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Abstract

An alternative to modeling the transient behavior of pipeline systems in the time-domain is to model these

systems in the frequency-domain using Laplace transform techniques. A limitation with traditional frequency-

domain pipeline models is that they are only able to deal with systems of a limited class of configuration. Despite

the development of a number of recent Laplace-domain network models for arbitrarily configured systems, the

current formulations are designed for systems comprised only of pipes and simple node types such as reser-

voirs and junctions. This paper presents a significant generalization of existing network models by proposing a

framework that allows not only complete flexibility with regard to the topological structure of a network, but also,

encompasses nodes with dynamic components of a more general class (such as air vessels, valves and capacitance

elements). This generalization is achieved through a novel decomposition of the nodal dynamics for inclusion into

a Laplace-domain network admittance matrix. A symbolic example is given demonstrating the development of the

network admittance matrix and numerical examples are given comparing the proposed method to the method of

characteristics for 11-pipe and 51-pipe networks.
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INTRODUCTION

Networks of interlinked fluid lines occur in many different instances, examples of which are material transport

systems (e.g. water, gas and petroleum [Fox, 1977; Chaudhry, 1987; Wylie and Streeter, 1993]), control systems

(e.g. hydraulic and pneumatic [Stecki and Davis, 1986; Barber, 1989]), and biological systems (e.g. arterial blood

flow [John, 2004]). Given the far reaching nature of these systems, the ability to model the transient response

of these networks subjected to boundary perturbations is of broad interest and is fundamental for the purposes of

analysis and design.

A particular application of transient network modelling is water hammer analysis in distribution systems. Tra-

ditionally, the approach for modelling water hammer within distribution systems is via the use of time-domain

approximate discrete methods such as the method of characteristics [Wylie and Streeter, 1993]. However, re-

cently alternative Laplace-domain models have been proposed [Kim, 2007; Zecchin et al., 2009] where classical

frequency-domain models [Chaudhry, 1987; Wylie and Streeter, 1993] have been extended to handle arbitrarily

configured networks.

The Laplace-domain network admittance formulation from Zecchin et al. [2009] was designed for systems

comprised of pipes, reservoirs and junctions. Despite the capacity to deal with networks of arbitrary configuration,

the formulation is still limited in its application as real world networks contain many other types of hydraulic

components such as valves, emitters, surge tanks (accumulators), pumps, and other components. This paper

presents a new and extended formulation that is able to deal with, not only arbitrarily configured networks, but

also pipe networks containing a general class of hydraulic components. The class of components that can be

incorporated into the proposed framework is the extremely general class whose dynamic state equations yield

an admittance representation, that is, there exists a definable map from the components state variables to the

components connection flows (discussed later ). The incorporation of these arbitrary components is achieved by a

novel nodal expansion method that enables the inclusion of the nodal dynamics into the network admittance matrix

structure. These arbitrary components from hereon are referred to as compound nodes, which references the fact

that these elements represent dynamic systems in conjunction with the nodal-like property of being a connection

point for pipes.

The paper is structured as follows. Firstly, the background is given including current methods for modeling

pipe networks and a mathematical formulation of the network equations as well as a brief background to Laplace-

domain representations of the fluid network equations. This is followed by a comprehensive mathematical frame-

work for the compound node type. The formulation of the Laplace-domain model for an arbitrarily configured

network comprised of arbitrary node types is then presented , where a brief review of the work of Zecchin et al.
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[2009] is given followed by a staged generalization. This section highlights the concepts and definitions that are

required to deal with arbitrary node types within a network setting. Numerical examples are then given for two

case studies, a 11-pipe network and a 51-pipe network, followed by the conclusions.

BACKGROUND

Modelling the Transient Behaviour of Pipe Networks

Pipe networks can essentially be viewed as systems comprised of dynamic interacting elements. These networks

are comprised of two types of elements, namely distributed elements (e.g. pipes) and lumped elements (e.g. junc-

tions, air vessels and valves). The fluid variables of each of the hydraulic elements interact with their neighboring

components according to the physical laws of conservation of mass, momentum and energy. The network problem

involves defining a computable model that can deal with an arbitrary structure of connected hydraulic elements,

and determine the value of the associated fluid variables that satisfy the system of underlying equations.

Modeling an arbitrary network in the time-domain has been broadly addressed within the research literature

(e.g. [Karney, 1984; Chaudhry, 1987; Wylie and Streeter, 1993; Axworthy, 1997; Izquierdo and Iglesias, 2004]),

and, within industry, there exist many commercial software packages for the purpose of water hammer analysis

within water distribution systems. For these time-domain models, the distributed components are discretized

in space and time and modeled using hyperbolic partial differential equation (PDE) solvers [Chaudhry, 1987;

Wylie and Streeter, 1993], and the lumped components are modeled by simultaneous equations solvers, which

are computed at each time point. The distributed nature of the pipelines means that there is a time delay in the

wave propagation of the fluid variables. This time delay means that the network variables are not required to be

solved simultaneously, but that, at each time step, the interior points of each fluid line can be computed explicitly

in isolation [Wylie and Streeter, 1993], and only the fluid variables at the endpoints of the pipes, incident on

common nodes, require simultaneous solving, thus greatly reducing the problem complexity. The fluid variables

at the pipes endpoints then serve as the boundary condition to the interior points at the following time step.

Laplace-domain modelling is significantly different to this. The underlying fluid equations of the hydraulic el-

ements (pipelines and lumped components) are first linearised, then transformed using the Laplace transform, and

finally solved to yield analytic transfer relationships between the points at which the element connects to other ele-

ments within the network [Chaudhry, 1987; Wylie and Streeter, 1993] (e.g. pipeline end points). The construction

of a full network model from the individual element transfer relationships involves solving the simultaneous set of

complex valued equations that arise from the hydraulic elements and their interactions with other elements that are
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incident to similar nodes. What this means is that as the transformed fluid variables are in the Laplace-domain, the

temporal delays are replaced by algebraic operations, and consequently the fluid variables for all components must

be solved simultaneously for every frequency point of interest. Interestingly, in this regard the Laplace-domain

model is similar to steady-state models for solving the flows and pressures in a water distribution system [Todini

and Pilati, 1988], in that there is a direct dependence of one network variable on another.

The classical methods for Laplace-domain modelling of pipe networks are the impedance method [Wylie,

1965; Wylie and Streeter, 1993] and the transfer matrix method [Chaudhry, 1970, 1987]. Both these methods

have their origins in Laplace-domain transmission line theory, where pipes are described by their wave propagation

characteristics [Brown and Nelson, 1965; Stecki and Davis, 1986] . Within the impedance method, a pipe network

is characterised by the distribution of hydraulic impedance throughout the network and impedance relationships

are derived to relate the hydraulic impedance values across an element (note that Hydraulic impedance refers to

the ratio of transformed pressure to transformed flow). Within the transfer matrix method, each hydraulic element

is expressed as a 2 × 2 transfer matrix relating the upstream and downstream transformed variables of pressure

and flow, whereby a network model can be created by an ordered multiplication of these matrices.

The advantages of these methods are that they are able to deal with systems comprised of pipes and lumped

hydraulic components. The major disadvantage, however, is that such methods are not able to deal with an arbitrary

network configuration, but are limited to simple first order looped systems [Fox, 1977] (structural reasons for the

transfer matrix method, and practical reasons for the impedance method). Many authors have utilised different

methods to achieve a frequency-domain representation of complex networks (e.g. Ogawa [1980]; Margolis and

Yang [1985]; Boucher and Kitsios [1986]; John [2004]; Kim [2007, 2008a,b]). However, these methods were

designed simply for networks with junctions and reservoir node types only, with the exception of Kim [2007,

2008a,b] who included an emitter elements and some surge protection devices in his formulation.

An alternative method for modelling systems comprised of pipes, junctions and reservoirs was proposed in

Zecchin et al. [2009] in which an admittance matrix expression relating the nodal pressures to the nodal outflows

was derived from the basic fluid equations using graph theory concepts. The significance of this is twofold, (i) the

network matrix was shown to have an intuitive and simple structure for which analogies with admittance matrices

in electrical circuits was made apparent [Desoer and Kuh, 1969], and (ii) it showed that the entire network state

was a function of the reduced variable set of nodal pressures and flows. The focus of this paper is the development

of a new model to deal with networks than include compound nodes in addition to pipes, junctions and reservoirs.

4



Problem Definition

The development of a network model not only involves modelling the dynamics of each individual component,

but it also involves accounting for the continuity of the fluid variables of the hydraulic elements at their connection

points. Before outlining the network equations, some notation is defined below, and the general framework for a

node is given.

