

USING SYSTEM RESPONSE FUNCTIONS OF LIQUID PIPELINES FOR LEAK AND BLOCKAGE DETECTION

Pedro J. Lee

PhD Dissertation

4th February, 2005

FACULTY OF ENGINEERING, COMPUTER AND MATHEMATICAL SCIENCES

School of Civil and Environmental Engineering

ABSTRACT

Two new methods of leak and blockage detection in pipelines using fluid transients are developed in this thesis. Injection of a fluid transient (a pressure variation, the input) and measurement of the subsequent response (the output) provide information concerning the state of a pipeline through the system response function. The system response function exists in two forms, the *impulse response function* in the time domain and the *frequency response function* in the frequency domain. Provided that the system is unchanged, the response function does not change from one test to the next even though the injected transient signals may be different. A procedure that saves many hours over previous methods was developed for extracting frequency response information from experimental data. The procedure was verified both numerically and experimentally. It uses the linear time-invariant system equation. The approximation of linearity was tested by comparing calculations using the linear transfer matrix model to those of the nonlinear method of characteristics.

The system response function allows direct comparisons of the information content of transient traces. Events that create sharp variations in time were shown to have transient signals with the greatest information content. For this reason, transients generated by fast-acting electronic solenoid valves are preferable to slower transients from manual closures or pump trips.

A variety of signals were used to determine their effect on the information content of the system response. This investigation includes the use of step, pulse and pseudo-random binary signals. The use of pseudo-random binary signals was shown to provide the same information as a discrete signal that is many times its magnitude, which is attractive when system damage is of concern or the amplitude of an injected transient is limited for any reason. A specialised solenoid valve was designed and constructed as part of this research to generate pseudo-random binary signals in a laboratory pipe.

Two new methods of leak and blockage detection are developed in this thesis and these methods do not require the use of an accurate simulation model or a leak-free benchmark.

Knowledge of the pipe topology, flow and roughness values, or the role of unsteady friction on the transient event is unnecessary. Leaks and blockages induce a non-uniform pattern on the peaks of the frequency response function and the properties of this pattern allow the accurate location of the problem. In the time domain, leaks and blockages create additional reflections in the impulse response function. The arrival times of these reflections can be used to locate the fault.

Both methods have been validated using numerical and experimental results. The methods were tested under both low and high flow conditions, and a procedure for applying the methods in complex pipeline networks was developed. The time domain method can detect multiple leaks and discrete blockages. The frequency-domain technique provides a higher degree of noise tolerance but is sensitive to system configuration and requires a large bandwidth in the injected signal. In comparison, the time domain technique does not have these limitations and is more versatile; it is usually the better technique. The combination of methods provides an attractive alternative for leak and blockage detection and quantification.

TABLE OF CONTENTS

CHAPTER 1 – INTRODUCTION

1.1 INTRODUCTION	1	
1.2 AIMS OF THE RESEARCH	6	
1.3 THESIS OUTLINE	8	
1.4 PUBLICATION LIST	9	
1.5 SIGNIFICANT CONTRIBUTIONS TO THE FIELD	12	

CHAPTER 2 - LITERATURE REVIEW

2.1 INTRODUCTION	13
2.2 NON-HYDRAULIC LEAK DETECTION TECHNIQUES	14
2.3 REMOTE HYDRAULIC METHODS	19
2.3.1 Steady State Methods	19
2.3.2 Unsteady State Methods	21
2.4 SUMMARY	28

CHAPTER 3 - GOVERNING EQUATIONS

3.1 INTRODUCTION		31
3.2 METHOD OF CHARACTERISTICS		32
3.2.1 Incorporation of leak elements	~	36
3.3 TRANSFER MATRIX EQUATIONS		38
3.3.1 Incorporation of leak elements		42
3.4 UNSTEADY FRICTION		46

CHAPTER 4 - PIPELINE APPARATUS USED FOR NUMERICAL AND EXPERIMENTAL INVESTIGATIONS

4.1 SIMULATION PIPELINE FOR NUMERICAL INVESTIGATIONS	51
4.2 LABORATORY APPARATUS FOR EXPERIMENTAL INVESTIGATIONS	52
4.2 DEVICES FOR TRANSIENT GENERATION	52

CHAPTER 5 - SYSTEMS IDENTIFICATION THEORY FOR TRANSIENT BEHAVIOUR IN PRESSURISED HYDRAULIC SYSTEMS

5.1 INTRODUCTION

5.2 SYSTEM IDENTIFICATION THEORY	65
5.2.1 Choice of the input variable	71
5.2.2 System configuration	88
5.2.3 Effect of the injected signal	93
Signal bandwidth	93
Infinite energy signals	97
5.3 EXPERIMENTAL EXTRACTION OF THE SYSTEM RESPONSE FUNCTION	104
5.3.1 Effects of friction on the extracted frequency response function	101
5.3.2 Experimentally injected signals for system response extraction	104
5.3.3 Experimental frequency response function extraction results	107
5.4 CASE STUDY: EXTRACTION OF THE SYSTEM RESPONSE FUNCTION	
USING PSEUDO RANDOM BINARY SIGNAL	116
5.4.1 Experimental apparatus for the generation of PRBS	117
5.4.2 Experimental extraction of the system response function using PRBS	119
5.5 CONCLUSIONS	125

