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Appendix A
Spatial Storm Extent

A.1 LIST OF RAINFALL GAUGES

The following two tables respectively show the pluviograph gauges and daily rainfall

gauges used in the case study. The same order of gauges is preserved when comparing

the simulated statistics to observed statistics.

Table A.1 List of pluviograph gauges from Sydney Water Observation Network

Gauge ID Latitude Longitude Description
563059 -33.69 150.301 KATOOMBA (CASCADE CK DAM No.1)

563070 -33.7 150.485 LINDEN (WOODFORD CK DAM)

566017 -33.803 151.18 CHATSWOOD

566018 -34.033 151.163 CRONULLA STP

566020 -33.891 151.094 ENFIELD (COMPOSITE SITE)

566025 -33.783 151.257 MANLY DAM

566026 -33.921 151.157 MARRICKVILLE SPS

566028 -33.937 151.198 MASCOT BOWLING CLUB

566032 -33.89 151.224 PADDINGTON (COMPOSITE SITE)

566033 -33.939 151.026 PADSTOW

566036 -33.895 151.034 POTTS HILL RESERVOIR

566038 -33.862 151.278 VAUCLUSE BOWLING CLUB

566040 -33.771 151.064 WEST EPPING BOWLING CLUB

566047 -33.975 151.076 MORTDALE BOWLING CLUB

566051 -33.691 151.3 WARRIEWOOD STP

567076 -33.714 150.983 CASTLE HILL STP

567077 -33.883 150.951 FAIRFIELD STP

567078 -33.986 150.907 GLENFIELD STP

567087 -33.734 150.767 ST MARYS STP

567100 -33.653 150.847 RIVERSTONE STP
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567102 -33.699 151.025 DURAL (WPS14)

568045 -33.891 150.592 WARRAGAMBA MET. STATION

568130 -34.06 150.679 WEST CAMDEN STP

563059 -33.69 150.301 KATOOMBA

Table A.2 List of Bureau of Meteorology daily rainfall gauges

Gauge ID Latitude Longitude Description
66062 -33.86 151.2 SYDNEY (OBSERVATORY HILL)

067015 -33.97 150.72 BRINGELLY (MARYLAND)

068045 -34.55 150.38 MOSS VALE HOSKINS STREET

063043 -33.54 150.63 KURRAJONG HEIGHTS (BELLS LINE OF ROAD)

066046 -33.82 151 PARRAMATTA

063056 -33.59 150.25 MOUNT VICTORIA (MT VICTORIA (SELSDON STR

067021 -33.62 150.75 RICHMOND - UWS HAWKESBURY

061023 -33.43 151.34 GOSFORD (GERTRUDE PLACE)

063077 -33.7 150.56 SPRINGWOOD POST OFFICE

068007 -34.03 150.64 CAMDEN (BROWNLOW HILL)

068014 -34.07 150.8 CAMPBELLTOWN 1

068052 -34.17 150.61 PICTON BOWLING CLUB

063039 -33.72 150.3 KATOOMBA COMPOSITE

066006 -33.87 151.22 SYDNEY BOTANIC GARDENS

068013 -34.13 150.74 MENANGLE JMAI

066020 -33.77 151.08 EPPING CHESTER STREET

068044 -34.45 150.46 MITTAGONG BEATRICE STREET

067019 -33.82 150.91 PROSPECT DAM

066052 -33.91 151.24 RANDWICK BOWLING CLUB

068028 -34.2 150.97 HELENSBURGH (PARKES STREET)

066007 -33.93 151.22 BOTANY NO.1 DAM

068009 -34.59 150.52 BURRAWANG (RANGE STREET)

068000 -34.57 150.78 ALBION PARK POST OFFICE

066000 -33.89 151.13 ASHFIELD BOWLING CLUB

067018 -33.75 150.68 PENRITH LADBURY AVENUE

068024 -34.23 150.91 DARKES FOREST (KINTYRE)

063044 -33.72 150.43 LAWSON (WILSON STREET)

063118 -33.52 150.49 BILPIN (FERN GROVE)