To facilitate the discussion of the network connectivity equations, it is convenient to describe a network as a

connected graph G (N ,Λ) [Diestel, 2000] consisting of the node set N = {1, 2, ..., nn}, and the link set Λ =

{λ1, λ2, ..., λnΛ
} and where λj = (iu,j , id,j) where iuj , idj ∈ N are the upstream and downstream nodes of

link j respectively. Each node is associated with a lumped hydraulic component that is connected to a number of

links, and each link is associated with a distributed pipe element where the directed nature of the link describes

the positive flow direction sign convention of the element. There are two link sets associated with each node,

these are Λui and Λdi which correspond to the set of links directed from and to node i respectively, that is

Λui = {(i, k) , k ∈ N : (i, k) ∈ Λ} and Λdi = {(k, i) , k ∈ N : (k, i) ∈ Λ}). Note that the first set corresponds

to the links whose upstream node is i and the second set correspond to the links whose downstream node is i.

Compound Node Equations

Previous work has presented a methodology that included a specific class of node that describes junctions, demand

nodes and reservoirs. This nodal type is called a simple node and is defined as a point with an infinitely small

volume that has a lossless connection to one or more fluid lines. The infinitely small volume implies that there is

no variation of pressure or accumulation of mass, and the lossless connection implies that the pressure at the ends

of the fluid line connected to the node are equal. The main contribution of this paper is that it presents a novel way

to include a completely general node type into the network equations. The node types considered in this paper are

of a much more general class encompassing any hydraulic element whose dynamics can be exactly represented

(or adequately approximated) by a passive, time-invariant linear system, as is the case for most hydraulic elements

such as valves, emitters, and surge tanks (see Desoer and Vidyasagar [1975] for a discussion on passivity). These

nodes are referred to as compound nodes and are defined and discussed below.

The equations describing the dynamic behaviour of a compound node are derived from the physical laws of

mass and momentum conservation. In the general case, the dynamic behaviour of a compound node is given by

the vector equation

φi (pi, qi,ui, ũi, t) = 0 (1)
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where φi is the vector valued operator describing the compound node dynamics, ui(t) is the set of controlled state

variables for the node (i.e. valve opening, demand etc.), ũi is the set of response state variables (e.g. pressure,

volume and inflow for a surge tank, or pressure and outflow for an emitter) and pi and qi are the sets of pressures

and flows of the pipes incident to node i. That is, pi and qi are vector organisations of the sets

{pj(0, ·) : λj ∈ Λui} ∪ {pj(lj , ·) : λj ∈ Λdi}

{qj(0, ·) : λj ∈ Λui} ∪ {qj(lj , ·) : λj ∈ Λdi}

respectively, where pj and qj are the distributions of pressure and flow along pipe j, and lj is the length of pipe j.

Mathematically, the difference between the controlled states and the response states is that the controlled states are

inputs that require specification to compute (1), and the dependent states are outputs that are computed from (1).

It is important to note that the compound node framework (1) encompasses basic nodes, such as junctions with

emitters, and also nodes of complex configurations involving multiple equations for different elements within the

compound node. This is demonstrated in the following example.

Example 1. Consider the compound node configuration in Figure 1(a) consisting of a closed branch and a con-

trolled demand bounded by valves A and B. Pipe [a] is incident to valve A and pipes [b] and [c] are incident to

valve B. The nodal states can be taken as the internal pressure ψo, the capacitive inflow into the closed branch

θo, and the controlled flow injection (or demand) θd. Labeling this node with i, the nodal vectors are

pi(t) =


pa(la, t)

pb(lb, t)

pc(0, t)

 , qi(t) =


qa(la, t)

qb(lb, t)

qc(0, t)

 , ui(t) = θd(t), ũi(t) =

 ψo(t)

θo(t)

 . (2)

The vector equation φi for compound node is

φi(pi, qi,ui, ũi, t) =

pb(lb, t)− ψo(t)− fB (qb(lb, t)− qc(0, t)) = 0 pressure change across valve B

qa(la, t) + qb(lb, t)− qc(0, t)− θo(t) + θd(t) = 0 continuity within node

pb(lb, t)− pc(0, t) = 0 connectivity of links b and c

Vo
Ke

dψo(t)

dt
− θo(t) = 0

capacitance equation

for branch

pa(la, t)− ψo(t)− fA (qa(la, t)) = 0 pressure change across valve A

(3)
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where Vo and Ke are volume and effective modulus of the branch, and

fX(q) =
ρ

2

|q|q
(CdXAvX)

2

is the valve pressure change where CdX andAvX are the valve coefficient and valve cross-sectional area for valve

X for subscripts X = A,B.

Network Equations

With the given notation, a compound node network can be defined as the triple

(G(N ,Λ),P, C)

where G(N ,Λ) is the network graph of nodesN and links Λ, P = {Pj : λj ∈ Λ} is the set of pipeline properties

where Pj are the properties for pipe j (i.e. lj , diameter, roughness etc.), and C = {φi : i ∈ Nc} is the set of

compound node functions for the set of compound nodesNc ⊂ N . The state space of the network (G(N ,Λ),P, C)

is given by the distributions of pressure and flow along each line of the network, and the compound node response

states, which are given by

p (x, t) =


p1 (x1, t)

...

pnΛ (xnΛ , t)

 , q (x, t) =


q1 (x1, t)

...

qnΛ (xnΛ , t)

 , ũ(t) =


ũ1(t)

...

ũnc
(t)

 , (4)

respectively, where x = [x1 · · ·xnΛ ]T is the vector of spatial coordinates, (i.e. x ∈ X = X1 × · · · XnΛ where

Xj = [0, lj ]), t ∈ R is time, nΛ is the number of links, and nc is the number of compound nodes.

For a given network (G(N ,Λ),P, C), the network modeller is interested in the transient response of the states

(4) for a specific hydraulic scenario, where hydraulic scenario is defined by a set of specified initial and boundary

conditions. In addition to the compound node controls ui, i ∈ Nc, each simple node either has controlled nodal

pressure (as in the case of a reservoir) or a controlled nodal flow (as in the case of a demand node or a junction).

Therefore, partitioning the set of simple nodes Ns = N/Nc as Ns = NJ ∪ Nd ∪ Nr where NJ is the set of

junctions, Nd is the set of demand nodes, and Nr is the set of reservoir nodes, the system of dynamic equations
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governing the network states (4) is

∂qj
∂t

+
Aj
ρ

∂pj
∂x

+
qj
Aj

∂qj
∂x

+
πDj

ρ
τj = 0, x ∈ Xj , λj ∈ Λ, (5)

∂pj
∂t

+
ρc2j
Aj

∂qj
∂x

+
qj
Aj

∂pj
∂x

= 0, x ∈ Xj , λj ∈ Λ, (6)

pj(ϕji, t)− pk(ϕki, t) = 0, λj , λk ∈ Λi, i ∈ NJ ∪Nd (7)

pj(ϕji, t)− ψri(t) = 0, λj ∈ Λi, i ∈ Nr, (8)∑
λj∈Λdi

qj(lj , t)−
∑

λj∈Λui

qj(0, t) = 0, i ∈ NJ (9)

θdi(t) +
∑

λj∈Λdi

qj(lj , t)−
∑

λj∈Λui

qj(0, t) = 0, i ∈ Nd (10)

φi (pi, qi,ui, ũi, t) = 0, i ∈ Nc (11)

pj(x, 0) = p0
j (x), qj(x, 0) = q0

j (x), x ∈ Xj , λj ∈ Λ (12)

ui(0) = u0
i , i ∈ Nc (13)

where the symbols are defined as follows: for the fluid lines ρ is the fluid density, cj , Aj , Dj and τj = τj(qj)

are the fluid line wavespeed, the cross-sectional area, the diameter and the cross sectional shear stress for pipe

j respectively; for the nodes ψri is the controlled temporally varying reservoir pressure for the reservoir nodes

in the reservoir node set Nr, θdi is the controlled temporally varying nodal demand for the demand nodes in the

demand node set Nd; p0
j and q0

j are the initial distribution of pressure and flow in each pipe λj ∈ Λ; u0
i are the

initial values for the compound node response states; and ϕji = lj if λj ∈ Λdi and 0 otherwise.

The network equations (5)-(13) can be divided into five groups: (5) and (6) are the unsteady equations of

motion and mass continuity for each fluid line; (7) and (8) are the nodal equations of equal pressures in pipe ends

connected to the same node for junctions (nodes for which the inline pressure is the free variable) and reservoirs

(nodes for which the nodal flow is the free variable) respectively; (9) and (10) are the nodal equations of mass

conservation for junctions and demand nodes; (11) is the vector equation governing the behaviour of the compound

nodes; (12)-(13) are the initial conditions for the link states and node states.

