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Chapter 1
Introduction

Humans have a long history dating back to ancient times attempting to understand rain-

fall and runoff processes. Typically, this has been in order to harvest water for economic

purposes and mitigate the impacts of extreme events such as floods and droughts. At

the turn of the century, the annual average direct cost of flooding damage in Australia

was estimated at over $300 million. It accounts for the highest proportion (29%) of costs

attributable to natural disasters trumping storm-damage, cyclones, earthquakes and bush-

fires [BTE, 2001]. It is therefore of significant national interest that the variability of

rainfall patterns in both time and space can be modelled reliably.

It is assumed here that the main impetus for considering rainfall patterns is for flood

design estimation, where a level of risk is assigned to some statistic associated with the

abundance of water. This topic is broad and covers a wide range of applications, with

methods highly linked to the spatial and time scales of interest. Consider for example,

1. an estuarine environment subject to joint flooding from rainfall on a large catchment

and elevated ocean levels;

2. a steep escarpment in an urbanised area having quick response times;

3. a small catchment highly sensitive to the occurrence and advection of frontal storms.

Furthermore, the statistic of interest will vary, ranging from the overall volume of

water, to the peak flow rate at an outlet or the water level at any point along a channel.

Depending on the scenario, the magnitude of the statistic will vary from frequent smaller

events to infrequent larger events and in each of these cases spatial and temporal scales are

critical. Various terms are used interchangeably to describe the measure of risk, for ex-

ample, the annual exceedence probability (AEP), non-exceedence probability, frequency

or average recurrence interval (ARI).
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Chapter 1 – Introduction

This chapter provides an introduction to the history of flood design methodology and

the Australian context of climate, rainfall measurement and case studies used in this thesis.

1.1 THE RATIONAL METHOD

Streams are often the focal point for a design, but it is uncommon that a reliable stream-

flow gauge is available. This is the crux of the problem. Since rainfall is a more abundant

source of data, it is convenient to base flood estimation techniques on transforming rainfall

inputs to runoff. This is perhaps an obvious statement, but it is not an obvious practice.

The rational method of Mulvaney [1850] is the backdrop for many of the concepts

still used in hydrologic design today. This method derives the flow as the product of a

specially selected intensity, the area of a catchment, and an assumed coefficient,

QAEP = 0.278CAEP AItc,AEP (1.1)

where the subscript AEP corresponds to the level of risk, QAEP is the peak flow-rate

at the outlet of the catchment (m3s−1), 0.278 is a unit conversion factor, CAEP is a di-

mensionless runoff coefficient, A is the catchment area (km2) and Itc,AEP is the rainfall

intensity (mm/hr) at the critical duration, tc. This equation embodies the concept of AEP

neutrality that a rainfall event of a certain AEP can be converted to a runoff event of the

same AEP . It also embodies the concept that only the most intense part of a storm, the

peak rainfall burst, is needed to determine the peak flow. Also fundamental to this equa-

tion is the notion that one duration, tc, will cause a catchment to generate the maximum

flow. At this duration, the simple product of area with intensity bears the assumption that

rainfall is uniformly distributed over the catchment. The requisite that the AEP subscript

on the LHS of Eq. 1.1 is the same as the AEP subscript on the RHS is achieved by

the supposed constant CAEP which must act as a surrogate for multiple unparameterised

factors (intercept losses, infiltration losses, areal reduction, inhomogeneous rainfall, tem-

poral variability, storm advection, catchment geometry, depression storage, etc.).

1.2 DESIGN EVENTS

It is possible to view the design event approach as an extension of the rational method,

where the coefficient CAEP is now replaced by temporal patterns, areal reduction factors,

a conceptual runoff model and a channel routing model. The design event method de-

termines an entire hydrograph at all river sections, which is in contrast to having just the

peak flow at the catchment outlet. This method is more versatile than the rational method
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Design Events – Section 1.2

because it allows for the influence of storage characteristics within a catchment, such as

detention basins. Typically, several design storm durations are considered at the AEP

of interest (such as 1 hour, 12 hour, 24 hour duration rainfall bursts at a 1% AEP) and

the intensities for each scenario are determined from intensity-frequency-duration (IFD)

rainfall maps. The rainfall for the various storm durations is distributed according to a

standardised temporal pattern for that duration and according to the zoning of temporal

patterns across Australia.

Because rainfall is an intermittent process, a storm burst will not simultaneously cover

the entire catchment. For this reason, an areal reduction factor corresponding to the catch-

ment area, storm duration and ARI is applied to the design rainfall hyetograph to produce

a realistic rainfall total that lands on the catchment. A loss model is required to mimic the

antecedent soil moisture conditions of the catchment and produce a rainfall excess hyeto-

graph from the incident hyetograph. The rainfall excess hyetograph is converted into a

runoff hydrograph by employing a parameterised runoff-routing model that represents

the reaches of the catchment as lumped systems. A baseflow is then added to produce

the design hydrographs, from which the burst duration yielding the largest peak flow is

selected as the critical design duration. While the structure of the design event approach

is better for appreciating model errors, the method has many limitations. Three of these

are briefly covered here, the idea of AEP neutrality, the use of rainfall bursts rather than

entire storms and the use of a single temporal pattern.

1.2.1 AEP Neutrality

Let R denote a set of rainfall events, let θ represent all other variables (for simplicity con-

sider them fixed values such as parameters, initial conditions, ground water, evaporation,

etc.), let g() be some nonlinear transformation (flow, water level, volume) and h1%[ ] some

function that ranks values to obtain the magnitude having a 1% chance of exceedence. The

concept of AEP neutrality is then summarised as follows

h1%[g(R, θ)] = g(h1%[R], θ) (1.2)

for some suitably chosen values of θ . That is, the transform of a 1% AEP rainfall event

(RHS) can be made equivalent to the 1% AEP of a set of transformed events. This concept

is akin to arguing 1 = 2 ∗ θ for a suitably chosen value of θ. This statement is true for a

unique value of θ, is approximately true for a small range of θ values and for the remaining

majority of values it is untrue. In the instance of conceptual runoff models it is usually

the role of loss coefficients to be manipulated to achieve the stated aim of AEP neutrality.

Since catchment models contain many nonlinear components and initial conditions, it is
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Chapter 1 – Introduction

difficult to estimate representative parameters that satisfy AEP neutrality [Kuczera et al.,

2006].

Although the parameters of Eq. 1.2 often have a physical interpretation, AEP neutral-

ity is a mathematical convenience and it is not strictly necessary that θ values have a real-

istic interpretation. This observation is acknowledged in the design guidelines Australian

Rainfall and Runoff (ARR) [Pilgrim, 1987, Book II, §3], Initial loss values obtained from

fitting actual storms will be too high, compared with the values that should be used in

assessing the median value for use in design. Obtaining suitable values is essentially a

calibration problem. It is not a given that traditional calibration is any more reliable than

experienced judgement as several aspects can obscure the calibration process (i) signif-

icant spatial and temporal averaging, (ii) measurement error of inputs and outputs and

(iii) structural model error [Thyer et al., 2009]. The emphasis here is on the concept of

conceptual runoff models and is best testified to by the many unsuccessful attempts to

regionalise model parameters for application to ungauged catchments.

1.2.2 Intensity Frequency Duration curves

The most fundamental aspect of IFD methodology is that it refers only to a burst of rain-

fall for some fixed time period. Thus the design event is not an entire storm but merely a

design burst. The strongest limitation of using peak rainfall bursts for design events is that

they ignore preceding rainfall which is necessary for estimating initial conditions for vol-

ume based designs and for estimating catchment losses when converting rainfall to runoff.

For example, 2-D hydraulic models are being increasingly used and have accurate ability

to model catchment storages, but they are biased toward low volumes when used with

design bursts due to the absence of pre-burst rainfall. Blaikie and Ball [2005] conducted

a study using 14 pluviometers from the greater Sydney region which were analysed for

antecedent rainfall prior to a 24 hour period. This study reached several conclusions: that

a significant portion of 5 day antecedent rainfall occurred on the day prior to the rainfall

burst, that the antecedent rainfall depth increased with the storm burst rainfall depth and

that the antecedent rainfall depth was not constant over the Sydney region.

1.2.3 Temporal patterns

There are generally no typical patterns [Pilgrim, 1987, Book II, §2.2b]. The average vari-

ability method (AVM) is a method to derive typical patterns. Figure 1.1 shows the AVM

temporal patterns of the 24 hour duration storm burst for the eight different classification

zones about Australia. It can be seen that there is significant variability in the temporal
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Design Events – Section 1.2
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Figure 1.1 24 hour design storm temporal patterns for 8 different zones of Australia.
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Chapter 1 – Introduction

patterns between the zones, though the pattern is assumed to be the same at all points

within the zone. The sole purpose of the AVM is to transform a peak rainfall into a peak

flow of the same AEP. Any summary statistic such as an average or median is an abstract

idea that simultaneously represents everything and nothing, so it is of no surprise then

that the AVM yields atypical patterns that are unlike real rainfall patterns. This is further

emphasized by the fact that the AVM requires corrections such as smoothing and filtering

to provide consistency across durations and AEPs.

Since the 1987 version of ARR, numerous authors have compared the AVM temporal

patterns to other rainfall patterns. Ball [1994] highlighted that different temporal pat-

terns lead to different catchment responses and that the variability of different temporal

patterns is important. Green et al. [2003] presented temporal patterns for use with proba-

ble maximum precipitation (PMP) estimates within the tropical region. They surveyed a

wide range of techniques that were used to produce temporal patterns and acknowledged

that there is no definitive answer regarding the most appropriate temporal pattern to be

adopted. For the PMP design flood, they recommended the use of an unsmoothed AVM

temporal pattern based on the top ten events of each duration. They also discussed options

where, with the use of meta-data, the hydrologist may wish to choose just one of the top

ten patterns or an alternative historical extreme event in the near vicinity of the catchment.

Sih et al. [2008] compared AVM temporal patterns with flow estimates obtained using a

collection of temporal patterns across regions of Australia. They noted biases in the flow

estimates produced by AVM patterns when compared to replicates of temporal patterns

and that the mean flow estimate from a set of temporal patterns produced less bias than

the AVM pattern.

1.3 MONTE CARLO SIMULATION

An alternative to the design event approach is referred to as Monte Carlo Simulation

(MCS) and it is capable of more reliable AEP estimates [Rahman et al., 2002]. The

idea of MCS is not to obtain a set of deterministic θ values for catchment processes

that happen to reproduce a 1% AEP peak runoff for a 1% AEP peak rainfall burst (RHS

of Eq. 1.2), but to allow θ to be random, covering all joint possibilities of significant

catchment processes (using LHS of Eq. 1.2). Many replicates of parameter values θ are

sampled from representative distributions and are combined with the rainfall to determine

the AEP of the transformed statistic. The rainfall input should also be randomly varied

along with the other inputs as it is likely that rainfall patterns from a range of AEPs

will generate transformed values having a 1% AEP (e.g. a 0.5% AEP storm on a drier
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Continuous Simulation – Section 1.4

catchment or a 2% AEP storm on a wetter catchment). The advantage of MCS is that

it allows for variability of the inputs and therefore avoids bias in the output. Since the

1987 ARR version, there has been considerable development of the MCS approach. For

example Rahman et al. [2002] and Weinmann et al. [2002] highlight that loss coefficients,

temporal patterns, pre-burst rainfall and seasonality are important variables to randomise.

Kuczera et al. [2006] highlight the initial level of storage basins is an important variable to

consider when estimating flows. Need et al. [2008] show that for estuarine environments

the ocean depth is an important variable to randomly vary. Tan et al. [2008] highlighted

the importance of correlation when large systems are being considered. Their specific

study used mean sea level pressure to associate water levels with rainfall amounts in the

Gippsland region.

One of the attractions of MCS is that the concepts and processes involved are simi-

lar to those used in the design event approach. MCS is however more computationally

demanding than the design event approach, where the computational burden depends on

the complexity of the models being used. More complex models, larger sample sizes or

multiple replicates for uncertainty analysis will increase the computational demand. This

is especially the case when spatially gridded rainfall, runoff and hydraulic models are

considered.

Another technique that is similar to MCS is referred to as continuous simulation. Like

MCS, continuous simulation uses many events that are sampled randomly. The difference

is that the events are not standalone but are embedded into an event sequence. The chief

benefit over MCS is that other random variables within the system can be updated and do

not need the user to specify a sampling distribution (e.g. soil moisture, initial water level).

Unlike MCS, continuous simulation cannot be stratified to focus only those events which

result in an extreme outcome. In other words, continuous simulation aims to reproduce

the full distribution of rainfall and runoff events which can make it more computationally

demanding than MCS.

1.4 CONTINUOUS SIMULATION

Continuous simulation refers to a process of converting catchment rainfall inputs into

flood outputs by successively simulating sequences of storms in conjunction with a wa-

ter budget model to continuously update soil moisture conditions. The rainfall inputs are

generated stochastically, using a conceptual framework to jointly specify the incidence

of storms and the properties of each storm. Differences between models arise from the

way in which random variables are assigned to the conceptual storm properties such as
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Chapter 1 – Introduction

duration, intensity, temporal pattern and storm occurrence. Storm sequences and corre-

sponding runoff are simulated for long time periods so that a complete distribution of

outflow hydrographs is generated and used to evaluate levels of risk. Heneker [2002]

provides a thorough evaluation and discussion of this approach.

The spatio-temporal variability of rainfall is widely cited as one of the main sources

of uncertainty in understanding and modelling the hydrological dynamics of a catchment

[Chaubey et al., 1999; Faures et al., 1995; Wood et al., 2000]. To date, however, con-

tinuous simulation models have primarily focused on reproducing temporal statistics at

a point (rain-gauge) or set of points that are assumed to sufficiently represent the oro-

graphic effects of the catchment. To convert point rainfall to a volume over a region an

areal reduction factor is required correct for the patchiness of rainfall over that region.

The spatial averaging that is implicit in the use of areal reduction factors can often lead to

biases.

There is growing demand for the development of continuous simulation space-time

rainfall models and the potential application of these models is diverse. Examples in-

clude environmental and land use decision making, erosion/sediment modelling, water

quantity/quality modelling, spatially distributed groundwater recharge and ecological and

riparian modelling. The need for spatially variable rainfall estimates is even greater in

urban environments, due to the more rapid response times generated by impervious sur-

faces. Examples include stormwater and roofwater re-use, sewerage overflows and urban

flooding. The development of space-time rainfall models for continuous simulation is the

focus of this thesis and the background is discussed more thoroughly in Chapter 2.

1.5 THE AUSTRALIAN CLIMATE

Being a large land mass, surrounded in entirety by the Pacific, Indian and Southern oceans,

Australia experiences a broad range of weather patterns. Australia is highly influenced

by a number of air-masses originating over these basins [Sturman and Tapper, 2006],

including:

• The Southern Maritime air mass - cool moist air in the Latitudes 35◦ to 55◦, bringing

cloudy drizzle to Southern Australia throughout the year.

• The Tropical Maritime Tasman - warm moist air that originates in the Tasman Sea

and bringing warm, cloudy and drizzly weather to the east coast of Australia.

• The Tropical Maritime Pacific - warmer than the Tasman maritime air mass and
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Rainfall Measurement – Section 1.6

originating further north in the western Pacific. It affects North Queensland most

of the year, bringing heavy rainfall when associated with tropical cyclones.

• The Equatorial Maritime - very warm moist and unstable air affecting the north of

Australia (as far South as 30◦ Latitude) with heavy rainfall and humidity during the

summer monsoon season.

• The Tropical Maritime Indian - sourced in the Indian ocean, affecting Western Aus-

tralia and similar to the Tropical maritime Pacific.

As a consequence of these processes, Australia experiences moderate rainfalls around

the majority of the western, southern and eastern coastlines, high rainfall totals along the

northern coast due to the summer monsoon and a very dry interior due to the distance from

the coastline and the the lack of relief in this region. This is shown in Figure 1.2 (a) which

depicts the annual average rainfall over the Australian continent with values ranging from

below 200 mm in the centre of Australia to over 2000 mm in northern Australia. The

eastern seaboard yields higher rainfall totals than the western seaboard due to the effect of

orographic lifting over The Great Dividing Range mountains. Figure 1.2 (b) and Figure

1.2 (c) show the monthly totals for two months, January and July, representing typical

seasonal patterns that occur in summer and winter respectively. Figure 1.2 (b) shows that,

during summer, the northern regions are inundated due to the summer monsoon, while

the southern and south-western regions are very dry. By way of contrast, Figure 1.2 (c)

shows that the southern and south-western regions are dominated by winter-rainfall while

the northern regions are very dry. The eastern seaboard shows less variation between the

seasons than the other parts of Australia.

The climate of Australia is summarised using a classification of climatic zones based

on rainfall totals, seasonal incidence and temperatures. Figure 1.3 shows the Bureau of

Meteorology classification including the locations of major urban centres [BOM, 1983].

With respect to the capital cities, Perth, Adelaide and Melbourne have winter-dominated

rainfall, Sydney and Hobart have uniform rainfall across the year, Brisbane experiences

sub-tropical rainfall and Darwin is tropical.

It is evident that rainfall is a highly variable process and, attributable to its geography

as a large island nation, Australia is subject to a wide variety of climates.

1.6 RAINFALL MEASUREMENT

In addition to appreciating atmospheric processes in the Australian climate, the ability

to model rainfall occurrence is dependent on the quantity, quality and nature of rainfall
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Figure 1.2 Mean rainfall in millimetres depth across Australia, (a) Annual, (b) January

(Summer), (c) July (Winter).
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Rainfall Measurement – Section 1.6

Figure 1.3 Climatic Zones of Australia, from Heneker [2002], based on BOM [1983].

measuring devices. Rainfall, in the form of individual droplets, is fundamentally dis-

crete in space and time, but the process of measurement typically requires averaging in

space and time. For this reason, the most common unit of interest is rainfall intensity

(mm/hr for point observations and mm/hr/km2 for areal observations), which has a

continuous, non-negative scale. Like an understanding of the rainfall process itself, mea-

surements of rainfall require an appreciation of temporal and spatial scales. Traditionally,

measurements have been made at a single point in space using rain-gauges at either daily

or sub-daily timescales. More recently, modern radar and computing technology, via re-

flection of electromagnetic waves, has made inferential estimates of rainfall possible over

large regions at sub-daily time scales. The temporal and spatial resolution of the radar is

governed by the wavelength, examples include X-band, C-band and S-band radars. Fig-

ure 1.4 summarises the distribution of these measuring devices throughout the Australian

continent.

1.6.1 Daily rainfall gauges

Daily rainfall gauges are the most conceptually simple and inexpensive mechanism for

measuring rainfall quantities. A gauge, little more elaborate than a container, is read on a

daily basis to give a depth of water over that day. Due to the simplicity of the apparatus,
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Figure 1.4 Distribution of rainfall measuring devices about Australia (a) Daily gauges, (b)

Pluviograph gauges (c) Radar.
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Rainfall Measurement – Section 1.6

daily rainfall gauges are the most common source of rainfall observations. Over 7000

gauges are currently active across Australia and over 16, 000 in the Bureau of Meteorol-

ogy archive have been active at one point or another during Australia’s history. The oldest

gauges have records that extend as far back as the mid 1800s, but it is not uncommon to

have substantial periods of missing observations during this era. Nonetheless, there are

approximately 1000 records in the Australian continent that have at least 100 years’ of

observations. Figure 1.4 (a) shows the distribution of daily rainfall gauges across Aus-

tralia and verifies that there is a good distribution of gauges with over 100 years worth

of record. State and private agencies own numerous records in addition to those from the

Bureau of Meteorology, though they typically have a shorter period of observation.

The main advantage of daily rainfall records is their coverage across all areas of the

Australian continent and their comparatively long periods of observation with respect

to other recording devices. A limitation of daily observations is that many hydrologic

processes of interest, especially in urban areas, have time-scales less than one day. An

example is flash-flooding events associated with individual storms. Another limitation of

many daily gauges is the presence of biases, accumulations and outages in the observed

record, which are prevalent, despite the simplicity of the measuring system. Examples

include (i) when a gauge has moved location, (ii) when a human incorrectly reads or

records the total (iii) when the gauge has been overtopped (iv) when a nearby building or

tree blocks rainfall and (v) when readings are accumulated over multiple days, typically

weekends, where only the accumulated total is known but not which day(s) the rain fell

on. While most accumulations are flagged, Viney and Bates [2004] highlighted that some

are unflagged and therefore not obvious and potentially misleading. This can occur when

a recorder mistakenly indicates that a multi-day rainfall accumulation occurred solely on

one day and that the other days had zero rain.

1.6.2 Pluviograph rainfall gauges

In Australia, pluviograph rainfall gauges typically provide information on rainfall inten-

sity at six-minute increments. Initially, siphon gauges and continuous recording charts

were used to measure intensity, though after a while tipping-bucket gauges and digital

storage became more common-place. Tipping-bucket gauges operate by counting the

number of tips of two, 0.2 mm, buckets mounted on a see-saw below the gauge funnel.