066042 -33.82 151.24 MOSMAN BAPAUME ROAD

066050 -33.89 151.03 POTTS HILL
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063057 -33.5 150.37 MOUNT WILSON (NOOROO)

067031 -33.61 150.82 WINDSOR FITZGERALD STREET

063009 -33.62 150.3 BLACKHEATH (GODSON AVE)

066044 -33.73 151.27 CROMER GOLF CLUB

066058 -34 151.13 SANS SOUCI (THE BOULEVARDE)

068043 -34.03 150.84 MINTO SURREY STREET

068054 -34.58 150.62 ROBERTSON POST OFFICE

067009 -33.97 150.9 GLENFIELD (MACQUARIE)

068033 -34.46 150.49 MITTAGONG (KIA ORA)

061119 -33.39 150.98 WISEMANS FERRY (OLD PO)

066010 -33.8 151.19 CHATSWOOD COUNCIL DEPOT

067052 -33.63 151.15 BEROWRA GOODWYN ROAD

066160 -33.9 151.23 CENTENNIAL PARK

068016 -34.27 150.81 CATARACT DAM

066131 -33.83 151.15 RIVERVIEW OBSERVATORY

068011 -34.05 150.72 CAMDEN BOWLING CLUB

066040 -34.04 151.1 MIRANDA BLACKWOOD ST

066120 -33.76 151.15 GORDON BOWLING CLUB

067004 -33.75 150.67 EMU PLAINS

066153 -33.78 151.25 MANLY VALE (MANLY DAM)

068022 -34.5 150.78 DAPTO BOWLING CLUB

068001 -34.21 150.79 APPIN CHURCH ST
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A.2 SIMULATED ANNUAL TOTALS

The following plots show the simulated distribution of annual totals compared to the ob-

served distribution at each of the 52 daily rainfall sites. The plots correspond to the same

order of sites as listed in Table A.2 when read from left to right, top to bottom. The dis-

tributions are plotted against a normal probability-axis. The lines correspond to 0.05, 0.5,

0.95 simulated order statistics at each quantile. The mean of this distribution is matched

exactly for each site owing to the scaling methodology. Reasons for undersimulating the

variance of this distribution are discussed in Chapter 7
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A.3 SIMULATED EXTREME VALUES

The following plots show the simulated distribution of extreme values compared to ob-

served values, first for the 24 pluviograph gauges and secondly for the 52 daily rainfall

sites. The plots correspond to the same order of sites as listed in Table A.1 and Table A.2

when read from left to right, top to bottom. The distributions are plotted against a Gumbel

probability-axis. The lines correspond to 0.05, 0.5, 0.95 simulated order statistics at each

quantile. For the pluviograph gauges the 1-hour and 6-hour extreme values are compared

and for the daily sites the 24 hours extreme values are compared. To ensure a comparison

of like-with-like, the simulated data was binned into 24-hour aggregates before extracting

maxima.

Extreme value distributions provide a good test of the model because they are not

used in the calibration, and there is no parameter that directly ‘fixes’ an aspect of these

distributions. The pluviograph gauges show a reasonable comparison for most, but not

all gauges. At least three gauges consistently oversimulate the distribution of 1-hour and

6-hour extremes. The daily gauges are better in this regard, but the observed extremes

exhibit a skewness that is not reproduced by the model (i.e. the mid-region of the sim-

ulated distribution is too low). There is considerable difficulty in improving these fit to

these statistics, as gains in one statistic or at one site can yield poorer comparisons when

inspecting other statistics or other sites.
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Appendix B
Bourke Case Study

B.1 OBSERVED SOI PARTITIONED ANNUAL EXTREMES
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Figure B.1 Annual extremes of daily rainfall at Bourke partitioned by +ve/-ve phases of the

SOI. Probabilities shown using a Gumbel axis. 95% Confidence intervals obtained from the

distribution of estimates of the Gumbel parameters.
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Figure B.2 Annual extremes of daily rainfall at Bourke partitioned by +ve/-ve phases of the

SOI. Probabilities shown using a Gumbel axis. 95% Confidence intervals obtained from the

distribution of estimates of the Gumbel parameters.
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Figure B.3 Annual extremes of daily rainfall at Bourke partitioned by +ve/-ve phases of the