Laplace-Domain Representation of Fluid Equations

The Laplace transform is a useful tool in dealing with partial differential equations as it removes the time-

dependency of the variables and yields a simpler ordinary differential equation [Kreyszig, 1999]. Via the Laplace

transform, the real variable p(x, t) becomes the complex Laplace-domain variable P (x, s), where s ∈ C, and all

8



differential operations involving t become algebraic operations involving s. An important property of the Laplace

transform is that the frequency-domain behaviour of a variable is given by the value of the Laplace-domain vari-

able restricted to the positive imaginary axis, that is s = iω where i is the imaginary unit, and ω is the radial

frequency [Franklin et al., 2001].

The Laplace-domain representation of the network equations (5)-(13) requires (i) the linearisation of (5)-(10)

in pj , qj , and ũi and (ii) the assumption of homogeneous initial conditions. The standard approach to satisfy both

these requirements is to linearise the system (5)-(11) about the initial conditions (12) and consider the transient

fluctuations in pj , qj and ũi about these values [Chaudhry, 1987; Wylie and Streeter, 1993]. For the application

of transient modelling within water distribution systems, it is common to take the initial conditions as the steady

state conditions. The assumption with this approach is that the unsteadiness of the flow during normal operation

is negligible and the system is approximately at steady-state conditions. This assumption is typically adequate

as the transient events to be simulated are orders of magnitude greater than background transients caused by the

mild unsteadiness within the system. For the nodal conditions (7)-(10), no approximation is required, as these

equations are linear, but linearisation is required for the unsteady fluid equations (5) and (6) and the compound

node equation (11).

For small Mach number flows the convective terms in (5) and (6) maybe neglected, and the Laplace transform

of these PDEs becomes

∂Pj
∂x

= − ρ

Aj

[
s+

πDj

ρ
L{τ̄j} (s)

]
Qj , (14)

∂Qj
∂x

= −s Aj
ρc2j

Pj , (15)

on x ∈ Xj , s ∈ C where Pj and Qj are the transformed pressure and flow, the operator τ̄j = τ̄j(qj) is a

linear approximation of the nonlinear operator τj , and L{f} denotes the Laplace transform of the function f .

For turbulent flow τj(qj) = τ̄j(qj) + O
{(
qj − q0

j

)2}
but for unsteady formulations with terms in τj involving

convolution operations on qj (e.g. Zielke [1968]; Vardy and Brown [2003, 2004]), τ̄j exactly captures the unsteady

effects as a convolution is a linear operation (see Stecki and Davis [1986] for more detail). Note that in the case

of nonhomogeneous initial conditions, Pj and Qj are taken as the Laplace transform of the transient fluctuations

about these initial conditions.

The solution to the linearised equations (5) and (6) is given by the standard solution to a constant coefficient

9



first order ordinary differential equation [Kreyszig, 1999], that is

Pj(x, s)
Qj(x, s)

 = B−j (s)e−Γ̃j(s)x

 1

Z−1
c,j (s)

+B+
j (s)eΓ̃j(s)x

 1

−Z−1
c,j (s)

 , (16)

on x ∈ Xj , s ∈ C where B−j and B+
j are arbitrary functions dependent on the boundary conditions of pipe j, and

Γ̃j and Zc,j are the propagation operator and the characteristic impedance, respectively, for pipe j and are given

by

Γ̃j(s) =
s

cj

√
1 +

πDj

ρ

L{τ̄j} (s)

s
, Zc,j(s) =

cjρ

Aj

√
1 +

πDj

ρ

L{τ̄j} (s)

s
.

The propagation operator Γ̃j describes the rate of attenuation and phase change experienced by a propagating wave

within a pipeline, and the series impedance Zc,j describes the amplitude and phase coupling between a pressure

wave and its associated flow perturbation.

With respect to the hydraulic component, to be able to apply the Laplace transform, the equations (1) must

be approximated by a linear, time-invariant system. The method of constructing this approximation is dependent

on the nature of the nonlinearities in the node equation φ. A standard property of the nonlinearities within many

hydraulic components is that they are memoryless, that is the integrodifferential and delay terms are linear in the

nodal variables. For these circumstances, the linear time-invariant approximation is constructed by taking only

the linear terms in a Taylor series approximation about a selected operating point. Performing such a linearization

about a selected operating point and taking the Laplace-transform of (1) leads to the following expression for the

dynamics of the i-th hydraulic component

Φi(s)



P i(s)

Qi(s)

U i(s)

Ũ i(s)


= 0 (17)

where Φj(s) is the matrix Laplace-transform of the linear approximation of the vector function φj , and P i, Qi,

U i and Ũ i are the Laplace transforms of their lower case counterparts (note that in the case were pi, qi, ui and

ũi have nonhomogeneous initial conditions, the Laplace variables are taken as the transient fluctuations about the

initial values). Consider the following example.

Example 2. Revisiting the compound node from Figure 1(a) in Example 1. Linearising the valve pressure loss

functions of (3), as in Wylie and Streeter [1993], and taking the Laplace transform leads to the (17)-type repre-
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sentation where

Φi(s) =



0 1 0 0 −cB cB 0 −1 0

0 0 0 1 1 −1 1 0 −1

0 1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 c(s) −1

1 0 0 −cA 0 0 0 −1 0


(18)

where c(s) = V0s/Ke, cX = 2ρ|qoX |/(CdXAvX)2, X = A,B where the qoX are the operating points for the

linearisation of the valve headloss functions and P i,Qi,U i, and, Ũ i, are the Laplace transforms of the transient

fluctuation of the variables (2) about the initial values. The partitions of (18) correspond to the matrix sections

that act on the node states P i,Qi, U i, and, Ũ i, respectively.

MATHEMATICAL FRAMEWORK FOR COMPOUND NODE

For a compound node element to be incorporated within a network model, a special representation of the com-

pound node equation (17) must be determined. In a network context, a compound node is comprised of a hydraulic

component and a number of connection points (i.e. junctions between the compound node component and the in-

cident pipes). The hydraulic component is the physical structure of the compound node that governs the dynamic

behaviour of the node, and the connections are the junctions through which the compound node interacts with

the network. Formally, a connection for a compound node is defined as an interface between one or more links

and the compound node’s component, within which there is no accumulation of fluid or change in pressure. The

significance of a connection is that as the link end pressures and flows are uncoupled, the component experiences

the aggregated effect of all links incident to a connection and does not differentiate between the contributions to

the connection flow from individual links. Consider the following example.

Example 3. The compound node in Figure 1(a) used in Examples 1 and 2 has two connections, each just exterior

to the valvesA andB, and the component of the compound node includes the valves and everything in between the

valves. Figure 1(b) demonstrates the connectivity of the compound node with the link [a] incident to connection

A, and links [b] and [c] both incident to the connection at B. Figure 1(c) demonstrates the fluid states of pressure

and flow at the connections, where the pressures PciA and PciB are the pressures at the end point of the links, and

the inflows QciA and QciB are the aggregated link flows into the component.

In general, for a compound node i with nsi connections, the connection states of pressure and flow are given
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by the vectors

Pci(s) =


Pci1(s)

...

Pcinsi
(s)

 , Qci(s) =


Qci1(s)

...

Qcinsi
(s)

 , (19)

where Pcik is the common pressure shared at all link ends incident to the k-th connection of compound node i, and

Qcik is the aggregated flow from the links incident to the k-th connection of compound node i into the component.

With this notation, the desired admittance representation of the compound node dynamics from (17) is given by

Yci(s)Pci(s)− Yui(s)U i(s) = Qci(s) (20)

where Yci and Yui are stable transfer matrices of size nsi × nsi and nsi × nui respectively. Technically, a

stable transfer function is one for which all poles (singularities) are located in the right hand plane of the complex

domain [Franklin et al., 2001]. Practically, stability is a property of most physical systems, and is observed as the

temporal decay in the system response when subject to transient inputs. This canonical representation of the node

dynamics is interpreted as a hydraulic admittance as Yci(s) is the admittance transfer matrix from the connection

pressures to the connection flows, and Yui(s) is the admittance transfer matrix from the controlled nodal states to

the connection flows.

The derivation of (20) from (17) involves three steps: (i) the expression of the nodal equations in terms of

the compound node variables U i and Ũ i, and the connection variables (19), (ii) the decoupling of the nodal

equations from Ũ i, and (iii) the extraction of the form (20). Details of these steps are omitted here, but are given

in the Appendix , where the criteria for the existence of such a representation is also given. Continuing on from

Example 6 in the Appendix , the following example gives the form of (20) for the compound node in Figure 1(a).