The time-series of bucket releases is then converted to intensity over six minute intervals.

Currently there are approximately 1300 pluviograph gauges in the Bureau of Meteorology

archive, as shown in Figure 1.4 (a). The limited spatial coverage of pluviograph gauges is
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Chapter 1 – Introduction

a serious impediment to hydrological science in Australia, though sometimes additional

gauges owned by state and private agencies can provide a useful supplement. Such ad-

ditional networks of gauges mostly use continuous updating of measurements via radio

telemetry for applications such as flash-flooding detection and real-time radar calibration.

While pluviograph gauges provide invaluable information at sub-daily timescales,

their poor coverage in time and across Australia is a significant limitation. Figure 1.4

(b) shows that very few gauges have more than 50 years of observations on record. In

addition to this, pluviograph gauges often experience outages or data corruption, for ex-

ample due to blockages from leaf-litter. In contrast to daily rainfall gauges, the total

rainfall depth over the outage period is often not recorded, which implies that aggregate

statistics from pluviograph measurements will not conserve the total rain depth and can

become biased. With networks that report observations via radio telemetry, accumula-

tions of rainfall can be common due to instances of poor reception during the remote data

transmission. Other minor issues associated with pluviograph gauges include incorrect

digitisation of older chart records [Deidda et al., 2007] and bias arising from the tipping

motion during extreme heavy rain [Humphrey et al., 1997].

1.6.3 Radar rainfall reflectivity

Following the Second World War, radar technology was put to civilian use in remotely

measuring weather activity. Radars are mounted on a rotating pedestal set above tree

height and scan volumes of the sky. The radar sends out electromagnetic pulses and,

based on the timing and strength of the reflected pulse, the location and intensity of rain-

fall activity can be estimated. Battan [1962] is a good introductory text on this topic. The

type of radar is identified by the wavelength of the incident pulses. Weather radar is typi-

cally one of: S-band, 2− 4 GHz frequency (8− 15 cm wavelength), C-band, 4− 8 GHz

frequency (4− 8 cm wavelength) or X-band, 8− 12 GHz frequency (2.5− 4 cm wave-

length). Smaller wavelength radars are able to detect more detailed structure in a weather

system, but they also have increased attenuation, which means that they make less reli-

able measurements over increasing distance. For this reason, S-band radars are regarded

as best for measuring storm systems over larger areas (e.g., of 100 km radius). Figure

1.4 (c) shows the distribution of operational weather radars about Australia. Note that

some are dedicated to inferring wind measurements, some are dedicated to inferring rain-

fall measurements and some are dual-purpose. This figure shows four radars, recently

built, that concurrently estimate wind and rainfall by measuring the Doppler-shift from

pairs of reflected waves. These radars were commissioned as part of a recent $62 mil-

Page 14



Rainfall Measurement – Section 1.6

lion upgrade, which will produce a total of six new Doppler, S-band radars (Sydney and

Tamworth Doppler radars not yet installed).

Radar has significant advantages in its ability to provide information on the detailed

spatial structure of storms not otherwise available from gauges. While spatial detail is a

strength, radar instrumentation is subject to numerous outages and has not been opera-

tional for as long as gauges. Therefore it is not as good for estimating long-term temporal

statistics. Importantly, radar is an inferential measuring device, where reflectivity is the

actual measurement. Numerous forms of error can occur in its conversion to rainfall

intensity. These errors include (i) systematic errors such as ground clutter, anomalous

propagation, bright band contamination and inappropriate reflectivity conversion and (ii)

random errors such as sampling errors, quantisation and variability in the reflectivity rela-

tionship [Jordan and Seed, 2003]. Rain-gauge measurements are relied upon to provide a

‘ground truth’ for radar observations, however there exists a discrepancy in scale (in com-

paring a 1 km× 1 km radar grid to a point measurement). For this reason, the calibration

of radar images is an area of active research requiring advanced correction algorithms.

For example, see Lanza et al. [2001].

1.6.4 Summary of rainfall data

Figure 1.5, showing the number of recording instruments over time, summarises the his-

tory of rainfall measurement in Australia. Daily rainfall gauges, having the simplest tech-

nology, are the earliest and most common source of rainfall measurements. Pluviograph

gauges, initially recording on drum-charts, were installed from the 1920s onwards and

offer improved resolution in time compared to daily gauges. They are, however, far less

numerous. Radar is a relatively modern technology, having been established for weather

reporting since the 1960s.

In contrast to gauge-based measurements, radar remotely infers rainfall amounts and

requires considerable amounts of calibration to provide best estimates. Whereas radar has

poor temporal content and detailed spatial content, (networks of) rain-gauges have poor

spatial content but have comparatively detailed temporal content. In addition to these

primary sources of rainfall-related data, there is a wide catalogue of observations from

ground-based instruments for other atmospheric processes linked to the rainfall-runoff

process. These include, but are not limited to, pressure, wind, temperature, evaporation,

humidity, soil moisture and groundwater observations. Another source of data is remote

satellite observations, dating from the first weather monitoring satellite launched in 1960

by the National Oceanic and Atmospheric Administration. Environmental monitoring
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satellites are similar to radar in that they measure reflected intensities that are mapped to

properties such as moisture content in various layers of the atmosphere. However, these

measurements are at a coarser spatial resolution than ground-based measurements.

1.7 THESIS OBJECTIVES

There has been considerable growing interest in space-time models of rainfall occurrence.

There are many models based on radar imagery [Northrop, 1998; Seed et al., 1999; Mel-

lor et al., 2000; Mackay et al., 2001; Allcroft and Glasbey, 2003; Pegram and Clothier,

2001a], though they are mostly focused on the ability to reproduce single storm events.

There are also numerous space-time models based on rain-gauge data that have been de-

veloped for continuous simulation [Cowpertwait, 1995; Shah et al., 1996; Willems, 2001;

Zhang and Singh, 2006]. This thesis is focused on space-time models based on rain-gauge

networks in preference to radar imagery for several reasons:

1. Rain gauges are widely available, which enables gauge based models to be applied

more widely.
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2. There are significant issues of bias and error associated with radar-rainfall imagery

such that there are few archived datasets that have had thorough and reliable quality

control applied to them. These issues arise from the difficulty in merging gauge

based rainfall measurements with radar sequences.

3. Radar archives are not as long as rain gauge records and are less likely to capture

extreme events.

4. Rain gauge based algorithms should, in principle, be less computationally demand-

ing than radar based models.

5. While rain gauge based models will have a simpler spatial structure than radar based

models, there is an argument that this is compensated for by the runoff process. In

short, rainfall is spatially aggregated during the runoff process when it lands on a

catchment.

For reasons further outlined in Chapter 2, the Spatial Neyman-Scott Rectangular Pulse

(SNSRP) model of Cowpertwait [1995] is used as the basis for the developments outlined

in this thesis. In short, (i) it is based on temporal Neyman-Scott models of rainfall which

have demonstrated a good reproduction of temporal statistics based on numerous case

studies (ii) the SNSRP model has itself been applied to several case studies and (iii) other

models require large numbers of subdaily gauges and cannot easily incorporate daily rain-

fall totals. This last point is especially significant given Australia’s limited availability of

sub-daily data. The primary objective of this thesis is therefore to develop a rainfall model

that:

• is able to be simulated for long periods of time at a sub-daily time increment,

• is able to be simulated over large regions at a high spatial resolution (1 km×1 km),

• is able to reproduce key statistics and in particular intensity frequency curves used

for flood designs,

• is able to reproduce important storm features given the information content of the

data,

• is able to account for significant sources of variability such as seasonal and climatic

variation,

• is accompanied by feasible computational methods, and

• is appropriate to Australian climatic conditions.
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1.8 THESIS STRUCTURE

There are ten chapters in this thesis.

Chapter 2 provides a literature review so that the work of Cowpertwait [1995] is

placed into context. Chapter 3 discusses the approach of Cowpertwait [1995] separately.

There are no new results in Chapter 3. Rather, it serves to provide background information

needed to understand the formulation and calibration of the model.

Chapter 4, 5 and 6 present pragmatic and general developments to the calibration

and simulation methodology (as distinct from the conceptual formulation of the model).

Chapter 4 addresses the simulation technique of the SNSRP model. It is shown that a

spatial buffer is a computationally demanding means for simulating the model and that

an analytic alternative is developed which is much more efficient. Chapter 5 highlights a

calibration issue arising from independent monthly calibrations. Constraining the range

of one parameter (β) is demonstrated as a practical solution. Chapter 6 investigates al-

ternative calibration techniques that do not rely on analytic derivations of model prop-

erties and uses the Launceston region as a case study. A simulation-based calibration is

demonstrated to be more flexible than analytic derivations, however it is not pursued in

subsequent chapters owing to its computational burden.

Chapter 7 presents an extension to the conceptual formulation by introducing a storm

radius parameter. This development arises from an inability of the original SNSRP model

to correctly reproduce correlations at long distances. A case study involving 76 gauges

across metropolitan Sydney is used to demonstrate this extension.

Chapter 8 addresses temporal heterogeneity. A methodology for analysing extreme

values taking into account both seasonal and climatic partitions is presented. The utility

of this method is demonstrated in a flood design for a hypothetical detention basin. The

concept of partitioning extremes is then applied to the SNSRP model as a means for model

verification. A case study involving the Burke region in New South Wales is used because

it has both a strong climatic signal and a strong seasonal signal.

Chapter 9 formulates an inhomogeneous SNSRP model. This model couples an in-

homogeneous spatial process of rain cells with the Neyman-Scott temporal process. The

model is applied to the Avon Basin in Western Australia and is shown to explain variabil-

ity in spatial correlations better than the homogeneous SNSRP model.

Chapter 10 provides concluding remarks and recommendations for ongoing research.
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1.9 OVERVIEW OF AUSTRALIAN CASE STUDIES

A summary of case studies that the SNSRP model has been applied to is shown in Table

1.1. The top portion of the table shows existing studies in the United Kingdom, New

Zealand and Italy while the lower portion summarises Australian case studies presented

in this thesis. Existing applications of the SNSRP model have predominantly been to

temperate, winter-dominated climates such as those in Europe and New Zealand. As the

model has a European heritage, it is well suited to these conditions. A characteristic

feature of these climates is that storm events are not able to be easily distinguished from

one another. Frost et al. [2004] fitted the temporal counterpart of the SNSRP to individual

gauges about Australia and showed that, amongst other limitations, it has some difficulty

reproducing the distribution of dry-spells between storm events. This observation is due to

the more event-based occurrence of storms in some parts of the Australian climate which

gives rise to long dry-spells. This statistic is not specifically addressed in this thesis, but

is strongly related to statistics that are, including the dry portion, skewness and coefficient

of variation (CV).

For ease of comparison, the statistics shown in Table 1.1 are non-dimensionalised and

are averaged over all months of the year. The case studies are summarised as follows:

• Launceston, located in north-eastern Tasmania, has similar statistics to existing case

studies in the literature.

• While Sydney’s rainfall is uniform throughout the year and is considered temper-

ate, it has a mixture of generating mechanisms: winter is dominated by temperate

southerly/south-westerly systems and summer is dominated by sub-tropical sys-

tems. While it has a similar dry portion compared to previous studies, it has a high

degree of variation and skewness.

• Bourke is located inland near the border of New South Wales and Queensland. It

experiences most of its rainfall from isolated but heavy storm events and has a high

variability, skewness and proportion of dry days all year round.

• The Avon Basin case study, located in Western Australia, experiences a mixture

of climates owing to its large area and geography. These range from temperate

conditions along the coastline to a more arid climate inland. The coastline therefore

experiences regular wetting during winter months some of which reaches inland,

while during summer months the inland region is wetted infrequently. The portion
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of dry days is quite high in this region and ranges from 0.60 during winter months

up to 0.92 in summer. The skewness and variation are also high in this region.

Section 1.6 outlined the availability of daily and sub-daily rainfall data about Aus-

tralia, and in particular that long sub-daily records are uncommon. For this reason, daily

rainfall gauges are jointly used with sub-daily rainfall gauges in this thesis. This is shown

in Table 1.1 where previous studies have relied solely upon sub-daily gauges. A notable

exception is the study of Cowpertwait et al. [1996b] who developed a regionalised model

for any point within Great Britain. A secondary aspect of the case studies in this thesis is

that larger numbers of gauges and larger regions have been considered for model calibra-

tion, and in this context, daily rainfall gauges are invaluable. It is a feature of the SNSRP

model in comparison to other models that it can easily accommodate data at different

aggregates in the calibration.

The use of large numbers of gauges brings into question the quality of the observed

records and also the homogeneity (similarity) of the data over the defined region. Regard-

ing the quality of the observed gauges, several safeguards have been employed. Firstly, all

of the case studies make use of a minimum number of data-points to ensure that individual

statistics are not too variable. This specification is arbitrary and varied for each study de-

pending on the availability of gauges. Typically a condition of at least 10 to 20 years worth

of available record is specified for every month in the record. The requirement for every

month is a result of the independent calibration of monthly parameters. The estimation of

statistics relies upon the presence of appropriate flags for missing data and accumulations

of data. For the latter, the total amount of rainfall over the accumulation is considered

reliable but the sequence in which it occurred is not. Where a data-point is flagged as

accumulated it was completely removed from the calculation of statistics that require

information on the pattern in which the rainfall occurred (such as the auto-correlation,

cross-correlation, dry-portion, etc.). Statistics that require only a total accumulated depth

can make use of the accumulated data, for example, statistics at higher aggregates (such as

monthly totals) and calculation of mean rainfall amounts (e.g. daily). Cross-correlations

require the period of two gauges to be overlapping in time. Where gauges do not overlap

considerably (say less than 250 data points) the cross-correlation statistic was not esti-

mated. This is acceptable since there are many permutations of gauge-pairs that can be

used to estimate cross-correlations. Where rainfall observations are completely missing,

these periods were excluded from the estimation procedure and in the event that a signif-

icant portion of a month is missing (say >3 days) the entire month of data was removed.

The procedure of Viney and Bates [2004] was not applied to the daily records to check for
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unflagged accumulations, which could be a source of bias in the distribution of extreme

values if a gauge had a significant number of unflagged accumulations. The question of

homogeneity of a study region is important, as this is a requirement of the existing SNSRP

model formulation. To date this requirement has been acceptable since the model has been

primarily applied to smaller case studies that by nature of their size have a greater chance

of being similar. Over larger regions it becomes less feasible to maintain this requirement.

Chapter 9 provides a formal treatment of this topic for the SNSRP model.
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The variability in space and time of precipitation processes affects both

the infiltration dynamics of the soil surface of a catchment and the production

and successive propagation of surface runoff. This is also fundamental to the

rate of accumulation of water above and below ground levels and the rate of

evapo-transpiration in the area. The entire circulation of water in a basin is

thus governed by the spatial and temporal distribution of rainfall.

[Bacchi and Kottegoda, 1995]

Given rainfall’s important role as the driving force of the water dynamics within a

catchment, hydrology has always been concerned with accounting for its inherent vari-

ability. Throughout the history of hydrology this has not always been possible, and lim-

iting assumptions have been applied to both spatial and temporal rainfall analyses in step

with the understanding and technology of that era. Techniques restricted to the spatial

domain have not been unique to hydrology, for example spatial interpolation and disag-

gregation have been employed widely in other areas. A similar observation is true for

techniques restricted to the temporal domain, including time-series analysis, cluster mod-

els, Markov models and event models. Intermediate attempts to include both spatial and

temporal aspects have typically employed the same concepts as temporal models, but in a

multi-variate setting. These include regionalised temporal models and multi-site models.

By way of contrast, space-time models aim to simultaneously accommodate both spatial

and temporal sources of variability. They can be considered in two sub-categories depend-

ing on the underlying source of data, either radar imagery or gauge networks. Radar-based

models tend to be well described in the spatial domain but poorly account for temporal

development, while gauge-based models have good temporal performance but are limited

in their spatial characterisation.
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Whether temporal or spatial, most approaches to rainfall modelling are typically statis-

tical and conceptual by nature, as distinct from physically deterministic models. Physical

models are generally based on the Newtonian dynamics of multiple state variables (e.g.

pressure, temperature, water content), as represented by a system of non-linear partial dif-

ferential equations [Kessler, 1969]. Layers of the atmosphere (and soil) are represented

as grids of discretised cells each containing the state variables to be updated. Physical at-

mospheric models suffer from several limitations: (i) sensitivity of the partial differential

equations to initial conditions, (ii) inability to specify boundary conditions due to a lack

of observations, and (iii) requirements of immense computing power [Georgakakos and

Krajewski, 1996]. In contrast to physical models, conceptualisations of the dominant pro-

cesses, underpinned by stochastic sampling, offer a more viable approach for simulating

long-term rainfall records. However, the idealisation of the dominant processes requires

calibration to observed data and extensive comparison between simulated and observed

records in order to verify the appropriateness of the model. Thus the emphasis of concep-

tual models lies in the preservation of correlations and key statistics across all scales of

interest, as distinct from modelling the true underlying representation of the system. In

this light, conceptual modelling requires the balance of model limitations (due to reduc-

tionist assumptions and idealisation) with respect to the perceived benefits of increased

model complexity. The history of conceptual modelling is a reflection of this balance

as governed by parameters such as data availability, computational power and scientific

insight.

2.1 RAINFALL HOMOGENEITY

Prior to considering models of rainfall, it is essential to consider the similarity of rainfall

processes either over a space or in time. Even early mathematical approaches in hydrology

required an appreciation of this concept, for example [Thiessen, 1911] who calculated

average rainfall totals over a region. A similar appreciation is also required in the time

domain as rainfall records are now known to have many long-term variations, for example

the El Niño Souther Oscillation phenomenon [Bjerknes, 1969].

2.1.1 Spatial homogeneity

In order to conduct a spatial analysis of rainfall, it is necessary to define the boundaries

of a region within which there are similar hydro-climatic properties. If this does not hold,

then so-called representative statistics calculated from within that region will have little
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meaning. The term homogeneous is used in a general sense to refer to whether the un-

derlying rainfall process in a region can be pragmatically considered to be the same for

any statistic of interest. Though not an exhaustive assessment, it is convenient at certain

points to refer solely to key statistics when assessing homogeneity. Related to homogene-

ity is the concept of stationarity over a region, but this term is reserved for implying that

the expected mean and expected variance are constant over the region (weak stationarity).

The term heterogeneous is used in a general sense as the opposite to homogeneous. In the

context of Poisson models, the term inhomogeneous is used in the same sense as hetero-

geneous but is often reserved for the rate parameter of a Poisson distribution (e.g. rate of

storms, rate of cells).

Assessment of the homogeneity over a region is a subjective problem because of the

abstract basis on which a region is defined. This holds true whether using physical or

statistical arguments. From a physical perspective, the climate is a gradually varying phe-

nomenon (with the exception of strong geographic influences such as mountains) which

makes it difficult to determine distinct boundaries. In addition to this, the scale of interest

is important, as local geographic variability can cause discrepancies to the homogeneity

of a region defined at a higher scale (e.g. a large valley in the middle of a hilly region).

From a statistical perspective, the variability in observed records and the array of potential

statistics used for comparisons inhibit conclusions over regional similitude. As an exam-

ple of the ambiguity of a region, the Bureau of Meteorology have several maps that can

be used to define a climatic region [Stern et al., 2006]. These maps differ due to the scale

of interest and also the combinations of observed data used in the analysis (rainfall, tem-

perature, humidity). In a hydrologic context, Hosking and Wallis [1997] provide useful

discussion on the homogeneity of a region with respect to analysis of extreme values.

2.1.2 Temporal homogeneity

Changes in the rainfall process over time are an equally important when considering ho-

mogeneity. Seasonality, while fitting this description, is such an obvious source of vari-

ability that its inclusion in hydrologic modelling is an unquestioned necessity. Modelling

techniques typically account for this by allowing parameters to vary across seasons, for

example by using new parameters each season, or by using harmonic functions to describe

the parameter variations in time. Seasonality is typically straightforward to model because

the 12-month seasonal period is well defined. Of more subtle significance is inter-annual

variability, which has escaped critical investigation until recent decades because of the

complexity of the governing processes, the necessity of long observation records and the
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irregular period of its fluctuations.

Long-term climatic variability is linked to fluctuations in the temperature of the world’s

ocean basins and circulation patterns in the atmosphere. The El Niño Southern Oscilla-

tion phenomenon is one such system that operates on the scale of multiples of years and

the Inter-decadal Pacific Oscillation is an example that operates across multiple decades.

These systems are conceptualised by referring to the climate as being in a particular state

corresponding to the general condition of the system and its expected behaviour. For ex-

ample, the El Niño state of the Southern Oscillation is associated with warmer waters

and convective activity in the East Pacific giving lower rainfalls over Eastern Australia.

In contrast the La Niña state is associated with warmer waters in the West Pacific and

higher rainfalls in Eastern Australia. An intermediate neutral state is said to act when

neither state is clearly identifiable. In the context of streamflow extremes, Franks and

Kuczera [2002] show that there is a significant difference between climate states and that

this challenges the traditional modelling assumption that extreme values are independent

and identically distributed.

