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Abstract

Rational models of cognition typically consider the abstract computational problems

posed by the environment, assuming that people are capable of optimally solving those

problems. This differs from more traditional formal models of cognition, which focus on

the psychological processes responsible for behavior. A basic challenge for rational models

is thus explaining how optimal solutions can be approximated by psychological processes.

We outline a general strategy for answering this question, namely to explore the

psychological plausibility of approximation algorithms developed in computer science and

statistics. In particular, we argue that Monte Carlo methods provide a source of “rational

process models” that connect optimal solutions to psychological processes. We support

this argument through a detailed example, applying this approach to Anderson’s (1990,

1991) Rational Model of Categorization (RMC), which involves a particularly challenging

computational problem. Drawing on a connection between the RMC and ideas from

nonparametric Bayesian statistics, we propose two alternative algorithms for approximate

inference in this model. The algorithms we consider include Gibbs sampling, a procedure

appropriate when all stimuli are presented simultaneously, and particle filters, which

sequentially approximate the posterior distribution with a small number of samples that

are updated as new data become available. Applying these algorithms to several existing

datasets shows that a particle filter with a single particle provides a good description of

human inferences.
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Rational approximations to rational models:

Alternative algorithms for category learning

Rational models of cognition aim to explain human thought and behavior as an

optimal solution to the computational problems that are posed by our environment

(Anderson, 1990; Chater & Oaksford, 1999; Marr, 1982; Oaksford & Chater, 1998). This

approach has been used to model several aspects of cognition, including memory

(Anderson, 1990; Shiffrin & Steyvers, 1997), reasoning (Oaksford & Chater, 1994),

generalization (Shepard, 1987; Tenenbaum & Griffiths, 2001a), and causal induction

(Anderson, 1990; Griffiths & Tenenbaum, 2005). However, executing optimal solutions to

these problems can be extemely computationally expensive, a point that is commonly

raised as an argument against the validity of rational models (e.g., Gigerenzer & Todd,

1999; Tversky & Kahneman, 1974). This establishes a basic challenge for advocates of

rational models of cognition: identifying psychologically plausible mechanisms that would

allow the human mind to approximate optimal performance.

The question of how rational models of cognition can be approximated by

psychologically plausible mechanisms addresses a fundamental issue in cognitive science:

bridging levels of analysis. Rational models provide answers to questions posed at Marr’s

(1982) computational level – questions about the abstract computational problems

involved in cognition. This is a different kind of explanation to those provided by other

modeling approaches, which tend to operate at the level of algorithms, considering the

concrete processes that are assumed to operate in the human mind. Theories developed at

these different levels of analysis provide different kinds of explanations for human

behavior, with the computational level explaining why we do the things we do, and the

algorithmic level explaining how these things are done. Both levels of analysis contribute

to the development of a complete account of human cognition, just as our understanding
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of bird flight is informed by knowing both how the shape of wings results from

aerodynamics and how those wings are articulated by muscle and bone.

Despite the importance of both the computational and algorithmic level to

understanding human cognition, there has been relatively little consideration of how the

two levels might be connected. In differentiating these levels of analysis, Marr (1982)

clearly stated that they were not independent, with the expectation that results yielded at

one level would provide constraints on theories at another. However, accounts of human

cognition are typically offered at just one of these levels, offering theories of either the

abstract computational problem or the psychological processes involved. Cases where

rational and process models can be explicitly connected are rare and noteworthy, such as

the equivalence of exemplar and prototype models of categorization to different forms of

density estimation (Ashby & Alfonso-Reese, 1995), although recent work has begun to

explore how rational models might be converted into process models (e.g., Kruschke,

2006b).

Considering the processes by which human minds might approximate optimal

solutions to computational problems thus provides us with an opportunity not just to

address a challenge for rational models of cognition, but to consider how one might

develop a general strategy for bridging levels of analysis. In this paper, we outline a

strategy that is applicable to rational analyses of probabilistic inference tasks. In such

tasks, the learner needs to repeatedly update a probability distribution over hypotheses as

more information about those hypotheses becomes available. Due to the prevalence of

such tasks, our strategy provides tools that can be used to derive rational approximations

to a variety of rational models of cognition.

The key idea behind our approach is that efficient implementation of probabilistic

inference is not just a problem in cognitive science – it is an issue that arises in computer

science and statistics, resulting in a number of general purpose algorithms (for an
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introduction and examples, see Bishop, 2006; Hastie, Tibshirani, & Friedman, 2001;

Mackay, 2003). These algorithms often provide asymptotic guarantees on the quality of

the approximation they provide, meaning that with sufficient resources they can

approximate the optimal inference to any desired level of precision. The existence of these

algorithms suggests a strategy for bridging levels of analysis: starting with rational

models, and then considering efficient approximations to those models as candidates for

psychological process models. The models inspired by these algorithms will not be

rational models, but instead will be process models that are closely tied to rational

models, and typically come with guarantees of good performance as approximations – a

kind of “rational process model”.

Our emphasis in this paper will be on one class of approximation algorithms: Monte

Carlo algorithms, which approximate a probability distribution with a set of samples from

that distribution. Sophisticated Monte Carlo schemes provide methods for sampling from

complex probability distributions (Gilks, Richardson, & Spiegelhalter, 1996), and for

recursively updating a set of samples from a distribution as more data are obtained

(Doucet, Freitas, & Gordon, 2001). These algorithms provide an answer to the question of

how learners with finite memory resources might be able to maintain a distribution over a

large hypothesis space. We introduce these algorithms in the general case, and then

provide a detailed illustration of how these algorithms can be applied to one of the first

rational models of cognition: Anderson’s (1990, 1991) rational model of categorization.

Our analysis of Anderson’s rational model of categorization draws on a surprising

connection between this model and work on density estimation in nonparametric Bayesian

statistics. This connection allows us to identify two new algorithms that can be used in

evaluating the predictions of the model. These two algorithms both asymptotically

approximate ideal Bayesian inference, and help to separate the predictions that arise from

the underlying statistical model from those that are due to the inference algorithm. We
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evaluate these algorithms by comparing the results to the full posterior distribution and to

human data. The new algorithms better approximate the posterior distribution and fit

human data at least as well as the original algorithm proposed by Anderson. In addition,

we show that these new algorithms have greater psychological plausibility and provide

better fits to data that have proved challenging to Bayesian models. These results

illustrate the use of rational process models to explain how people perform probabilistic

inference, provide a tool for exploring the relationship between rational models and

human performance, and begin to bridge the gap between computational and algorithmic

levels of analysis.

The plan of the paper is as follows. In the first part of the paper we describe the

general approach. We begin with a discussion of the challenges associated with performing

probabilistic inference, followed by a description of various Monte Carlo methods that can

be used to address these challenges, leading finally to the development of the rational

approximation framework. In the second part of the paper, we apply the rational

approximation idea to categorization problems, using Anderson’s rational model. We first

describe this model, and use its connection to nonparametric statistics to motivate new

approximate inference algorithms. We then evaluate the psychological plausibility of these

algorithms at both a descriptive level and with comparisons to human performance in

several categorization experiments.

The challenges of probabilistic inference

The computational problems that people need to solve are often inductive problems,

requiring an inference from limited data to underdetermined hypotheses. For example,

when learning about a new category of objects, people need to infer the structure of the

category from examples of its members. This inference is inherently inductive, since the

category structure is not completely specified by the limited set of examples given to the
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learner; and because of this, it is not possible to know exactly which structure is correct.

That is, the optimal solution to problems of this kind requires the learner to make

probabilistic inferences, evaluating the plausibility of different hypotheses in light of the

information provided by the observed data. In the remainder of this section, we discuss

two challenges that a learner attempting to implement the ideal solution faces: reasoning

about hypotheses that are composed of large numbers of variables, and repeatedly

updating beliefs about a set of hypotheses as more information becomes available over

time.

Reasoning about large numbers of variables

One of the most fundamental challenges in performing probabilistic inference

concerns the situation when the number of hypotheses is very large. This is typically

encountered when each hypothesis corresponds to a statement about a number of different

variables. The number of hypotheses then suffers from a combinatoric explosion. For

example, many theories of category learning assume that people assign objects to clusters.

If so, then each hypothesis is composed of many assignment variables, one per object.

Likewise, in causal learning, hypotheses about causal structure can often be expressed in

terms of all of the individual causal relationships that make up a given structure, thus

requiring multiple variables. Reasoning about hypotheses comprised of large numbers of

variables poses a particular challenge, because of the combinatorial nature of the

hypothesis space: the number of hypotheses to be considered can increase exponentially in

the number of relevant variables. The number of possible clusterings of n objects, for

example, is given by the nth Bell number, with the first ten values being 1, 2, 5, 15, 52,

203, 877, 4140, 21147, and 115975. In such cases, brute force enumeration of all

hypotheses will be extremely computationally expensive, and scale badly with the number

of variables under consideration.
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Updating beliefs over time

When making probabilistic inferences, we rarely have all the information we need to

definitively evaluate a hypothesis. As a result, when a learner observes a piece of data and

uses this to form beliefs, he or she generally remains somewhat uncertain about which

hypothesis is really the correct one. When a new piece of information arrives, this

distribution needs to be updated to the new beliefs. The consequence is that an ideal

learner needs to constantly update a probability distribution over hypotheses as more data

are observed.

Updating beliefs over time is computationally challenging because it requires the

learner to draw inferences every time new information becomes available. Unless the

learner uses methods that allow the efficient updating of his or her beliefs, he or she would

be required to perform the entire inference from scratch every time new information

arrives. The cost of probabilistic inference is thus multiplied by the number of

observations that have to be processed. As one would expect, this becomes particularly

expensive with large hypothesis spaces, such as the combinatorial spaces that result from

having hypotheses expressed over large numbers of random variables. Making

probabilistic inference computationally tractable thus requires developing strategies for

efficiently updating a probability distribution over hypotheses as new data are observed.

Algorithms to address the challenges

Some of the challenges of probabilistic inference can be addressed by approximating

optimal solutions using algorithms based on the Monte Carlo principle. This principle is

one of the most basic ideas in statistical computing: rather than performing computations

using a probability distribution, we perform those computations using a set of samples

from that distribution. The resulting approximation becomes increasingly accurate as the

number of samples grows, and the relative costs of computing time and errors in
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approximation can be used to determine how many samples should be generated. This

principle forms the foundation of an entire class of approximation algorithms (Motwani &

Raghavan, 1996). Monte Carlo methods provide a way to efficiently approximate

probabilistic inference. However, generating samples from posterior distributions is

typically not straightforward: generating samples from a distribution requires knowing the

form that distribution takes, which is a large part of the challenge of probabilistic

inference in the first place. Consequently, sophisticated algorithms need to be used in

order to generate samples. Here we introduce two such algorithms at an intuitive level:

Gibbs sampling and particle filters. A parallel mathematical development of the general

algorithms is given in the Appendix and toy examples of these algorithms applied to

categorization and a discussion of their psychological plausibility are given later.

Gibbs sampling

Gibbs sampling (Geman & Geman, 1984) is a very commonly used Monte Carlo

method for sampling from probability distributions. This algorithm is initialized with a

particular set of values for each variable, often with random values. Gibbs sampling works

on the principle of sampling a single random variable at each step. One random variable is

selected, and the value of this variable is sampled, conditioned on the values of all of the

other random variables and the data. The process is repeated for each variable; each is

sampled conditioned on the values of all of the other variables and the data. Intuitively,

Gibbs sampling corresponds to the process of inspecting one’s beliefs about each random

variable conditioned on one’s beliefs about all of the other random variables, and the data.