SOI. Probabilities shown using a Gumbel axis. 95% Confidence intervals obtained from the

distribution of estimates of the Gumbel parameters.
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Figure B.4 Summer extremes of daily rainfall at Bourke partitioned by +ve/-ve phases of

the SOI. Probabilities shown using a Gumbel axis. 95% Confidence intervals obtained from

the distribution of estimates of the Gumbel parameters. Sites 1-6.
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Figure B.5 Summer extremes of daily rainfall at Bourke partitioned by +ve/-ve phases of

the SOI. Probabilities shown using a Gumbel axis. 95% Confidence intervals obtained from

the distribution of estimates of the Gumbel parameters. Sites 7-12.

Page 233



Appendix B – Bourke Case Study

●

● ● ●
●

●
● ● ●

●

● ●

●

●

●

● ●

● ●

0
1

2
3

4
5

6
7

Site: 13 Gauge ID: 048127

R
ai

nf
al

l (
m

m
/h

r)

0.1 0.5 0.8 0.9 0.95 0.99

●

●

●
●

● ● ●

● ● ●
● ●

●

●

●

●

●

●

SOI+
SOI−
95% Limits SOI+
95% Limits SOI−

● ●
●●

●
●●

●
●●

●●
●
●●
●●
●
●●●●

●●
●●●●

●●●
●●●●

●●●

●●
●
●●

●● ●

● ●

● ●

●

●
●

●

0
1

2
3

4
5

6
7

Site: 14 Gauge ID: 048055

R
ai

nf
al

l (
m

m
/h

r)

0.1 0.5 0.8 0.9 0.95 0.99

●
● ●●●●

●
●●

●●●
●●●

●●
●●●

●●
●●●

●
●●●●

●●
●●●

●●●●●

●

●
●

●
● ●

● ● ●

●

●

●

SOI+
SOI−
95% Limits SOI+
95% Limits SOI−

● ●
●

● ●

●

● ● ● ●
●

●

●

●

● ●

0
1

2
3

4
5

6
7

Site: 15 Gauge ID: 048161

R
ai

nf
al

l (
m

m
/h

r)

0.1 0.5 0.8 0.9 0.95 0.99

●
● ●

● ● ●
●

● ●

●

●

●

●

● ●
●

●
●●

●●●●●
●●●

●●
●●
●●
●
●
●●●

●●●
●●●

●
●●

●
●●

●●●●
●
●

● ● ●
● ● ●

●
●

●

0
1

2
3

4
5

6
7

Site: 16 Gauge ID: 048005

R
ai

nf
al

l (
m

m
/h

r)

0.1 0.5 0.8 0.9 0.95 0.99

● ●

●●●
●●●●

●●●●●●
●●●

●●●
●●●●●

●
●●

●●●●●
●

●

●
●

●
●

●

● ●

●

●

●

●

SOI+
SOI−
95% Limits SOI+
95% Limits SOI−

Figure B.6 Summer extremes of daily rainfall at Bourke partitioned by +ve/-ve phases of

the SOI. Probabilities shown using a Gumbel axis. 95% Confidence intervals obtained from

the distribution of estimates of the Gumbel parameters. Sites 13-16.
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Figure B.7 Winter extremes of daily rainfall at Bourke partitioned by +ve/-ve phases of the

SOI. Probabilities shown using a Gumbel axis. 95% Confidence intervals obtained from the

distribution of estimates of the Gumbel parameters. Sites 1-6.
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Figure B.8 Winter extremes of daily rainfall at Bourke partitioned by +ve/-ve phases of the

SOI. Probabilities shown using a Gumbel axis. 95% Confidence intervals obtained from the

distribution of estimates of the Gumbel parameters. Sites 7-12.
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Figure B.9 Winter extremes of daily rainfall at Bourke partitioned by +ve/-ve phases of the