In terms of modelling the temporal heterogeneity of rainfall, a similar approach to

modelling seasonal variation can be adopted: use of varying parameters with respect to

each state. [Thyer and Kuczera, 2000] demonstrate an example of this using a Hidden

Markov Model, which determines the rainfall distribution and transition probabilities be-

tween hidden states that can only be inferred from the observation record. Another ap-

proach is to regress observed rainfall totals on climate indices [Whiting, 2006], which for

simulation would require a time-series model of the climate indices.

2.2 SINGLE-SITE RAINFALL MODELS

Due to the limited spatial extent of rain-gauge observations, single-site rainfall is solely

concerned with the temporal statistics of rain at a point in space. Having reached a ma-

ture stage of research, single-site rainfall provides the historical context for many of the

developments in stochastic rainfall modelling and much of the foundation from which

space-time rainfall modelling has emerged. The various conceptualisations of single-site

rainfall are highly associated with the scale of interest. For example annual and monthly

models can be transformed to Gaussian distributions with relative ease and for many lo-

cations they are free of no-rain observations. If these conditions are satisfied then time

series models can be employed. At the daily scale, the wet-dry intermittency and skewed

distribution of totals become significant characteristics of rainfall and requires a different

approach. Markov models and non-parametric models are popular at this scale. Sub-daily
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rainfall is characterised by even greater runs of no-rain and rainfall totals that are highly

variable and correlated in time. Event-based models and Poisson-cluster models that have

separate variables for each component of a storm are common at this scale. Temporal

disaggregation, for example from monthly to daily or from daily to sub-daily is a com-

mon counterpart to rainfall models to increase their resolution in time while preserving

the statistical properties of the model at higher aggregates.

2.2.1 Event-based models

Event-based models seek to characterise a rainfall record as a succession of storm events

dispersed by periods of no rainfall. This formulation requires the definition of what con-

stitutes an event, which is a subjective process, but is necessary so that storms can be

distinguished within observed rainfall records. This is in contrast to other models (such

as Poisson-cluster models) that allow storms to overlap in time. Many event-based mod-

els are alternating renewal models that alternate between successive wet and dry events

where random variables are assigned to the event lifetime, L, and inter-event duration D,

and the event intensity, X , as shown in Figure 2.1. A slight variation is to model the total

storm depth in preference to the event intensity.

Figure 2.1 Schematic diagram of an alternating renewal model of storm events.

Green [1965] developed early alternating renewal models in preference to Markov

models because they offer a more flexible representation of event and inter-event life-

times. Specifically, the distributions of duration can take on forms other than a geometric

distribution. Whereas Green [1965] used daily rainfall to calibrate wet and dry sequences,

Grace and Eagleson [1967] used ten-minute data for calibration and included the event

depth in their model. The authors defined the independence of storm events using a min-

imum of two-hours of no-rain, thus observed storms were able to have intra-event dry

periods less than this amount. Grace and Eagleson [1967] used linear regression to model

the conditional relationship between the event depth and event duration, a Weibull distri-
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butions for the event and inter-event lifetimes and a beta distribution for the residuals of

the event depth.

More recently, [Heneker et al., 2001] developed an alternating renewal model fitted

to six-minute rainfall data and using an independence criterion of two hours between

storm events. Modified-exponential distributions were used for the event duration and

inter-event duration and the event intensities were modelled using a Pareto distribution

with parameters conditioned on the event duration. The authors used Bayesian calibra-

tion techniques that were able to account for missing observations, which is a significant

advantage because of their prevalence in pluviograph records [Heneker, 2002]. Bayesian

calibration provides a natural framework for obtaining the predictive distribution which

allows for parameter uncertainty to be quantified. The model allows for seasonality by

partitioning the observed record with respect to each month and using separate parame-

ters in each month. To allow for long-term persistence in observed rainfall records, the

model was extended to include climatic partitions, each having their own set of param-

eters. This extension however requires an additional model to simulate the overarching

climatic process in which the rainfall model is embedded, for example, Hidden Markov

Models [Thyer and Kuczera, 2000].

The model of Heneker et al. [2001] employs a disaggregation scheme to distribute

the storm rainfall throughout the duration of the event. The total duration and rainfall

depth of each storm is represented using a dimensionless mass-curve and the disaggre-

gation proceeds via nested jumps sampled from a truncated log-normal distribution. The

model shows a good reproduction of numerous statistics across a broad range of scales

from 6-minute aggregates up to annual aggregates. The model also shows a reasonable

reproduction of extreme rainfall bursts.

A common limitation of the alternating renewal framework is that it only allows for

the definition of one event type. This can produce considerable difficulty in fitting distri-

butions to event properties when the observed data show structured relationships between

the event variables (i.e. more than one storm type). This problem is common and San-

som and Thompson [2003] addressed an alternative to alternating renewal models which

introduced a Markov framework that models multiple types of events and the transition

between them.

2.2.2 Poisson-cluster models

The Poisson distribution is derived as the discrete number of independent events on a

continuous domain according to some rate parameter. Corresponding to this, a point-
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process has a Poisson distribution for the number of events that are placed with uniform

probability over the domain of interest. For single-site models, the domain is the time-

line, though point-process models are equally common in the spatial domain. A marked

point-process is one where properties are assigned to each event according to specified

distributions. Cox and Isham [1980] present the general theory for point-process models.

Rodriguez-Iturbe et al. [1984] developed a Poisson White Noise model, which is a

type of marked Poisson model. The formulation is shown in Figure 2.2 (a) having a

Poisson process to specify the rainfall bursts in time and instantaneous rainfall intensity

as the sole marked process. The second-order moments of the model were determined and

fitted to aggregated rainfall totals. A later improvement, termed the Poisson Rectangular

Pulses model, uses an additional marked process to represent the duration of the rainfall

burst [Rodriguez-Iturbe et al., 1984, 1987a,b]. As shown in Figure 2.2 (b) the rectangles

are allowed to overlap, which is in contrast to event-based models. Where storms overlap

the resultant process is the aggregate of the pulse intensities. Variations of the models

can be achieved by specifying different distributions for the marked processes. Despite

this however, these models demonstrate inadequate comparisons to observed statistics, in

large because the arrival of rainfall is not uniform in time but clustered by association

with storm events.

Poisson-cluster models such as the Neyman-Scott and Bartlett Lewis models were

originally adapted from models for the spatial distribution of galaxies, investigation of

traffic accidents and prediction of computer failures [Neyman and Scott, 1958; Le Cam,

1961; Bartlett, 1963; Lewis, 1964]. Poisson-cluster models use a mother-daughter pro-

cess, where the mother-event distributes events across the domain according to a Poisson

process. Daughter-events are distributed within the domain relative to the mother-event

and by this association tend to be clustered together. In terms of rainfall, the mother-

process describes the Poisson arrival of storms and the daughter process describes the

arrival and properties of rain-cells associated with that storm. Rodriguez-Iturbe et al.

[1987a] show that clustered models perform better at reproducing the continuous rainfall

process than non-clustered Poisson models.

The Bartlett-Lewis Rectangular Pulse (BLRP) model is one type of Poisson cluster

model [Rodriguez-Iturbe et al., 1987a], and is depicted in Figure 2.2 (c). The storm

origins arrive according to a Poisson process, and a number of cells are associated with

the storm according to some distribution. Each cell is defined as a marked-process having

random variables to describe the cell lifetime, L, intensity, X and starting time S. The first

cell coincides with the onset of the storm and subsequent cell starting times are distributed
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Figure 2.2 Schematic diagrams for various point-processes models (a) Poisson White

Noise, (b) Poisson Rectangular Pulse, (c) Bartlett-Lewis Rectangular Pulse, (d) Neyman-Scott

Rectangular Pulse. X represents cell intensities, L represents cell lifetimes, S represents cell

start times and T represents storm start times.
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according to an exponential distribution relative to the start of the previous cell, Si+1−Si.

By way of contrast, the Neyman-Scott Rectangular Pulse (NSRP) model has the starting

time of cells following an exponential distribution defined relative to the start of a storm

Si − T . Also, the first rain-cell does not coincide with the start of the storm, as shown in

Figure 2.2 (d).

Apart from minor changes to the distributions of rain-cell properties, numerous ex-

tensions have been suggested for the BLRP model and Onof et al. [2000] provide a good

summary of these. Onof and Wheater [1993] used a gamma distribution to incorporate

parameter uncertainty into the rain-cell duration. While the proportion of dry intervals

improved, discrepancies were observed in other statistics such as the auto-correlation, av-

erage event duration and extreme values. Onof and Wheater [1994b] improved the model

by incorporating monthly seasonality into parameterisation, which improved the aggre-

gate statistics across all time scales, but it overestimated the proportion of dry intervals.

Onof and Wheater [1994a] applied the superposition of a high-frequency jitter process

onto the rectangular pulse process of the BLRP to improve the reproduction of auto-

correlations. When estimating the parameters for this model, several difficulties were

noted and methods to reduce the overall number of parameters were suggested.

Regarding the NSRP, Cowpertwait [1994] developed a generalisation of the model to

have multiple cell types which was later refined to the superposition of different storm

types [Cowpertwait, 2004]. These extensions require additional parameters but provide a

more flexible representation, for example, by allowing both intense short duration storms

and lighter longer duration storms. Cowpertwait et al. [1996a] incorporated wet-transition

probabilities into the model to improve the reproduction of historical dry spell sequences

and dry-day proportions. Cowpertwait [1998] derived the skewness property of the NSRP

formulation and used it in conjunction with hourly data to improve the reproduction of

extreme values. Another statistic derived for the NSRP is the probability that an arbitrary

interval is dry which has also been used in calibration to improve the reproduction of

dry-spells [Cowpertwait, 1991].

Poisson-cluster models require the derivation of the model properties for a given for-

mulation so that they can be calibrated to the equivalent statistics from aggregated rainfall

data. Although the parameters of the cluster models often have physical interpretation,

it can be difficult to calibrate these parameters because the model aggregates overlap-

ping cells which makes it difficult to distinguish where cells start and stop. With the

exception of Chandler [1997] who used spectral theory to develop a likelihood function,

Poisson-cluster models are mostly calibrated using weighted least-squares comparisons
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of the model properties across a range of time-scales [Salas, 1993].

2.2.3 Disaggregation models

There are many models not discussed in this review as they typically simulate at a daily or

higher timescale, whereas the interest here is in sub-daily extremes of rainfall. A common

technique to obtain sub-daily rainfall estimates is to use a daily rainfall model with a dis-

aggregation technique. Disaggregation models often consider an entire rainfall record as a

whole which is then split into rainfall sequences at a higher resolution according to some

functional relationship. The attraction of disaggregation models is that they are concep-

tually simple, they provide a parsimonious approach to describing rainfall over a broad

range of scales and, in many cases, they have provided good statistical fits. While there are

numerous approaches to disaggregation, the discussion here is restricted to fractal-based

(cascade) models.

The phenomenon of fractal patterns in rainfall is based upon empirical evidence about

scale invariant properties of rainfall and upon an analogy with random multiplicative

cascade models for fully-developed turbulence [Zawadzki, 1987; Lovejoy and Schertzer,

1990; Menabde et al., 1997]. An atmospheric turbulent regime can be thought of as parti-

tioning and concentrating energy, water and other fluxes into smaller and smaller regions.

Scale invariance refers to statistical properties that are related by a scale changing opera-

tion involving only scale ratios, such as those observed in the energy spectra of rainfall.

Multiplicative cascades are used to disaggregate rainfall from a larger scale to a finer scale

by dividing the rain into branches according to random weights. Conserved cascades orig-

inally required that rainfall amount was conserved between scales by assuming that the

weights at each scale summed to unity. Stochastic cascades were later developed by as-

suming that the weights sum to unity only on average, allowing better characterisation of

the high variability of rainfall [Menabde et al., 1997].

The scale invariant assumptions of rainfall posed by a fractal framework are seen to

be in direct contrast with the observed hierarchical organisation of precipitation fields as

modelled by conceptual models [Kumar, 1996]. While numerous authors have reported

scale invariance for a significant range of scales [Tessier et al., 1994; Burlando and Rosso,

1996] deviations from scale invariance have also been reported [Olsson, 1995; De Lima

and Grasman, 1999; Olsson and Burlando, 2002]. [Kumar, 1996] used wavelet analysis

of high-resolution temporal rainfall to demonstrate the presence of coherent structures

coming to strongly oppose the scale invariant assumption. Veneziano et al. [1996] used

empirical and analytical evidence to invalidate the scale invariant assumption, and they
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advocated the use of multiplicative cascades by developing a multiplicative model that is

scale dependent. Despite the controversy, cascade models are popular from a pragmatic

point of view: that they provide a highly parsimonious framework for modelling rainfall

at a range of scales. Disaggregation models also have several limitations, these include

the difficulty of combining them with physical processes, for example, storm advection.

2.2.4 Regionalised single-site models

An often cited limitation of single-site models is that they can only be applied at the

location of the rain-gauge used in the calibration. For example, high-quality rain-gauges

may not be situated in or near the catchment of interest, or as another example, there may

be several nearby gauges, but due to strong orographic effects, it would be preferred to

have parameters corresponding to the exact location of interest. One method to overcome

this is to calibrate the model to multiple sites and then spatially interpolate the parameters

to produce a map of parameter values for any location of interest. This technique is not

uncommon, as for example, intensity-frequency-duration parameters are mapped across

Australia [Pilgrim, 1987].

Sansom and Thompson [2003] applied the thin-plate spline interpolation algorithm

of Hutchinson [1995] to 49 separate parameters of a point rainfall model across 20 sites

in central New Zealand. It was noted that this process is not straightforward as the pa-

rameters cannot be interpolated separately since certain relationships between them must

be preserved. To overcome this an iterative process was used and additional spline sur-

faces were used to account for the relationships between the variables. The parameters

were then determined for 563 grid points of size 6 × 6 km2. Cowpertwait et al. [1996b]

conducted a regionalisation of the parameters for the Neyman-Scott model across Eng-

land using a multiple regression technique. The study uses 112 gauges, where 85 gauges

had daily data, 19 had hourly data and 8 had 1−minute resolution. The regression terms

included the elevation, the distance from the coast, a north Ordnance Survey grid refer-

ence and a binary indicator of the east-west position. Harmonic parameters were used to

account for seasonality and reduce the overall number of parameters to be regionalised.

Gyasi-Agyei and Bin Mahbub [2005] provide a regionalisation approach that builds

on the hybrid Bartlett-Lewis / jitter model. This model has been demonstrated for a wide

number of sites about Australia. They demonstrate a robust calibration approach which

makes the model stand out from other Poisson cluster models.

While regionalisation techniques based on interpolating parameters allow for a spatial

dimension in the modelling of rainfall, the resulting model remains a single-site model
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as it does not account for any space-time correlation. Nonetheless, for parameters having

a physical interpretation, a comparison of values with respect to spatial coordinate can

allow some inference about changes in the storm process across the region [Sansom and

Thompson, 2003].

An alternative regionalisation technique is demonstrated by Jennings et al. [2009] that

is used along with the model of Heneker [2002]. They use master-target approach where

power-scaling parameters are used to modify the distributions of storm properties from

the master (sub-daily gauge) to the target (daily gauge or very short sub-daily gauge).

They demonstrate their approach for a number of sites about Australia ranging up to a

separation distance of 190 km between the master and the target.

2.3 MULTI-SITE MODELS

Multi-site models provide the most common extension of single-site models in the spa-

tial domain, often by using a multivariate equivalent of the single-site process but also

incorporating spatial correlations.

Multi-site ARMA models are common at monthly or annual scales [Srikanthan and

McMahon, 2001], although they have also been applied at the daily resolution [Dalezios

and Adamowski, 1995]. With respect to daily rainfall, the Markovian framework is a more

common approach for developing multi-site models [Zucchini and Guttorp, 1991; Hughes

and Guttorp, 1999; Wilks, 1998; Harrold et al., 2003]. Thyer and Kuczera [2003] devel-

oped a daily multi-site Hidden Markov Model for simulating regional climatic persistence

and used Bayesian techniques to improve parameter estimation. Sanso and Guenni [2000]

have applied a truncated Gaussian model to 80 rainfall stations using 10 day rainfall ag-

gregations. This model utilizes a novel method for modelling the intermittency of rain,

assuming that the data correspond to normal random variates that have been truncated and

transformed. The truncated values correspond to the dry periods whilst wet periods are

represented by the transformed normal variates. This model is also fitted using Bayesian

techniques to handle dry periods, missing values and uncertainty in parameter estimates.

[Cowpertwait, 1994] implemented a multi-site version of the NSRP model having some

parameters common to all sites and calibrated to daily and sub-daily observed rainfall

records.

Common limitations of multi-site models are that they are not continuous in space as

the rainfall is modelled only at the gauge-locations. Also, unless techniques are employed

to make parameters common across multiple sites, the number of estimated parameters

can increase significantly with respect to the number of observed gauges.
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2.4 SPACE-TIME MODELS

Taylor’s hypothesis for fluid turbulence [Taylor, 1938], states that spatial correlations are

related to temporal correlations through a velocity parameter. The implementation of

radar imagery in the 1960s has verified this observation for precipitation fields and has

provided numerous other insights into the space-time structure of rainfall [Crane, 1990].

Additionally, the technological advances in computing ability have extended the horizon

of rainfall modelling from single-site rainfall to high resolution space-time modelling.

There is a wide variety of approaches that seek to model space-time rainfall including em-

pirical studies, radar calibration algorithms, short-term forecasting (now-casting) models,

design-storm models and continuous simulation models. While continuous simulation

models are the primary focus of this thesis, it is important to acknowledge the variety of

approaches as they offer scope for further innovations in space-time rainfall modelling.

2.4.1 Radar-based models

Radar rainfall estimates are inferred from remote measurements of reflectivity and are

subject to numerous errors and biases [Jordan and Seed, 2003]. For this reason, radar

calibration and empirical studies of rainfall structure are two areas of on-going research.

Although radar calibration techniques are distinct from simulation models, they provide

useful techniques for handling the spatial error structure of rain-gauge and radar mea-

surements. The most common technique for combining block (or pixel) radar estimates

and point rain-gauge measurements is block co-Kriging [Krajewski, 1987]. More recent

advances have provided improved estimates of spatial rainfall using artificial neural net-

works [Matsoukas et al., 1999], block co-Kriged Bayesian Kalman filtering [Todini, 2001]

and conditional merging [Sinclair and Pegram, 2004].

Using empirical observations of convective storms as a basis, Waymire and Gupta

[1981] provided one of the first conceptual descriptions of space-time rainfall in a mathe-

matical framework. The features of main concern are the size, shape and relative motions

of rain-cells, cluster potential regions, rain-bands and storms. Rain-bands occur within

storms and move in the same direction as the storm, sometimes faster than the storm itself.

Rain-cells within the rain-bands are born, grow, decay and die, moving in a direction that

does not generally coincide with the direction of storm movement. Also within the rain-

bands, there are regions of high rainfall activity, called cluster potential regions, where

rain-cells have a tendency to cluster. The storms are up to 250 km wide and generally

move with speeds of 20 km/hr to 90 km/hr.

Mellor [1996] implemented the specification of Waymire and Gupta [1981] in the
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Modified Turning Bands (MTB) model and were able to recreate the physical and statis-

tical aspects of a storm using physically meaningful storm parameters. This model uses

lagged correlations of radar images to determine the rain-cell velocity. Once the velocity

is determined, the spatial extent and the temporal extent of fluctuations were indepen-

dently determined and related to the lifetime and intensity of rain-cells. The average dis-

placement of the respective edges can be used to estimate the storm speed, however there

has been difficulty in estimating several storm parameters, such as the size and speed of

rain-bands and cluster potential regions. The MTB model has been successfully applied

to generate stochastic ensembles of storm evolutions, as is required for now-casting ap-

plications [Mellor et al., 2000]. There are numerous other potential applications for the

model, including rain-gauge design, expansion of historic temporal data sets into the spa-

tial domain and analysis of extreme events conditioned upon a continuous temporal model

[Mellor, 1996]. The MTB has not been applied in the context of long-term continuous

simulation, in part due to the highly computational nature of the model.

Northrop [1998] developed a space-time Poisson-cluster model for calibration to radar

rainfall observations. Storms arrive according to a Poisson process and give rise to a ran-

dom number of elliptical rain cells aligned with the direction of storm advection. Each

cell moves at the overall storm velocity for a random amount of time prior to terminating.

Rain is deposited by the cell at a random intensity that is constant over the area of the cell

and over its lifetime. Two variations of the model were investigated: (i) each cell within

the storm is displaced from the storm centre according to an envelope of Gaussian proba-

bility and (ii) each cell is uniformly located within the circumference of an ellipse about

the storm origin. The main properties of the model are derived using analytic and nu-

merical integration techniques for comparison to radar rainfall estimates. The model was

demonstrated for a single storm recorded at the Wardon Hill radar in southwest England.