Example 4. Consider the compound node from Figure 1(a). Example 2 showed that the controlled state is U i =

Θd, and Example 3 demonstrated that the connection states of pressure and flow are

Pci(s) =

PciA(s)

PciB(s)

 , Qci(s) =

QciA(s)

QciB(s)

 . (21)

Following the three step process outlined in Appendix , the matrices of the admittance form for this compound
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node that relatesQci to Pci and U i, is determined from (18) as

Yci(s) =
1

cA + cB + cAcBcs

1 + cBcs −1

−1 1 + cAcs

 ,

Yui(s) = − 1

cA + cB + cAcBcs

cB
cA

 .
The details of each step are given in Example 6 in Appendix .

NETWORK FORMULATION

The derivation of the network admittance matrix for hydraulic networks comprised of pipelines and compound

nodes is presented in the following sections. Firstly, as background for this work, the network admittance matrix

for a simple node network is derived [Zecchin et al., 2009]. Based on this, a staged generalisation is presented.

Firstly , the special case of pressure dependent nodal outflows compound node is considered. This case highlights

the majority of the necessary steps for the inclusion of compound nodes into the network admittance matrix form.

Secondly, the general admittance form of the compound node dynamics are incorporated into the network matrix

structure. This formulation represents a full treatment of the network equations (5)-(13). Finally, a computable

input-output network transfer matrix model is presented.

Review of Network Matrix for a simple link simple node network

The case of a simple node network comprised of only pipes, junctions and reservoirs serves as the basis for

dealing with the more complex case of a compound node network. A simple node network is defined as the

pair (G (N ,Λ) ,P) where, similarly to the compound node network, G (N ,Λ) is the underlying network graph

structure comprised of nΛ links and nn simple nodes, and P is the set of link data. The nodal states for such a

network are the nodal pressures and flows

Ψ = [Ψ1 · · · Ψnn ]T , Θ = [Θ1 · · · Θnn ]T .

The equations governing the behaviour of a simple node network are (5)-(13) without the compound node equa-

tions (11) and (13). Based on these equations, Zecchin et al. [2009] derived the form of the network admittance

matrix mapping from the nodal pressures Ψ to the nodal flows Θ. The main results are briefly reviewed below.

13



The Laplace-domain description of transient fluid lines (16) can be organised into the end-to-end transfer

matrix admittance form [Goodson and Leonard, 1972]

 Qj(s, 0)

−Qj(s, lj)

 =
1

Zcj(s)

 coth Γj(s) −cschΓj(s)

−cschΓj(s) coth Γj(s)


Pj(s, 0)

Pj(s, lj)

 ,

where Γj = ljΓ̃j . The admittance matrix functions for each link λ ∈ Λ can be organised into the matrix form

 Q(s,0)

−Q(s, l)

 =

 Zc
−1(s) coth Γ(s) −Zc

−1(s)cschΓ(s)

−Zc
−1(s)cschΓ(s) Zc

−1(s) coth Γ(s)


 P (s,0)

P (s, l)


with link state vectors

P (s,x) = [P1(s, x1), . . . , PnΛ
(s, xnΛ

)]
T
, Q(s,x) = [Q1(s, x1), . . . , QnΛ

(s, xnΛ
)]
T
,

and the diagonal link function matrices

Γ(s) = diag {Γ1(s), . . . ,ΓnΛ
(s)} ,Zc(s) = diag {Zc1(s), . . . , ZcnΛ

(s)} ,

where x = [x1, . . . , xnΛ ]T is the vector of spatial coordinates, and x = 0 (x = l) corresponds to all coordinates

set at their start (end) points. Defining the upstream and downstream node incidence matrices as

{Nu}i,j =


1 if λj ∈ Λu,i

0 otherwise

, {Nd}i,j =


1 if λj ∈ Λd,i

0 otherwise

,

the upstream and downstream pressure and flow link variables can be related to the pressure and flow nodal

variables by the matrix equations

 P (s,0)

P (s, l)

 =

[
Nu Nd

]T
Ψ (s) ,

[
Nu Nd

] Q(s,0)

−Q(s, l)

 = Θ (s) ,

which are expressions of the pressure preservation, and mass conservation of a simple node, respectively (i.e.

matrix versions of equations (7) and (9) respectively). Combining these link and node relationship expressions
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with the link functions (22) yields an admittance matrix expression for the network dynamics

Y (s)Ψ(s) = Θ(s)

where Y (s) is the symetric nn × nn admittance matrix given by

Y (s) =

[
Nu Nd

] Zc
−1(s) coth Γ(s) −Zc

−1(s)cschΓ(s)

−Zc
−1(s)cschΓ(s) Zc

−1(s) coth Γ(s)

[ Nu Nd

]T
(22)

which posesses the elementwise representation

{Y (s)}i,k =



∑
λj∈Λi

coth Γj(s)

Zcj(s)
if k = i

−cschΓj(s)

Zcj(s)
if λj ∈ Λi ∩ Λk

0 otherwise

. (23)

Despite the fact that (23) represents a solution for a simple node network only, it provides the basis and framework

within which to include the compound node dynamics.

Network Matrix for a Network with Pressure Dependent Nodal Flows

The first extension to the work outlined above is the consideration of the case of compound nodes consisting of

only one connection, that is, compound nodes consisting of a hydraulic component connected to a single junction.

Examples of such components are emitters, scour valves, surge tanks or pressure relief valves. The flow into the

hydraulic component is clearly pressure dependent, but to generalise slightly further, it is assumed to be influenced

by a control action Ui (e.g. time varying valve opening, or fluctuating air volume). For a network with such node

types, a general expression for the flow into the compound node’s component is

Qci(s) = Yci(s)Pci(s)− Yui(s)Ui(s) (24)

where the first term on the right side of (24) represents the pressure dependent flow with admittance function Yci

and connection pressure Pci, and the second term represents the controlled flow with admittance function Yui and

control Ui. Note that (24) is simple a scalar version of (20).

Consider a network (G(N ,Λ), C,P) with nc such compound nodes collected into the set Nc, with Ns as the
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set of remaining simple nodes (N = Ns ∪ Nc). Ordering the nodal states with the Nc nodes first, a network

admittance expression can be derived

Y (s)

 Ψc(s)

Ψs(s)

 =

 Θc(s)

Θs(s)

 (25)

where Y is the admittance matrix (23) for the simple node network given by (G(N ,Λ),P), Ψc and Ψs are the

nodal pressures at the compound junction and simple nodes respectively, and Θc and Θs are the nodal flows

at the compound junction and simple nodes respectively. In the expression (25), Θc corresponds to the flow

that enters the network (G(N ,Λ),P) from the compound nodes component, which is external to the network

(G(N ,Λ),P), and as such, the component dynamics are not directly incorporated in (25). To incorporate the

component dynamics the relationship between each Θci and Qci from (24) must be used. Given that Θci is the

flow at the junction into the network, and Qci is the flow at the junction into the component, for continuity it is

required that Θci +Qci = 0. Therefore, infact

Θc(s) = −Qc(s)

= −diag {Yc1(s), . . . , Ycnc
(s)}Ψc(s) + diag {Yu1(s), . . . , Yunc

(s)}U(s)

(26)

whereQc andU are vector organisations of the compound node connection flows and controlled states. Combin-

ing (26) with (25) yields the admittance form for the compound node network as

Y (s) +

 diag {Yc1(s), . . . , Ycnc
(s)} 0

0 0



 Ψc(s)

Ψs(s)

 =

 diag {Yu1(s), . . . , Yunc
(s)} 0

0 I


 U(s)

Θs(s)


(27)

where, using the identity for Y from (23) for the simple node network (G(N ,Λ),P), the elementwise expression

for (27) is,

{Y (s) + diag {diag {Yc1(s), . . . , Ycnc
(s)} ,0}}i,k =

∑
j∈Λi

coth Γj(s)

Zj(s)
if k = i ∈ Ns

∑
j∈Λi

coth Γj(s)

Zj(s)
+ Yci(s) if k = i ∈ Nc

−cschΓj(s)

Zj(s)
if λj = Λi ∩ Λj

0 otherwise

. (28)

where the diagonalisation refers to a block matrix organisation. Note that in (28), only the diagonal terms in the
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upper left block of the original network matrix are altered, that is, the terms that correspond to a nodal’s pressure

influence on its nodal flow.

Admittance Matrix for a General Compound Node Network

In this section, the admittance matrix for a compound node network (G(N ,Λ),P, C) comprised of compound

nodes of a general type is derived. Before this can be done, an important preliminary concept must be introduced.