CHAPTER 6 - LEAK DETECTION USING THE FREQUENCY RESPONSE FUNCTION \diagdown

6.1 INTRODUCTION	127
6.2 EFFECT OF LEAKS ON THE FRF OF PIPELINES	130
6.3 NON – ANALYTICAL METHOD OF LEAK DETECTION USING THE FRF	138
6.3.1 Inverse method	138
6.3.2 Peak sequencing method	142
6.4 DEVELOPMENT OF AN ANALYTICAL EXPRESSION DESCRIBING LEAK-INDUCED	
MODIFICATION ON FRF PEAKS	147
6.4.1 Anti-symmetric boundary conditions	148
Anti-symmetric boundary with in-line valve fully closed	148
Anti-symmetric boundary with in-line valve open	154
6.4.2 Symmetric boundary	157
6.5 ANALYTICAL TECHNIQUE OF LEAK DETECTION	162
6.5.1 Aliasing of leak-induced oscillations	163
6.5.2 Proposed leak detection method	167
6.6 NUMERICAL VALIDATION	169
6.7 APPLICATION OF THE ANALYTICAL LEAK DETECTION TECHNIQUE	
IN A PHYSICAL SYSTEM	179
6.7.1 Unsteady friction effects on the leak-induced oscillation	179
6.7.2 Effect of signal bandwidth	182
6.7.3 Effect of pipeline irregularities	183
6.7.4 Final leak detection procedure	184
6.8 EXPERIMENTAL VALIDATION	191

6.8.1 Validation of leak detection technique using a side-discharge valve	192
6.8.2 Validation using in-line valve closures	203
6.9 EXTENSION TO MULTIPLE LEAK DETECTION	209
6.9.1 Numerical validation of multiple leak detection	210
6.9.2 Experimental validation of multiple leak detection	212
6.10 EXTENSION INTO DIFFERENT MEASUREMENT / GENERATING	
POSITIONS	216
6.11 EXTRACTION OF RESPONSE FUNCTION FOR PIPE SEGMENTS	
CONTAINED IN COMPLEX NETWORKS	220
6.12 DISCRETE BLOCKAGE DETECTION	225
6.12.1 Effect of blockage on the peaks of the FRF	228
6.12.2 Numerical validation of blockage detection technique	232
6.13 LIMITATIONS TO THE FRF TECHNIQUE	236
6.14 CONCLUSIONS	237

CHAPTER 7 - LEAK DETECTION USING THE IMPULSE RESPONSE FUNCTION

7.1 INTRODUCTION	239
7.2 BACKGROUND	240
7.3 ILLUSTRATION OF THE CONVENTIONAL TDR PROCEDURE	242
7.3.1 Detection of reflected signals	245
7.3.2 Location of the leak in the pipeline from arrival time of the reflected signal	251
7.3.3 Experimental verification of improved TDR technique	255
Symmetric boundary configuration	255
Anti-symmetric test	258
7.3.4 Limitations of the conventional TDR technique	260
7.4 IMPULSE RESPONSE FUNCTION FOR THE APPLICATION OF TDR	262
7.4.1 Extraction of the impulse response function (irf)	263
7.4.2 Properties of the impulse response function (irf)	265
7.5 EXPERIMENTAL EXTRACTION OF THE IMPULSE RESPONSE FUNCTION (IRF)	274
7.6 METHOD OF LEAK DETECTION USING THE IMPULSE RESPONSE FUNCTION (IRF)	280
7.6.1 Removal of the need for a leak-free benchmark	280
7.6.2 Refinement of transient reflections	281
7.7 EXPERIMENTAL VALIDATION OF THE IMPROVED TDR PROCEDURE FOR LEAK	
DETECTION	282
7.7.1 Anti-symmetric System Tests	282
7.7.2 Symmetric boundary conditions	287
7.8 POSSIBLE IMPROVEMENTS TO THE APPLICABILITY OF IRF	290
7.8.1 Extension into discrete blockage detection	290
7.8.2 Detection of multiple faults	292

Presence of higher order reflections	294
7.8.3 IRF for the application of complex signals	296
7.9 CONCLUSIONS	299

CHAPTER 8 - COMPARISON BETWEEN TIME AND FREQUENCY-DOMAIN LEAK DETECTION

8.1 INTRODUCTION	301
8.2 RELATIONSHIP OF LEAK-INDUCED EFFECTS ON THE FRF AND THE IRF	302
8.3 SENSITIVITY OF TECHNIQUES TO SYSTEM NOISE	308
8.4 SUMMARY OF PROPERTIES OF TIME AND FREQUENCY-DOMAIN TECHNIQUES	
	313

CHAPTER 9 - CONCLUSIONS

9.1 SUMMARY AND CONCLUSIONS	317
9.1.1 Summary and conclusions of system response extraction in hydraulic systems	318
9.1.2 Summary and conclusion of leak detection procedures	319
9.2 RECOMMENDATIONS FOR FUTURE WORK	321

REFERENCES

323

333

APPENDIX A - FORMULATION OF THE TRANSFER MATRIX FOR A TWO-LEAK PIPE SEGMENT