Seed et al. [1999] developed a space-time model for application as a design-storm

using fractal-based techniques that are more commonly used for disaggregation. The

model uses a multiplicative bounded (multi-fractal) cascade to simulate seven different

spatial scales of rainfall. The spatial model is extended into space and time by replacing

the cascade fields of independent, identically distributed weights with fields of stochastic

processes that are correlated in time. Specifically, the cascade weights at each level were

linked to the previous time-step via an ARMA(1,1) process [Over and Gupta, 1996]. The

model also included rainfall advection by means of a Lagrangian framework. The model

was verified using rain fields produced by a monsoonal depression that passed over a

weather radar at Darwin. The model was considered easy to calibrate and the parameters
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were able to satisfactorily reproduce the statistical behaviour of rainfall over a wide range

of spatial scales (down to 2 × 2 km2) and temporal scales (down to 10 min). There was

some difficulty, however, in reproducing temporal correlations, since this depends upon

spatial correlation, temporal development, and advection speed which are all likely to be

non-stationary with an event.

Pegram and Clothier [2001a] developed the String of Beads model for sequences of

storm events. The beads constitute a sequence of stationary, two-dimensional spatial im-

ages of rainfall that are threaded onto a one-dimensional time line, the string. The string

is modelled using a Markov chain having a dry state and numerous storm states and it is

calibrated from rain-gauge data. The beads are modelled as a three-dimensional Gaussian

Random Field (GRF) having a power-law correlation in the two spatial dimensions and

in time across the multiple images in the storm. The technique used to achieve this uses a

convolution of the spectral density function with Gaussian noise in Fourier space to gen-

erate correlated images of 1 km2 pixels [Bell, 1987]. For the original model, the mean,

standard deviation and fluctuation rate of the rainfall were all conditioned on the wetted-

area ratio of the radar images [Pegram and Clothier, 2001a]. A later development of the

model improved the downscaling and temporal aspects of the model using two autore-

gressive processes to control the image mean flux and the pixel scale intensity [Pegram

and Clothier, 2001b]. The techniques employed in the model have been explicitly devel-

oped with simplicity and computational feasibility for continuous simulation in mind. It

has been demonstrated for two separate storms from the Bethlehem radar in South Africa

and was able to reproduce important statistics.

Several authors have developed space-time analogues of spatial disaggregation pro-

cesses [Mackay et al., 2001; Allcroft and Glasbey, 2003]. However, these extensions are

mostly from a statistical point of view and do not place a significant emphasis on the

physical and temporal storm structures such as storm advection, storm growth and decay.

Mackay et al. [2001] used a Markov Random Field technique that disaggregates the output

from global circulation models having grid size 40×40 km2 down to a scale of 8×8 km2.

This technique first considers the pattern of wet and dry pixels within radar images and

then conditions the rainfall intensity of wet pixels with respect to their distance from

the edge of the storm. Temporal dependence probabilities were included in the model

formulation to allow for successions of disaggregated images to be modelled. Allcroft

and Glasbey [2003] used a latent variable GRF approach to disaggregate rainfall images.

This approach uses a continuous distribution for the rainfall process, but a truncation is

applied to obtain dry-pixels and a transformation is used to model the skewed distribu-
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tion of observed rain. Similarly to Mackay et al. [2001], temporal correlation parameters

were included in the calibration so that sequences of images could be disaggregated, but

detailed modelling of the temporal evolution of the storm was not considered.

2.4.2 Gauge-based models

Two of the first attempts at space-time models involved a relatively simple Poisson process

for rain-cell occurrences in space and in time [Eagleson et al., 1987; Cox and Isham,

1988]. Eagleson et al. [1987] considered three different shapes for the spatial distribution

of the rainfall, (i) a Gaussian envelope, (ii) an exponentially decreasing envelope and

(iii) a linearly decreasing envelope. Each model had isotropic correlation, assumed a

homogeneous area and required only three parameters. The models were fitted to 428

storm days from 93 gauges over a 4 month period corresponding to the season of air-mass

thunderstorms in Arizona. In terms of gross storm statistics, the model showed good

agreement. However, the Poisson assumption of rain-cell arrival is limiting as detailed

rainfall structure is better represented as a cluster process.

Cox and Isham [1988] used a highly idealised model, consisting of only one cell per

storm, to investigate the analytic properties of space-time rainfall. Storms were defined to

arrive as a Poisson process and were characterised with four random variables: velocity,

V , lifetime, D, intensity, X , and radial coverage, R. In this sense the storm can be thought

of as a disc of constant intensity rainfall over a circular area that moves across the region

of interest. Cox and Isham [1988] provided an extension to the model where numerous

cells are associated with the a storm and follow a Bartlett-Lewis process of arrivals in

time. The storm velocity, V , is common to all cells, but all other variables (R,D, X) are

separate for each cell. While the first model allowed for simplified analytical treatment,

the more realistic cluster-based process was relatively inaccessible analytically. First and

second order moments were derived for both models, but neither model was calibrated to

observed data.

Shah et al. [1996] proposed a space-time rainfall model that uses the Turning Bands

algorithm [Matheron, 1973]. This model does not consider rain-cells or rain-bands, in-

stead it uses a fractionally-differenced ARIMA line process to create a GRF that has

correlations in space and time. The GRF can reproduce either isotropic or anisotropic

correlation structures, and several transformations are applied to the underlying GRF to

generate realistic rainfall patterns:

• a linear advection is applied to the field to mimic storm movement,

• a scaling term to decay rainfall with increasing distance from the storm centre, and,
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• exponentiation of rainfall values to reproduce the skewed distribution of rainfall.

The authors used an empirical calibration approach by adjusting parameters until a

good agreement was reached between observed statistics and simulated output from the

model. The model was calibrated to hourly rainfalls for a set of ten storms across 3 gauges

from the Upper Wye catchment, Wales, England. A grid of 250 × 250 m2 was used to

cover the 10.55 km2 area of the catchment. The model successfully reproduced observed

statistics, however the authors note that the model requires more extensive assessment

using larger catchments and more variable rainfall regimes having stronger convective

rainfall.

Sanso and Guenni [1999] developed a space time model for monthly rainfall cali-

brated to 80 rain-gauges irregularly located over a 250× 300 km2 area of Venezuela for a

time span of 16 years. The model is based on the assumption that data follow a truncated

and transformed multi-variate Gaussian distribution. A significant advantage of the model

is that it has been designed for sparse networks with historical records limited by length

and having periods of missing data. The model was implemented in a Bayesian frame-

work and makes extensive use of Markov chain Monte Carlo techniques for evaluating

missing data and parameter uncertainty. The main limitation of the model is that it was

applied at a monthly resolution at which, the transformation of rainfall to Gaussianity is

more reliable and there is less complication arising from periods of no rainfall.

Jothityangkoon et al. [2000] developed a cascade space-time rainfall model for cali-

bration to daily rainfall gauges. The model uses a first-order, four-state Markov chain to

generate a daily time-series of the regionally-averaged rainfall. Using a cascade model,

the regional rainfall totals are then spatially disaggregated down to a scale of 12.5 km

giving daily rainfall totals across all points in the region. While there is a temporal cor-

relation in the rainfall total, the model does not incorporate any pixel-to-pixel temporal

correlation of rainfall. The model was applied to a 400×400 km2 region in the southwest

of Western Australia, using 490 daily rainfall gauges over a period of 11 years. The au-

thors note that the nonuniform density of rain-gauges introduced biases in the parameter

estimates. Nonetheless, the model preserved the observed spatial patterns of long term

mean rainfall at daily, monthly and annual aggregates across the region. However, some

statistics such as the mean number of wet days and the mean wet spell length were under-

predicted, which could have a significant impact on estimated flood magnitudes when

combined with a hydrologic model. The authors suggest that this may be due to a lack of

space-time correlations in the model. While the model works well at a daily time-scale,

it is not applicable for generating rainfall fields at shorter time scales, since in that case,
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storm movement and space-time correlations will need to be explicitly incorporated. The

model can also be used to disaggregate output from global circulation models.

Willems [2001] developed a space-time rainfall model for application in small-scale

urban catchments at a sub-daily timescale. The model has a hierarchical structure which

has:

1. meso-scale storm onset including storm-lifetime and advection (the storm area is

assumed to be larger than the observing network),

2. clusters of rain cells that arrive within the storm as a Poisson process, and,

3. detailed modelling of individual cells having bivariate Gaussian shape and linked

to a diffusion equation to model cell growth and decay.

The authors developed heuristic algorithms to separate the rain-cells within the observed

records at each gauge and then link identified cells across gauges in order to track their

motion. Having separated the individual rain-cells, their lifetimes, areal extent and veloc-

ity are easily determined. The model was calibrated for the city of Antwerp, Belgium,

having a dense network of 12, 1−minute gauges located within an area of 100 km2. Over

the 3 year period, 807 storms were identified, enclosing a total of 5940 rain cells. While

the model differs from previous approaches in its detailed description of rain-cell evo-

lution, its main drawback is that it requires the presence of a dense and high-resolution

network of gauges. In addition to this, the heuristic algorithms have not been tested for a

wide variety of rainfall regimes and may not be appropriate in other locations.

Cowpertwait [1995] developed a spatial generalisation of the NSRP model that has

been applied to multiple case studies for catchments in England, Italy, and New Zealand

[Cowpertwait, 1995; Cowpertwait et al., 2002; Cowpertwait, 2004]. The model includes

all of the developments of the temporal NSRP and therefore a wide range of properties

and features are available for calibration, including:

• first and second order moments in time and space [Cowpertwait et al., 2002],

• third order moments at a point [Cowpertwait, 1998],

• dry probabilities [Cowpertwait, 1995], and

• results for a mixture of multiple storm types [Cowpertwait, 2004].

The model is stationary in space over the simulation region, therefore scaling pa-

rameters are used to standardise the observed rainfall under the assumption of a constant
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coefficient of variation (i.e. divide by the mean). This has the added benefit that the model

will preserve the mean rainfall at each of the gauges used in calibration. However, some

statistics do not scale with respect to the mean, for example the probability of a dry period

cannot be altered by this scaling procedure.

2.5 SUMMARY OF LITERATURE

There is a long history of developing continuous simulation rainfall models for sub-daily

simulation, but most of these methods have concentrated on rainfall at a single point in

space. Regarding sub-daily space-time models there are two different categories depend-

ing on whether the underlying data is based on radar imagery or on networks of rain

gauges. Of the radar models, only the String of Beads model has currently been used

for continuous simulation [Smithers et al., 2007] and all other models focus on a single

storm. There are many reasons for the focus of radar-based models on individual storms

including (i) the inherent complexity of the data source (ii) the computational burden and

(iii) use in other applications such as now-casting and (iv) difficulty in comparing radar

reflectivity estimates to rain gauge observations for bias correction. Also, since radar im-

agery only has a short observation record it is not easy to use it for simulating extreme

rainfall events (e.g. 100 year ARI).

Gauge-based rainfall models provide an alternative means for generating replicates

of sub-daily space-time rainfall. Their main benefit over radar-based models are that

gauges are more abundant and have a longer history so that extreme rainfall events can

be estimated more reliably. Furthermore, as they have less data quality issues when com-

pared to radar rainfall estimates they are easier to use. In contrast to radar-based models,

most of the gauge-based space-time rainfall models have been explicitly developed for

the purpose of continuous simulation. The main drawback of gauge-based space-time

models is that they do not provide means for combining daily rainfall and sub-daily rain-

fall estimates into the calibration procedure, thus their applicability is severely limited for

practical reasons. Of these models, the SNSRP model stands out because it can incor-

porate data into the calibration across a range of time periods. Despite the advantages

of the SNSRP model over other gauge-based models, space-time rainfall modelling is a

relatively young research area and the SNSRP model has numerous limitations. Two of

the main limitations addressed in this thesis result from the fact that the model has previ-

ously been applied to smaller regions where homogeneity is a safer assumption and where

storms can be assumed to cover the entire region. To address these limitations requires

the SNSRP model to be reformulated. Numerous other limitations of the model are ad-
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dressed in this thesis, but require changes to the calibration and simulation methodology

rather than the model itself. These changes explore issues of bias in the calibration, de-

pendency on the derivation of analytic equations, efficiency of simulation and ability to

handle climate variability.
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This chapter provides background on how the SNSRP model is implemented: model

assumptions, model limitations and the constraints posed by calibration.

3.1 MODEL FORMULATION

Figure 3.1 shows a schematic of the NSRP model for an individual site. For the ith storm,

the arrival time of storm origins, Ti, occurs as a Poisson process having rate parameter,

λ, per hour. The duration between storms is an exponential random variable having mean

λ−1. Each storm has a number of cells, C, associated with it following a Poisson distribu-

tion having mean μC . For the ith storm, the jth cell has properties: lifetime, Lij , intensity,

Xij , and start time relative to the storm origin, Sij − Ti. The cell lifetimes and start

times relative to the origin both follow exponential distributions with parameters η and β

respectively. Accordingly the mean cell lifetime is η−1 and the mean time until it starts is

β−1. The intensity, Xij , remains constant throughout the lifetime of a cell and is taken as

an independent Weibull random variable with survivor function, Pr(X > x) = e−(x/θ)α
.

Setting α = 1 gives the exponential distribution as a special case. Moments of this dis-

tribution are given as E[Xr] = θΓ(1 + r/α) so that the mean cell intensity, μX , is given

by μX = θΓ(1 + 1/α). The temporal process of the Neyman-Scott model therefore has 6

parameters: λ, β, η, α, θ, μC .

The instantaneous amount of rainfall at time t, is the sum over all cell intensities that

are alive at that time,

Y (t) =

∞∫
s=0

X(t− s)dN(t− s) d s, (3.1)

where dN(t− s) gives the number of cells starting at t− s that overlap time t. As rainfall

data are sampled over discrete time intervals, the instantaneous process is integrated for

some level of aggregation, h (in hours), such that the lth interval has a rainfall depth
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Figure 3.1 Schematic diagram of the temporal Neyman-Scott Rectangular Pulse model.

X represents cell intensities, L represents cell lifetimes, S represents cell start times and T

represents storm start times.

denoted as

Y
(h)
l =

lh∫
(l−1)h

Y (t) d t. (3.2)

Having defined the aggregated rainfall process corresponding to the model, various statis-

tics are summarised, including first, second and third order moments and the dry-portion.

The mean rainfall is the product of the storm rate, the mean number of cells, the mean

intensity and lifetime of each cell and the level of aggregation,

μh = E[Y
(h)
l ]

= λμCμX
1
η
h.

(3.3)

From Cowpertwait et al. [2002], the auto-covariance of two intervals at at a given lag,

τ , is given as,

γ0,h,τ = Cov[Y
(h)
l , Y

(h)
l+τ ]

= 2λμcE[X2]A(h, τ)/η3 + λ(μxβμc)
2A(h, τ)/(η3(β2 − η2))

−λ(μxμc)
2B(h, τ)/(β(β2 − η2)),

where,

A(h, 0) = (hη + e−ηh − 1) A(h, τ) = 1
2
(1− e−ηh)2e−ηh(τ−1)

B(h, 0) = (hβ + e−βh − 1) B(h, τ) = 1
2
(1− e−βh)2e−βh(τ−1).

(3.4)

When τ = 0, Eq. 3.4 gives the expression of the variance. The third order moment

was derived by Cowpertwait [1998] and is given by,
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ζh = E[Y
(h)
l − μh]

3 =
6λμCE[X3]

(
ηh− 2 + ηhe−ηh + 2e−ηh

)
η4

+
3λμXE[X2]μ2

Cf(η, β, h)

2η4β(β2 − η2)2

+
λμ3

Xμ3
Cg(η, β, h)

2η4β(η2 − β2)(η − β)(2β + η)(β + 2η)
, (3.5)

where the functions f(η, β, h) and g(η, β, h) are given by:

f(η, β, h) = −2η3β2e−ηh − 2η3β2e−βh + η2β3e−2ηh + 2η4βe−ηh + 2η4βe−βh

+2η3β2e−(η+β)h − 2η4βe−(η+β)h − 8η3β3h + 11η2β3 − 2η4β

+2η3β2 + 4ηβ5h + 4η5βh− 7β5 − 4η5 + 8β5e−ηh − β5e−2ηh

−2hη3β3e−ηh − 12η2β3e−ηh + 2hηβ5e−ηh + 4η5e−βh

(3.6)

g(η, β, h) = 12η5βe−βh + 9η4β2 + 12ηβ5e−ηh + 9η2β4 + 12η3β3e−(η+β)h

−η2β4e−2ηh − 12η3β3e−βh − 9η5β − 9ηβ5 − 3ηβ5e−2ηh − η4β2e−2βh

−12η3β3e−ηh + 6η5β2h− 10η3β4h + 6η2β5h− 10η4β3h + 4ηβ6h

−8η4β2e−βh + 4η6βh + 12η3β3 − 8η2β4e−ηh − 6η6 − 6β6

−2η6e−2βh − 2β6e−2ηh + 8η6e−βh + 8β6e−ηh − 3η5βe−2βh.
(3.7)

The probability that an interval is dry (which is the same statistic as the portion of

dry intervals) was derived by Cowpertwait [1995] and is given below. Eq. 3.8 can be

evaluated using routine numerical integration .

Pr{Y (h)
l = 0} = exp

[
−λ

∫ ∞

0

(1− ph(t))d t− λ

∫ h

0

(1− ph(0))d t

]
, (3.8)

where ph(t) is the probability of no rain in the interval (t, t + h) given a storm origin at

time zero,

ph(t) = exp

[
μce

−β(t+h) − μCe−βt − μCβ(e−βt − e−ηt)

η − β

]
. (3.9)

To extend the model in the spatial domain, Cowpertwait [1995] assumed that each

cell covers a circular area having a random variable, the cell radius, Rc. The cell radius

follows an exponential distribution with parameter φC having mean value φ−1
C . The cell

intensity (cell height) is constant over the entire area, such that raincells can be thought of

as cylinders. As for the temporal model, the total rainfall at a point in space is the sum of

all raincells overlapping that point. The spatial position of cell-centres, Zc, is distributed
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according to a two-dimensional Poisson process with rate parameter ϕc (per km2) which

is related to the parameter μC as

μC =
2πϕc

φ2
c

. (3.10)

This formulation is what has been referred to in earlier chapters as the SNSRP model

and it offers the simplest extension of the temporal NSRP model into the spatial domain,

requiring only one additional parameter, φc. Figure 3.2 depicts the spatial process of

cell centres and radii at some instant in time and over some region of interest, the target

region. By definition, the model is said to be homogeneous over this region as all statistics

at any point within the region will be the same. In particular, the first and second order

moments are constant over the region, since the model is stationary. Rainfall data are

however non-stationary as there are often significant trends in the mean. To remedy this

discrepancy, the observed data are standardised at each site, the procedure for which is

discussed further in Section 3.2.

Rc

Target Region 

Zc

Z1

Z2

d 

Figure 3.2 Schematic diagram of spatial cell locations and radii showing overlapping rain-

cells in time and space.

As shown in Figure 3.2, consider two generic points within the region, Z1 and Z2

separated by a distance d. The cross covariance between two points at this distance is

given as

γd,h,τ = γ0,h,τ − 2λμc{1− PZ1|Z2(φc, d)}E[X2]A(h, τ)/η3, (3.11)

where the aggregated auto-covariance γ0,h,τ is given in Eq. 3.4 and PZ1|Z2 is the
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probability of a cell overlapping point Z2 given it has overlapped Z1. Cowpertwait [1995]

derives this expression as,

PZ1|Z2(φ, d) =
2

π

π/2∫
y=0

(
φd

2 cos y
+ 1

)
exp

( −φd

2 cos y

)
dy, (3.12)

which can be evaluated efficiently using numerical algorithms. The list of properties

derived for the model are summarised below where the dependent parameters are given

in parentheses. The parameter θ is not required as a dependent parameter as the standard-

isation procedure requires all sites to be simulated with the same mean, μh. Arbitrarily

setting μh = 1, an expression for θ can be obtained in terms of all other parameters.

Therefore, the SNSRP model requires only 6 parameters to model the pattern of rainfall

occurrence and 1 scale parameter (θi) at each site, i = 1 . . . M , to preserve the mean at

that site. Seasonal variation is accounted for by using independent sets of parameters for

each month, thus there is a total of 12(6+M) parameters for the SNSRP model.