Given a compound node network (G(N ,Λ),P, C) with compound nodesNc and simple nodesNs, the associated

simple node expanded network is given by the simple node network (G(No,Λo),Po) where the node set is given

as the union of the simple node set Ns and the compound node connection sets Ni, that is

No = Ns ∪
⋃
i∈Nc

Ni,

where Ni is the set of connections for compound node i (as defined in Appendix ), the link set Λo is given by a

relabelling of the original link set Λ to the nodes in No, which is given by

Λo = {〈λ〉o : λ ∈ Λ}

where the function 〈λ〉o : N ×N 7→ No ×No is the relabelling function given by

〈(i, j)〉o =



(i, j) if i, j ∈ Ns

(i, l) if i ∈ Ns and (i, j) ∈ Λdjl, l ∈ Nj , j ∈ Nc

(k, j) if (i, j) ∈ Λuik, k ∈ Ni, i ∈ Nc and j ∈ Ns

(k, l) if (i, j) = Λuik ∪ Λdjl, k ∈ Ni, l ∈ Nj , i, j ∈ Nc

∅ otherwise

, (29)

and Po is the link data set P for the relabeled links [note that, as defined in Appendix , Λujk ⊂ Λuj (Λdjk ⊂ Λdj)

in (29) are defined as the set of links whose upstream (downstream) node is the k-th connection of compound

node j]. This concept of a simple node expanded network is fundamental to the developments within this section

as it provides the basic framework within which to include compound nodes. An example of the expanded simple

connection network for a given compound node network in Figure 2(a) is given in Figure 2(b), this is studied in

greater depth later.
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The nodal states for an expanded simple node network are given as

Ψ(s) =



Ψ1(s)

...

Ψnc
(s)

Ψs(s)


, Θ(s) =



Θ1(s)

...

Θnc
(s)

Θs(s)


, (30)

where Ψi(s),Θi(s) are the pressures and flows associated with the simple connections inNi for each i ∈ Nc and

Ψs(s), and Θs(s) are the pressures and flows associated with the simple nodes Ns. As in the previous section, it

is important to explain the meaning of the Θi, i ∈ Nc. These variables correspond to nodal flow injections that

enter the network (G(No,Λo),Po) through the connections from a compound node’s component. The primary

motivation for the construction of the simple node expanded network is that the connection states (30) can be

related by the admittance relationship

Yo(s)



Ψ1(s)

...

Ψnc
(s)

Ψs(s)


=



Θ1(s)

...

Θnc
(s)

Θs(s)


, (31)

where Yo is the network admittance matrix (23) for the simple node network (G(No,Λo),Po). As with (25) for

the special case of pressure dependent flows, (31) deals only with the flow into the network (G(No,Λo),Po) and

does not directly incorporate the dynamics of the compound node’s component. To incorporate the component

dynamics, the flows into the network Θi are related to the compound node connection flows Qci by applying

continuity at the connections. This yields Θi +Qci = 0 (as explained in the previous section for the special case

of compound nodes with only a single connection). Given this relationship, by (20), the following relationship

between the nodal flows and the admittance form of the compound node can be derived


Θ1(s)

...

Θnc(s)

 = −


Yc1(s)

. . .

Ycnc
(s)




Ψ1(s)

...

Ψnc(s)



+


Yu1(s)

. . .

Yunc
(s)



U1(s)

...

Unc(s)


(32)
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where the first term on the righthand side of (32) is the pressure dependent term and the second term corresponds

to the connection flows associated with the controlled nodal states. Substituting (32) into (31) provides the full

expression relating the nodal pressures to the controlled nodal states and simple node flows


Yo(s) +



Yc1(s)

. . .

Ycnc
(s)

0







Ψ1(s)

...

Ψnc(s)

Ψs(s)


=



Yu1(s)

. . .

Yunc
(s)

I





U1(s)

...

Unc
(s)

Θs(s)



(33)

where the elementwise expression for the admittance matrix acting on the simple connection pressures can be

derived as

{Yo (s) + diag {Yc1, . . . ,Ycnc
,0}}

i,k
=

∑
j∈Λi

coth Γj(s)

Zj(s)
if k = i ∈ Ns

∑
j∈Λi

coth Γj(s)

Zj(s)
+ {Yci(s)}〈i,i〉l if k = i ∈ Nc and i ∈ Nl, l ∈ Nc

−cschΓj(s)

Zj(s)
if λj ∈ Λi ∩ Λk, i, k ∈ Ns

{Yci(s)}〈i,k〉l if i, k ∈ Nl, l ∈ Nc

0 otherwise

,
(34)

where Nl is the l-th compound node connection set, and 〈·〉l maps from the ordering in the state vectors to the

local ordering for the connections at compound node l ∈ Nc. Here, unlike the pressure dependent outflow, off

diagonal terms in the admittance matrix are changed in addition to the diagonal terms. The structure of (34) is

consistent with that of (23) where the diagonal terms are comprised of sums of transfer functions, each associated

with the connection between a node and its neighboring nodes, and the off-diagonal terms are comprised of single

transfer functions, each associated with the connection between two nodes.

The matrix equation (33) represents the network admittance matrix for a compound node network of arbitrary

configuration and is the main result of the paper. The following example demonstrates the construction process

for the network in Figure 2(a).
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Example 5. Consider the network (G(N ,Λ),P, C) in Figure 2(a), with

N = {1, 2, 3, 4, 5, 6} , as the set of nodes

Λ = {(1, 2), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5), (5, 6)} , as the set of links

P = {P1,P2,P3,P4,P5,P6,P7} , as the set of link functions, and

C = {φ2,φ3,φ5} , as the set of compound node functions,

where the compound node set is Nc = {2, 3, 5} and the simple node set is Ns = {1, 4, 6}. Given the compound

node realisation in Figure 2(b), the connection sets for the compound nodes can be expressed as N2 = {21, 22},

N3 = {31, 32, 33}, andN5 = {51}, which leads to the expanded simple node network (G(No,Λo),Po) in Figure

2(c) defined by the following network sets

No = {1, 21, 22, 31, 32, 33, 4, 51, 6} ,

Λo = {(1, 21), (22, 31), (22, 4), (32, 4), (33, 51), (4, 51), (51, 6)} ,

Po = {Po1,Po2,Po3,Po4,Po5,Po6,Po7}

where Λo is constructed from Λ according to the relabeling function (29), and Po is the relabeled elements of P ,

associated with Λo. For the expanded simple node network (G(No,Λo),Po), the nodal states, ordered as in (30),

are

Ψ(s) =



Ψ21(s)

Ψ22(s)

Ψ31(s)

Ψ32(s)

Ψ33(s)

Ψ51(s)

Ψ1(s)

Ψ4(s)

Ψ6(s)



, Θ(s) =



Θ21(s)

Θ22(s)

Θ31(s)

Θ32(s)

Θ33(s)

Θ51(s)

Θ1(s)

Θ4(s)

Θ6(s)



. (35)

Given (23), the network admittance matrix Y o for the expanded simple node network (G(No,Λo),Po) can be
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expressed as

Yo(s) =

t1 0 0 0 0 0 −s1 0 0

0
∑

j=2,3 tj −s2 0 0 0 0 −s3 0

0 −s2 t2 0 0 0 0 0 0

0 0 0 t4 0 0 0 −s4 0

0 0 0 0 t5 −s5 0 0 0

0 0 0 0 −s5
∑

j=5,6,7 tj 0 −s6 −s7

−s1 0 0 0 0 0 t1 0 0

0 −s3 0 −s4 0 −s6 0
∑

j=3,4,6 tj 0

0 0 0 0 0 −s7 0 0 t7



(36)

where tj = tj(s) = Z−1
c (s) coth Γj(s) and sj = sj(s) = Z−1

c (s)cschΓj(s). Note that as (36) is a network

admittance matrix, it is a square symmetric matrix, and the row and colum partitions of (36) correspond to the

partitions of the state vectors in (35). Assuming that node 2 has one controlled state, node 3 has two and node 5

has none, the admittance forms (20) of the compound node functions φ2, φ3, and φ5 are

Qc21(s)

Qc22(s)

 = Yc2(s)

Pc21(s)

Pc22(s)

− Yu2(s)U2(s),


Qc31(s)

Qc32(s)

Qc33(s)

 = Yc3(s)


Pc31(s)

Pc32(s)

Pc33(s)

− Yu3(s)

U31(s)

U32(s)

 , (37)

