoelastic behaviour of the pipe material, can be determined experimentally using a 

mechanical test or calibrated (tuned) on collected transient data (Covas et al. 2004, 2005). A 

mechanical model of the generalised viscoelastic solid is typically used to describe the creep 

function (Aklonis et al. 1972), for example a generalised Kelvin-Voigt model consisting of N 

parallel spring and dashpot elements in series, 

 

( ) ( )0
1

1 e k

N
t

k
k

J t J J τ−

=

= + −∑                                (30) 

 

where the stiffness of each spring is Ek = 1/Jk, the viscosity of each dashpot is ηk, and the 

associated retardation time is τk = ηk/Ek. The creep-compliance function for a material is 

dependent on temperature, stress, age, and orientation as a result of the manufacturing process 

(Lai and Bakker 1995). These effects are not included in Eq. (30). 

When the viscoelastic model equation (29) with p = ρgH − x sin θ, is incorporated in the 

water-hammer equations (1) and (2), the equation that represents the conservation of mass 

becomes 

 
2 2 ( )2 0retεH a Q a

t g A x g t
ϕ∂∂ ∂

+ + =
∂ ∂ ∂

                                                                                            (31) 

 

The influence of the elastic strain (εϕ)e is already included in the liquid wave speed a (Eq. 

(4)). The viscoelastic model does not change the equation of motion Eq. (2). 
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5.2 Method of characteristics implementation 

 

After applying the MOC to the extended water-hammer equations (31) and (2), the 

corresponding compatibility equations become 

 
2 ( )d d 2 0

d d
ret

f
H a Q a ah
t gA t g t

ϕε∂
± + ± =

∂
    along    d

d
x a
t
= ±                            (32) 

 

where the partial derivative of the retarded strain in the pipe-wall with respect to time is 

 

( ) ( ) ( )* *
*

0

,( )
, d

2
tret H x t t J tDx t g t

t e t t
ϕε α ρ

∂ − ∂∂
=

∂ ∂ ∂∫                                                              (33) 

 

The integration in the above equation is performed numerically with the trapezoidal rule so 

that the retarded strain term for the i-th computational section in the characteristic grid (Fig. 

1) is 

 

( ) ( ), ,
1,3,5,

( )
2

M
ret

i t j t t i t j t t
ji t

D Jg H H j t
t e t
ϕε α ρ − Δ +Δ − Δ −Δ

=

∂⎛ ⎞ ∂
= − Δ⎜ ⎟∂ ∂⎝ ⎠

∑                                                (34) 

 

where M = t/Δt−1. This scheme, called the full-convolution scheme is computationally 

expensive which can be prohibitive to its use. An efficient implementation is similar to that of 

the convolution-based unsteady friction term in Section 2.2. Gally et al. (1979) outlined an 

efficient recursive formulation using the Kelvin-Voigt approximation of the creep-compliance 

function. Numerical schemes used for the calculation of the strain (εϕ)ret and its time 

derivative can be found in Covas et al. (2004, 2005). 

 

 

6 Discrete leakage and blockage 

 

Leaks and blockages represent common faults that pipeline systems can experience during their 

design lifetime. In many cases transients measured in the field show significantly more damping 

than what is predicted by models (including unsteady friction). In some cases this additional 
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damping is caused by unknown faults such as leaks and blockages. These are complementary 

phenomena; for example, a leak represents a flow loss with no head loss, whereas a blockage 

represents a head loss with no flow loss. Discrete leaks and blockages are modelled using the 

orifice equation 

 

2= ΔOr d Or OrQ C A g H                                                                                                                 (35) 

 

where Cd = discharge coefficient and subscript "Or" relates to orifice. For both leaks and 

blockages, Eq. (35) is implemented in the MOC as an internal boundary condition.  

Discrete leaks are treated as an off-line orifice. The relationship that relates the upstream 

flow Qu to the downstream flow Q is 

 

( )2 0u d Or Or OUTQ Q C A g H h z− − − − =                                                                                    (36) 

 

where hOUT = pressure head outside the leak. In most cases the outside head is the atmospheric 

pressure head and assumed zero. Eqs. (5), (6) and (36) combine to a quadratic equation in HOr 

that is solved exactly using the quadratic formula. Once HOr is determined, the upstream and 

downstream flows are calculated using the positive and negative compatibility equations (5) 

and (6), respectively. Care must be taken to account for the case when the pressure inside the 

pipe becomes less than the outside pressure. In that case, Eq. (36) is rewritten assuming that 

the leak works in reverse, thus injecting fluid into the pipe. For real leaks, it is unlikely that 

the orifice equation will perfectly describe their behaviour. Real leaks come in a variety of 

sizes and shapes which results in deviations from the classical orifice relationship (35). In 

many cases a power law can be used for modelling the discharge-head loss relationship; 

however, the details of the leak are usually unknown and the orifice relation is sufficient. 