Variance σ2
h(λ, β, η, μC , α) = γ0,h,0

Coeff. of Variation νh(λ, β, η, μC , α) = σh/μh

Lag-1 Auto-correlation ρh(β, η, μC , α) = γ0,h,1/σ
2
h

Skewness κh(λ, β, η, μC , α) = ζh/σ
3
h

Dry Portion ψh(λ, β, η, μC) = Pr{Y (h)
l = 0}

Lag-0 Cross-correlation ρi1,i2,h(β, η, μC , α, φc) = γd,h,0/σ
2
h

(3.13)

Following Cowpertwait [2004], a generalisation of the model is obtained from the

superposition of n independent SNSRP (p) processes, p = 1 . . . n. In this way, mixtures of

storm types, each having different parameters, can be modelled for a given month. When

multiple storm types are used, the total rainfall at a given location for some interval l is

the sum over each SNSRP (p) process that overlaps that point,

Y
(h)
l =

n∑
p=1

Y
(p,h)
l . (3.14)

Following from this, the properties for the resultant moments are given as,

μh =
n∑

p=1

μ
(p)
h (3.15)

γd,h,τ =
n∑

p=1

γ
(p)
d,h,τ (3.16)
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ζh =
n∑

p=1

ζ
(p)
h . (3.17)

The auto-correlation and variance can be obtained from Eq. 3.16 as γ0,h,τ and γ0,h,0

respectively. The skewness can be obtained by standardising Eq. 3.17 using the overall

standard deviation, as per Eq. 3.13. The resultant dry probability from a mixture of

SNSRP (p) processes is given as,

ψh =
n∏

p=1

ψ
(p)
h . (3.18)

In the event of multiple storm types, the expression for the parameter, θh,i,k (at site i

and in month k), in terms of other parameters is given as,

θh,i,k = ˆμh,i,k

{
n∑

p=1

λ(p)μ
(p)
C Γ(1 + 1/α(p))

η(p)

}
, (3.19)

where ˆμh,i,k is the observed mean hourly rainfall at site i during month k. The gener-

alised rainfall model requires an additional 6 parameters for each additional storm type,

however it is possible to make some parameters common to both types of storms and

reduce the total number of parameters. The need for multiple storm types and the selec-

tion of which parameters to make common is discussed with respect to the calibration

procedure.

3.2 CALIBRATION STATISTICS

Consider i = 1 . . . M sites of observed rainfall at some aggregate, h, and having respec-

tive years of record, j = 1 . . . Ni. For each month k = 1 . . . 12, let the observed rainfall

depth in each interval of the month l = 1 . . . 31(24/h), be denoted x ≡ xh,i,j,k,l. Due

to the presence of corrupt and missing observations in most rainfall records, an indicator

function is introduced to mask unwanted values in the calculation of statistics. In addition

to observations that are either missing or corrupt, for notational convenience all months

are denoted 31 days but months of duration 28, 29 and 30 days are assumed to have a pe-

riod of ‘missing’ observations at the end of the month. The indicator function is therefore

defined as,

I ≡ Ih,i,j,k,l =

{
1 if valid data point

0 if corrupt/missing data.
(3.20)
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For notational convenience it is useful to respectively define the total number of valid

observations in a given month at an individual site, nh,i,k, and the total number of valid

observations across across all sites, nh,k. These are given as,

nh,i,k =
Ni∑
j=1

31(24/h)∑
l=1

I and nh,k =
M∑
i=1

nh,i,k.
(3.21)

The model outlined in Section 3.1 is stationary in both time and space, however ob-

served rainfall data is neither of these. To capture inherent seasonal variation, statistics

are calculated on a monthly basis to allow separate parameter estimates for each month.

Also, several statistics are calculated at multiple aggregates so that the variability of the

rainfall process is represented across multiple time-scales (e.g. daily and sub-daily). The

between-site variation is modelled by non-dimensionalising the data at each site using the

mean rainfall. Thus the sample mean is first computed for each site i and month k as,

μ̂h,i,k =
1

nh,i,k

Ni∑
j=1

31(24/h)∑
l=1

I · x. (3.22)

All subsequent statistics are calculated by dividing the observed rainfall estimates by

the estimate of the mean one-hour rainfall depth, μ̂1,i,k. Thus, the model parameters,

once estimated, will yield the property μ1 = 1 and the non-stationarity in the mean can

be recovered from a simulation by a multiplication with the observed value of μ̂1,i,k at

each site. While several statistics, such as correlations and the dry probability, are not

dependent on the scale of the data, this process assumes that higher-order moments such

as the variance and skewness are observed to scale with the mean. Because the data are

non-dimensionalised, all subsequent temporal statistics are pooled across the region to

yield one estimate of each statistic for the entire region rather than individual estimates at

each site. Further discussion of the homogeneity of a given region and the appropriateness

of using single estimates for an entire region is given in Chapter 9.

For the purpose of non-dimensionalising the data, the pooled mean of the region is

given below as the sum of means at each site weighted by the number of observations,

μ̂h,k =
1

nh,k

M∑
i=1

μ̂h,i,knh,i,k. (3.23)

The standardised moments pooled across all sites in the region and across all years

of observation are given below in Eq. 3.24 and Eq. 3.25 for the variance and skewness
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respectively.

σ̂2
h,k =

M∑
i=1

Ni∑
j=1

31(24/h)∑
l=1

I · x2

μ̂2
1,knh,k

− h2 (3.24)

κ̂h,k =

M∑
i=1

Ni∑
j=1

31(24/h)∑
l=1

(I · x/μ̂3
1,k − h)3

σ̂3
h,knh,k

(3.25)

Given the standard deviation, the coefficient of variation is calculated as,

ν̂h,k = σ̂h,k/h. (3.26)

The cross-correlation between two sites, i1 and i2 requires concurrent years of over-

lapping data, denoted Ni1,i2. While two gauges may have lengthy records, these may

have been taken during differing years and decades such that a cross-correlation be-

tween the gauges cannot be computed. The mutual length of the records is taken as

Ni1,i2 =min(end1, end2)−max(start1, start2) and the indicator function for each record

can be used to account for any periods where only one gauge has observed data. Whereas

there is only one estimate over the entire region for the temporal statistics, the cross-

correlation is a spatial statistic and it changes as a function of the distance. There are

multiple estimates of the cross-correlation owing to the number of pairs of gauges. No

attempt is made to average the correlation estimates with respect to distance, as each pair

of gauges will give differing distances. While individual gauges may have long records,

it is possible that some pairs of sites have short periods of overlap which leads to highly

variable estimates. The Fisher transformation can be used to determine the uncertainty

in a correlation estimate given the number of data used and a threshold can be applied if

the estimate is deemed too variable (> 250 data points was considered acceptable using

this criterion). The statistic to estimate the cross-correlation is given below in Eq. 3.27.

The numerator estimates the covariance, while the denominator standardises with respect

to the standard deviation at each site. The standard deviations are estimated from the

overlapping portion only. Even though each record may have additional data that could

improve the estimate of the standard deviations, as this data is from differing periods the
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role of climatic variability could lead to biases in the estimate.

ρ̂i1,i2,h,k =

Ni1,i2∑
j=1

31(24/h)∑
l=1

I · (xh,i1,j,k,l − μ̂h,i1,k)I · (xh,i2,j,k,l − μ̂h,i2,k)√
Ni1,i2∑
j=1

31(24/h)∑
l=1

I · (xh,i1,j,k,l − μ̂h,i1,k)2
Ni1,i2∑
j=1

31(24/h)∑
l=1

I · (xh,i2,j,k,l − μ̂h,i2,k)2

(3.27)

The auto-correlation of an individual site can be computed as a special case of Eq.

3.27 by letting the second site be a replicate of the first but at some lagged distance in

time. Since the auto-correlation is at distance zero it is pooled across all sites to give one

estimate for the region as a whole.

To calculate the dry portion of a record (or dry probability), an indicator function is

introduced based on whether the observation x in an given interval is non-zero,

D ≡ Dh,i,j,k,l =

{
1 if x = 0

0 if x > 0.
(3.28)

The dry days are the portion of the dry intervals in the total number of valid observa-

tions, given by the product of the indicator and the number of valid cells:

ψ̂h,k =
1

nh,k

M∑
i=1

Ni∑
j=1

31(24/h)∑
l=1

I ·D. (3.29)

Cowpertwait [1998] notes that the dry portion is a biased statistic because the ob-

servation record has some minimum threshold below which small rainfall volumes are

indicated as zero. For daily rainfall records from the Australian Bureau of Meteorology

this is 0.1 mm and for pluviograph records, 0.01 mm. Additional networks, from other

agencies (e.g. flash-flooding alert systems or radar calibration systems) are likely to have

different thresholds. As it is not possible to derive the portion of rainfall above a threshold

that is other than zero, this bias cannot be directly accounted for when fitting parameters.

Cowpertwait [1998] recommended omitting this statistic from calibration and checking

via simulation whether a parameter set adequately matched this statistic. The recommen-

dation was not followed in this thesis and the statistic is used in calibration despite its

known bias. The reason for this is based on preliminary observations that large discrep-

ancies were observed for this statistic for some months (∼ 10% to 20%) and especially

in the event of higher dry portions. By way of contrast the bias for a threshold less than

0.1 mm reported for two sets of example parameters in Cowpertwait [1998, Table 5] is
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less than 5%. This suggests that the benefit (in terms of ease of calibration) of including

the statistic for the dry portion can outweigh the negative effect of its bias.

The calibration proceeds by first selecting suitable daily and sub-daily gauges within

a defined region covering the catchment of interest. Not all of the gauges need to be

selected, as short gauges should be omitted in the event that they yield highly vari-

able statistical estimates, in particular, the estimate of the mean that is used in the non-

dimensionalising. The non-dimensional statistics are calculated at several aggregates,

such as 1 hr, 6 hr and 24 hr. The selection of the aggregate levels is arbitrary but should

adequately cover the dominant time-scales at which the rain processes operate (e.g. cells∼
sub-daily and storms ∼ daily). 1 hr, 6 hr and 24 hr were chosen in order to be consistent

with prior studies. Pluviograph data is used to obtain sub-daily aggregates, however its

use at a daily aggregate is limited because the daily gauges provide a more dense and

longer record of observations. Also, the presence of significant numbers of missing ob-

servation in pluviograph records means that they are often unreliable at a daily aggregate.

The model properties are calibrated to the estimated statistics using a comparison

termed the ‘method of moments’. The method of moments is a least-squares technique

between observed and estimated statistics. The calibration proceeds by minimising an

objective function defined in terms of the squared differences between observed statistics

(Eq. 3.24, Eq. 3.26, Eq. 3.25 and Eq. 3.29) and modelled properties (Eq. 3.13). The form

of this function is given as,

F1 = wψ(ψ24−ψ̂24,k)
2+

∑
h=1,6,24

wν(νh− ν̂h,k)
2+wκ(κh−κ̂h,k)

2+wρ(ρh−ρ̂h,k)
2, (3.30)

where wψ, wν , wκ and wν are weights. Values of the weights were set to be inversely

proportional to the typical ranges of each statistic: skewness - (0,50); coefficient of vari-

ation - (0,10); correlation - (0,1) and dry portion - (0,1). Cowpertwait et al. [2002] used

non-dimensional terms instead of applying weights, however as it is possible for corre-

lations to have a value close to zero this method was found to destabilise the objective

function and was thus avoided. Another factor is that the skewness statistic is much more

variable than the others, so it was less desirable to ensure that this statistic was fitted as ac-

curately as the others. The statistic for dry proportion was included at the daily aggregate

only, as this was sufficient to ensure that the calibrated dry portions are realistic. There-

fore, 10 different statistics per month are used in calibrating the temporal properties of the

model. The calibrated parameters corresponding to the temporal properties of the model

are, λ, β, α, μC , η. They are given the broad constraints λ, β, α, η > 10−5 and μC > 1.

Page 52



Calibration Statistics – Section 3.2

To calibrate the spatial attribute of the model there is only one parameter φc which is

calibrated to the cross-correlogram using a least squares objective function, which is

F2 =
∑

h=1,24

M∑
i1=1

M∑
i2=1

(ρd,h,0 − ρ̂i1,i2,h,k)
2. (3.31)

A weight is not required for this function because the model is calibrated following a

step-by-step procedure that does not compare the fit of the cross-correlations relative to

the temporal goodness of fit. Instead, the parameters obtained in the temporal calibration

are assumed to be fixed in the spatial calibration. Whereas previous calibrations have

used only the cross-correlations at an hourly aggregate, Chapter 7 highlights the need

to include the 24 hr cross-correlations into the calibration. Cross-correlations between

two sites and lagged in time are not considered because they quickly decay to zero and

because they are adequately captured by the lag-one auto-correlation function and the

lag-zero cross-correlation function.

By comparing the quality of the calibrated model to the observed statistics one can

assess whether a good fit has been achieved. If a good fit is not possible, then Eq. 3.15 to

Eq. 3.18 can be used to determine the model properties from two (or more) superposed

SNSRP processes. This effectively doubles the parameters required for calibration, how-

ever it is beneficial to make several of these common to both storms. A range of subsets

of parameters should be tested to determine the relative reduction in the sum-of-squares

to indicate whether or not a parameter is made common to both storms. Preliminary in-

vestigations have determined that β and η were the most effective parameters to be made

common across both storms, and to a lesser extent α and μC . Whether or not φc is made

common depends on the outcome of the calibration of parameters to the temporal prop-

erties. An overall reduction in the sum of squares of > 50% was considered necessary

before the benefit of using two processes was considered a viable alternative. This crite-

rion is arbitrary, hence the improvement should also be assessed using visual comparisons

of the plotted statistics. While it is possible to use three or more storms, at no stage has

this been investigated due to the substantial increase in parameters.

Having determined the parameters for the stationary model, the scaling parameter θ

can be calculated using Eq. 3.19 for each observation site. This gives the parameter set

necessary for simulating the model as a multi-site model. While the cells are able to dis-

tribute rain to locations other than observed sites, it is not possible to determine a scaling

parameter at these sites to give the corrected rainfall totals. However, it is possible to

interpolate the scaling parameters over the domain of the region using standard spatial

techniques such as kriging, thin-plate splines and regression. These techniques make al-

Page 53



Chapter 3 – Model Formulation and Calibration

lowances for explanatory variables such as distance from the coast and elevation which

can be used to reduce the variance of the interpolated scaling field. The number of addi-

tional parameters depends on the form of the equation, but a separate field should be used

for each month to capture the seasonal non-stationarity of the scaling field. While the

inclusion of additional explanatory variables is important, detailed investigation was con-

sidered beyond the scope of this thesis and the primary aim to address specific limitations

of the model.

3.3 CALIBRATION SUMMARY

The Neyman-Scott model at a single point can be obtained as a special case from the

Cowpertwait et al. [2002] model. This enables a step-wise calibration first calibrating the

temporal parameters in isolation and then calibrating the cell radius parameter to hourly

cross-correlations. Also, a step-wise iterative procedure allows for a comparison of the fit

obtained when introducing additional parameters representing different types of storms.

A further reason for a step-wise approach is that the model parameters are correlated. This

can cause a joint optimization procedure to pursue a minimal increase in the goodness of

fit at the expense of realistic interpretation or feasible implementation of the parameters

(e.g. excessive numbers of short duration cells).

A step-wise procedure for calibration of the model is given below.

1. At each site, i = 1, ...,M , the rainfall data are non-dimensionalised by dividing by

the estimated hourly mean, μ̂1,i,k (the choice of aggregate is arbitrary). Temporal

statistics are calculated from pooled data across the region, including the pooled co-

efficient of variation, auto-correlation and skewness. The sole spatial statistic used

in calibration is the cross-correlation between all gauges in the region. The statistics

are calculated at multiple aggregates to ensure that the calibrated parameters cap-

ture the rainfall process at a broad range of timescales. The number of aggregation

levels is arbitrary but should at least cover sub-daily and daily timescales.

2. A least squares objective function is defined between the observed statistics and the

model properties for all temporal statistics and aggregates.

3. For each site, i = 1, ...,M , the scale parameter of the Weibull distribution is allowed

to vary so that the mean of the process at each site is reproduced exactly. This

scale parameter, θ1,i,k, can be expressed in terms of the other model parameters.

Assuming the generalised model of Cowpertwait [2004] there are n storm types
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so that the superposition of each storm type results in a mean equal to one (for

the non-dimensionalised data). For the generalization of n storm types there are 5

parameters per storm type to be estimated. These parameters are constant across

the region. Denoting the pth storm type with a superscript, the parameters to be

estimated are (λ(p), β(p), η(p), μ
(p)
c , α(p)).

4. The model is first calibrated using one storm type. The improvement of the calibra-

tion (in a least-squares sense) by using multiple storm types is considered only in

the event of a poor fit using one storm type. This criteria is arbitrary owing to the ar-

bitrary number of statistics used to calibrate the model. A reduction of at least 50%

in the sum of squares was used in this study before two storm types were considered

preferable to one. If multiple storm types are used, it is likely that several parame-

ters will be able to held fixed across the storm types without significantly affecting

the quality of the calibration. The selection of how many and which parameters

to fix is tested using several calibration attempts, by progressively increasing the

number of parameters common to both storm types.

5. Having obtained a good fit to the temporal statistics, the calibration of spatial pa-

rameters is considered. The cell radius parameters φ
(p)
c are calibrated via least

squares to the hourly cross-correlogram assuming storms cover the entire region.

6. To simulate the model continuously in space the scaling value θ is interpolated for

all points within the region to model the non-stationarity in the mean.
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Chapter 4

Simulation Involving a Regional
Boundary

4.1 INTRODUCTION

A simulation of the SNSRP model proceeds by sampling, from calibrated distributions,

the arrival of storms, number of rain cells and cell properties over some target region.

However, with this formulation it is possible to have rain cells with centers lying outside

of a target region, yet having radii large enough to cover points within the region. This in-

troduces a boundary effect that significantly reduces the simulated rainfall depth at points

within the region if these cells are ignored. It is essential to account for this boundary

effect because the size of a rain cell is often of a similar magnitude to the size of the

target region, meaning that all points within the region (and not just those near the outer

perimeter) will be affected. One approach for avoiding this is to wrap the effects of rain

cells across opposing points on the boundary of the region. This approach is efficient and

effective with the exception that spurious cross correlations will be observed for points

separated by large distances. An alternative approach is to mitigate the boundary effect

by implementing a buffer around the target region. This approach is demonstrated to

substantially inhibit the computational efficiency of the model, hence an algorithm is pro-

posed that avoids the use of a buffer region. This algorithm directly simulates the number

of cells that occur outside of the target region yet are known to intersect it. Whereas the

buffer algorithm is approximate due to the finite size of the buffer, the direct algorithm

is exact with respect to reproducing rainfall depths within the region. The method is not

specific to the Neyman-Scott model as it could be applied to similar cluster-based models

having the same spatial structure.
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4.2 ALGORITHM FOR SIMULATION OF CELLS USING A BUFFER

REGION

Consider a target region, of fixed radius, rK , as in Figure 4.1. For any given point within

this region it is desired to model the rainfall process using the SNSRP model. According

to this model, cells associated with a particular storm arrive within the region as a Poisson

process having a spatial rate ϕcπr2
K , where ϕc is the rate parameter.

It is however also possible to have cells arrive outside of the target region, referred

to as an outer region, yet having a cell radius, Rc, greater than the distance from the

circumference of the target region to the center of the cell, Rxy. Consider therefore a

buffer, having radius, rK + r, where r is defined relative to the target region. It is possible

to also simulate cells over this region according to a Poisson process with the same spatial

rate parameter, ϕc. Cells that intersect the target region are accepted, otherwise cells that

lie solely outside are rejected.

rK

Target 
 region 

Outer 
 region 

r 

RcRxy

δξδ r

ξ

Figure 4.1 Schematic diagram of cells generated inside and outside the target region.

The arrival of cells according to a Poisson distribution requires their cells to be uni-

formly distributed over the region. Efficiently simulating uniformly over a circular region

can be achieved using a transformation to polar coordinates. The equations for simulating
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a point (x, y) uniformly within a circular region of radius rK + r are,

x = (rK + r)
√

U cos Ξ

y = (rK + r)
√

U sin Ξ, (4.1)

where Ξ ∼ Uniform[0, 2π] and U ∼ Uniform[0, 1].

To illustrate the impact of a buffer region, the Arno Basin case-study given by Cow-

pertwait et al. [2002] is used as an example. A circular target region of radius rK = 65

km encompasses all of the rain gauges within this region. Cell radii are distributed ex-

ponentially with parameter φc. For the two example months of January and July reported

values of this parameter for the Arno Basin are φc = 0.0446 km−1 and φc = 0.0983 km−1

respectively. An exponential distribution of cell radii having φc = 0.0446 km−1 is capable

of producing cells with large radii, for example, the 0.99 quantile gives a cell radius of

103 km. Even though such cells have a low probability of occurrence, they need to be in-

cluded in a simulation otherwise the simulated rainfall will be substantially lower than the

observed. For this reason, the buffer region needs to be sufficiently large to accommodate

cells that occur with large radii up to an equally large distance.

Consider different sizes for a buffer region, r, set to quantiles 0.0, 0.5, 0.8, 0.95, 0.99

and 0.999 of the exponential distribution of cell radii. The 0.0 quantile gives the case of

having no buffer. Figure 4.2 shows the simulated proportion of mean rainfall depth for

each buffer size for the two example months, where increasing buffer sizes give increasing

proportions. The non-dimensional quantity φc(rK + r) is used to standardize the cell size

with respect to the size of the region. In order to obtain accurate estimates of the simulated

proportion, the statistic was estimated from an arbitrarily long simulation of 120, 000

years length (limited only because of computational requirements). The point located at

the center of the 65 km target region was used for the comparison, while points closer to

the perimeter will demonstrate an even greater reduction in the simulated proportion.