Qc51(s) = Yc5(s)Pc51(s).
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The pressure dependent term in the compound node network admittance matrix (33) can be constructed as

diag {Yc2(s),Yc3(s),Yc5(s),0} =

{Yc2}1,1 {Yc2}1,2 0 0 0 0 0 0 0

{Yc2}2,1 {Yc2}2,2 0 0 0 0 0 0 0

0 0 {Yc3}1,1 {Yc3}1,2 {Yc3}1,3 0 0 0 0

0 0 {Yc3}2,1 {Yc3}2,2 {Yc3}2,3 0 0 0 0

0 0 {Yc3}3,1 {Yc3}3,2 {Yc3}3,3 0 0 0 0

0 0 0 0 0 Yc5 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


and organising the state vector on the right side of (33) as

[
U21(s) U31(s) U32(s) Θ1(s) Θ4(s) Θ6(s)

]T
,

the matrix operator on this state vector is given as

diag {Yu2(s),Yu3(s),Yu5(s), I} =



{Yu2}1,1 0 0 0 0 0

{Yu2}2,1 0 0 0 0 0

0 {Yu3}1,1 {Yu3}1,2 0 0 0

0 {Yu3}2,1 {Yu3}2,2 0 0 0

0 {Yu3}3,1 {Yu3}3,2 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



,

(i.e. as there are no controlled states for compound node 5, Yu5 is a matrix of one row and zero columns). Given

these matrix identities, the network admittance equation (33) for the compound node network (G(N ,Λ),P, C)

can be constructed.
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Formulation of a Computable Model

Despite the qualitative understanding enabled by the representation (33), it is not suitable for numerical imple-

mentation. The computational utility of the compound node network model requires a mapping from the inputs

(known nodal states) to the outputs (unknown nodal states). Consider the network (G(N ,Λ),P, C) with com-

pound nodes Nc, and simple nodes Ns that can be partitioned as Ns = NJ ∪ Nd ∪ Nr where NJ are junctions,

Nd are the demand nodes (flow control nodes) and Nr are the reservoirs (pressure control nodes). The inputs for

such a setup are the controlled node statesU i for each i ∈ Nc, the controlled nodal demands Θdi for each i ∈ Nd

and the known reservoir pressures Ψri for each i ∈ Nr. Defining the nodal set

ND =
⋃
i∈Nc

Ni ∪NJ ∪Nd (38)

(33) can be expressed as

 Y DD(s) YoDr(s)

YorD(s) Yorr(s)


 ΨD(s)

Ψr(s)

 =



Yu(s)

I

I

I





U(s)

ΘJ (s)

Θd(s)

Θr(s)


(39)

where Yu = diag {Yu1, . . . ,Yunc
}, U is the vector concatenation of the U i vectors, YorD, YoDr, and Yorr are

the partitions of Yo corresponding to the node sets ND and Nr, that is

 YoDD(s) YoDr(s)

YorD(s) Yorr(s)

 = Yo(s),

and Y DD incorporates the compound node dynamics and is given by

Y DD(s) = YoDD(s) + diag {Yc1(s), . . . ,Ycnc
(s),0} .

Noting that the nodal flow for junctions ΘJ = 0, (39) can be reorganised to map from the input to the output as

 ΨD(s)

Θr(s)

 = H(s)


U(s)

Θd(s)

Ψr(s)

 , (40)
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whereH is given by

H(s) =

 ZDu(s)Yu(s) ZDd(s) −ZDD(s)YoDr(s)

YorD(s)ZDu(s)Yu(s) YorD(s)ZDd(s) Yorr(s)− YorD(s)ZDD(s)Y Dr(s)


where ZDD is an impedance matrix given by ZDD = Y −1

DD and is partitioned as

ZDD(s) =

[
ZDu(s) ZDJ(s) ZDd(s)

]

where each partition corresponds to the nodes of the sets
⋃
i∈Nc

Ni, NJ and Nd, respectively.

NUMERICAL EXAMPLES

Two example networks are considered in the following. Network-1 (Figure 2) is a 7-pipe/6-node network adapted

from Zecchin et al. [2009], and Network-2 (Figure 3) is a 51-pipe/34-node network adapted from Vı́tkovský

[2001]. The numerical experiments compare the frequency responses as calculated by the proposed admittance

matrix method, and that calculated from the discrete time-domain method of characteristics (MOC) model via

the discrete Fourier transform (DFT). As expected, and verified by many experiments, the admittance matrix

methodology yields the exact solution for linear networks. Hence, comparisons involving linear networks are not

presented. A question of greater practical interest is how well does the method approximate systems comprised

of nonlinear components? It is for this reason that the results presented are for numerical experiments performed

on nonlinear systems. The MOC results for network-1 were obtained from a frequency sweep, where the system

was excited into a steady oscillatory state, one frequency at a time. In contrast, the MOC results for network-2

were obtained from a transient excitation, where the frequency response was computed using the entire transient

response.

Network-1 in Steady-Oscillatory State

For the numerical study of network-1 (Figure 2), the network parameters are as follows; pipe diameters =

{60, 50, 35, 50, 35, 50, 60} mm, pipe lengths = {31, 52, 34, 41, 26, 57, 28} m, the wavespeeds and the Darcy-

Weisbach friction factors were set to 1000 m/s and 0.02, respectively, for all pipes, and the compound node details

are given in Tables 1 and 2. The demand at node 1 was taken as a sinusoidal form of amplitude 0.2 L/s about a

base demand level of 10 L/s. For the MOC model, a frequency sweep was performed for 200 frequencies up to
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20 Hz. Figure 4 presents the amplitude of the sinusoidal pressure fluctuations observed at node 6 as computed by

the Laplace-domain admittance matrix and the DFT of the MOC in steady oscillatory state. Figure 5 presents the

same results for the sinusoidal flow fluctuations into the reservoir at node 1. Within both figures, the error between

the Laplace-domain and MOC approaches is presented in the bottom subfigure.

Despite the nonlinearities of pipe friction and the valve pressure loss, extremely good matches between the

two methods are observed as the errors for both the pressure and flow are more than three orders of magnitude

less than the amplitude of the response oscillations (as seen in Figures 4 and 5). The larger errors occur at the

networks harmonic frequencies, where the linear admittance matrix model slightly over estimates the amplitude

of the nonlinear MOC model.

Network-2 in Transient State

The original formulation for network-2 in Vı́tkovský [2001] was modified as follows: pipe lengths were rounded

to the nearest meter and the wavespeeds were all made to be 1000 m/s to ensure a Courant number of 1, which

was required to preserve the accuracy of the MOC; the nodal demands were doubled to increase the flow through

the network; nodes 7, 9, 11, 19, 22, 23, 25, and 34 were converted to compound nodes, the details of which are

given in Tables 1 and 2. For brevity, the network details are not given here, but the range of network parameters

are [450, 895] m for pipe lengths, [304, 1524] mm for pipe diameters, and [80, 280] L/s for nodal demands (for

case study details, the reader is referred to [Vı́tkovský, 2001]).

In order to avoid burdensome computational requirements, network-2 was analyzed in the transient state as

opposed to the steady-oscillatory state used for network-1. This meant that the frequency response was computed

from a single MOC simulation of the system for the entire response time of the system. The network was excited

into a transient state by a perturbing the flow at nodes {14, 17, 28}. Results for two types of excitations are

presented. The first type of excitation involved a pulse perturbation, which was achieved by reducing the nodal

flows by a magnitude of {70, 50, 100} L/s for a duration {0.055, 0.025, 0.075} s only. The second involved a step

perturbation, which was achieved by reducing the nodal flows by a magnitude of {70, 50, 100} L/s.

A plot of the frequency response at nodes 14 and 18 for network-2 with the pulse perturbation is given in

Figures 6 and 7 where the top subfigure gives the frequency response of the Laplace-domain method, and the

bottom subfigure shows the magnitude of the error between the Laplace-domain method and the MOC. Due to the

densely distributed harmonics, only the range 0 - 4 Hz is shown.

Figures 6 and 7 show that the error between the DFT of the MOC and the proposed Laplace-domain admittance

matrix method is small in comparison to the spectral amplitude of the frequency response. This illustrates that even
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for a network of a large size containing nonlinear elements such as emitters, valves, and accumulators, the linear

admittance matrix model provides an extremely good approximation of the nonlinear MOC model. Similarly

with network-1, the larger errors occur at the networks harmonics. There is also a slight trend of increasing in

magnitude with increasing frequency. Despite this, the matches are excellent.

A plot of the frequency response at nodes 14 and 18 for the step excitation is given in Figures 8 and 9, where

the top subfigure gives the frequency response and the bottom subfigure shows the magnitude of the error between

the two methods. The plots are presented with a log scale on the vertical axis as the excitation energy for a step

input reduces rapidly for increasing frequency.