Discrete blockages are treated as an in-line orifice. The upstream head Hu and 

downstream head H are related to the flow through the blockage by 

 

( ) ( )22 0Or Or d Or uQ Q g C A H H− − =                                                                                          (37) 

 

Eqs. (5), with H set to Hu, (6) and (37) combine to a quadratic equation in QOr and can be 

solved using the quadratic formula, where care must be taken again when the flow through 

the orifice reverses. The orifice equation represents the simplest model of a blockage which in 
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most cases will adequately approximate a blockage of any shape and length. Additionally, for 

certain pipe flows a blockage can cause additional delays in the transient response due to 

inertial lengths associated with the submerged jet created by the blockage (Prenner 1997). 

 

 

7 Conclusions 

 

State-of-the-art mathematical models have been presented that describe unsteady friction, 

cavitation (including column separation and trapped air pockets), fluid-structure interaction, 

pipe-wall viscoelasticity, and leakages and blockages in transient pipe flow. The models are 

based on the method of characteristics (MOC) such that they can easily be incorporated in 

conventional water-hammer software. Trapped air pockets, leakages and blockages are simply 

modelled as (internal) boundary conditions. Cavitation is implicitly also modelled by (internal) 

boundary conditions, but in addition cavity volumes have to be kept track of.  Unsteady friction 

and wall viscoelasticity are modelled by adding one term to the momentum and continuity 

equation, respectively. Flow and pressure history are needed in the calculation of this added 

term, because it is a convolution. Fluid-structure interaction is modelled by one additional term 

in the continuity equation, but to calculate this term two new equations are needed which 

describe the axial transients in the pipe wall. Fortunately, the new equations can be solved by 

the MOC, because they are analogous to the classical water-hammer equations. Part 2 of the 

twin paper shows a selection of results obtained with the presented models. 
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Appendix II - Notation 

 

The following symbols are used in this paper: 

  A = cross-sectional flow area; 

  AOr = cross-sectional orifice area; 

  As = cross-sectional pipe-wall area; 

  a = (elastic) liquid wave speed; 

         am = gas-liquid mixture wave speed; 

    as =   solid wave speed;  

   a~  =   FSI-modified wave speed (pressure, stress); 

 A*, B*, κ = Vardy-Brown weighting function coefficients; 

  Cd = orifice discharge coefficient; 

  D = internal pipe diameter; 

        E  =  Young’s modulus of elasticity of pipe-wall material; spring stiffness; 

  e  =  pipe-wall thickness;  

  f = Darcy-Weisbach friction factor; 

    Gf, Gs =   FSI Poisson coupling factors; 

  g = gravitational acceleration; 

  H = piezometric head; downstream head in Eq. (37); 

  Hv = gauge vapour head; 

  hf = frictional head loss per unit length; 

     hOUT = pressure head outside the leak; 

         J  =  creep-compliance function; 

  Jk  =  Kelvin-Voigt model parameter; 

         J0  =  instantaneous creep-compliance; 

  K = bulk modulus of elasticity of liquid; 

   mj, nj = Zielke weighting function coefficients; 

  p = pressure; 

  Q = discharge (flow rate); downstream-end discharge at node; 

  Re = Reynolds number (Re = VD/ν); 

        t, t* = time; 

    tin =   time of cavitation inception; 

  u = pipe-wall displacement; 

  u&  =   pipe-wall velocity;  
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  V = cross-sectionally averaged flow velocity; 

  ∀ = discrete cavity volume; 

  W = weighting function for convolution-based unsteady friction model; 

  x = axial distance; 

  z = pipeline elevation; 

  α  = parameter dependent on the axial pipe constraints; 

  αg = gas void fraction; 

      ΔHOr = head loss across orifice; 

  Δp =   jump in pressure; 

  Δt = MOC time step; 

  Δx = MOC space step; 

       Δσx =   jump in axial stress; 

  ε = total strain; pipe-wall roughness;  

  εe =  elastic strain component;  

  εret =  retarded strain component; 

  εϕ =  total circumferential strain; 

  ηk =  dashpot viscosity;  

   θ = pipe slope; 

  ν = kinematic viscosity; Poisson’s ratio; 

   ρ = mass density of liquid; 

   ρs = mass density of the pipe-wall material; 

  σ =  stress; 

        σx =  axial stress;  

        σϕ =  circumferential stress;  

  τ = dimensionless time (τ = 4νt/D2); 

  τk =  retardation time in Kelvin-Voigt model;  

  ψ = weighting factor. 

Subscripts: 

     app = approximate; 

  e = elastic; 

  g = gas; 

  i = node number; 

  Or = orifice; 
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         r = radial direction; 

         rel = relative to pipe-wall; 

         ret = viscoelastic retardation; 

         s = structure, solid, pipe; 

         u = upstream side of computational section; 

         v = vapour; 

  x = axial direction; 

  0 = steady-state (initial) conditions. 

Abbreviations: 

 DGCM = discrete gas cavity model; 

 DVCM = discrete vapour cavity model; 

       FSI = fluid-structure interaction; 

    MOC  = method of characteristics. 

 