Figure 4.2 gives a theoretical comparison for a point at the centre of the region and

shows that the proportion will reduce significantly in the event of either smaller target

regions or larger expected cell radii (smaller φc). The bias, denoted Ψ, can be obtained

theoretically as the ratio of the number of cells landing within the target and buffer region

that overlap the centre point to the number of cells that overlap the centre point for a
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region extending infinitely, given as

Ψ =

∫ 2π

ξ=0

∫ rK+r

r=0
ϕcre

−φcr dr dξ∫ 2π

ξ=0

∫∞
r=0

ϕcre−φcr dr dξ

= 1− e−φc(r+rK)(1 + φcr + φcrK).

(4.2)

Figure 4.2 Proportion reduction in simulated rainfall depth, simulations for January and

July compared with theoretical result.

Figure 4.2 shows that the size of the buffer region strongly affects the simulated statis-

tics within the region, and that large buffer sizes are necessary to avoid reduction in the

simulated statistics. For example, in January, the proportion of rainfall is 0.79 for the case

having no buffer, and for a buffer set to the 0.99 quantile (r = 103 km), the proportion

rainfall is 0.99. By comparing the two months, Figure 4.2 also shows that the proportion

of simulated rainfall varies with each month due to the variation in the parameter φc.

The computational inefficiency introduced by the buffer is proportional to the ratio

of the area of the target region to the area of the same region with the additional buffer.

Assuming, that the 0.99 quantile is used to set the buffer size, the total simulation region

is approximately 6.5 times larger for January and 3 times larger for July. For the Arno

Basin case-study, an average month has a total simulation region 4 times larger than the
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target region. This inefficiency is important given that the computational requirements for

simulating the model are intensive. In order to address this problem, the following section

develops an algorithm for directly simulating the number, location and radius of cells that

land outside of the target region yet partially cover the region.

4.3 ALGORITHM FOR DIRECT SIMULATION OF CELLS

Consider a target region, of fixed radius, rK , as in Figure 4.1. Cells arrive within this

region according to a Poisson process with spatial rate parameter, ϕc. Consider also the

same Poisson process occurring over an outer region that extends infinitely, with the ex-

ception that it is desired to retain only those cells that intersect the target region. This

occurs when the cell radius, Rc, is greater than the distance from the circumference of the

target region to the center of the cell, Rxy. The motivation then is to derive three distribu-

tions for the number, location and radius of cells, where each distribution is conditioned

on the event that Rc > Rxy. Eq. 4.3 defines the discrete distribution of the number of

cells in the outer region, No, that intersect with the target region. Having defined the

distribution for the number of cells, it is necessary to define the properties for each given

cell. The continuous distribution of cell centers, Rxy, is given in Eq. 4.4 for distances

defined relative to the circumference of the target region. This distribution is conditioned

on the event Rc > rxy, as it is more likely for cells close to the target region to intersect

it. The continuous distribution for cell radii is defined in Eq. 4.5. This distribution also

depends upon the event Rc > rxy, since the cell radius must be larger than the distance

rxy.

Pno(No = no|Rc > Rxy) (4.3)

fRxy(rxy|Rc > rxy) (4.4)

fRc(rc|Rc > rxy) (4.5)

All other properties of the cell, the intensity, duration and starting time are independent

of the location of the cell within the outer region.

4.3.1 Number of Outer Cells Intersecting Target

The following derivation relies on the Poisson distribution as the limit of a large number

of Bernoulli trials. Consider an element, as in Figure 4.1, having radial increment, δr,
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elemental angle, δξ, and total radius, r + rK , with cells arriving over that element ac-

cording to a Poisson process having rate, ϕc. The probability of one cell landing inside

the element is proportional to the elemental area, (r + rK)δrδξ, multiplied by the spatial

rate. The probability of more than one cell landing in the element is of the order (δrδξ)2

and becomes zero in the limit. If a cell radius is distributed exponentially with parameter

φc, then the probability that a cell, landing at distance r, intersects the target region is the

survivor function, e−φcr. Thus the probability that a cell lands in the element and extends

to the target region is given as,

p(r) ∝ ϕc(r + rK)δrδξ e−φcr. (4.6)

The proportionality factor required for Eq. 4.6 is obtained from the Poisson distribution

as e−ϕc(r+rK)δrδξ. This factor is omitted from the resulting derivation for notational con-

venience as the probability in Eq. 4.6 is linearized with respect to ξ when taking the limit

δξ → 0, since this gives e−ϕc(r+rK)δrδξ → 1. It is clear from Eq. 4.6, that for a fixed

elemental angle δξ, the associated probability will vary with respect to the radius. Alter-

natively, for an arbitrary constant, p(r) = po, on rearranging Eq. 4.6, the elemental angle

can be made to vary for a given radius to ensure that each element maintains this fixed

probability, given as,

δξ(r) =
po

ϕc(r + rK)δr e−φcr
. (4.7)

The set of elements, varying across all radii in the outer region and having elemental

angles for a given radius specified by Eq. 4.7, define a set of Bernoulli trials. Each trial

has a fixed probability, po, that a raincell lands in the elemental area at radius r and also

intersects the target region. At a given radius the number of Bernoulli trials is given by

2π/δξ(r), and the total number of trials, Ntot, can be obtained by integrating over all radii

in the outer region,

Ntot =

∫ ∞

r=0

ϕc2π(r + rK)

po

e−φcrdr

=
ϕc2π

po

(
rK

φc

+
1

φ2
c

)
.

(4.8)

A set of Bernoulli trials of size Ntot, from which no will be successful is distributed

according to a binomial distribution with,

PNo(No = no) =

(
Ntot

no

)
pno

o (1− po)
Ntot−no . (4.9)
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The Poisson distribution is derived as the limit to the binomial distribution as Ntot →
∞ and is specified with a rate parameter, Ω = poNtot. Consequently, the number of cells

in the outer region that have radius large enough to reach the target region is Poisson

distributed with parameter Ω,

(No = no|Rc > Rxy) =
Ωno

no!
e−Ω, (4.10)

where the parameter Ω = ϕc2π
(

rK

φc
+ 1

φ2
c

)
is obtained from Eq. 4.8.

4.3.2 Cell Centre Conditioned on Intersecting Target

The probability that a cell intersecting the target comes from an element with radial incre-

ment, δr, and elemental angle, δξ, is the ratio of the expected number of cells with centre

in the element that intersect the target, to the expected number of outer cells that intersect

the target. This is defined as,

P (Rxy = rxy|Rc > Rxy)

=
ϕc(rxy + rK)e−φcrxy δrxy δξ∫∞

rxy=0

∫ 2π

ξ=0
ϕc(rxy + rK)e−φcrxy drxy dξ

.
(4.11)

Evaluating the denominator for all angles 0 < ξ ≤ 2π, and all radii (0 < rxy ≤ ∞), and

taking the limit δrδξ → 0 this becomes the continuous distribution,

fRxy(rxy|Rc > rxy) = wφce
−φcrxy + (1− w)φ2

crxye
−φcrxy , (4.12)

where the resulting expression in Eq. 4.12 represents a mixture of an exponential

distribution, Exp[φc], and a gamma distribution, Gamma[2, 1
φc

], and where the mixture

ratio w = φcrK/(φcrK +1) depends upon the radius of the target region and the parameter

for cell radii. For larger target regions and smaller expected cell radii, the distribution in

Eq. 4.12 will tend toward an exponential distribution. The simulation of a point within

the outer region requires a random angle, ξ, which can be independently sampled from a

uniform distribution Ξ ∼ Uniform[0, 2π], giving the coordinates of the point as,

x = (Rxy + rK) cos Ξ

y = (Rxy + rK) sin Ξ.
(4.13)

4.3.3 Cell Radius Conditioned on Location

Given that a cell has landed in an element at a distance rxy from the edge of the target

region, for the cell to intersect the region, its radius must be greater than the distance rxy.
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Given that the cell radius is exponentially distributed and that rxy is the constant defined

by Eq. 4.12, the remaining distance Rc − rxy is also exponential, based on the standard

properties of this distribution. The distribution of the cell radius is therefore given as,

fRc(rc|Rc > rxy) = φce
−φc(rc−rxy). (4.14)

Simulation of the direct algorithm proceeds as previously outlined for the arrival of

storms and occurrence of cells over the target region. For the cells that land outside

the region yet intersect it, the number of cells is sampled using Eq. 4.10, their location

is sampled using Eq. 4.12, and their radius is sampled using Eq. 4.14. All other cell

properties such as the starting time, lifetime and intensity are independent of the location

of the cell.

4.4 RESULTS AND DISCUSSION

To demonstrate that the bias of the proposed algorithm is practically negligible, 100 repli-

cates of 1,000,000 years length were simulated for the Arno Basin case-study. The re-

sulting median proportion of rainfall was 0.99987, with a standard deviation of 0.0008,

which arises because of the finite simulation length. This proportion is not statistically

significantly different from a value of 1.0 at the 90% level.

To illustrate the efficiency of the direct simulation algorithm a comparison was con-

ducted with the buffer algorithm for the Arno Basin case-study. Results for the direct

algorithm are presented in Figure 4.3 as a proportion of the requirements for the buffer

algorithm for a range of values of the non-dimensional quantity ω = φcrK . The results

were obtained using values of φc reported for the 12 months of the year for the Arno

Basin case-study and for a range of target regions rK = 20, 40, 60, 80, 100 km. For each

month, the radius of the buffer region, r, was specified as the constant corresponding to

the 0.99 quantile of the cell radii for that month. The results are reported for two vari-

ables, the memory usage and simulation time. Because the results of the direct algorithm

are reported as ratios of the buffer algorithm, they can loosely be considered indepen-

dent of the computational platform. The efficiency is largely independent of the number

of simulation years, and a length of 300 years was used in order to measure run-times

with sufficient accuracy. It is important to note that the measured efficiencies depend to

some extent on the details of implementation in the computer code, since there is often a

trade-off between memory usage and computational time. Therefore, Figure 4.3 should

be regarded as an indication of the order magnitude of the efficiency and as a qualitative

indication of the trend in efficiency with respect to various attributes.
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Figure 4.3 Comparison of direct-algorithm and buffer-algorithm for proportion of memory

usage and simulation run time. Results reported for a range of sizes of the target region using

different parameters across 12 months.

Figure 4.3 shows that the proportion of memory usage across the various months and

target regions respectively follow two curves, with scatter attributed to random variation

of the simulating process and the variability of parameters other than φc for each month.

To interpret Figure 4.3, consider a parameter value of φc = 0.1. For for a small radius of

the target region, rK = 20 km, the buffer region is comparatively large to the target region,

hence the direct simulation method is considerably more efficient. The direct method

gives a proportion of memory usage at 0.25 and a proportion of duration at approximately

0.6. For a target region having a large radius of rK = 100 km, the buffer region is not as

comparatively large, hence the efficiency of the direct method is reduced. At this radius,

the proportion of memory usage is 0.4 and the proportion of duration is approximately 0.8.

For this latter case, it is important to note that even a small reduction in the duration of the

simulation is significant since a simulation will always maximize the available resources,

for example by increasing the simulation length or by computing additional replicates.

Similar comparisons could be made from Figure 4.3 by considering the variation with

respect to the parameter φc with respect to a fixed target region.
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4.5 CONCLUSION

The need to simulate cells outside of a region of interest was demonstrated in order to

avoid significant boundary effects. An efficient method was derived for directly simu-

lating these cells without the use of a buffer region. The performance of the algorithm

varies with respect to the parameter values and the size of the target region, but in all

cases it was demonstrated to provide considerable improvement. The significance of the

direct method is due to the computationally intensive nature of the model and the desire

to increase simulation lengths and the number of replicates of the model.
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Calibration Involving a Monthly
Boundary

5.1 INTRODUCTION

The calibration technique of using separate parameters for each month implies that there

is a boundary at each month and that the rainfall regime switches over at this boundary.

This is of concern because it is possible for a storm origin occurring within a given month

to generate raincells that do not land within that month but within the following month.

The most obvious example is for a storm occurring on the last day of the month, however

given certain parameter values this may not be the sole case. The main parameter in

question is β, which controls the displacement of raincells relative to a storm origin. The

mean value for cell displacement is given as β−1 hours, thus, if a typical value of beta

is 0.01, then the average cell displacement is a period of 4 days and the 0.95 quantile is

12.5 days. This scenario is not uncommon when calibrating the Neyman-Scott rainfall

model and it represents a conceptual limitation of the model. That is, while intuitively

one may expect that rain may begin within a period of hours of storm inception, the

model is capable of generating large displacements between the storm origin and the first

occurrence of rain associated with that origin. This scenario comes about because the

location of the storm origin is hidden and does not itself result in a burst of rainfall. Thus,

in the observed record the first appearance of the storm coincides with the first rainfall

cell and the location of the origin becomes immaterial. However, the exception to this is

at the location of a monthly boundary.

While the rainfall model is conceptual, a calibration proceeds by obtaining parameters

that give the best fit in statistical terms only. Therefore it is possible that parameters giving

the best fit do not have the most realistic interpretation. The parameter β, controlling the

dispersion of cells, is strongly related to statistical properties such as the skewness and
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auto-correlation and in order to obtain accurate fits it is possible to generate physically

meaningless values. For example, Cowpertwait et al. [2002] reports a value β = 0.00446

for one of the months, which has a mean displacement of approximately 9 days and at the

0.95 quantile this displacement is 28 days. In other words, a storm on the 4th of January

will have, on average, 5% of the rain associated with it occurring at the start of February.

Storms beginning closer to the end of the month will have even higher portions of rainfall

landing outside the month of origin. This will significantly affect the simulated statistics

as they will not match the observed statistics that were used to calibrate derived properties

of the model.

A simple remedy for this is to wrap rainfall across a monthly boundary, analogous to

a clock going from 12 back to 1. Following the prior example, if rainfall associated with

a January storm lands on the 1st of February it is instead made to land on the 1st of Jan-

uary. Statistically, this solution is feasible as the modelled rainfall process within a given

month is stationary and the locations of storm origins are independently and uniformly

distributed. However, the solution is physically undesirable as it could be detected with

the eye that storms appear to abruptly stop at the end of a month and a suitable statistic

could be easily developed to show this.

An alternative solution is to calibrate the parameters across all months simultaneously

such that the amount of rainfall lost to the following month is balanced with the amount

of rainfall gained from the preceding month. Technically, this will make the timeseries of

rainfall within a month non-stationary, as the rain at the start of a month will be a mixture

of the properties for the two months where the mixture proportion decreases further into

the month. This artefact is however not undesirable since it is likely to mimic the true

rainfall process and provide some remedy (though unquantified) to the arbitrary binning

of observed data into 12 rigid periods of approximately 31 days over which the rainfall is

assumed to be stationary.

5.2 DERIVATION OF MONTHLY BIAS

To derive the amount of rainfall falling outside of a monthly boundary it is necessary to

consider two cases (i) cells landing entirely beyond the monthly boundary and (ii) cells

partially landing beyond the monthly boundary. Figure 5.1 shows a schematic diagram

for these two scenarios.

For the case shown in Figure 5.1 (a) it is necessary to consider all possible locations

for a storm origin on the interval s = [0, t] taken relative to the end of the month. The

probability that a cell lies beyond the end of the month is given by the survivor function
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Figure 5.1 Schematic diagrams of rainfall landing outside the month boundary, (a) rain-

cells entirely beyond the boundary and (b) raincells partially beyond the boundary.

e−βs and the total amount of rain for this cell is obtained as a product with expected values

for: the rate of storms λ, the mean number of cells per storm μc, the mean cell intensities

μX and mean cell duration η−1. For the case shown in Figure 5.1 (b), all storms on the

interval s = [0, t] must again be considered, but the starting time of a given cell must occur

prior to the month boundary. Therefore, all cell displacements on the interval u = [0, s]

relative to the storm origin are considered. The probability that rain lands beyond the

boundary is then the probability that a cell lands prior to the boundary βe−βu multiplied

by the probability that that cell does not terminate prior to the end of the month, given as

the survivor probability, e−η(s−u). The total rainfall is then multiplied by the rate of storms

λ, expected number of cells μC , expected intensity μX and expected duration of the cell

beyond the monthly threshold. The expected lifetime of the cell beyond this threshold is

obtained as

E[V ] =

∞∫
v=0

vηe−ηv dv =
1

η
, (5.1)

which is a standard result that the mean of a survivor function (relative to some thresh-

old) is the same as the mean of the exponential distribution relative to zero. Using these

two cases, the total amount of rain lost to a subsequent month, ε, is given as,

ε =
λμCμX

η

t∫
s=0

e−βs d s +
λμCμXβ

η

t∫
s=0

s∫
u=0

e−βse−η(s−u) d u d s. (5.2)
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Evaluating the integrals gives the result,

ε =
λμCμX

η

[
(1− e−βt)

β
+

(1− e−βt)

(η − β)
+

β(e−ηt − 1)

η(η − β)

]
. (5.3)

It should be noted that a simplification has been used in the derivation: that the du-

ration of a subsequent month extends infinitely rather than having a finite range. This is

unlikely to affect the equation significantly due to the low probability of rainfall landing

two or more months after a storm origin. Ignoring then the effect of rainfall displaced by

two or more months, for months k = 1, . . . , 12, the bias is determined as the portion of

rainfall simulated in a given month,Ψk, is then,

Ψk =
μk,h − εk + εk−1

μk,h

, (5.4)

where December precedes January (ε0 ≡ ε12 and where the μk,h is calculated from Eq.

3.3 using a monthly aggregate level, h(k) = 24{31, 28, 31,30, 31, 30, 31,31, 30, 31, 30, 31}.
Eq. 5.4 was used to inspect the parameters reported by Cowpertwait et al. [2002] for the

Arno Basin case-study. Table 5.1 reports the the mean amount of rainfall for each month

(non-dimensionalised such that μ1 = 1), the mean amount of rainfall that lands in the

subsequent month, ε, and the bias in the rainfall mean, Ψ, for that month. The parameters

β and η are reported for comparison with the bias because they control (i) the probability

of a cell landing outside of a month and (ii) the probability of a cell within the month

having a lifetime that extends beyond the month boundary. The percentage of the bias

contributed by the latter case is also reported in Table 5.1.

Table 5.1 shows that the bias in the mean can be significant, ranging from 0.74 up to

1.29 for this case-study. It is also evident that large amounts of rainfall occurring after

a monthly threshold are related to smaller values of the β parameter. The percentage

of the bias controlled by the η parameter (when cells partially extend beyond the month

threshold) is quite small with respect to the case where entire cells are located beyond

the month boundary. This suggests that β is the dominant parameter of interest. To

clarify this, the bias is shown in Figure 5.2 with respect to the ratio of parameters βk/βk−1

between the current and preceding month. This figure shows that when this ratio is higher,

it implies that the current month gains rainfall from the prior month relative to the amount

it loses to a subsequent month. The figure shows some scatter due to variation in the other

parameters between months (and for the same reason a ratio of one may not correspond

exactly to the case of no bias).
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5.3 CASE-STUDY

A mechanism to remedy this is to jointly calibrate pairs of months together to obtain pa-

rameters, for example, say January and February parameters, such that the parameters for

February allow for rain contributed by January. As the parameters for January depend on

December, December on November and so on, this procedure requires a joint calibration

of parameters across all 12 months. This is a significant increase in the parameter space.

Properly determining model properties under this scenario is a complicated task as the

resulting model is non-stationary in time (with rain at the start of the month being more

similar to the prior month). Instead, an approximation is used in this section whereby

non-stationary effects are ignored and the properties of the monthly rainfall process are

considered as the mixture of rainfall between the current and preceding month. The mix-

ing proportion is the amount of rainfall contributed by the previous month with respect to

the total amount of rainfall within that month. The mixing proportion, wk is thus,

wk =
εk−1

μk,h − εk + εk−1

. (5.5)

A joint calibration using this approach was performed for the Arno Basin case-study.

The results are shown in Table 5.2. From this table it can be seen that parameters were

obtained such that the bias reduces to a value close to one. This does not correspond to

the case of zero rainfall crossing the monthly threshold, as ε is non zero for all months.

Table 5.1 Bias in the mean rainfall due to rain landing outside of a month which that storm

is associated with.
Month β η μ ε Ψ % partial cells

1 0.00446 0.738 744 217.4 0.74 0.6

2 0.051 0.929 678 20.7 1.29 5.2

3 0.061 1.09 744 17.3 1.00 5.3

4 0.014 1.2 720 72.3 0.92 1.2

5 0.0513 1.55 744 20.1 1.07 3.2

6 0.00888 2.1 720 112.9 0.87 0.4

7 0.0185 2.63 744 54.4 1.08 0.7

8 0.0189 2.62 744 53.3 1.00 0.7

9 0.0195 2.05 720 51.8 1.00 0.9

10 0.00906 1.42 744 110.9 0.92 0.6

11 0.00973 1.05 720 103.6 1.01 0.9

12 0.0439 0.871 744 23.9 1.11 4.8
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Figure 5.2 Bias in the mean rainfall, Ψk, for month k with respect to the ratio of parameters

βk/βk−1 controlling cell displacement in each months.