It is observed from Figures 8 and 9 that the error between the methods is over an order of magnitude less than

the spectral amplitude of the frequency response. This error is surprisingly low, given that for the step input the

operating point of the linearization for the Laplace-domain model (i.e. the initial steady-state) is different to the

final operating position of the network due to the permanent change in the nodal flows. The change of the steady-

state operating point is the cause for the error peak near the zero frequency point. The linear Laplace-domain

model is seen to yield a good approximation of the nonlinear system even when the operating point for the system

shifts.

CONCLUSIONS

Existing methods for modeling the frequency-domain behavior of a transient fluid line system have either been

limited by the configuration of network types that they can model, or are limited by the hydraulic element types that

they can encompass. Within this paper, a completely new formulation is derived that is able to deal with networks

of an arbitrary configuration containing an extremely broad class of hydraulic elements, termed compound nodes,

namely those that yield an admittance type representation.

An analytic representation of the network admittance matrix has been presented in this paper, which not only

yields significant qualitative information about the network, but also serves as a basis for numerical implemen-

tation of the proposed method. An interesting finding presented in this paper is that the admittance matrix for a

compound node network can be expressed as the addition of two matrix terms, one pertaining to its simple node

network structure, and the other containing the compound node dynamics.

The proposed new method has been verified by numerical examples with a 7-pipe network, and a 51-pipe

network. For these case studies, the proposed method provided excellent agreement with the frequency response

as calculated by the method of characteristics. This result was particularly interesting as the networks contained
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nonlinear elements (emitters, valves, accumulators, and turbulent pipes).

This proposed new approach allows complete flexibility with regard to the topological structure of a network

and the types of hydraulic elements. As such, it overcomes previous limitations in frequency-domain modeling of

pipe networks, and provides general basis for future research utilizing the Laplace-domain representation of fluid

line systems.
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CAPTIONS FOR FIGURES AND TABLES

Figures

30



Example of a compound node consisting of a capacitive dead end branch and an offtake bounded by valves A

and B. (a) The physical layout demonstrating the link end states of pressure and flow for links [a], [b], and [c],

and the internal node states of the internal pressure ψo, the capacitive flow θo and the offtake flow θd. (b)The

simple connection configuration, where the compound node is observed to have two simple connections with

[a] incident to one and [b], and [c] incident to another. (c) The transformed simple connection states, where

PciA and PciB are the pressures at connections A and B, and QciA and QciB are the aggregated flows into

connections A and B. (d) The expanded simple node network representation of the compound node with simple

node pressures ΨA and ΨB , and flows ΘA and ΘB . For this example, the variables are related as follows:

PciA(s) = ΨA(s) = Pa(la, s); QciA(s) = −ΘA(s) = Qa(la, s);, PciB(s) = ΨB(s) = Pb(lb, s) = Pc(lc, s) and

QciB(s)−ΘB(s) = Qb(lb, s)−Qc(0, s).
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Example network-1 adapted from Zecchin et al. [2009], with controlled demand as node 1, a single valve at

node 2, two valves at node 3 and capacitance branch at node 5. (a) The physical configuration of the system.

(b) The compound nodes’ connection configurations. (c) The simple connection expanded network, where the

denoted Θi’s are the flows into the simple connection expanded network from the compound nodes.
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Figure 3: Caption

Example network-2, adapted from Vı́tkovský [2001], with compound nodes as described in Table 1. (a) The

physical layout of the network, and (b) shows the compound nodes’ connection configurations.
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Figure 4: Caption

Sinusoidal pressure amplitude response for network-1 at node 6 for the admittance matrix model (continuous

line) and the method of characteristics in steady oscillatory state (◦ points). The error between the two methods is

given in the bottom figure.
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Figure 5: Caption

Sinusoidal flow amplitude response for network-1 at node 1 for the admittance matrix model (continuous line)

and the method of characteristics in steady oscillatory state (◦ points). The error between the two methods is given

in the bottom figure.
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Figure 6: Caption

Pressure frequency response magnitudes for network-2 at node 14 for the admittance matrix model pulse

perturbation. The lower figure gives the magnitude of the error between the admittance matrix and MOC methods

(the admittance matrix minus the DFT of the MOC).
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Figure 7: Caption

Pressure frequency response magnitudes for network-2 at node 18 for the admittance matrix model for the

pulse perturbation. The lower figure gives the magnitude of the error between the admittance matrix and MOC

methods (the admittance matrix minus the DFT of the MOC).
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Figure 8: Caption

Pressure frequency response magnitudes for network-2 at node 14 for the admittance matrix model for the step

perturbation. The lower figure gives the magnitude of the error between the admittance matrix and MOC methods

(the admittance matrix minus the DFT of the MOC).
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Figure 9: Caption

Pressure frequency response magnitudes for network-2 at node 18 for the admittance matrix model for the step

perturbation. The lower figure gives the magnitude of the error between the admittance matrix and MOC methods

(the admittance matrix minus the DFT of the MOC).
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Table Captions

Table 1: Compound element parameters for numerical studies for networks 1 and 2. Capacitors are physical

models for short dead end sections, and accumulators are the models for air chambers.

Table 2: Compound node element details. All elements are discussed at greater depth in Wylie and Streeter

[1993].
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NOMENCLATURE

C Set of compound node functions

H(s) Transfer function matrix for the input/output network model

nc Number of compound nodes

nd Number of demand (flow controlled) nodes

nr Number of reservoir (pressure controlled) nodes

nsi Number of simple connections for compound node i

nΛ Number of links

Nd Incidence matrix for downstream nodes

Nu Incidence matrix for upstream nodes

Ndi Compound node incidence matrix for downstream nodes

Nui Incidence matrix for upstream nodes

N Set of nodes

Nc Set of compound nodes

Nd Set of demand (flow controlled) nodes

ND Set of flow controlled nodes within the simple node expanded network, see

(38)

Ni Set of connections for compound node i

NJ Set of junctions

No Set of nodes for the simple node expanded network

Nr Set of reservoir (pressure controlled) nodes

Ns Set of simple nodes

pi(x, t) Pressure for pipe i

p(x, t) Vector of pipeline pressures

Pi(x, s) Laplace transform of pressure for pipe i

P (x, s) Vector of Laplace transform of pipeline pressures

Pci(s) Vector of Laplace transform of connection pressures for compound node i

Pd(s) Vector of pipeline pressures at upstream point

Pu(s) Vector of pipeline pressures at downstream point

P Set of pipeline functions

qi(x, t) Axial flow rate for pipe i
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q(x, t) Vector of pipeline axial flow rates

Qi(x, s) Laplace transform of axial flow rate for pipe i

Q(x, s) Vector of Laplace transform of pipeline axial flow rates

Qci(s) Vector of Laplace transform of connection flows for compound node i

Qd(s) Vector of pipeline axial flow rates at upstream point

Qu(s) Vector of pipeline axial flow rates at downstream point

ui(t) Controlled internal nodal states for compound node i

ũi(t) Dependent internal nodal states for compound node i

U i(s) Laplace transform of ui(t)

Ũ i(s) Laplace transform of ũi(t)

Y (s) Network admittance transfer matrix

Y j(s) Admittance transfer matrix for hydraulic element j

Yci(s) Admittance matrix operating on the compound node connection pressures

for canonical form of compound node dynamics

Yui(s) Admittance matrix operating on the compound node controlled states for

canonical form of compound node dynamics

Zc(s) Series impedance

φ, [Φ(s)] Compound node equation [and its Laplace transform]

Λ Set of links within a graph or network

Λi Set of links incident to node i

Λdi Set of links for which the downstream node is node i

Λui Set of links for which the upstream node is node i

ψ(t) Nodal pressure

ψr(t) Nodal pressure at reservoir node

Ψ(s) Vector of Laplace transformed network nodal pressures

Ψd(s) Vector of Laplace transformed network demand (flow control) node pres-

sures

ΨD(s) Vector of Laplace transformed node pressures for flow controlled nodes

within the simple node expanded network

Ψi(s) Vector of Laplace transformed of nodal pressures for compound node i for

the simple node expanded network
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Ψr(s) Vector of Laplace transformed network reservoir pressures

θ(t) Nodal flows (flow injections)

θd(t) Nodal flows at demand nodes

Θ(s) Vector of Laplace transformed network nodal flows

Θd(s) Vector of Laplace transformed network demand node flows

Ψi(s) Vector of Laplace transformed of nodal flows for compound node i for the

simple expanded node network

Θr(s) Vector of Laplace transformed network reservoir flows

Γ(s) Fluid line propagation operator

Γ(s) Fluid line propagation operator matrix for hydraulic network
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APPENDIX: ADMITTANCE REPRESENTATION OF A COMPOUND

NODE

The three phased derivation of the compound node admittance form (20) from the Laplace-transform of the lin-

earised original compound node equation (17) is outlined below, followed by an example.