Reflecting on each variable in turn provides the opportunity for changes to propagate

through the set of random variables. A complete run through sampling all of the random

variables is an iteration and the algorithm is usually engaged for many iterations.

Though the algorithm will eventually sample from the desired distribution, is starts
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at a particular, often random, set of values. The early iterations show the algorithm

converging to the desired distribution, but are not yet samples from this distribution.

These iterations are known as the burn-in and are thrown away. An additional difficulty is

that iterations following the burn-in iterations often show strong dependency from one

iteration to the next. These iterations are then thinned, which means keeping every nth

iteration and discarding the rest. The remaining iterations after burn-in and thinning are

used as samples from the desired distribution. This process provides a way to generate

samples from probability distributions defined over large numbers of variables without

ever having to enumerate the entire hypothesis space, providing a tractable way to

perform probabilistic inference in these cases.

Particle filters

A second class of Monte Carlo algorithms, particle filters, are specifically designed to

deal with sequential data. Particle filters are underpinned by a simpler algorithm known

as importance sampling, which is used in cases in which it is hard to sample from the

target distribution, but easy to sample from a related distribution (known as the proposal

distribution). The basic idea of importance sampling is that we generate samples from the

proposal distribution, and then assign those samples weights that correct for the difference

from the target distribution. Samples that are more likely under the proposal than the

target distribution are assigned lower weights, since they should be over-represented in a

set of draws from the proposal distribution, and samples that are more likely under the

target than the proposal are assigned higher weights, increasing their influence.

Particle filters extend importance sampling to a sequence of probability

distributions, typically making use of the relationship between successive distributions to

use samples from one distribution to generate samples from the next (for more details, see

Doucet et al., 2001). The particle filter was originally developed for making inferences
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about variables in a dynamic environment – the problem of “filtering” is to infer the

current state of the world given a sequence of observations. However, it also provides a

natural solution to the general problem of updating a probability distribution over time.

Each particle is a sample from the posterior distribution on the previous trial, and these

samples are updated when new data become available.

Rational approximations to rational models

Monte Carlo algorithms provide efficient schemes for approximating probabilistic

inference, and come with the asymptotic guarantee that they can produce an arbitrarily

good approximation if sufficient computational resources are available. These algorithms

thus seem like good candidates for explaining how human minds could be capable of

performing probabilistic inference, bridging the gap between the computational-level

analyses typically associated with rational models of cognition and the algorithmic level at

which psychological process models are defined. In particular, Gibbs sampling and particle

filters provide solutions to the challenges posed by probabilistic inference with large

numbers of variables and updating probability distributions over time.

Part of the attraction of the Monte Carlo principle as the basis for developing

rational process models is that it reduces probabilistic computations to one operation:

generating samples from a probability distribution. The notion that people might be

capable of generating samples from internalized probability distributions has previously

appeared in psychological process models of decision making (Stewart, Chater, & Brown,

2006), estimation (Fiedler & Juslin, 2006), and prediction (Mozer, Pashler, & Homaei,

2008). Indeed, the foundational premise of the highly successful “sequential sampling”

framework (Ratcliff, 1978; P. L. Smith & Ratcliff, 2004; Vickers, 1979) is that choice

behavior is fundamentally reliant on people drawing and evaluating samples from

probability distributions that in some cases derive from internally stored stimulus
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representations (Lee & Cummins, 2004; Ratcliff, 1978; Vandekerckhove, Verheyen, &

Tuerlinckx, 2010). Taken together, these models provide support for the idea that the

basic ingredients required for Monte Carlo simulation are already part of the psychological

toolbox.

Recent research has also identified correspondences between the kind of

sophisticated Monte Carlo methods discussed above and psychological process models.

Shi, Feldman, and Griffiths (2008) showed that the basic computations involved in

importance sampling are identical to those used in exemplar models (also see Shi, Griffiths,

Feldman, & Sanborn, in press). Exemplar models assume that people store stimuli in

memory, activating them based on their similarity to new stimuli (e.g., Medin & Schaffer,

1978; Nosofsky, 1986). An importance sampler can be implemented by storing hypotheses

in memory, and activating them in proportion to the probability of observed data under

that hypothesis. Moreover, this interpretation of exemplars as stored hypotheses links

exemplar-based learning nicely to previous rational analyses of exemplar-based decisions

as a form of sequential analysis (see Navarro, 2007; Nosofsky & Palmeri, 1997). That is,

the importance sampling method allows people to efficiently learn and store a posterior

distribution, and the sequential analysis method allows efficient decisions to be made on

the basis of this stored representation. This thus constitutes a natural, psychologically

plausible scheme for approximating some probabilistic computations.

Several recent papers have also examined the possibility that particle filters might

be relevant to understanding how people can update probability distributions over time.

This idea was first raised by Sanborn, Griffiths, and Navarro (2006), and particle filters

have subsequently been used to explain behavioral patterns observed in several tasks.

Daw and Courville (2008) argued that a particle filter with a small number of particles

could explain rapid transitions seen in associative learning tasks with animals. Brown and

Steyvers (2009) used particle filters to explain individual differences in a change-point
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detection task, where variation of the number of particles being considered captured one

dimension along which participants varied. Finally, Levy, Reali, and Griffiths (2009)

showed that garden path effects in sentence processing could be accounted for by using a

particle filter for parsing, where the frequency with which the parser produced no valid

particles was predictive of the difficulty that people had interpreting the sentence.

Evaluating Monte Carlo algorithms as candidates for rational process models

requires exploring how the predictions of rational models of cognition vary under these

different approximation schemes, and examining how well these predictions correspond to

human behavior. In the remainder of the paper, we provide a detailed investigation of the

performance of different approximation algorithms for Anderson’s (1990; 1991) rational

model of categorization. This model is a good candidate for such an investigation, since it

involves an extremely challenging computational problem: evaluating a posterior

distribution over all possible partitions of a set of objects into clusters. This problem is so

challenging that Anderson’s original presentation of the model resorted to a heuristic

solution. We use a connection between this rational model and a model that is widely

used in Bayesian statistics to specify a Gibbs sampler and particle filter for this model,

which we evaluate against a range of empirical data.

The Rational Model of Categorization

The problem of category learning is to infer the structure of categories from a set of

stimuli labeled as belonging to those categories. The knowledge acquired through this

process can ultimately be used to make decisions about how to categorize new stimuli.

Several rational analyses of category learning have been proposed (Anderson, 1990; Ashby

& Alfonso-Reese, 1995; Nosofsky, 1998). These analyses essentially agree on the nature of

the computational problem involved, casting category learning as a problem of density

estimation: determining the probability distributions associated with different category
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labels. Viewing category learning in this way helps to clarify the assumptions behind the

two main classes of psychological models: exemplar models and prototype models.

Exemplar models assume that a category is represented by a set of stored exemplars, and

categorizing new stimuli involves comparing these stimuli to the set of exemplars in each

category (e.g., Medin & Schaffer, 1978; Nosofsky, 1986). Prototype models assume that a

category is associated with a single prototype and categorization involves comparing new

stimuli to these prototypes (e.g., Reed, 1972). These approaches to category learning

correspond to different strategies for density estimation used in statistics, being

nonparametric and parametric density estimation respectively (Ashby & Alfonso-Reese,

1995).

Anderson’s (1990, 1991) rational analysis of categorization takes a third approach,

modeling category learning as Bayesian density estimation. This approach encompasses

both prototype and exemplar representations, automatically selecting the number of

clusters to be used in representing a set of objects. Unfortunately, the inference for this

model is extremely complex, requiring an evaluation of every possible way of partitioning

exemplars into clusters, with the number of possible partitions growing exponentially with

the number of exemplars. Anderson proposed an approximation algorithm in which stimuli

are sequentially assigned to clusters, and assignments of stimuli are fixed once they are

made. However, this algorithm does not provide any asymptotic guarantees for the quality

of the resulting assignments, and is extremely sensitive to the order in which stimuli are

observed, a property which is not intrinsic to the underlying statistical model. As a result,

evaluations of the model are tied to the particular approximation algorithm that was used.

Before we consider alternative approximation algorithms for Anderson’s model, we

need to provide a detailed specification of the model and the original algorithm. In this

section, we first outline the Bayesian view of categorization, showing how exemplar and

prototype models are special cases of the approach, and then describe the specific
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approach taken by Anderson.

Bayesian categorization models

Rational models of categorization must solve the density estimation problem

outlined above and use this estimate to identify the category label or some other

unobserved property of an object using its observed properties (Anderson, 1990; Ashby &

Alfonso-Reese, 1995; Rosseel, 2002). This prediction problem has a natural interpretation

as a form of Bayesian inference, which we now outline. Suppose that the learner has

previously been shown a set of two stimuli and their labels, where the two stimuli are the

first two stimuli in Figure 1. We let yi refer to the category label given to the ith object in

this list (often a nonsense syllable such as “DAX”), and the mental representation of the

object is assumed to be characterized by a collection of features, denoted xi. So for

instance if the stimulus is the first stimulus, it could be simply described in terms of

features such as “is circular”, “is black”, and “is large”. Thus, if the learner is told “the

first stimulus is a DAX”, we would describe the trial by the pair (xi, yi). Across the set of

two labelled objects, the information available to the learner can be thought of as a

collection of statements (e.g., “the first stimulus is a DAX” and “the second stimulus is a

ZUG”) that can be formally characterized by the collection of stimulus representations

x2 = (x1, x2), along with the labels given to each of these objects y2 = (y1, y2). More

generally we will refer to these already known stimuli as the first N − 1 stimuli with

representations xN−1 = (x1, x2, . . . xN−1), and labels yN−1 = (y1, y2, . . . yN−1)

With that in mind, the problem facing the learner can be written in the following

way: on the Nth trial in the experiment, he or she is shown a new stimulus xN (e.g., the

third stimulus in Figure 1), and asked what label it should be given. If there are J

possible labels involved in the task, the problem is to determine if the Nth object should

be given the jth label (i.e., infer that yN = j), on the basis of the information available,
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(xN ,xN−1,yN−1). If we apply Bayes’ rule to this problem, we are able to see that

P (yN = j|xN ,xN−1,yN−1) =
P (xN |yN = j,xN−1,yN−1)P (yN = j|yN−1)

∑J
y=1 P (xN |yN = y,xN−1,yN−1)P (yN = y|yN−1)

. (1)

In this expression, P (xN |yN = j,xN−1,yN−1) denotes the estimated probability that an

element of the jth category would possess the collection of features xN observed in the

novel object, and P (yN = j|yN−1) is an estimate of the prior probability that a new

object would belong to the jth category. Additionally, we have assumed that the prior

probability of an object coming from a particular category is independent of the features

of the previous objects. Thus, this expression makes clear that the probability that an

object with features xN should be given the label yN = j is related both the probability of

sampling an object with features xN from that category, and the prior probability of

choosing that category label. Category learning, then, becomes a matter of determining

these probabilities – the problem known as density estimation.

One advantage to describing categorization in terms of the density estimation

problem is that both exemplar models and prototype models can be described as different

methods for determining the probabilities described by Equation 1. Specifically, Ashby

and Alfonso-Reese (1995) observed that if the learner uses a simple form of nonparametric

density estimation known as kernel density estimation (e.g., Silverman, 1986) in order to

compute the probability P (xN |yN = j,xN−1,yN−1), then an exemplar model of

categorization is the result. On the other hand, they note that the learner could use a

form of parametric density estimation (e.g., Rice, 1995), in which the category

distribution is assumed to have some known form, and the learner’s goal is to estimate the

unknown parameters of that distribution. If the learner uses this approach, then the result

is a prototype model, with the centroid being an appropriate estimate for distributions

whose parameters characterize their mean. To illustrate the point, Figure 2 shows a

prototype model on the left, in which the category distribution is assumed to be normal
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distribution centered over the prototype, and an exemplar model on the right, in which a

separate normal distribution (the “kernel”) is placed over each exemplar, and the resulting

category distribution is a mixture model.