Instead it shows that the variability in the amount of rainfall crossing each month has re-

duced significantly and approximately the same amount of rainfall is allowed to land in

a subsequent month as is received into that month. Table 5.2 shows the corrected β pa-

rameters with respect to the original values and it can be seen that they have all increased,

implying that storms are less dispersed. Attempts to force other calibration solutions

where an overall increase to the β parameters was not necessary (i.e. by maintaining a

non-trivial value of the mixing proportion) were unsuccessful. It can therefore be con-

cluded that the solution to the calibration was found by reducing the mixing proportion of

rainfall to a value close to zero yet similar across all months. Due to the larger value of β

it can be concluded the trivial amount of rainfall that lands over a month threshold comes

from the latter days in that month, which is a realistic outcome. Table 5.2 also shows that

for the improved calibration, the percentage of rainfall attributed to the parameter η is still
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small compared to the influence of the β parameter.

Table 5.2 Bias in the mean rainfall after constrained parameter estimation.

Month β prior β corrected μ ε Ψ % partial cells

1 0.004 0.116 744 9.3 1.01 7.5

2 0.051 0.093 678 11.6 1.00 6.7

3 0.061 0.097 744 11 1.00 6.5

4 0.014 0.083 720 12.7 1.00 4.6

5 0.051 0.083 744 12.6 1.00 4.6

6 0.009 0.100 720 10.3 1.00 3.6

7 0.019 0.104 744 9.9 1.00 3.3

8 0.019 0.191 744 5.5 1.01 4.7

9 0.020 0.089 720 11.6 0.99 3.2

10 0.009 0.084 744 12.4 1.00 4

11 0.010 0.083 720 12.7 1.00 5.4

12 0.044 0.074 744 14.5 1.00 6.5

The improved calibration requires other parameters to change to compensate for the

necessary change in the β parameter. To verify that the β parameter is the most sensitive

when the constraint of no bias is applied to the calibration Figure 5.3 shows the changes

in all other parameters from their original value to their corrected value.

Figure 5.3 shows that β is the most sensitive parameter as it has the largest deviations

from the 45◦ line. Note that there is no significance in the fact that most parameters appear

above the 45◦ line as some parameters are inversely related to the total amount of rainfall

while others are not. The smaller the value of β the larger the change in value, which in

some instances was an order of magnitude. The other parameters show some variation,

but not as significant.

5.4 CONCLUSION

The case-study demonstrates that the effect of a constraint on the monthly bias in the

mean is to increase the parameter that controls the cell dispersion. Typical values for this

parameter are on the order of β ≈ 0.1 to ensure that significant amounts of rainfall do

not land in subsequent months. The calibration technique to implement this constraint is

cumbersome as it requires all 12 months to be jointly calibrated, which is a significant

increase in the parameter space. While it is possible to perform this type of calibration

for subsequent case-studies, a more direct approach is to check that the parameter β is
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Figure 5.3 Change in parameters accounting for monthly bias. β is the parameter most

sensitive to the bias correction.

not too small and if necessary provide a lower bound to the value taken by this parameter

in the calibration. A secondary observation is to ensure that the variation in β is not too

significant between the months.
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6.1 INTRODUCTION

Neyman-Scott and Bartlett-Lewis models are conceptual rainfall models based on the

Poisson clustering of rainfall in time. They have been used extensively to model ob-

served rainfall data at a single gauge, at a set of gauges and also radar rainfall estimates

[Northrop, 1998; Wheater et al., 2005]. The method for calibrating models that belong to

the Poisson-cluster family has typically involved minimising the difference between ob-

served statistics and the equivalent analytic properties of the model, known as the method

of moments. This approach is adopted since likelihood functions are not tractable in terms

of direct comparison to observed rainfall measurements at a given aggregate. Chandler

[1997] has demonstrated a technique for calibrating a Poisson-cluster model using a like-

lihood function, by employing spectral theory, however this method is not common. No

matter what calibration method is used, a central requirement is the need to specify the

analytic properties of the model for the selected statistics used in the calibration. For a

given model specification, deriving the corresponding properties can be a non-trivial and

in some instances non-tractable task. This limits the flexibility for specifying alternative

model formulations, as only those that yield simple expressions are considered.

Instead of expressing the analytic properties of the model, a Monte Carlo Simulation

method (MCS) is proposed for use in calibration. For a given parameter set, the model

is first simulated and statistics of interest are calculated. Longer records will yield statis-

tical estimates that have less variability than those estimated from a shorter record. The

simulated statistics may be then compared to their equivalents calculated from observed

data, as per the method of moments. This procedure gives an indication of the goodness-

of-fit for the given parameter values, and it can be employed with an optimiser to locate
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parameters that model the data well.

This chapter considers the performance of calibration using MCS with respect to using

known analytic expressions for the model. The following section outlines modifications to

the SNSRP calibration procedure to ensure that it can be feasibly calibrated using MCS.

A case study is subsequently presented for comparing the MCS calibration method to

calibration using analytic expressions. The region surrounding Launceston, Tasmania,

having 35 suitable daily rainfall gauges and 6 pluviograph gauges, is considered for this

study.

6.2 CALIBRATION METHODOLOGY

Recall that the SNSRP model requires six parameters (λ, α, μC , β, η, φ) to simulate rain-

fall over a region, with a different parameter, θ, calculated at each site to scale the non-

stationarity in mean rainfall across a region. While the model allows for the mean to

vary, the coefficient of variation and the probability of a dry period are both assumed to

be constant over the region, thus the region should be homogenous with respect to these

statistics. Seasonality of the data is taken into account by fitting a different set of parame-

ters for each month, thus for M sites, there is a total of 12×6 model parameters + 12×M

scaling parameters.

As outlined by Cowpertwait et al. [2002], the above model assumptions enable ana-

lytical expressions to be derived for various properties of the model in terms of the model

parameters. The properties used for calibration in this study are the coefficient of varia-

tion, lag one autocorrelation, skewness and lag zero cross correlations between each pair

of sites. Since the model assumes the rainfall process to be stationary in space, the model

properties are calculated for a non-dimensional case, where each observation site is scaled

to have an hourly mean rainfall depth of 1 mm. By non-dimensionalising the model prop-

erties over a region, the observed data can be pooled across that region to yield a set of

regional statistics used for calibration. The model properties are calibrated at multiple

aggregates to ensure that the model performs adequately at a range of time scales. For

this purpose, 3 aggregates at 1-hour, 6-hour and 24-hours are considered.

The MCS calibration exploits the ability to calibrate the model in a step-wise proce-

dure. Specifically, the temporal parameters are calculated assuming that the set of regional

statistics are equivalent to a set of statistics at a single observed point. That is, the model

is first calibrated as a point rainfall model. Having obtained an optimal set of temporal pa-

rameters, the parameters that describe the spatial extent of the model are then calibrated.

The benefit of this approach is that the majority of the parameters relate to the tempo-
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ral process and it is significantly more efficient to simulate the temporal process without

regard for the spatial distribution of rain.

Due to the finite length of a simulated record, there is sampling variability induced

in the estimated statistics. Preliminary investigations revealed that a gradient-based opti-

miser was too sensitive to this variability, even for simulated records having length greater

than 1,000,000 years. Therefore, a stochastic optimiser (shuffled complex evolution) was

employed for the simulated calibration. This, significantly increased the computational

burden of calibration, limiting simulations to 10,000 years. Whilst a length of 10,000

years may appear excessive given that the observed data is typically less than 100 years

in length, it is equivalent to estimating the expected value of a statistic from say 100

replicates of 100 years each.

Preliminary results indicated that the skewness statistic estimated from a 10,000 year

record was too variable, which caused difficulty for the optimiser to locate good param-

eter sets. To address this limitation, an alternative statistic, the L-skewness is considered

[Hosking and Wallis, 1997]. The L-skewness is formulated as a linear combination of

order statistics for the simulated data, and is therefore less variable than the product-

skewness for a given sample size. For a ranked data set, X , where the jth order statistic

is denoted Xj , the L-skewness is defined as,

t3 =
6b2 − 6b1 + b0

2b1 − b0

, (6.1)

where,

br =
1

n

n∑
j=r+1

(j − 1)(j − 2) . . . (j − r)

(n− 1)(n− 2) . . . (n− r)
Xj. (6.2)

While the need to implement the L-skewness results from a limitation of the MCS cal-

ibration approach, it also demonstrates the main advantage of this approach. Specifically,

the ability to select alternative statistics for use in calibration without recourse to deriving

the same statistic in terms of the model parameters. Linear moments are a good exam-

ple of this, since for the same reason that a likelihood function in terms of direct rainfall

observations is not tractable, the properties of linear moments are not tractable (i.e. the

rainfall distribution at a timescale of interest cannot be derived). For this investigation,

the L-skewness was the only alternative statistic used in the calibration. It is important to

note, however, that the simulated approach enables any statistic to be included provided

it can be reliably estimated from the simulated data.
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6.3 CASE-STUDY

The SNSRP model is calibrated to a network of gauges in the vicinity of Launceston,

Tasmania, as shown in Figure 6.1. Tasmania experiences strong gradients in rainfall, par-

ticularly between the East Coast, the interior and the West Coast, but also between the

northern and southern extent of the island. Launceston belongs to Rainfall District 91,

as defined by the Bureau of Meteorology, which extends across to the north-west corner

of Tasmania. Within this region, 35 daily rainfall gauges located with close proximity to

Launceston were selected, in addition to 6 pluviograph intensity gauges (6 min). Several

pluviograph records were included in the calibration despite their increased distance from

Launceston because of their length of record and their similarity in terms of first and sec-

ond order moments. However, not all of the daily gauges within the region were used

due to the limited length of some records and because employing a larger region dimin-

ishes the assumption of homogeneity over that region. Excluding the remote pluviograph

gauges, the simulation region is approximately 40× 40 km2.
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Figure 6.1 Spatial coordinates of observation gauges about Launceston, Tasmania.

The average observation length of the pluviograph gauges is 37 years, with dura-
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tions ranging from 30 years to 68 years. The average observation length of the daily

gauges is 59 years, with durations ranging from 31 years to 117 years. The annual rain-

fall is 720 mm with winter rainfall approximately double the quantity of summer rainfall

(monthly averages 41mm, January; 86 mm, July). The winter rainfall is also more vari-

able than summer (coefficient of variation 0.32, January; 0.46, July).

The observed and fitted statistics used in the calibration of the SNSRP are presented

in Figure 6.2, for each of the three aggregates, 1 hour, 6 hours and 24 hours. Figure 6.2 (a)

shows the observed coefficients of variation (ν̂1,ν̂6,ν̂24); Figure 6.2 (b) shows the observed

autocorrelations (ρ̂1,ρ̂6,ρ̂24); and Figure 6.2 (c) shows the observed non-dimensionalised

product-skewnesses (κ̂1,κ̂6,κ̂24). The model calibrated using analytic expressions (solid

line) shows a very good agreement to all of the statistics, though the higher aggregates

(24 hour and 6 hour) are fitted better than the 1 hour aggregate. The statistics calibrated

using MCS show a similar agreement, however the fit is slightly poorer for all months

(excepting December, in which it is marginally better). Again, the largest deviations

are observed for the 1 hour aggregate, and for the skewness in particular. While the L-

skewness was used for the simulated calibration, the equivalent product-skewness has

been presented in Figure 6.2 (c) to facilitate comparison.

Figure 6.3 demonstrates the calibration of the model to hourly values of cross-correlation.

The months January and July are respectively shown in Figure 6.3 (a) and Figure 6.3 (b)

as example calibrations. It is evident from these figures that the model provides an ad-

equate fit to the data, but this is difficult to conclusively verify given the low number of

sub-daily gauges used in the calibration.

For each month, k, Table 6.1 shows the parameter estimates for the 6 parameters

obtained using the gradient based optimisation of the analytic expressions. Table 6.2

gives the equivalent parameter values obtained using MCS with a stochastic optimiser.

By comparing the two tables for any given month it is evident that the two methods have

not converged to the same parameter values.

Whilst some of the parameters give highly similar values for any given month (for

example the storm rate, λ, and the cell radius, φc), other parameters are significantly

different (for example, μC). Despite this, it is evident that across all of the months, the

calibrated parameter sets lie within similar ranges of each other. The ability of the model

to yield parameter sets of similar quality (as observed in Figure 6.2 and Figure 6.3) yet

having contrasting parameter values, suggests a limitation of the conceptual formulation:

that it is over-parameterised. The observation of variability in parameter values for a near

optimum fit to the data occurred irrespective of the calibration method. Therefore, the
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Figure 6.2 Observed statistics for aggregates 1 hr (diamond), 6 hr (square) and 24 hr (tri-

angle) compared with model properties calibrated respectively using analytic expressions

(solid) and MCS (dashed): (a) coefficient of variation, (b) auto-correlation, (c) skewness (non-

dimensionalised).

Page 80



Case-study – Section 6.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250
Distance (km)

C
ro

ss
-c

or
re

la
tio

n
Observed
Analytic Calibration
Simulated Calibration

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250
Distance (km)

C
ro

ss
-c

or
re

la
tio

n

Observed
Analytic Calibration
Simulated Calibration

(b)

Figure 6.3 Comparisons of cross-correlations for 1 hour observations (diamond) model cal-

ibrated using analytic expressions (solid) and MCS (dashed) for two example months: (a)

January, (b) July.
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Table 6.1 Launceston parameter estimates for each month, via analytic expressions.

λ̂ β̂ η̂ μ̂C α̂ φ̂c

k h−1 h−1 h−1 - - km−1

1 0.0037 0.106 1.49 20.0 0.626 0.067

2 0.0035 0.131 1.28 24.7 0.536 0.096

3 0.0040 0.088 1.26 15.0 0.657 0.080

4 0.0046 0.083 1.30 22.0 0.722 0.052

5 0.0061 0.100 1.49 32.0 0.623 0.067

6 0.0082 0.115 1.32 35.0 0.587 0.074

7 0.0085 0.099 1.07 29.0 0.616 0.069

8 0.0092 0.108 1.37 36.0 0.572 0.111

9 0.0093 0.132 1.13 19.1 0.636 0.062

10 0.0084 0.161 1.05 27.0 0.543 0.079

11 0.0076 0.177 1.50 33.0 0.483 0.115

12 0.0053 0.137 1.47 27.0 0.556 0.098

Table 6.2 Launceston parameter estimates for each month, via MCS.

λ̂ β̂ η̂ μ̂C α̂ φ̂c

k h−1 h−1 h−1 - - km−1

1 0.0038 0.095 1.35 11.3 0.805 0.066

2 0.0036 0.126 1.25 17.3 0.604 0.096

3 0.0041 0.098 1.34 25.0 0.539 0.080

4 0.0046 0.086 1.29 21.6 0.733 0.052

5 0.0062 0.098 1.43 26.1 0.670 0.067

6 0.0085 0.109 1.21 22.8 0.679 0.074

7 0.0083 0.102 1.14 35.2 0.588 0.069

8 0.0095 0.100 1.20 21.5 0.681 0.110

9 0.0094 0.124 1.07 10.2 0.860 0.062

10 0.0086 0.159 1.01 26.0 0.539 0.079

11 0.0067 0.181 1.63 18.7 0.660 0.115

12 0.0058 0.123 1.33 14.6 0.675 0.098
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difference between Table 6.1 and Table 6.2 is considered to be an artefact of the model

rather than a deficiency in the MCS calibration technique. With further investigation

into the behaviour of the model, this artefact could be mitigated by fixing some of the

parameters as constant.

To verify the performance of the model, a simulation of 10 replicates, each having 54

years length, was conducted using the parameters in Table 6.2. A limited presentation of

the results is provided, as there is a wide variety of statistics that could be employed to

verify the model and 41 different sites at which a comparison could be made. For this rea-

son, regionalised statistics were used as an indicator of the models overall performance,

though they have the potential to conceal at-site variability. The selected statistics were

pooled across each site by first dividing by the median of the simulated distribution for

each replicate.

Two key statistics not included in the calibration were selected to demonstrate the

models performance, the distribution of regional annual maxima and the distribution of

regional annual totals. Figure 6.4 shows the standardised 1 hour and 24 hour maxima

using a Gumbel axis. Comparing the 90% limits and median to the observed data shows

that the 1 hour extreme values have good agreement but that the 24 hour extremes are

underestimated in the upper tail.

(a) (b)

Figure 6.4 Comparison of standardized observed annual maxima with simulated median

and 90% limits. Results presented for two separate aggregates: (a) 1 hour, (b) 24 hour.

Figure 6.5 shows the standardised annual totals presented on a Normal axis. This

figure shows good agreement in terms of the mean annual total, but the variability of the

annual aggregate is under-simulated, and explanation can most likely be attributed to (i)
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the method of independent monthly calibration, which removes variability due to rainfall

cross-correlated between months and (ii) non-stationarity of the observed annual rainfall

distribution due to climatic states not accounted for in the modelling.

Figure 6.5 Comparison of standardised observed and simulated median and 90% limits of

annual totals.

6.4 CONCLUSION

The method of moments is a common approach for calibrating conceptual models includ-

ing those from the Poisson cluster family. In order to calibrate model parameters, this

approach requires properties of the model (such as first and second order moments) to be

compared to equivalent statistics from observed data for the specified region. A Monte

Carlo approach was adopted to simulate the observed model properties, thus avoiding the

need for deriving these same properties. The technique was demonstrated for the SNSRP

model for 41 rainfall gauges located about Launceston, Tasmania.

The calibration was performed in two stages, first calibrating temporal parameters

at a single point, then spatial parameters having optimised all other parameters. This

approach exploited the ability to calibrate the model in a step-wise manner and enabled

feasible computation. The temporal simulation required 10,000 year durations to produce

reliable estimates of the model properties for a given parameter set. The spatial simulation

was more computationally demanding as the cross-correlogram is comprised of estimated

correlations between each pair of sites. A simulation of only 100 years was used, but

this was sufficient as the goodness-of-fit was not as susceptible to the variability of an

individual correlation estimate. A stochastic optimiser was employed to locate parameters
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for the MCS calibration approach, as a gradient-based optimiser was overly sensitive to

the variability in estimated statistics due to finite simulation length.

The product-skewness statistic was too variable to be reliably used for calibration, so

the L-skewness was used instead. Whilst this was a necessity for the feasibility of the

approach, the use of the L-skewness demonstrates the main advantage of using a simu-

lated calibration: that additional statistics can be included in the calibration that would

otherwise be beyond derivation for the specified model.

The results demonstrate that the simulation method gave parameter sets of compara-

ble quality to parameters optimised using analytic equations, albeit marginally poorer in

quality. Some of the calibrated parameters had similar values for both methods, while

others showed significant contrast. The ability of the model to yield parameter sets of

similar quality yet being from different neighbourhoods is not an artefact of the proposed

simulation methodology but of the model.

The main disadvantage of the MCS calibration method is that significant computa-

tional resources are required. For this reason the MCS technique used here is not applied

to further case-studies due to the necessity of more computationally demanding formula-

tions and simulations over larger regions. Nonetheless, it provides a convenient platform

for extending the model under different assumptions or using different distributions with-

out the need to analytically rederive model properties. Also, should future users wish to

introduce additional statistics (for example, dry portions above a certain threshold) this

method is useful.
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Chapter 7
Spatial Storm Extent

7.1 INTRODUCTION

The aim of this chapter is to address the cross-correlation statistic and spatial description

of storms over relatively large areas (say > 100 km × 100 km). This is achieved by

characterizing the extent of a storm, which has not yet been considered as part of the

SNSRP model due to smaller scale case studies in urban regions.

7.2 PROBABILITY OF STORM OCCURRENCE AT A POINT

In this section a superscript ‘o’ denotes the properties and parameters specific to the origi-

nal formulation outlined in Chapter 3 to distinguish it from the extended model developed

here. The SNSRP model performs well for small regions, but if the region is large, un-

realistic cross-correlations at large distances occur as an artifact of the storm not having

a defined spatial extent. To address this model limitation, an additional random variable,

Rs, is introduced to describe the radial extent of a storm, as shown in Figure 7.1 (b). This

radius is assumed to have an exponential distribution with parameter φs. The radius is

defined with respect to a storm center, Zs, which has coordinates that are uniformly dis-

tributed across the region. A parameter λ controls the Poisson arrival of storms. Whereas

λo was previously the temporal rate of storms, λ is the spatio-temporal rate of storms

(since storms no longer cover the entire region).