Connection representation of a Compound Node

The representation of a compound node as a hydraulic component with connections is a fundamental representa-

tion of the compound node, and is independent of the connectivity of the compound node with the wider network.

It is convenient to denote the set of connections for compound node i ∈ Nc by Ni. As with a simple node, each

connection k ∈ Ni has two states, the nodal pressure Pcik, and the nodal flow into the compound nodes compo-

nent Qcik, where, as stated above, the pressure Pcik is the common pressure shared by all link ends incident to the

connection, and the flow Qcik is the aggregated flow into the component from all links incident to the connection.

Organising these states as (19), they can be related to the incident link states P i andQi, from (17) by

P i(s) = [Nui +Ndi]
T
Pci(s), Qci(s) = [Nui −Ndi]Qi(s) (41)

whereNui andNdi are compound node incidence matrices, describing the topology of the node, and are defined

by

{Nui}kj =


1 if j-th link in Λui is in Λuik

0 otherwise

,

{Ndi}kj =


1 if j-th link in Λdi is in Λdik

0 otherwise

,

where the link sets Λuik and Λdik are associated with the sets Λui and Λdi, respectively, and contain the upstream

and downstream links that are incident to the connection k. The equations (41) are analogous to the simple node

constraints for networks (7) and (9), and are explained as follows. Concerning the connection pressure Pcik, as

there is no pressure variation within a connection, the pressure of any links incident to the same connection k will

be equal. Concerning the connection flow Qcik, as there is no accumulation of mass within a connection, the total

flow through the connection k is equal to the sum of the inflows from the links in Λdik minus the outflows from
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the links in Λuik.

The existence of the relationships (41) implies that there exists a lower dimensional form of Φi incorporating

the component dynamics that is just dependent on the connection states Pci and Qci. This lower dimensional

form can be expressed as

Φsi(s)



Pci(s)

Qci(s)

U i(s)

Ũ i(s)


= 0 (42)

where Φsi is a (nsi + nũi)× (2nsi + nui + nũi) matrix of stable transfer functions. The matrix system Φsi

has (nsi + nũi) rows as it must contain enough equations to determine one state at each connection, and all the

internal response states.

Decoupled nodal equations

By definition, as ũi is a nodal response variable, it can be uniquely determined from the other nodal states. Hence

there exists a stable Laplace-domain transfer function mapping from the transformed connection pressures and

flows (Pci, Qci) and the transformed controlled nodal states (U i) to the transformed nodal response states Ũ i.

That is, Φsi can be partitioned as

Φsi(s) =

 Φopi(s) Φoqi(s) Φoui(s) Φoũi(s)

Φ1pi(s) Φ1qi(s) Φ1ui(s) Φ1ũi(s)

 (43)

where the blocks correspond to their subscripted variables, and Φ1ũi is a nũi × nũi matrix that possesses a

stable inverse. Formally, the matrix function A(s) : C 7→ Cn×n possesses a stable inverse if detA(s) > 0 for

Re {s} ≥ 0. Therefore, a nsi order system exists that relates the states Pci, Qci and U i can be decoupled from

Ũ i, which can be expressed as

Φci(s)


Pci(s)

Qci(s)

U i(s)

 = 0 (44)
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where Φci is an nsi × (2nsi + nui) matrix of stable complex functions, given by

Φci(s) =

[
Φcpi(s) Φcqi(s) Φcui(s)

]
=

[
Φopi(s) Φoqi(s) Φoui(s)

]
−Φoũi(s)Φ1ũ

−1
i (s)

[
Φ1pi(s) Φ1qi(s) Φ1ui(s)

] . (45)

The matrix Φci represents a minimal state matrix for the compound node i as it yields equivalent dynamics to Φsi

but with a reduced number of states. An example of the derivation of the form of (45) is given in Example 6.

Admittance Representation of Φci(s)

Given the decoupled connection representation (45), the criteria for the existence of the admittance representation

(20) can be precisely stated as

rank
{
Φcqi(s)

}
= nsi for Re {s} ≥ 0. (46)

The significance of (46) is that it defines the criteria under which the compound nodes simple connection flows

Qci can be resolved from the simple connection pressures Pci and the compound nodes controlled states Uci.

The transfer matrix Φcqi is nsi × nsi, therefore, the constraint (46) can be interpreted as Φcqi begin full rank

without diminishing rank on Re {s} ≥ 0. In this instance Φcqi is a nsi×nsi transfer matrix with a stable inverse,

and the admittance matrices from (20) can be given as

Yci(s) = −
[
Φcqi(s)

]−1
Φcpi(s), Yui(s) =

[
Φcqi(s)

]−1
Φcui(s). (47)

It turns out that (46) is not a very restrictive, but that all components considered within this research adhere to this

requirement. Consider the following example.

Example 6. Revisiting the compound node from Figure 1 in Examples 1 and 2, it is recognised that there are

nλi = 3 links, nui = 1 controlled node state, nũi = 2 response node states, where the order of the φ is clearly

5. This compound node is recognised as having two connections (i.e. nsi = 2), one just outside valve A and the

other outside valve B. Denoting these connections as A and B, the connection states are as given in (21), and the

topological matrices are

Nui =

0 0 0

0 0 1

 , Ndi =

1 0 0

0 1 0

 .
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By identifying and removing the connection equations (41), (18) can be converted into the form (42) as

Φi(s) =



0 1 0 −cB 0 −1 0

0 0 1 1 1 0 −1

0 0 0 0 0 cs −1

1 0 −cA 0 0 −1 0


(48)

where the partitions correspond to those in (43), where

[Φũ1i(s)]
−1

=

 cs −1

−1 0


−1

= −

0 1

1 cs

 (49)

clearly exists for Re {s} ≥ 0. Given the expressions in (45), the decoupled representation (44) is given by

Φci(s) =

 −1 1 cA −cB 0

−cs 0 1 + cAcs 1 1


where the partitions are according to (45). Recognising from (50) that

Φcqi(s) =

 cA −cB

1 + cAcs 1


the criteria (46) holds if

det
{
Φcqi(s)

}
= cA + cB + cAcBcs 6= 0, on Re {s} ≥ 0.

This clearly holds as c,cA, and cB are all positive real numbers. Therefore, it can be demonstrated from (47) that

the admittance matrices for (20) are given by

Yci(s) =
1

det
{
Φcqi(s)

}
1 + cBcs −1

−1 1 + cAcs

 , Yui(s) = − 1

det
{
Φcqi(s)

}
cB
cA

 .
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TABLES FOR MANUSCRIPT
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Table 1: Compound element parameters for numerical studies for networks 1 and 2. Capacitors are physical
models for short dead end sections, and accumulators are the models for air chambers.

Network Node Element Type Parameters

1 2 1-valve junction {Cd, dv} = {1.5, 40 mm}
1 3 2-valve junction {Cd, dv} = {1.5, 30 mm}
1 5 Capacitor {V0,Ke} = {1L, 1.5 GPa}
2 7 Capacitor {V0,Ke} = {10 L, 1.5 GPa}
2 9 2-valve junction {Cd, dv} = {0.9, 300 mm}
2 11 Accumulator {V0, n} = {5 L, 1.2}
2 19 3-valve junction {Cd, dv} = {0.9, 300 mm}
2 22 2-valve junction {Cd, dv} = {0.9, 300 mm}
2 23 2-valve junction {Cd, dv} = {0.9, 300 mm}
2 25 4-valve junction {Cd, dv} = {0.9, 300 mm}
2 34 Emitter {Cd, de, ψ0} = {0.9, 10 mm, 0 Pa}
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Table 2: Compound node element details. All elements are discussed at greater depth in Wylie and Streeter [1993].

Element States, ũ Parameter Set Equations comprising φ

Emitter [ψ θ]T {Cd, de, ψ0} θ(t)− CdAe

√
ψ(t)− ψ0

ρ

Capacitor [ψ θ]T {V0,Ke} θ(t)− V0

Ke

dψ

dt

Accumulator [ψ θ V ]T {V0, n}
[
ψ(t)V n(t)− Ca
θ(t)− dV

dt

]

Valvea [ψu ψd θ]T {Cd, dv} θ(t)− sign {∆ψ(t)}CdAv

√
|∆ψ(t)|

ρ

a Note that ∆ψ(t) = ψu(t)− ψd(t).
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