Having cast the problem in these terms, it is clear that exemplar and prototype

models are two extremes along a continuum of possible approaches to category

representation. As illustrated in the middle panel of Figure 2, the learner might choose to

break the category up into several clusters of stimuli, denoted zN−1, where zi = k if the

ith stimulus is assigned to the kth cluster. Each such cluster is then associated with a

simple parametric distribution, and the category distribution as a whole then becomes a

mixture model (e.g. Rosseel, 2002; Vanpaemel & Storms, 2008). Expressed in these terms,

prototype models map naturally onto the idea of a one-cluster representation, and

exemplar models arise when there is a separate cluster for each object. In between lies a

whole class of intermediate category representations, such as the one shown in the middle

of Figure 2. In this case, the learner has divided the five objects into two clusters, and the

resulting category distribution is a mixture of two normal distributions.

The appeal of this more general class of category representations is that it allows

people to use prototype-like models when called for, and to move to the more flexible

exemplar-like models when needed. However, by proposing category representations of

this form, we introduce a new problem: for a set of N objects how many clusters K are

appropriate to represent the categories, and how should the cluster assignments zN be

made in light of the available data (xN , yN )? It is to this topic that we now turn.

Statistical model

A partial solution to this problem was given by Anderson (1990), in the form of the

Rational Model of Categorization (RMC). The RMC is somewhat different to the various

mixture models described in the previous section insofar as it treats the category labels as
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being equivalent to unobserved features. As a consequence, the RMC specifies a joint

distribution on features and category labels, rather than assuming that the distribution

over category labels is estimated separately and then combined with a distribution on

features for each category. This distribution is a mixture, with

P (xN ,yN ) =
∑

zN

P (xN ,yN |zN )P (zN ) (2)

where P (zN ) is a distribution over possible partitions of the N objects into clusters.

Importantly, the number of clusters K in the partition zN is not assumed to be fixed in

advance, but is rather something that the learner infers from the data. The RMC provides

an explicit form for this prior distribution, namely

P (zN ) =
(1 − c)KcN−K

∏N−1
i=0 [(1 − c) + ci]

K
∏

k=1

(Mk − 1)! (3)

where c is a parameter called the coupling probability, Mk is the number of objects

assigned to cluster k, and K is the total number of clusters in zN . Although this

distribution appears unwieldy, it is in fact the distribution that results from sequentially

assigning objects to clusters with probability

P (zi = k|zi−1) =















cMk

(1−c)+c(i−1) if Mk > 0 (i.e., k is old)

(1−c)
(1−c)+c(i−1) if Mk = 0 (i.e., k is new)

(4)

where the counts Mk are accumulated over zi−1. Thus, each object can be assigned to an

existing cluster with probability proportional to the number of objects already assigned to

that cluster, or to a new cluster with probability determined by c. Since the prior

distribution is set up in a way that allows K to grow as more objects are encountered, the

RMC allows the learner to infer the number of clusters via the usual process of Bayesian

updating.

Intuitively, we can look at the prior as a rich-get-richer scheme: if a cluster already

contains many objects, then it has a higher prior probability for new objects. The
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coupling probability is the parameter that determines the severity of this scheme. For

high values of the coupling parameter, then larger clusters will be favored in the prior,

while for low values of the coupling parameter, smaller clusters will be favored. The

cluster sizes that actually result depend on the likelihoods as well as the prior.

The local MAP algorithm

When considering richer representations than prototypes and exemplars it is

necessary to have a method for learning the appropriate representation from data. Using

Equation 2 to make predictions about category labels and features requires summing over

all possible partitions zN . This sum rapidly becomes intractable for large N , since the

number of partitions grows rapidly with the number of stimuli according to the Bell

number introduced earlier. Consequently, an approximate inference algorithm is needed

and Anderson (1990, 1991) developed a simple inference algorithm to solve this problem.

We will refer to this algorithm as the local MAP algorithm, as it involves assigning each

stimulus to the cluster that has the highest posterior probability given the previous

assignments (i.e., the maximum a posteriori or MAP cluster). The algorithm is a local

implementation of the MAP because it makes an assignment for each new stimulus as it

arrives, which does not necessarily result in the global MAP.

The local MAP algorithm approximates the sum in Equation 2 with just a single

clustering of the N objects, zN . This clustering is selected by assigning each object to a

cluster as it is observed. At this point, the features and labels of all stimuli, along with

the cluster assignments zi−1 for the previous i − 1 stimuli are given. Thus, the posterior

probability that stimulus i was generated from cluster k is

P (zi = k|zi−1, xi,xi−1, yi,yi−1) ∝ (5)

P (xi|zi = k, zi−1,xi−1)P (yi|zi = k, zi−1,yi−1)P (zi = k|zi−1)

where P (zi = k|zi−1) is given by Equation 4. Under the local MAP algorithm, xi is
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assigned to the cluster k that maximizes Equation 5. Iterating this process results in a

single partition of a set of N objects.

To illustrate the local MAP algorithm, we show in Figure 3 how it would be applied

it to the simple example of sequentially presented stimuli in Figure 1. Each stimulus is

parameterized by three binary features and the likelihood

P (xi|zi = k, zi−1,xi−1)P (yi|zi = k, zi−1,yi−1) is calculated using binomial distributions

that are independent for each feature. These binomial likelihoods are parameterized by

the probability of the outcome, and need a prior distribution over this probability. The

standard prior for binomial likelihoods is the Beta distribution (see the Appendix for

details). For the toy example, we used a symmetric Beta prior for the binomial likelihood,

with β = 1. The symmetric Beta distribution with β = 1 is a simple choice, because it is

equivalent to the uniform distribution.

The local MAP algorithm initially assigns the first observed stimulus to its own

cluster. When the second stimulus is observed, the algorithm generates each possible

partition: either it is assigned to the same cluster as the first stimulus or to a new cluster.

The posterior probability of each of these partitions is calculated and the partition with

the highest posterior probability is always chosen as the representation. After the third

stimulus is observed, the algorithm produces all possible partitions involving the third

stimulus, assuming that the clustering for the first two stimuli remains the same. Note

that not all possible partitions of the three stimuli are considered, because the algorithm

makes an irrevocable choice for the partition of the first two stimuli and the possible

partitions on later trials have to be consistent with this choice. The local MAP algorithm

will always produce the same final partition for a given sequential order of the stimuli,

assuming there are no ties in the posterior probability.

The local MAP algorithm approximates the complete joint distribution using only
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this partition. In effect, it assumes that

P (xN ,yN ) ≈ P (xN ,yN |zN ) (6)

where zN is produced via the procedure outlined above. The probability that a particular

object receives a particular category label would likewise be computed using a single

partition.

Summary

The RMC specifies a rational model of categorization, capturing many of the ideas

embodied in other models and allowing the representation to be inferred from the data.

However, the model is still significantly limited, because the approximate algorithm used

for assigning objects to clusters in the RMC can be a poor approximation to the posterior.

In particular, this makes it hard to discriminate the predictions that result from the

underlying statistical model from those that are a consequence of the algorithm being

used. In order to explore alternative approximation algorithms, we now discuss the

connections between the RMC and nonparametric Bayesian statistics.

Dirichlet process mixture models

One of the most interesting properties of the RMC is that it has a direct connection

to a model used in nonparametric Bayesian statistics (Neal, 1998). The rationale for using

nonparametric methods is that real data are not generally sampled from some neat,

finite-dimensional family of distributions, so it is best to avoid this assumption at the

outset. From a Bayesian perspective, the nonparametric approach requires us to use priors

that include as broad a range of densities of possible, thereby allowing us to infer very

complex densities if they are warranted by data. The most commonly used method for

placing broad priors over probability distributions is the Dirichlet process (DP; Ferguson,

1973). The distributions indexed by the Dirichlet process can be expressed as countably
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infinite mixtures of point masses (Sethuraman, 1994), making them ideally suited to act

as priors in infinite mixture models (Escobar & West, 1995; Rasmussen, 2000). When used

in this fashion, the resulting model is referred to as a Dirichlet process mixture model

(DPMM; Antoniak, 1974; Ferguson, 1983; Neal, 1998).

Although a complete description of the Dirichlet process is beyond the scope of this

paper (for more details, see Navarro, Griffiths, Steyvers, & Lee, 2006), what matters for

our purposes is that the Dirichlet process implies a distribution over partitions: any two

observations in the sample that were generated from the same mixture component may be

treated as members of the same cluster, allowing us to specify priors over an unbounded

number of clusters. In the case where N observations have been made, the prior

probability that a Dirichlet process will partition those observations into the clusters zN is

P (zN ) =
αK

∏N−1
i=0 [α + i]

K
∏

k=1

(Mk − 1)! (7)

where α is the dispersion parameter of the Dirichlet process. This distribution over

partitions can be produced by a simple sequential stochastic process (Blackwell &

MacQueen, 1973). If observations are assigned to clusters one after another and the

probability that observation i + 1 is assigned to cluster k is

P (zi = k|zi−1) =















Mk

i−1+α if Mk > 0 (i.e., k is old)

α
i−1+α if Mk = 0 (i.e., k is new)

(8)

we obtain Equation 7 for the probability of the resulting partition. This distribution has a

number of nice properties, with one of the most important being exchangeability: the prior

probability of a partition is unaffected by the order in which the observations are received

(Aldous, 1985). Intuitively, exchangeability is similar to independence, but slightly weaker.

To make some of these ideas more concrete, Figure 4 presents a visual depiction of

the relationship between the partitioning implied by the DP, the distribution over

parameters that is sampled from the DP, and the resulting mixture distribution over
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stimuli that results in the DPMM. The partitioning implied by the DPMM shows that

items are divided into discrete clusters. Each of these clusters is given a parameter drawn

from the prior distribution over parameters. A large number of parameter draws are

shown in Figure 4b. Each spike is a new parameter value and the height of the bars

depends on the number of clusters that use that parameter. Finally, combining the

parameter values with a continuous likelihood function, such as a Gaussian distribution,

gives the mixture distribution shown in Figure 4c.

It should be apparent from our description of the prior distribution used in the

DPMM that it is similar in spirit to the prior distribution underlying the RMC. In fact,

the two are directly equivalent, a point that was first made in the statistics literature by

Neal (1998). If we let α = (1 − c)/c, Equations 3 and 7 are equivalent, as are Equations 4

and 8. Thus the prior over cluster assignments used in the RMC is exactly the same as

that used in the DPMM. Anderson (1990, 1991) thus independently discovered one of the

most celebrated models in nonparametric Bayesian statistics, deriving this distribution

from first principles.

Alternative approximate inference algorithms

The connection between the RMC and the DPMM suggests a solution to the

shortcomings of the local MAP algorithm. In this section, we draw on the extensive

literature on approximate inference for DPMMs to offer two alternative algorithms for the

RMC: Gibbs sampling and particle filtering. These algorithms are less sensitive to order

and are asymptotically guaranteed to produce accurate predictions.