SOI. Probabilities shown using a Gumbel axis. 95% Confidence intervals obtained from the

distribution of estimates of the Gumbel parameters. Sites 13-16.
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Figure B.10 Annual and 6-month seasonal extremes of daily rainfall at Bourke for +ve

phase of the SOI. Probabilities shown using a Gumbel axis. 95% Confidence intervals ob-

tained from the distribution of estimates of the Gumbel parameters. Sites 1-6.
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Figure B.11 Annual and 6-month seasonal extremes of daily rainfall at Bourke for +ve

phase of the SOI. Probabilities shown using a Gumbel axis. 95% Confidence intervals ob-

tained from the distribution of estimates of the Gumbel parameters. Sites 7-12.
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Figure B.12 Annual and 6-month seasonal extremes of daily rainfall at Bourke for +ve

phase of the SOI. Probabilities shown using a Gumbel axis. 95% Confidence intervals ob-

tained from the distribution of estimates of the Gumbel parameters. Sites 13-16.
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B.5 OBSERVED SEASONALLY PARTITIONED SOI- EXTREMES
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Figure B.13 Annual and 6-month seasonal extremes of daily rainfall at Bourke for -ve phase

of the SOI. Probabilities shown using a Gumbel axis. 95% Confidence intervals obtained from

the distribution of estimates of the Gumbel parameters. Sites 1-6.
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Figure B.14 Annual and 6-month seasonal extremes of daily rainfall at Bourke for -ve phase

of the SOI. Probabilities shown using a Gumbel axis. 95% Confidence intervals obtained from

the distribution of estimates of the Gumbel parameters. Sites 7-12.
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Figure B.15 Annual and 6-month seasonal extremes of daily rainfall at Bourke for -ve phase

of the SOI. Probabilities shown using a Gumbel axis. 95% Confidence intervals obtained from

the distribution of estimates of the Gumbel parameters. Sites 13-16.
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Comparison of Observed and Simulated Extremes – Section B.6

B.6 COMPARISON OF OBSERVED AND SIMULATED EXTREMES

The figures in this section compare extreme values irrespective of the phase of the SOI.

Separate comparisons for SOI partitioned extremes have been omitted, but show a similar

quality of fit.

The simulated confidence limits are from 1000 replicated series each having 100 years

of 24 hour data. Note that the number of observed extremes is not in the vicinity of 100

at some of the sites, so the observed sampling variability will differ from the simulated

sampling variability.
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Figure B.16 L.H.S. compares observed annual extremes with the median and 95% limits of

extremes from simulated daily records. R.H.S. figures compare observed 6-month seasonal

extremes with simulated confidence limits. Simulated values from 1000 replicates of 100-year

records. Probabilities shown using a Gumbel axis. Sites 1-3.
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Figure B.17 L.H.S. compares observed annual extremes with the median and 95% limits of

extremes from simulated daily records. R.H.S. figures compare observed 6-month seasonal

extremes with simulated confidence limits. Simulated values from 1000 replicates of 100-year

records. Probabilities shown using a Gumbel axis. Sites 4-6.
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Figure B.18 L.H.S. compares observed annual extremes with the median and 95% limits of

extremes from simulated daily records. R.H.S. figures compare observed 6-month seasonal

extremes with simulated confidence limits. Simulated values from 1000 replicates of 100-year

records. Probabilities shown using a Gumbel axis. Sites 7-9.
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Figure B.19 L.H.S. compares observed annual extremes with the median and 95% limits of

extremes from simulated daily records. R.H.S. figures compare observed 6-month seasonal

extremes with simulated confidence limits. Simulated values from 1000 replicates of 100-year

records. Probabilities shown using a Gumbel axis. Sites 10-12.
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Figure B.20 L.H.S. compares observed annual extremes with the median and 95% limits of

extremes from simulated daily records. R.H.S. figures compare observed 6-month seasonal

extremes with simulated confidence limits. Simulated values from 1000 replicates of 100-year

records. Probabilities shown using a Gumbel axis. Sites 13-15.
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Figure B.21 L.H.S. compares observed annual extremes with the median and 95% limits of

extremes from simulated daily records. R.H.S. figures compare observed 6-month seasonal

extremes with simulated confidence limits. Simulated values from 1000 replicates of 100-year

records. Probabilities shown using a Gumbel axis. Site 16.
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