As discussed above, both Gibbs sampling and particle filters are Monte Carlo

methods. This means that they provide ways of approximating the intractable sum over

partitions numerically using a collection of samples. Specifically, to compute the

probability that a particular object receives a particular category label, a Monte Carlo
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approximation gives

P (yN = j|xN ,yN−1) =
∑

zN

P (yN = j|xN ,yN−1, zN )P (zN |xN ,yN−1) (9)

≈
1

M

M
∑

"=1

P (yN = j|xN ,yN−1, z
(")
N )

where z
(1)
N , . . . , z(M)

N are M samples from P (zN |xN ,yN−1), and the approximation becomes

exact as M → ∞. The two algorithms differ only in how these samples are generated.

Gibbs sampling

Gibbs sampling is the approximate inference algorithm most commonly used with

the DPMM (e.g., Escobar & West, 1995; Neal, 1998). It provides a way to construct a

Markov chain that converges to the posterior distribution over partitions. The state space

of the Markov chain is the set of partitions, and transitions between states are produced

by sampling the cluster assignment of each stimulus from its conditional distribution,

given the current assignments of all other stimuli. The clustering evolves by sequentially

sampling each zi from the distribution

P (zi = k|z−i, xi,x−i, yi,y−i) ∝ (10)

P (xi|zi = k, z−i,x−i)P (yi|zi = k, z−i,y−i)P (zi = k|z−i)

where z−i refers to all cluster assignments except for the ith.

Equation 10 is extremely similar to Equation 5, although it gives the probability of

a cluster based on the all of the trials in the entire experiment except for the current trial,

instead of just the previous trials. The statistical property of exchangeability, briefly

noted above, means that these probabilities are actually computed in exactly the same

way: the order of the observations can be rearranged so that any particular observation is

considered the last observation. Hence, we can use Equation 8 to compute P (zi|z−i), with

old clusters receiving probability in proportion to their popularity, and a new cluster
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being chosen with probability determined by α (or, equivalently, c). The other terms

reflect the probability of the features and category label of stimulus i under the partition

that results from this choice of zi, and depends on the nature of the features.

The Gibbs sampling algorithm for the DPMM is straightforward (Neal, 1998), and

is illustrated for the simple example in Figure 5. First, an initial assignment of stimuli to

clusters is chosen, with a convenient choice being all stimuli assigned to a single cluster.

Unlike the local MAP algorithm, Gibbs sampling is not a sequential algorithm; all stimuli

must be observed before it can be run. Next, we choose a single stimulus and consider all

possible reassignments of that stimulus to clusters, including not making a change in

assignments or assigning the stimulus to a new cluster. Equation 10 gives the probability

of each partition and one of the partitions is sampled based on its posterior probability,

making this algorithm stochastic, unlike the local MAP. The stochastic nature of the

algorithm is evident in the example in Figure 5, because the first circled assignment has

lower probability than the alternatives. The example shows two iterations of Gibbs

sampling, in which each stimulus is cycled through and reassigned. In an actual

application the algorithm would go through many iterations, with the output of one

iteration providing the input to the next. Since the probability of obtaining a particular

partition after each iteration depends only on the partition produced on the previous

iteration, this is a Markov chain.

After enough iterations for the Markov chain to converge, we begin to save the

partitions it produces. The partition produced on one iteration is not independent of the

next, so the results of some iterations are discarded to approximate independence. The

partitions generated by the Gibbs sampler can be used in the same way as samples z
(")
N in

Equation 9. As with standard Monte Carlo approximations, the quality of the

approximation increases as the number of partitions in that collection increases. The

Gibbs sampler provides an effective means of constructing the approximation in
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Equation 9, and thus of making accurate predictions about the unobserved features of

stimuli.

Particle filtering

There are several ways to construct a particle filter for the DPMM. The method we

will use is most closely related to the one discussed by Fearnhead (2004). The key idea is

to treat each new observation as a new “time step”, with each particle being a partition

z
(")
i of the stimuli from the first i trials. Unlike the local MAP algorithm, in which the

posterior distribution is approximated with a single partition, the particle filter uses M

partitions. Summing over these particles gives us an approximation to the posterior

distribution over partitions

P (zi|xi,yi) ≈
M
∑

"=1

1

M
δ(zi, z

(")
i ) (11)

where δ(z, z′) is 1 when z = z′, and 0 otherwise. If Equation 11 is used as an

approximation to the posterior distribution over partitions zi after the first i trials, then

we can approximate the distribution of zi+1 given the observations xi,yi in the following

manner:

P (zi+1|xi,yi) =
∑

zi

P (zi+1|zi)P (zi|xi,yi)

≈
∑

zi

P (zi+1|zi)
m

∑

!=1

1

m
δ(zi, z

(!)
i

)

=
1

m

m
∑

!=1

P (zi+1|z
(!)
i

) (12)

where P (zi+1|zi) is given by Equation 8. We can then incorporate the information

conveyed by the features and label of stimulus i + 1, arriving at the approximate posterior

probability

P (zi+1|xi+1,yi+1) ∝ P (xi+1|zi+1,xi)P (yi+1|zi+1,yi)P (zi+1|xi,yi)

≈
1

m

m
∑

!=1

P (xi+1|zi+1,xi)P (yi+1|zi+1,yi)P (zi+1|z
(!)
i

) (13)
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The result is a discrete distribution over all the previous particle assignments and all

possible assignments for the current stimulus. Drawing M samples from this distribution

provides us with our new set of particles.

The particle filter for the simple example is illustrated in Figure 6. The particle

filter for the DPMM is initialized with the first stimulus assigned to the first cluster for all

M particles, in this case M = 2. On observing each new stimulus, the distribution in

Equation 13 is calculated, based on the particles sampled in the last trial. Like the local

MAP, the particle filter updates the partition as each new stimulus is observed, and like

the local MAP, only new partitions that are consistent with the previous choices made by

the algorithm are considered. This consistency can be seen in the potential partitions

when the third stimulus is observed in Figure 6: each descendant is consistent with the

partition choices made by its ancestor. Intuitively, the psychological processes involved in

this approximation are very similar to those involved in the local MAP algorithm. People

update their beliefs incrementally, keeping the assignments of old items fixed, and making

the assignments of new items conditional on these fixed beliefs. There are two key

differences between the local MAP and particle filter algorithms. The first is that the

choice of new partitions is stochastic instead of deterministic. The particle filter algorithm

samples new partitions based on their posterior probabilities instead of always selecting

the partition with the maximum probability. A particle filter with M = 1 particles is

equivalent to the local MAP algorithm, except that the new partition is sampled instead

of deterministically selected. The second difference is that multiple particles means that

multiple partitions can be used instead of the single partition passed forward by the local

MAP. The M partitions are selected without regard for ancestry, allowing a partition that

was selected for the early observations to die out as the descendants of other partitions

replace it.
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Approximation quality

The differences in quality of the various approximations can be explored by a toy

example using sequential observations of the stimuli in Figure 1. We compared the local

MAP, a particle filter with M = 100 particles, a particle filter with M = 1 particle, and

Gibbs sampling to the exact posterior. For each algorithm a symmetric Beta prior in

which β = 1 was used for the likelihood (see Appendix for details). The local MAP was

run a single time, because its outcome is deterministic on a fixed stimulus order. The

particle filters were each replicated 10,000 times, and the Gibbs sampler was run for

101,000 iterations. For the Gibbs sampler, the first 1,000 iterations were discarded and

every 10th iteration was taken as a sample, yielding 10,000 samples. The results of this

comparison are shown in Figure 7. The local MAP algorithm has selected a single

partition as an approximation to the exact posterior. In this example, the partition

selected by the local MAP is also the MAP of the exact posterior distribution, but the two

will not always be equivalent. By taking the MAP partition as each stimulus arrives, the

local MAP can be misled to choose a partition that is not the global MAP, if the initial

trials are not representative of the whole run of trials. An example of this can be seen in

the experiment by Anderson and Matessa in a later section.

The particle filter with M = 100 particles and the Gibbs sampler both produce a

posterior distribution that is nearly indistinguishable from the exact posterior. The

single-particle particle filter is an interesting intermediate case. Each run of the

single-particle particle filter produces a single partition, not the distribution produced by

a particle filter with M > 1 particles. However, averaging over runs of the single-particle

particle filter gives an approximation that is much closer to the exact posterior than the

local MAP. Unlike the asymptotic performance of the Gibbs sampler and particle filter

with infinite particles, the approximation of the single-particle particle filter is slightly

biased, as can be seen in the figure. The bias is much less than the local MAP because the
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algorithm is stochastic, but is still present because each run of the M = 1 particle filter

cannot correct its previous assignments by resampling.

Psychological plausibility of the algorithms

Before turning to a quantitative comparison of the algorithms with human data it is

worth considering their psychological plausibility at a descriptive level, to see whether

they are appropriate for human cognition. We take as a starting point Anderson’s (1990,

1991) two desiderata for an approximate inference algorithm: that it be incremental, and

that people see objects as arising from a single cause. These desiderata were based on

beliefs about the nature of human category learning. In tasks in which people see objects

presented sequentially and must judge which category they arise from “people need to be

able to make predictions all the time not just at particular junctures after seeing many

objects and much deliberation” (Anderson, 1991, p. 412), and “people tend to perceive

objects as coming from specific categories” (Anderson, 1991, p. 411).

In addition to these two desiderata, we are concerned with how these algorithms

might introduce new order effects into a model. Often statistical models, such as the

DPMM, are invariant to the order in which observations arrive. However, the

approximations used in practical applications of these models tend to introduce order

effects as a side effect of limited computation. People show effects of the order of

presentation of stimuli (Anderson, 1990; Medin & Bettger, 1994; Murdock, 1962), and to

have a psychologically plausible algorithm, the cumulative order effects of the model and

those introduced by the approximation should match the order effects displayed by people.

In the remainder of this section we summarize the psychological plausibility of the local

MAP, Gibbs sampling, and particle filters. We relate these algorithms to the properties of

incrementalism, a single interpretation of how the data arise, and the order effects

introduced by the algorithms, which are summarized in Table 1.
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Local MAP

Anderson (1990, 1991) introduced the local MAP algorithm to satisfy his two

desiderata for psychological plausibility. The first desideratum is satisfied because the

local MAP is updated incrementally. In addition, the second desideratum is satisfied

because only a single partition of the stimuli into clusters is available to the algorithm in

order to make judgments about new stimuli. However, as a result of the single

interpretation and its maximization operation, the local MAP algorithm is extremely

sensitive to the order in which stimuli are observed. For example, Anderson and Matessa

(reported in Anderson, 1990) showed that the predictions of the local MAP algorithm

depended strongly on the order the stimuli were introduced in their clustering experiment.

For one type of order, the local MAP always predicted one partition of the stimuli, but for

the other order it always predicted a second partition. We will explore how the local MAP

can be led down garden paths when we compare the algorithms quantitatively.

Gibbs sampling

Gibbs sampling draws samples from one random variable conditioned on all of the

rest and all of the data, thus requiring all of the data be present before inference begins.

New data cannot be incrementally added to the sampling scheme, so in order to sample

from a posterior distribution when a new piece of data arrives, Gibbs sampling must start

from scratch. This property makes the algorithm computationally wasteful if sequential

judgments are required. For other tasks, however, Gibbs sampling is more psychologically

plausbile. In tasks in which all of the data arrive simultaneously, such as when a

researcher gives participants a set of objects to sort into groups, participants do not need

to make judgments until all of the stimuli are present. Here Gibbs sampling seems

psychologically plausible.

Standard implementations of Gibbs sampling do not provide a single interpretation
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of the data. The algorithm gathers a set of samples from a probability distribution and all

of these samples are used to infer other properties about the data, such as category labels.

However, we should note that it would be possible to implement a modified version of the

Gibbs sampling algorithm that would provide a fixed interpretation of the data. Instead of

keeping all of the iterations, we could create a very forgetful Gibbs sampler that would

only recall the current values of the variables when making inferences. Likewise, referring

to our third property, Gibbs sampling is asymptotically unbiased, meaning that generating

a huge number samples would not introduce any order effects not already present in the

statistical model. Again though, the iterations of Gibbs sampling are dependent on one

another, so in the forgetful Gibbs sampler we would have iteration to iteration dependence.

This iteration to iteration dependence would not be an effect of the order in which the

stimuli were presented, but instead an autocorrelation of judgments made by this model.

Particle filters

Particle filters are designed as sequential algorithms that explicitly use incremental

updating, which clearly satisfies the first property and makes this algorithm appropriate

for modeling sequential judgments. For the second property, the answer depends on the

number of particles. Each particle is a sample from the posterior distribution, so a

single-particle particle filter will provide a single interpretation of the data. With a

multi-particle particle filter, the interpretation becomes probabilistic. The order effects

introduced depend on the number of particles, analogous to how the Gibbs sampler’s order

effects depend on the number of samples. With an infinite number of particles, the particle

filter is a very faithful representation of the posterior distribution and thus does not

introduce any order effects not present in the statistical model. However, small numbers of

particles will introduce order effects and we explore this property in detail later.
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Comparing the algorithms

Using the local MAP algorithm, the Rational Model of Categorization (RMC;

Anderson, 1991) has successfully predicted human choices in a wide range of experimental

paradigms. We introduced two new algorithms for the RMC in the above sections: the

Gibbs sampler and the particle filter. We have demonstrated that both of these

algorithms provide a closer approximation to the underlying model than the local MAP

algorithm and both share some aspects of its psychological plausibility. In this section, we

compare the local MAP algorithm, a sequential updating algorithm, against the sequential

algorithm we have introduced: the particle filter. Most empirical investigations of human

categorization use a sequential trial structure, so we have focused on this comparison. We

compare the fits of the multi-particle particle filter, the single-particle particle filter, and

the local MAP algorithm to show that the particle filter provides comparable fits to the

human data and for some paradigms, the particle filter algorithm actually allows the

RMC to better predict human choices.

There are a large number of categorization paradigms on which we could compare

the algorithms – we chose to compare the algorithms on several data sets for which the

local MAP algorithm performs well, including several cases from Anderson’s (1990; 1991)

original evaluation of the model. Testing our algorithm against data on which the local

MAP is known to perform well provides a strong test of the particle filter algorithm. We

examine the effect of specific instances with binary (Medin & Schaffer, 1978) and

continuous parameters (Nosofsky, 1988), and show the algorithms predict a similar

correspondence with human data. Next we explore paradigms that have been chosen to

highlight differences between the local MAP algorithm and the particle filter. The effects

of trial order (Anderson, 1990), how linearly separable and non-separable categories are

learned (J. D. Smith & Minda, 1998), and the wider class of learning problems in the

Shepard, Hovland, and Jenkins (1961) task (Nosofsky, Gluck, Palmeri, McKinley, &
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Glauthier, 1994) are employed to illustrate the advantages of using the particle filter to

approximate the RMC.

Effect of specific instances

In a classic paper, Medin and Schaffer (1978) tested whether categorization

judgments were influenced by the central tendency of a category alone. In their

Experiment 1, the stimuli were designed so as to test whether the nearness of stimuli had

an effect above contributing to the category center. The stimuli consisted of six training

items, each with five binary features (including the category label, listed last): 11111,

10101, 01011, 00000, 01000, and 10110. In the transfer session, the training items and

additional items were rated. The transfer stimuli are presented in Table 2, ordered by

human category ratings. These transfer stimuli were structured so that some were closer

to specific instances than others, while the distance to the category centers was constant.

In this experiment, an effect of specific instances was found in the ratings.

Anderson (1991) ran the local MAP algorithm for several different values of the

coupling parameter, but with a fixed prior of β = 1. The order of the training items was

randomized on each block. Low values of the coupling parameter, such as c = 0.3,

produced high correlations to human ratings (r = 0.87). At such values of the coupling

parameter, the representation tends to be more exemplar-like than prototype-like, which is

consistent with an effect of specific instances. We ran the particle filter algorithm on this

experimental design with M = 100 and M = 1 particles. The particle filter with M = 1

particle was replicated 1,000 times and the M = 100 particle particle filter was replicated

10 times. The results are shown in Figure 8. Using the same coupling parameter, c = 0.3,

we found good correlations for the multi-particle particle filter (r = 0.78) and for the

single-particle particle filter (r = 0.77). We also examined lower values of the coupling

parameter. For c = 0.1 the local MAP algorithm produced nearly the same correlation,
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r = 0.88, but the single-particle improved somewhat, to r = 0.84, as did the particle filter

with M = 100 particles (r = 0.84).

Prediction performance and the range of predicted probabilities both increase if the

model is trained with the same number of blocks human subjects were trained (ten)

instead of just a single block. Across coupling parameters, the best correlation with

human ratings were high for the local MAP (r = 0.95), the particle filter with M = 1

particles (r = 0.90), and the particle filter with M = 100 particles (r = 0.93). Overall, the

results in Figure 8 look accurate for all of the models, except for a serious disagreement

between the human data and model predictions for 1110, the seventh stimulus from the

left. Human ratings for 1110 diverged from the ratings of 0111 and 1101, the fourth and

fifth stimuli from the left. However these three stimuli are the same distances from the

training stimuli, so the models tended to give these three stimuli the same probability of

Category 1 as a result.

Specific instances with continuous features

The effect of specific instances has been studied with continuous features in Nosofsky

(1988). In this study, subjects were trained on 12 stimuli that varied in brightness and

saturation. As in Medin and Schaffer (1978), the category structure could not be learned

using only one feature. However, in this experiment, the frequency of specific examples

was manipulated. Over the course of two experiments, subjects showed a sensitivity to the

presentation frequency of specific colors. Anderson (1991) fit the RMC to these data using

a likelihood function (following Gelman, Carlin, Stern, & Rubin, 2004) appropriate for

continuous data. The continuous likelihood used was a Gaussian distribution for each

cluster and the chosen parameters are described in the Appendix. In this simulation, the

values of the continuous dimension prior parameters were λ0 = 1 and a0 = 1. The label

prior parameter was set to β = 1. Using these parameters, the local MAP algorithm had
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an overall correlation between the two experiments of r = 0.98 with the human data.

Both the single-particle particle filter and the particle filter with M = 100 particles

were run with these same parameters. There were 1,000 replications of the single-particle

particle filter and 10 repetitions of the M = 100 particle particle filter. On each

replication, the stimuli were presented in a new random order. The overall correlation

between the human data in the two experiments and the average output of the model was

r = 0.97 for the single-particle particle filter and r = 0.98 for M = 100 particles. Here

again, both types of particle filters perform as well as the local MAP algorithm.

Order effects

Order effects provide a strong challenge to stationary Bayesian models, such as the

statistical model underlying the RMC (Kruschke, 2006a, 2006b). A DPMM by nature does

not produce order effects, because the observations are exchangeable under the model.

However, order effects are easily found in investigations of human cognition, most saliently

in the primacy and recency effects found in free recall of a list of words (Murdock, 1962).

In categorization research, order effects are well established (Medin & Bettger, 1994). We

examine the order effects found including order sensitivity data collected by Anderson and

Matessa (reported in Anderson, 1990) to support the approximation used in the RMC.

The rational model is not able to predict these order effects, but approximations to

the rational model can. Approximations only assign mass to a small portion of the

posterior space over partitions, in effect embodying only a small number of hypotheses

about how the stimuli should be clustered. When a new trial is added to the

representation, the possible new representations are extensions of the previous

representations. So, if a particular partition of the existing stimuli is not present among

the particles, then it will never appear when the representation has been updated. In this

way, the approximation to the DPMM can be led down a garden path by presenting many
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early trials that point toward a particular type of representation1. If the likelihood of this

type of representation is large enough, then the particles will all tend to show that

particular representation. Later trials that point toward a different partition of the early

trials will not be able to change the partition of the early trials. As a result, early

examples can have a greater influence than later trials.

In Anderson and Matessa’s experiment, subjects were presented with a set of 16

stimuli in one of two orders, shown in Table 3. These stimuli were designed to either

emphasize the first two features (“front-anchored stimuli”) or the last two features

(“end-anchored stimuli”) in the first eight trials. Subjects were trained in one of the two

orders. Following the training phase, subjects were shown the full set of stimuli on a sheet

of paper and asked to divide the stimuli into two categories of eight stimuli each. Eleven

of twenty subjects presented with the front-anchored order split the stimuli into groups

along one of the two features emphasized by the front-anchored ordering. Fourteen of

twenty subjects presented with the end-anchored order split the stimuli along the features

that were emphasized by that ordering. Overall, there was a significant result as

twenty-five of forty subjects (62.5%) produced the anticipated order effect.

We compared order effects produced by the range of approximation algorithms to

the human data. For all algorithms, c = 0.5 and β = 1, the values used for the local MAP

by Anderson and Matessa (Anderson, 1990). The Adjusted Rand Index (Hubert &

Arabie, 1985), a standard measure of distance between partitions, was used to find the

similarity of the output of the local MAP and particle filter to each of the four partitions

that split the stimuli along a single feature. The single-feature-based partition that had

the highest Adjusted Rand Index was selected as the partition for that sample. If there

was a tie, one of the best was selected with equal probability.

In this experiment the local MAP algorithm predicts that participants will always

produce the anticipated ordering effect. We ran the single-particle particle filter for 1,000
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repetitions and the M = 100 particle particle filter for 10 repetitions in this experimental

design to compare it with the local MAP. The single-particle particle filter produces the

anticipated order effect on 63% of trials, while the particle filter with M = 100 particles

produces the order effect only 52% of the time. In this experiment, the particle filter with

a single particle is closer to the human results than either the local MAP algorithm or the

particle filter with a large number of particles.

Linear separability

The property of linear separability, in which two categories can be perfectly

discriminated using a line as a decision bound, has been used in experimental designs to

test different types of category representations (Medin & Schwanenflugel, 1981; Nosofsky

& Zaki, 2002; J. D. Smith & Minda, 1998). Many models, such as prototype models,

inherently predict that linearly separable categories are easier to learn than non-linearly

separable categories. In contrast, models such as the RMC do not necessarily predict that

linearly separable categories are easier to learn (Anderson, 1991).

An interesting aspect to the study of non-linearly separable categories is exploring

how category outliers are learned. The standard design is to select two category centers,

with most training stimuli clustered near to the center. A small number of outliers,

however, are actually very close to the center of the other category. Examples of these

types of structures can be seen in Table 4. In both these designs, Category A consists of

binary features mainly set to zero, and Category B consists of binary features mainly set

to one. One stimulus in each category is an outlier and is a better match to the stimuli in

the other category than to the stimuli in its own category.

Prototype models predicts that these outlier stimuli will always be classified in the

incorrect category, while exemplar models can predict that they will be classified fairly

accurately. J. D. Smith and Minda (1998) ran a series of experiments that examined the
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time course of learning central and outlier members of categories. Initially outlier items

were classified as belonging to the incorrect category, but performance improved over

blocks of training trials. Figure 9 displays these average results as well as the results of

individual subjects. The data of the individual subjects were noisy, so the training blocks

are grouped into three bins which are summarized in bar graphs. The outlier stimuli could

either both be classified incorrectly (labelled “opposite categories”), both classified in one

category or another, or both classified correctly. The decrease in the number of

individuals who classify both outliers incorrectly and increase in the number who classify

both outliers correctly over blocks mirrors the average results.

J. D. Smith and Minda (1998) proposed that the crossover of the outliers from

misclassified to classified correctly seen in the human data was the result of a shift from

prototype-like to exemplar-like processing. These results were fit with a mixture of

prototypes and exemplars. Later work with a variant of the DPMM showed the crossover

could be due to an initial prior for simple representations that is eventually overwhelmed

by the data (Griffiths, Canini, Sanborn, & Navarro, 2007). An alternative explanation was

proposed by Nosofsky and Zaki (2002), who explained the crossover as a transition from

focused attention to a single dimension to more equal weights across all dimensions. In

Experiment 2, Nosofsky and Zaki (2002) demonstrated that the exemplar model

constrained to attend to a few dimensions did not fit the transfer data after a few blocks

significantly worse than the full exemplar model. These additional data provide an

interesting counterpoint to the representational change explanation, but we are unable to

address them because of the computational complexity in fitting the RMC with any

approximation algorithm if all the weights can vary independently. Here we focus on what

algorithms allow the RMC to predict a human-like crossover effect.

The RMC using the local MAP and single-particle particle filter algorithms were fit

to both the non-linearly separable and linearly separable conditions in the first three
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experiments of J. D. Smith and Minda (1998). To fit the models, a grid search was

performed over model parameters, using values of 0.01, 0.1, 0.5, and 1 for the β prior

parameters. Independent β prior parameters were used for the physical dimensions, βp,

and for the label, βl. The coupling parameter was varied using the values 0.1, 0.3, 0.5, 0.7,

and 0.9. Each simulation was repeated 1,000 times with the stimuli re-randomized within

block on each simulation, which was the same randomization scheme used for the human

participants.

For all eighty settings of the parameters, the combined likelihoods over all

conditions and experiments was compared. The single-particle particle filter produced a

higher likelihood than the local MAP algorithm did for each of the eighty settings. To

better understand how well the two approximation algorithms fit the outlier stimuli, we

re-calculated the likelihoods for each parameter setting using only the outlier stimuli. For

the these stimuli, the single-particle particle filter produced a better fit to the data on

seventy-six of the eighty parameter settings. The best-fitting parameters for the local

MAP were βp = 0.1 for the physical dimensions, βl = 1 for the label dimension, and

c = 0.7 for the coupling parameter. For the M = 1 particle filter, the best fitting

parameters were βp = 1, βl = 0.5, and c = 0.5. The maximum likelihood fits for the local

MAP and single-particle particle filter are shown in Figure 9. The local MAP algorithm

produces a cross-over of the average of the outliers: going from both mis-classified to both

classified correctly over blocks, at least for Experiments 1 and 2. However, the results of

the individual runs show that the local MAP does not produce crossovers on individual

runs of the algorithm. Instead, examination of the bar plots of individual runs show that

the local MAP crossover is an artifact of averaging. Unlike the local MAP, the

single-particle particle filter produces both average crossovers and individual crossovers, as

seen in the changing bar plots of individual runs.

The intuitive reason the local MAP algorithm does not produce human-like
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crossovers for individual runs is because it becomes stuck in a pattern based on the initial

ordering of the stimuli. To illustrate this idea, we will make the simplifying assumption

that each of the central items of Category A are assigned to one cluster and all of the

central items of Category B are assigned to a second cluster. The logical possibilities for

an outlier is that it is assigned to the correct cluster, assigned to the incorrect cluster, or

assigned to its own cluster. Whatever cluster it is initially assigned to, which depends on

the parameter settings and the order of the stimuli, it will likely be assigned to the same

cluster in later blocks. The repetition occurs because the cluster the outlier was assigned

to initially had the highest probability of generating that stimulus, and on subsequent

blocks this cluster will contain a copy of the outlier, which increases the likelihood of

assignment to this cluster. The local MAP algorithm always assigned stimuli to the

maximum likelihood cluster, so that the initial assignment of the outlier is almost

perfectly predictive of its later assignment. In fact, examining samples of 100 runs of the

local MAP using the best parameters on each experiment’s non-linearly separable

condition, the initial assignment was perfectly predictive of all later assignments.

In contrast, the stochastic assignment of the single-particle particle filter allows for

individual runs of the RMC to display crossovers. Unlike the local MAP, the particle filter

allows an outlier to be assigned to a less-probable cluster, depending on the relative

probability of the new cluster. One way in which sampling can cause crossing-over is if an

outlier is initially assigned to a cluster containing the central stimuli from the other

category. This outlier will initially be categorized incorrectly. But in later blocks, the

outlier has the possibility of being assigned to a new cluster that contains only that

outlier. Once the outlier is assigned to a new cluster, the outlier in later blocks tends to be

assigned to the same cluster, because the new cluster contains only the outlier and thus is

a very good likelihood match. Prediction of the outlier’s category label will become more

accurate, because the cluster containing only the outlier will have a stronger influence over
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blocks and it predicts the correct category label. As the assignments are stochastic, the

block on which the crossover occurs will vary over runs of the algorithm. The prediction of

individual crossovers at variable blocks in training matches the human data.

The prediction of the single-particle particle filter stands in contrast with the

prediction of a particle filter with a very large number of particles. Each block contains a

random ordering of all of the training stimuli, so as the number of particles becomes very

large, the distribution over partitions on each run of the model after each block will be the

same. Unlike the single-particle particle filter, a particle filter with many particles will not

be able to predict between-subject variability with the same parameters, which is an

interesting consequence of the single-particle particle filter. The number of particles

needed to produce the same outcome on each block is actually quite large, as simulations

with M = 1, 000 particles still showed between-run variability, so this may only be a

problem for the ideal statistical model.

Learning types of category structures

A wide range of learning problems were examined in the classic experimental design

of Shepard et al. (1961). Binary stimuli with three dimensions were divided into all

categories of equal size, and six interesting categorization problems emerged. These

problems, shown in Figure 10, were numbered by their difficulty, with Type I the easiest

and Type VI the hardest. In a later replication and extension of this design, Nosofsky et

al. (1994) collected data on the time course of learning for these six problems, shown in

Figure 11.

In addition to running the experiment, Nosofsky et al. (1994) fit the RMC using the

local MAP algorithm to the data. The best fitting parameters were βp = 0.488,

βl = 0.046, c = 0.318, and a response mapping parameter (used as an exponent to scale

the responses) of 0.93. This algorithm predicted a sum squared deviation across learning



Rational Approximations to Category Learning 42

problems (SSD) of 0.182. Attempting to replicate this result with the local MAP revealed

some surprising subtleties of the local MAP algorithm. First, sometimes there are ties

between clusters for the cluster with the maximum probability, for which the local MAP

algorithm must be adjusted. A straightforward solution is to assign the new stimulus with

equal probability to any cluster that shares the maximum probability.

A more troubling discovery is that there are clusters of the stimuli that have only

slightly less probability than the cluster with the maximum posterior probability. Using

the best parameters of Nosofsky et al. (1994), we found that the maximum ratio of the

second-best posterior probability to the maximum posterior probability could be as high

as 0.9997. The behavior of the local MAP algorithm should be very different in the case of

tied probabilities and not-quite-tied probabilities, but the difference between the two cases

can be very subtle and depend on the precision of the numbers used in the simulation. We

found this to be the case when using these best-fitting parameters: using the double

precision numbers of Matlab (64 bits) and assigning ties equally to the best clusters, the

SSD of the local MAP at these parameters rises to 0.32, and the ordering of problem

difficulty on the final block is changed.

A grid search of parameters for both the local MAP and particle filter algorithms

was done using the same grid as in the linear separability section with 1000 repetitions per

algorithm. A new random order for the stimuli was set for each replication, and the

randomization scheme was the same within-block randomization scheme as used in

Nosofsky et al. (1994). Over the set of all parameters, the single-particle particle filter

algorithm fit better than the local MAP algorithm on 58% of parameter settings. In

addition, the best fit of the local MAP was a total SSD of 0.31, while the best SSD for the

single-particle particle filter was 0.24. The best fitting parameters were βp = 0.5,

βl = 0.01, and c = 0.3 for the local MAP and βp = 0.1, βl = 0.1, and c = 0.3 for the

particle filter with M = 1 particles. These results, shown in Figure 11, demonstrate that
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the single-particle particle filter exceeds the performance of the local MAP for the

parameters we tested. However, the brittleness of local MAP algorithm in this paradigm

means that there are probably very specific parameter sets that may provide a much

better match to the human data.

Summary of simulations

We began with experimental paradigms on which the local MAP algorithm performs

well (Anderson, 1991), and the simulations we have performed demonstrate that the

particle filter algorithm, especially the single-particle particle filter performs as well or

better in these categorization paradigms. For the effects of specific instances with binary

(Medin & Schaffer, 1978) and continuous data (Nosofsky, 1988), the single-particle

particle filter and the multi-particle particle filter performed about as well as the local

MAP algorithm. However, in the later simulations the local MAP algorithm was

outperformed by the particle filter, especially by the single-particle particle filter. For the

order effects of stimuli presentation, the local MAP algorithm predicts order effects that

are stronger than those displayed by human subjects. A particle filter with M = 100

particles predicted almost no order effects, but for the single-particle particle filter the size

of the order effect was similar to the empirical average.

Further advantages of the particle filter were found for newer experiments with

categories that differed in linear separability (J. D. Smith & Minda, 1998). The statistical

model underlying the RMC predicts that outlier stimuli will initially be categorized

incorrectly, but over blocks will eventually be categorized correctly. The local MAP

algorithm did not predict the crossover in individual runs with its best-fitting parameters,

and imitates it in the average data by averaging over different trial orders. In contrast, the

single-particle particle filter predicts both the crossover in average data, as well as

individual variability in how quickly the outlier is learned to be classified correctly.
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Finally, the local MAP is extremely sensitive to small changes in probability, as

demonstrated with the data and model fits of Nosofsky et al. (1994). The absolute fit and

even the order of errors of the six problems depended on the precision of the

representation and how ties were dealt with. In the particle filter, the clustering of a new

example is sampled, providing a much more plausible implementation that is not sensitive

to small changes in relative probability.

Discussion

Bridging the gap between why human cognition might operate the way it does (as

described by rational analysis) and how the mind performs the operations required to do

so (as per process models) is a fundamental question in cognitive science. This bridge can

be built in a number of different ways: by establishing isomorphisms between models

framed at these two levels (e.g., Ashby & Alfonso-Reese, 1995; Griffiths et al., 2007; Shi et

al., 2008, in press), by describing the rational foundations of process theories (e.g.,

Gigerenzer & Brighton, 2009; Perfors & Navarro, 2009; Tenenbaum & Griffiths, 2001b) or

by building models that are able to interpolate between heuristic processes and rational

accounts (e.g., Brown & Steyvers, 2009; Daw & Courville, 2008; Lee & Cummins, 2004;

Sanborn et al., 2006). In this paper we have pursued the third option, arguing that the

Monte Carlo principle can provide a foundation for an entire class of “rational process

models” that are equivalent to rational models when given unlimited processing resources,

but give rise to fast, simple heuristics when computational resources are scarce.

Our analysis of the Rational Model of Categorization provides a good example of

how this idea can be put to good use. The RMC is an example of a successful Bayesian

model of cognition. It provides a reasonable explanation of how objects should be grouped

into clusters and the result of this clustering can be used to explain many categorization

experiments. As a purely rational analysis, however, the RMC runs into difficulties
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because the complexity of the computational problems involved makes inference difficult,

and the fact that the underlying statistical model cannot produce order effects.

Approximation algorithms address both issues, by simplifying inferences and inducing

order effects. However, the original “local MAP” approximation produces some order

effects that could be considered too strong, and unlike people it learns by deterministic

assignments rather than probabilistic ones. Using the Monte Carlo principle, however, we

are able to derive a particle filtering algorithm that retains the strengths of the local MAP

algorithm but fixes its weaknesses. A single-particle particle filter retains the desiderata of

Anderson (1991): online updating of the representation plus a single partition of all of the

stimuli into clusters. The only difference of the algorithm is that it uses sampling instead

of a maximization operation in order to select new partitions.

The change to using sampling produces some important differences. Averaging

many runs of the same order with the local MAP approximation produces the same result

every time. However, averaging many runs with the same order using sampling produces a

much better approximation to the true posterior. Though each run of a single-particle

particle filter produces a potentially extreme result, the aggregate of these results

resembles the optimal solution. This effect echoes the wisdom of the crowds: the accuracy

of the average over individuals can exceed the accuracy of the individuals (Surowiecki,

2004). This effect has also been found for averaging the judgments of a single individual

(Vul & Pashler, 2008). In addition, for a task that requires learning categories that are

not linearly separable, sampling allows for the model to occasionally assign a repeated

item to a new cluster, allowing it reproduce the finding that people initially categorize an

outlier stimulus incorrectly, but slowly learn the correct response. The single-particle

particle filter shows a real advantage on this task: not only can it produce the same

results as many particles at a lower computational cost, it produces realistic-looking

individual differences over runs of the model.
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Sampling also avoids the necessity of precise representations. It is implausible that

people would make deterministic choices based on values that are almost exactly equal,

but this is what the local MAP algorithm assumes. Nearly indiscriminable choice

probabilities arise in fitting the local MAP algorithm to learning data under a plausible

set of parameters. In contrast, the particle filter algorithm samples, so that choices

between representations that have nearly equal probability are chosen nearly equally

often. This algorithm, or one that interpolates between pure sampling and pure

maximization makes for a more psychologically plausible alternative to the local MAP.

These results, combined with recent work that has successfully applied particle filters to a

range of problems (Brown & Steyvers, 2009; Daw & Courville, 2008; Levy et al., 2009; Yi,

Steyvers, & Lee, in press), lead us to believe that particle filters have the potential to be a

powerful tool for producing rational process models.

The introduction of these new algorithms also inspires the development of

intermediate cases. It seems necessary to limit the precision of the local MAP algorithm

in some way to create a psychologically plausible algorithm. One possible way to do this is

by casting the local MAP as a sampling algorithm. As each new stimulus is presented, the

local MAP algorithm computes the posterior probability, f(x), that the new stimulus

belongs to each of the existing clusters and to a new cluster. The local MAP algorithm

selects the maximum of f(x), which we can represent by sampling. If we construct a new

distribution, g(x) ∝ f(x)γ , and set γ = ∞, then sampling from g(x) will be equivalent to

taking the maximum value of f(x). We refer to the γ parameter as the distributional

scaling parameter2. The usefulness of this representation is that we can use values of γ

that are less than ∞. Using smaller values of γ produces a soft-max rule, which greatly

changes the behavior of the algorithm when the best two clusters for a new stimulus have

nearly the same, but not exactly the same probability. Now, instead of always selecting

the highest probability cluster, the adjusted algorithm will select the top two clusters with
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nearly equal probability, which is more psychologically plausible. At the other end of the

range of the γ parameter, when γ = 1, this representation is equivalent to a particle filter

with M = 1 particles, which selects clusters according to their posterior probability.

We should note that our simulations are not particularly constraining on the number

of particles that might best be used to fit human participants. The second desideratum for

psychological plausibility stated that there should be a single interpretation of which

cluster generated an object. This desideratum is debatable, because it may be that people

can hold multiple hypotheses of how objects are generated. In simulations we did not

present, we looked at a range of approximations that varied both the number of particles

and distributional scaling parameter. Our simulations were not particularly constraining

for these parameters. For example, a 100 particles with γ = 2 produces order effects in the

Anderson and Matessa experiment that were approximately equal to that produced by the

single-particle particle filter. We elected to test the local MAP to the single-particle

particle filter in most of the simulations because it provided a clean comparison between

maximization and sampling. However, we do not draw the conclusion that a

single-particle particle filter is necessarily the way forward. Other work has successfully fit

individual subject data by varying the number of particles (Brown & Steyvers, 2009).

More generally, the Monte Carlo principle can be used to motivate other interesting

psychological processes. As noted earlier, exemplar-based category learning can be

interpreted as a kind of importance sampling (Shi et al., 2008, in press), and the field of

decision-making already has many sampling-based theories (Lee & Cummins, 2004;

Ratcliff, 1978; Stewart et al., 2006; Vickers, 1979), but other possibilities exist. In the area

of problem solving – which, to a large extent is defined in terms of a focus on difficult

learning problems – several avenues of work seem promising. For instance, to the extent

that incubation effects in problem solving (S. M. Smith & Blankenship, 1989; Wallas,

1926) relate to a loss of fixation of mental set, they could be interpreted as a form of
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particle rejuvenation. Similarly, while trial-and-error learning can be quite complex (Anzai

& Simon, 1979), it is nevertheless a natural candidate for Markov Chain Monte Carlo

explanations. More speculatively, the fact that human problem solving is not invariant to

changes in surface form (Kotovsky, Hayes, & Simon, 1985) makes sense given the Monte

Carlo principle, insofar as reparameterization of the hypothesis space can make an

inference problem harder or easier.

Rational models of cognition provide a way to understand how human behavior can

be explained in terms of optimal solutions to problems posed by the environment. The

promise of rational process models is that they can link the Platonic world of ideal forms

and ideal learners to the less lofty reality of inexact representations and limited resources.

By linking these two levels of analysis more closely, we can build models that more

completely characterize both the why and the how of human cognition.
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Appendix

The Appendix has six parts. The first three sections provide a mathematical

introduction to Gibbs sampling, importance sampling, and particle filters. The fourth

section develops the Rational Model of Categorization from the standard equations for a

mixture model. The fifth and sixth sections respectively present the likelihood equations

used in this paper for binary and continuous features.

Gibbs sampling

Gibbs sampling is a part of a broader class of algorithms that exploit the properties

of Markov chains. A Markov chain is a sequence of random variables where each variable

depends only on that which precedes it in the sequence. For example, a learner might

entertain a series of hypotheses, generating the next hypothesis by probabilistically

manipulating the previous one in some way. Markov chains have the property that,

provided certain simple conditions are satisfied, they converge to a stationary distribution:

the probability that a variable takes on a particular value approaches this distribution as

the length of the sequence increases. Markov chain Monte Carlo algorithms are procedures

for constructing Markov chains that have a particular target distribution as their

stationary distribution. Simulating the resulting Markov chain then provides a way of

generating samples from the target distribution (for details, see Gilks et al., 1996).

Gibbs sampling (Geman & Geman, 1984) is a Markov chain Monte Carlo algorithm

for sampling from a distribution that is applicable when hypotheses consist of large

numbers of distinct variables. Assume that each hypothesis h consists of assignments of

values to a set of N random variables. We can write out the assignments of these values in

a vector zN = (z1, . . . , zN ), and express our posterior distribution P (h|d) as a distribution

over these vectors P (z|d). The Gibbs sampler for this distribution is the Markov chain

defined by drawing each zj from the conditional distribution
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P (zj |z1, . . . , zj−1, zj+1, . . . , zN , d), either cycling through the zj in turn or choosing one at

random to sample at each iteration. After many cycles, this process will produce a sample

from the distribution P (z|d).

Importance sampling

Importance sampling generates samples from a proposal distribution, and then

assign those samples weights that correct for the difference from the target distribution.

For example, let us assume that f(x) is a probability density that gives the probability of

sample x under the target distribution. If q(x) is the probability of x under the proposal

distribution from which x was in fact generated, then the weight is w(x) ∝ f(x)/q(x) (for

details, see Neal, 1993).

When performing Bayesian inference, the target distribution is almost always the

posterior P (h|d), and a standard method is to use the prior distribution P (h) as the

proposal. If we take samples of hypotheses h from the prior, then the weight assigned to

each sample is proportional to the ratio of the posterior to the prior

w(h) ∝
P (h|d)

P (h)
=

P (d|h)
∑

h∈H P (d|h)P (h)
∝ P (d|h) (A-1)

where the normalizing constant is simply the sum of the likelihood P (d|h) across all of the

samples. As a result, this method is known as likelihood weighting, because samples from

the prior are simply weighted by the likelihood.

Particle filters

The particle filter is a sequential version of importance sampling. It was originally

developed for making inferences about variables in a dynamic environment, but it also

provides a natural solution to the general problem of updating a probability distribution

over time, giving a way to efficiently generate samples from the distribution over

hypotheses ht given data d1, . . . , dt.
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The basic idea behind the particle filter is that at each point in time, we

approximate the posterior P (ht|d1, . . . , dt) using importance sampling. In particular, we

can perform importance sampling where we use the “prior” on ht, P (ht|d1, . . . , dt−1) as

our proposal. If we can generate samples from P (ht|d1, . . . , dt−1), then we can construct

an importance sampler by giving each sample weight proportional to P (dt|ht). To

decompose this equation further, we can write

P (ht|d1, . . . , dt−1) =
∑

ht−1
P (ht|ht−1)P (ht−1|d1, . . . , dt−1).

Thus, samples from P (ht|d1, . . . , dt−1) can be generated by taking samples from

P (ht−1|d1, . . . , dt−1) and then drawing a sample of ht from P (ht|ht−1) for each sampled

value of ht−1. We can write this as

P (ht|d1, . . . , dt−1) ≈
∑

"

P (ht|h
(")
t−1)w" (A-2)

where h(")
t−1 is the &th sample of ht−1 and w" is its associated weight, if it in turn was

generated by importance sampling.

The procedure outlined in the previous paragraph identifies an interesting recursion

– it gives us a way to sample from P (ht|d1, . . . , dt) as long as we can sample from

P (ht−1|d1, . . . , dt−1). This sets us up to introduce the sequential Monte Carlo scheme that

underlies the particle filter. First, we generate samples from P (h1|d1). Then, for each

sample h(")
1 we generate h(")

2 from P (h2|h
(")
1 ), and assign each resulting sample a weight

proportional to P (d2|h
(")
2 ). We repeat this procedure for all t, multiplying each sample h(")

t

(now called a “particle”) by P (dt|h
(")
t ). There is no need to normalize the particle weights

at each step – this can be done at the end of the process.

This simple recursive scheme is known as sequential importance sampling. However,

it has one big problem: over time, the weights of the particles can diverge hugely, since

some of the particles are likely to have ended up with a sequence of ht values that are very

unlikely. In some ways, this is a waste of computation, since those particles with very
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small weights will make little contribution to later probabilistic calculations. To address

this problem, we can use an alternative approach known as sequential importance

resampling. Under this approach, we regularly sample a new set of particles from a

probability distribution corresponding to the normalized weights. This increases the

number of particles that correspond to good hypotheses.

While the standard particle filtering algorithm follows this schema, this only

scratches the surface of possible sequential Monte Carlo techniques. Even within particle

filtering, there are many options that can be used to improve performance on certain

problems. For example, in some cases it is possible to enumerate all possible values of ht

given the values of ht−1 represented by the current particles, and combine this with the

likelihood P (dt|ht) to obtain a more accurate proposal distribution. Since the quality of

the approximation depends on the match between the proposal and the target, as with

other importance sampling methods, improving the proposal distribution directly

improves the performance of the particle filter.

The Rational Model of Categorization as a mixture model

The RMC as described in Equation 2 is defined in terms of the joint distribution of

xN and yN , rather than by directly specifying the category distributions as would be the

case for the simpler mixture models such as the exemplar model. So it may not be

immediately clear how to map it onto the framework of density estimation. However, it is

possible to rewrite the RMC in terms of the “standard” Bayesian categorization model

(Equation 1), and thereby make the link explicit. To do so, we note that the first term of

the numerator of Equation 1 can be rewritten to include assignments of the stimuli to

clusters,

P (xN |yN = j,xN−1,yN−1) =
K

∑

k=1

∑

zN−1

P (xN |zN = k, zN−1,xN−1)P (zN = k, zN−1|yN = j,xN−1,yN−1) (A-3)
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where K is the total number of clusters, zN−1 is the partition of the first N − 1 objects

into clusters, P (xN |zN = k, zN−1,xN−1) is the probability of xN under cluster k, and

P (zN = k, zN−1|yN = j,xN−1,yN−1) is the joint probability of generating a new object

from cluster k and the partition of the previous N − 1 objects. Then this joint probability

is given by,

P (zN = k, zN−1|yN = j,xN−1,yN−1) ∝

P (yN = j|zN = k, zN−1,yN−1)P (zN = k|zN−1)P (zN−1|xN−1,yN−1) (A-4)

where we take into account the fact that this new observation belongs to category yN .

The second term on the right hand side is given by Equation 4. This defines a distribution

over the same K clusters regardless of j, but the value of K depends on the number of

clusters in zN−1. Substituting this expression into Equation A-3 provides the relevant

mixture model for the RMC. In general, the probabilities in the second term on the

bottom line of Equation A-3 will never be precisely zero for any combination of cluster k

and category j, so all clusters contribute to all categories. The RMC can therefore be

viewed as a form of the mixture model in which all clusters are shared between categories

but the number of clusters is inferred from the data. The dependency of the RMC

between both features and category labels means that the prior over yN depends on xN−1

as well as yN−1, violating the (arguably sensible) independence assumption made by the

other models and embodied in Equation 1.

In the equations for the RMC above, all clusters are used in each category, but a

generalization of the RMC allows for other assumptions about the structure of categories.

This generalization casts the exemplar, prototype, and RMC as restricted versions of

Hierarchical Dirichlet Processes (Griffiths et al., 2007). Other models in this framework

allow for probabilistic sharing of clusters between categories, or even completely

independent sets of clusters for different categories.
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Likelihood for discrete features

Given the cluster, the value on each feature is assumed to have a Bernoulli

distribution. Integrating out the parameter of this distribution with respect to a

symmetric Beta(β,β) prior, we obtain

P (xN,d = v|zN = k,xN−1, zN−1) =
Bv + β

B· + 2β
(A-5)

where Bv is the number of stimuli with value v on the dth feature that zN identifies as

belonging to the same cluster as xN . B· denotes the number of other stimuli in the same

cluster.

Likelihood for continuous features

Each feature within a cluster is assumed to follow a Gaussian distribution, with

unknown mean and variance. The variance has an inverse χ2 prior and the mean given the

variance has a Gaussian prior

σ2 ∼ Inv-χ2(a0,σ
2
0) (A-6)

µ|σ ∼ N

(

µ0,
σ2

λ0

)

(A-7)

(A-8)

where σ2
0 is the prior variance, a0 is the confidence in the prior variance, µ0 is the prior

mean, and λ0 is the confidence in the prior variance. The parameters were set as they

were in Anderson (1991): σ2
0 is the square of one quarter of the dimension’s range, µ0 is

the mean of the dimension. The parameters a0 and λ0 are described in the text.

Using these conjugate priors, the posterior predictive distribution is Student’s t

P (xN,d = v|zN = k,xN−1, zN−1) ∼ tai

(

µi,σi

(

1 +
1

λi

))

(A-9)
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where

λi = λ0 + n (A-10)

ai = a0 + n (A-11)

µi =
λ0µ0 + nx̄

λ0 + n
(A-12)

σ2
i =

a0σ2
0 + (n − 1)s2 + λ0n

λ0+n(µ0 − x̄)2

a0 + n
(A-13)

and x̄ is the mean and s2 is the variance of the values for dimension d in cluster k, and n

is the number of objects in cluster k.
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Footnotes

1We should note that users of particle filter algorithms in computer science and

statistics fight garden path effects through the use of particle rejuvenation or particle

jittering (Fearnhead, 2004; Gordon, Salmond, & Smith, 1993). In rejuvenation, variance is

added to the particles particles, possibly using different sampling algorithms such as

Markov chain Monte Carlo. The additional sampling over partitions of stimuli would

allow for the particle filter to explore possible clusterings of earlier stimuli that are

irretrievable under our scheme. However, particle rejuvenation comes at the cost of

additional computation so we have not implemented it in order to keep the simplest

possible algorithms.

2In physics and statistics, 1/γ is often known as the temperature of the distribution.
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Table 1

Approximation algorithms and their properties

Properties

Algorithms Incremental Single interpretation Order effects introduced

Local MAP Yes Yes Strong

Standard Gibbs sampling No No Asymptotically none

Modified Gibbs sampling No Yes In judgments

Multi-particle particle filter Yes No Asymptotically none

Single-particle particle filter Yes Yes Weak



Rational Approximations to Category Learning 66

Table 2

Transfer stimuli ordered by category 1 subject ratings from Medin and Schaffer (1978)

1111 0101 1010 1101 0111 0001 1110 1000 0010 1011 0100 0000
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Table 3

Presentation order of Anderson and Matessa training stimuli (from Anderson, 1990)

Order Type

Front-Anchored End-Anchored

1111 0100

1101 0000

0010 1111

0000 1011

0011 0011

0001 0111

1110 1000

1100 1100

0111 1010

1010 0001

1000 0101

0101 1110

0110 1001

1011 0010

1001 0110

0100 1101
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Table 4

Non-linearly separable category structures used in Experiments 1-3 of Smith and Minda

(1998)

Experiment Category A Category B

Exps 1 & 2

000000 111111

100000 011111

010000 101111

001000 110111

000010 111011

000001 111110

111101 000100

Exp 3

0000 1111

0100 1010

0001 0111

1011 1000
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Figure Captions

Figure 1. Three example stimuli with their binary feature descriptions and order of

presentation. The first feature codes for circle or square, the second feature codes for solid

or empty, and the third feature codes for large or small.

Figure 2. Three different approaches to estimating the category distribution

p(xN |yN ,xN−1,yN−1). In all three cases, the learner knows that five objects

(corresponding to the marked locations x1 through x5) all belong to a category, and the

solid line plots the probability (density) with which a new object sampled from that

category would be expected to fall in each location. The left panel shows a prototype

model, in which all objects are clustered together, and are used to estimate the mean of

this distribution (dashed line). On the right is an exemplar model, in which each object

corresponds to a unique cluster, leading to a peak located over the top of each object. The

intermediate case in the middle clusters objects 1-3 together and objects 4-5 together (i.e.,

z = [11122]), with the result that there are now two peaks in the category distribution.

Figure 3. Illustration of the local MAP approximation algorithm, applied to stimuli shown

in Figure 1. The local MAP begins on the left side with the initial stimulus. Every

possible assignment of the new stimulus (marked by the arrow) that is consistent with the

parent partition is enumerated and the posterior probability of each is written below each

partition. Not all possible paths are followed. The local MAP algorithm chooses the

partition with the highest posterior probability as its representation. The final output of

the algorithm, a partition of the stimuli into clusters, is circled in red.

Figure 4. The relationship between (a) the clustering implied by the DP, (b) the

distribution over parameters that is sampled from the DP, and (c) the mixture

distribution over stimuli that results in the DPMM. The clustering assignments in (a)
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were produced by drawing sequentially from the stochastic process defined in Equation 8,

and each cluster is associated with a parameter value θ. The x stimuli are a set of

undefined stimuli in which the features influence the clusters they belong to, but we are

focusing on exploring the prior in this figure. After an arbitrarily large number of cluster

assignments have been made, we can estimate the probability of each cluster, and hence of

the corresponding parameter value. The resulting probability distribution is shown in (b).

If each value of θ is treated as the mean of a simple normal distribution (with fixed

variance) over the value of some continuous stimulus dimension, then the resulting

mixture distribution drawn from the DPMM is the one illustrated in (c). While the

applications considered in this paper also use stimuli that have discrete features, the

notion of a mixture distribution is more intuitive in the continuous setting.

Figure 5. Illustration of the Gibbs sampling approximation algorithm, applied to stimuli

shown in Figure 1. The Gibbs sampler begins on the left side with an initial partition of

all of the stimuli and moves to the right side. Each box is a partition that contains one or

more stimuli and the presence of a separating vertical line indicates that the stimuli

belong to different clusters. The partitions in each column are the partitions under

consideration, given the partitions in the previous column. These children partitions are

all the possible reassignments of the stimulus marked by the arrow. Numbers underneath

each partition show the posterior probability of that partition. After an iteration through

each stimulus, the end state is retained and is also used as the initial partition for the next

iteration. The final outputs of the algorithm, two samples of partitions of the stimuli into

clusters, are circled in red.

Figure 6. Illustration of the particle filter approximation algorithm, applied to stimuli

shown in Figure 1. The particle filter starts on the left side with the initial stimulus as the

partition represented by each of the M = 2 particles. Every particle produces all possible
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assignments of the new stimulus, marked by the arrow, that are consistent with the

previous partition. M = 2 partitions are sampled based on their posterior probabilities

represented by numbers underneath the partitions, without regard for ancestry. After the

final stimulus, the sampled partitions are used as samples from the posterior distribution.

The final outputs of the algorithm, two samples of partitions of the stimuli into clusters,

are circled in red.

Figure 7. Results of the approximation algorithms compared to the exact posterior. The

five bar groupings correspond to the five possible partitions of the three stimuli in

Figure 1. The bars within each grouping correspond to the approximation algorithms

outlined in the text. Standard error bars are provided for the Gibbs sampling,

multi-particle particle filter, and single-particle particle filter algorithms.

Figure 8. Probability of choosing category 1 for the stimuli from the first experiment of

Medin & Schaffer (1978). The transfer stimuli (listed in order of human preference) are

along the horizontal axis. In the first row only the first six trials are presented, while in

the second row ten blocks of six trials each are presented. The two lines in each panel

correspond to two different coupling parameters: for the triangles, c = 0.1 and for the

circles, c = 0.3. Pearson correlations between the human data and the simulation data are

displayed on each plot for each value of the coupling parameter.

Figure 9. Data and model fits to data from Experiments 1-3 of Smith and Minda (1998).

The line plots show the proportion of trials on which category A was chosen for each

stimulus. Stimuli belonging to category A are marked with an x, while stimuli belonging

to category B are marked with a circle. The red and blue lines highlight the stimuli that

are unusual for in each category. The bar plots show how the unusual stimuli were

classified in early, middle, and late blocks. When the two stimuli were both more often
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given the incorrect response, they were classified as opposite. Both A and Both B mean

that both stimuli were more often classified in one of the two categories than the other,

and Correct means that both unusual stimuli were classified correctly on average.

Figure 10. Problem types from Shepard, Hovland, and Jenkins (1961). The three

dimensions of the cube represent the three binary dimensions of the stimuli. Each vertex

of a cube is labeled as part of Category A or Category B for each of the six problems.

Figure 11. Human data from Nosofsky, Gluck, Palmeri, McKinley, and Glauthier (1994),

along with the best fitting local MAP and single-particle particle filter algorithms to these

data. Each line is a separate problem type.
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