By introducing a storm extent the rainfall process is not independent of the storm

center. That is, the storm boundary localises the rainfall process relative to the center of

the storm. Nonetheless, the expected model properties averaged over many storms are

independent of location due to the spatially uniform location of storm centers. In order to

avoid boundary effects, simulation of storm centers should include those that fall outside

target region yet have some portion of the storm that intersects it. The rainfall inside the
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Figure 7.1 (a) Schematic diagram of Neyman-Scott process depicting overlapping rain-

cells at a given point in time and with cell centers occurring as a two-dimensional Poisson

process over some target region. (b) A storm extent is introduced so that cells and portions of

cells landing outside of it are zero (indicated by dashed lines). Cells and storms with centers

outside of the region also need to be included to avoid boundary effects.

storm boundary must maintain the uniform expected properties of the underlying rainfield.

As a consequence, cells having centers outside of the storm boundary, yet having radial

extent intersecting it, must be included. Also, any portion of a cell that lies outside of the

storm boundary contributes zero rainfall. These scenarios are depicted in Figure 7.1 (b),

where dashed lines indicate the regions contributing zero rainfall.

It is necessary to derive the probability that a storm intersects a point conditioned on it

also intersecting the target region. This probability is denoted ψ. To obtain an expression

for ψ, first consider a storm of fixed radius r. For the storm to cover an arbitrary point

within the region the storm center should land within a distance r of that point (defining

an area A1 = πr2), whereas for the storm to intersect the region its center should land

within a distance r+rk of the regional center (defining an area A2 = π(r+rk)
2). The first

criterion satisfies the second, since if a storm covers the point it also intersects the region.

If the storm centers are uniformly distributed over the R
2 plane, then the conditional

probability ψ is the ratio of the A1 to A2, ψ = πr2/(π(r + rK)2). If the storm radius is

a random variable that follows an exponential distribution, the probability is taken as the

expected ratio of areas across all possible values of the storm radius, r. This is given as

ψ =

∫ ∞

0

φse
−φsr r2

(r + rK)2
dr (7.1)

where φse
−φsr is the probability density of a storm radius r, r > 0.
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Using symbolic integration software, Eq. (7.1) is found to be equivalent to

ψ = 1 + ω − ω2eωE1 (ω)− 2ω eωE1 (ω) (7.2)

where E1(x) is the first order exponential integral function [Abramowitz and Stegun,

1964] and ω = φsrK which is the ratio of the radius of the target region to the mean storm

radius.

From Eq. (7.1), substituting rK = 0 returns the probability ψ = 1, which gives the

case of storms covering a region that is a point. Increasing the region size, rK → ∞,

shows that the conditional probability of a storm covering a point tends toward zero,

ψ → 0. Different shaped regions, such as a rectangle, can be derived by substituting the

appropriate expression for the region area into the denominator of Eq. (7.1).

Because of the finite size of storms, when a storm occurs it does not cover every point

within the region. The parameter ψ has the effect of reducing the rate of storms occurring

over the entire region to give the rate of storms that overlap a single point only. If the

arrival rate of storms over the region is λ (storms per hour per unit area), the rate of

storms at a point is related by λo ≡ λψ. For a fixed target region, increasing the storm

radius so that it always covers the entire region φs → 0 gives ψ → 1, hence the two rates

become equivalent (which is the case of the original model). As another example, assume

the original model is calibrated with a storm rate λo (per hour, where storms implicitly

cover the whole region) and the storm extent is later calibrated such that on average storms

only cover half of the region ψ = 0.5. Then, twice as many storms need to be simulated

over the region to obtain the equivalent temporal properties at a point λ = 2λo.

7.3 MODEL HAVING STORM EXTENT

This section provides a summary of the model properties incorporating storm extent,

mainly emphasizing the differences with respect to the existing model. The instantaneous

properties are discussed first and then the properties for the model aggregated at interval

h are presented. The generalization in Cowpertwait [2004] holds for the extended model,

though this is not explicitly demonstrated here.

The expected instantaneous rainfall intensity becomes

μy = E [Y (t)] = ψμo
y (7.3)

where ψ accounts for the fact that the storms do not cover the entire region. The
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instantaneous covariance is defined as

C(τ, d) = E [Y1(t)Y2(t + τ)]− (μy)
2 (7.4)

where it is necessary to consider the expected value E [Y1(t)Y2(t + τ)]. The expres-

sion for this is presented in Eq. (7.5) with three terms that are a superposition of the ways

in which rainfall can cover the two points. Arbitrary overlapping of storms and cells is

allowed since these processes are specified as rates. For example, if two cells c1 and c2

from the same storm cover points A and B respectively and a second storm contributes

a cell c3 that covers both points, this will contribute as cell c1 and c2 for as long as both

cells are alive, c1 and c3 for as long as these two cells are alive, likewise for c2 and c3

and c3 with itself. The result for all different combinations is given in Eq. (7.5). The first

term is contributions from independent cells from independent storms, the second term

is contributions from independent cells from a common storm and the third term is the

contribution for the case of a common cell from a common storm.

E [Y1(t)Y2(t + τ)] = (λψ)2μ2
xμ

2
c/η

2

+λψP (φs, d)μ2
cμ

2
xβ

ηe−βτ − βe−ητ

2η(η + β)(η − β)

+λψP (φc, d)P (φs, d)μcE[X2]e−ητ/η

(7.5)

All of the terms in Eq. (7.5) show that the storm rate λ is modulated by the probability

of storm covering a point ψ. The first term corresponds to the quantity μ2
y. The second

term introduces the quantity P (φs, d) which is the conditional probability that given the

storm covers one point it will also cover a second point a distance d away. The third

term has the product of conditional probabilities P (φc, d)P (φs, d) for storms and cells

respectively. This occurs because the storm and cell processes are both exponentially

distributed circular areas and because they are independent of each other. Substituting

Eq. (7.5) into Eq. (7.4) gives

C(τ, d) = λψP (φs, d)μ2
cμ

2
xβ

ηe−βτ − βe−ητ

2η(η + β)(η − β)

+λψP (φc, d)P (φs, d)μcE[X2]e−ητ/η

(7.6)

With the exception of P (φs, d) and ψ all other terms are the same as those in Eq. (3.12).

The properties that follow from the aggregated rainfall process are the aggregated

mean intensity

μh = E[Yh(t)] = ψμo
h (7.7)
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and the covariance of aggregated intensities

γd,h,l = cov[Y1,h(j)Y2,h(j + l)] = P (φs, d)ψγo
d,h,l (7.8)

The variance, autocovariance and coefficient of variation are temporal properties that

can be obtained from these two equations. For the original model, all of the equivalent

temporal properties can be obtained by substituting λo ≡ λψ. This follows naturally

from the linear nature of expectations and is applicable to higher-order moments. This

observation is applied in Section 7.4 to the skewness property which improves the fit to

extreme values when calibrating the model [Cowpertwait et al., 2002, Eq. (10)].

From Eq. (7.8) it is clear that the covariance of the storm-extent model is of an equiv-

alent form but includes a multiplicative term P (φs, d). This term reduces the covariances

according to the parameter φs. The covariance structure of the original model is obtained

as a special case when the storm radius becomes infinitely large φs → 0 so that all points

in the target region are covered by every storm. In the event of this and for all distances, d,

P (φs, d) → 1. Figure 7.2 shows the influence of the storm extent parameter with respect

to the cell radius parameter, where other parameters are held fixed at typical values. Figure

7.2 (a) shows that varying the cell radius parameter over typical scales 2 km (φc = 0.5)

to 10 km (φc = 0.1) affects the cross-correlations over shorter distances, but the cross-

correlations at large distances are not influenced significantly. Figure 7.2 (b) shows that

the storm radius parameter over typical scales 20 km (φs = 0.05) to 100 km (φs = 0.01)

affects the cross-correlations at larger distances.
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Figure 7.2 Example of variation in cross correlation at the 24 hour aggregate for two spatial

parameters (other parameters fixed at typical values) (a) Cell radius parameter and (b) Storm

radius parameter.
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7.4 MODEL CALIBRATION

The original model allows cells to occur arbitrarily far apart and as a result independent

cells arising from the same pattern of storms can cause a similar ‘wet-dry’ pattern at all

points across the region. For this reason the original model causes points separated by a

large distance to have spurious high correlations. This can be observed in Figure 7.3 for

a model calibrated to the Sydney region for the month of January. The hollow circles are

observed daily cross correlations, the dashed lines give the calibrated cross correlations

of the original model and the solid line gives the cross correlations of the extended model.

This figure shows that the correlation of the original model decays to a non-zero value for

increasing distance, which is physically unrealistic. In comparison, the extended model

which has an additional parameter to limit the storm extent allows for a more realistic

decay. While it is possible to find parameters of the original model that improve the fit

to the cross-correlation statistic, it is at the expense of other fitted statistics. This figure

suggests that having calibrated the original model, the daily correlations are a suitable

statistic that can be used to calibrate the parameter φs.

Additional steps that augment the existing calibration procedure are discussed below.

1. Having obtained a good fit to the temporal statistics, the calibration of spatial pa-

rameters is considered. The cell radius parameters φ
(p)
c are calibrated via least

squares to the hourly cross-correlogram assuming storms cover the entire region.

This is achieved by setting ψ(p) = 1 and P (φ
(p)
s , d) = 1 for all d. Use of several φ

(p)
c

parameters for multiple storm types p = 1, . . . , n is considered relative to the sum

of squares fit obtained using a common value of φc. Setting ψ = 1, the storm ra-

dius parameters φ
(p)
s are calibrated via least squares to the daily cross-correlogram.

The length scale of φ
(p)
s will likely be an order of magnitude larger than φ

(p)
c . For

this reason, it will affect the cross-correlations at larger distances more significantly

than shorter distances.

2. Having obtained φ
(p)
s , the probability ψ is evaluated using Eq. (7.1) for a given

region size. The equivalent arrival rate of storms in space and time λ is evaluated

from the storm arrival rate of the original model using the relation λ = λo/ψ.

This provides the full parameter set for simulating the model as a multi-site model.

Interpolating the scale parameter allows for estimates at sites other than those used

in calibration.
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Model simulation – Section 7.5
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Figure 7.3 24-hour aggregate cross correlations for January where hollow circles are ob-

served values, the dashed line is from the calibrated original model and the solid line is from

the extended model having finite storm extent.

7.5 MODEL SIMULATION

As discussed in Chapter 4 a target region induces a bias when cells with centres landing

outside of that region partially overlap the region. For several reasons this observation is

also relevant to the storm envelope.

1. If cells that land with centres outside of a storm envelope (yet intersect the enve-

lope) are not considered then there will be a reduction in the simulated rainfall total

and also the properties of the storm will not be stationary. This undesired non-

stationarity would be due to the fact that points closer to the outer boundary of the

storm will have less chance of being overlapped by a raincell.

2. If storms that have origins landing outside of the region (yet intersect that region)

are not included there will be a significant bias in the simulated totals.

3. If cells landing outside of the target region and belonging to storms that have origins
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Chapter 7 – Spatial Storm Extent

outside of the target region (where both intersect the region) are not included, a

simulation will incur similar biases.

For a mean storm radius φ−1
c = 100 km the 0.95 quantile storm has a radius of

300 km. For this reason a buffer algorithm that includes all storm origins outside of a

region is extremely inefficient. The direct simulation algorithm proposed for raincells in

Section 4 is also valid for storms since they have the same theory underpinning them: a

circular area having an exponentially distributed radius. Not only is the algorithm valid

for cells and storms relative to the target boundary, it is also valid for cells relative to the

storm boundary. Because of this an additional efficiency can be included in the simulation

algorithm since there will be occasions in which the storm envelope is smaller than the

target region and it is thus quicker to simulate cells relative to the storm. This statement

is true even if the storm only partially overlaps the target region since the number of

discarded cells simulated over the target region yet landing entirely outside of the storm

would be higher than the number of cells over the storm area landing outside of the target

region. Table 7.1 illustrates an efficient algorithm for simulating raincells.

Table 7.1 Algorithm for efficiently simulating storm and cell properties.

1. Sample the number of storm origins occurring inside the region.

2. Sample the number of storm origins occurring outside the region using Eq. 4.10.

3. For all storms sample the storm-centre and storm radius, Rs.

4. If Rs < rK then simulate all cells relative to the storm boundary.

This includes all cells landing inside and outside of the storm.

Discard cell portions that lie outside the storm envelope or the region boundary.

5. If Rs > rK then simulate all cells relative to the region boundary.

This includes all cells landing inside and outside of the region.

Discard cell portions that lie outside the storm envelope or the region boundary.

6. Simulate all other cell properties.

7.6 CASE-STUDY APPLICATION

7.6.1 Modelled region and calibrated parameters

To demonstrate the application of the model, the greater Sydney region was used as a case

study. Two different data sources were used in the calibration: 24 pluviograph gauges

of length greater than 20 years, and 52 daily gauges of length greater than 90 years.

The spatial coordinates of these gauges cover an area approximately 100 km × 140 km
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Case-study application – Section 7.6

in size and are shown in Figure 7.4. A circular region of radius 85 km was used to

simulate the model covering all of the gauges within this region. Calibrating the model

proceeded on the basis that the simulation area was homogeneous, having a constant

coefficient of variation and constant dry-probability. This requirement was not strictly

met by the rainfall data in this region and the effect of this will be noted when comparing

the model to observed data. For each site and for each month, the rainfall data were non-

dimensionalised by dividing by the hourly mean and pooled statistics were computed for

three aggregates, 1 hour, 6 hours and 24 hours. The temporal parameters were calibrated

to temporal statistics including the coefficient of variation, lag-one auto-correlation and

skewness. The cell radius parameter was calibrated to hourly cross-correlations, and daily

cross-correlations were introduced for the calibration of the storm radius parameter.

Figure 7.4 Coordinates of rainfall observation sites about greater Sydney region

Care needs to be taken when calculating the observed statistics to avoid biases arising

from missing and accumulated data. The daily rainfall data contain numerous instances

of accumulated totals where the total rainfall is known over some multiple of days but

not the pattern in which it occurred. On average, 0.1% of the rainfall measurements were

accumulations, with the worst-case site having 2.8% of its observations accumulated.

The accumulated amounts are retained when calculating the mean rainfall and annual and
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monthly totals, but are excluded from statistics such as the covariance which require the

rainfall pattern within the accumulation to be known. The hourly rainfall data do not

have accumulations, but do have missing observations. On average only 0.03% of the

observations of the hourly data were missing, with the worst site having 0.07% missing

data. These amounts are unlikely to significantly bias the estimated statistics.

For each month the model was fitted for two cases, only one storm type (n = 1) and a

mixture of two storm types (n = 2). This decision was motivated by a difficulty obtaining

adequate fits and realistic parameter values for several of the months. For the months

having two storm types, reductions in the sum-of-squares varied between 60% and 97%

when compared to using only one storm type.

Table 7.2 shows the calibrated parameters, with parameter sets having two types of

storm processes selected for seven of the months. To avoid over-parameterization, the

parameters β(1), μ
(1)
c , φ

(1)
c and φ

(1)
s were made common to both storm types. An exception

was made for the case where the second storm type reduces to a Poisson process, μ
(2)
c =

1.0, in the months from May to August. Of these months, for May and June, the second

storm type has a higher rate of storm occurrence but with shorter cell lifetimes than the

first storm type. For July and August, the second storm type has less frequent storms with

long cell lifetimes. The infrequent and long duration nature of these storms required the

parameter φ
(2)
c to be re-estimated resulting in cells that have wide-spread coverage. This

decision was motivated by an inability to characterise the cross-correlations using only

φ
(1)
c for these months.

7.6.2 Interpolation of Scale Parameters

The spatial coordinates of these gauges cover an area ranging from Gosford to Wollon-

gong (North-South extent), and from Bondi Beach to Katoomba (East-West extent). The

elevation across the region is undulating from the coastline to approximately 150.6◦ lon-

gitude, then rising to 1000 m above sea level due to the Blue Mountains. The mean annual

rainfall over the region is 914 mm, and the monthly rainfall is slightly higher during sum-

mer months (up to 90 mm) and lower during winter months (down to 60 mm). The dis-

tribution of rainfall over the region varies with respect to season and elevation, as shown

in Figure 7.5 for two example months, January and July. Figure 7.5 (a) and Figure 7.5 (b)

show that January monthly totals (summer) are higher over the Blue Mountains but the

July mothly totals (winter) get higher moving toward the coastline. This non-stationarity

in the mean rainfall over the region is removed from the record by non-dimensionalising

the data with respect to the mean hourly rainfall for each site and month.
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Table 7.2 Parameter estimates for each month

Storm(1) λ̂o(1) β̂(1) η̂(1) μ̂c
(1) α̂(1) φ̂c

(1)
φ̂s

(1)

Month h−1 h−1 h−1 - - km−1 km−1

1 0.00300 0.0578 1.79 24.4 0.571 0.112 0.010

2 0.00406 0.0630 1.17 23.5 0.786 0.120 0.015

3 0.00301 0.0803 2.04 36.4 0.562 0.141 0.012

4 0.00472 0.0616 2.95 77.8 0.391 0.166 0.017

5 0.00083 0.0490 0.23 39.2 0.500 0.147 0.010

6 0.00035 0.0539 1.41 60.0 0.878 0.154 0.014

7 0.00145 0.0083 2.13 49.1 0.408 0.100 0.012

8 0.00493 0.0263 1.60 19.1 0.400 0.140 0.011

9 0.00435 0.0875 2.30 29.1 1.00 0.168 0.017

10 0.00213 0.0942 2.07 97.2 0.423 0.139 0.016

11 0.00274 0.0587 1.99 44.4 0.481 0.131 0.013

12 0.00275 0.0587 2.51 20.7 0.725 0.134 0.010

Storm(2) λ̂o(2) ∗β̂(2) η̂(2) ∗μ̂c
(2) α̂(2) ∗φ̂c

(2) ∗φ̂s

(2)

Month h−1 h−1 h−1 - - km−1 km−1

2 0.00054 0.0630 2.15 24.4 1.927 0.120 0.015
4 0.00059 0.0616 1.71 23.5 0.592 0.166 0.017
5 0.05121 0.0490 2.81 1.0 0.694 0.147 0.010
6 0.03236 0.0539 1.68 1.0 2.684 0.154 0.014
7 0.00136 0.0083 0.06 1.0 1.057 0.01 0.012
8 0.00098 0.0263 0.06 1.0 1.185 0.01 0.011
9 0.00040 0.0875 2.74 29.1 2.092 0.168 0.017

∗ Values shown in italics have parameters fixed to be the same as storm 1

To obtain the non-stationary simulated totals for all points in the target region, the

hourly rainfall totals used to non-dimensionalise the rainfall must be interpolated. Fig-

ure 7.5 (c) and Figure 7.5 (d) show the interpolated mean hourly rainfall totals across the

entire Sydney region. The values were interpolated using ordinary kriging with an expo-

nential covariance function fitted to the observed data. Every image for a given month

produced by a simulation is multiplied by the respective monthly scaling field to give the

corrected rainfall totals. A nugget effect was excluded from the kriging estimation so that
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the interpolation field exactly matches the measured depths at the observation sites. The

scaling field can appear ‘peaked’ because of this, especially when the exponential covari-

ance decays quickly. Despite this, a benefit of this approach is that the mean rainfall total

is preserved in the simulated statistics because there is no smoothing of the scaling field.
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Figure 7.5 Elevation and variation in mean rainfall across Sydney (a) January monthly total

(b) July monthly total (c) January interpolated scaling field (d) July interpolated scaling field.
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Figure 7.6 Caption footnoted on page 100. Page 99



Chapter 7 – Spatial Storm Extent

7.6.3 Model Comparison to Calibration Statistics

Figure 7.6 shows a summary of the statistics that were used to calibrate the model1. Sim-

ulated results are also provided in Figure 7.6 for comparison. The model was simulated

for a length of 95 years which is the median length of the observed daily rainfall records

used in calibration. Where comparisons are made with sub-daily rainfall the simulation

length was truncated to 24 years, which is the median length of the sub-daily records used

in calibration. The variability in selected statistics was demonstrated using 100 replicates.

Figures 7.6 (a), 7.6 (b) and 7.6 (c) show comparisons for the temporal statistics used

in calibration, respectively these are the coefficient of variation, skewness and auto-

correlation. The statistics are shown for two aggregates (1 hour, 24 hours) where the

symbols give the observed value and the box-plots show the variability in the simulated

property for each month. The 6 hours statistics are not shown but have similar agreement.

Figures 7.6 (d) and 7.6 (e) show the fitted 24 hours cross-correlations with respect to

two example months, January and July respectively. In these figures the dashed lines give

90% confidence limits for the original model and the solid lines give 90% limits for the

extended model having the storm parameter. Variability in the simulated cross-correlation

is due to the sample size of 95 years (as the record length increases the modelled cross-

correlations collapse onto the line given by Eq. (7.8)). These figures show that the storm

parameter reduces the cross-correlations for increasing distance. In these figures the hol-

low symbols show the observed cross-correlations which have much greater variability

than what the model is able to reproduce. This feature is directly related to heterogeneity

within the region. More specifically it is related to variability in the dry probability and

that some sites have a higher frequency of rainfall than others. The geographic influences

giving rise to this are in-part related to the distance from the coastline and the elevation,

but the dry portion of the simulated record is the same for all sites since scaling the mean

does not affect the number of zeros.

Figures 7.6 (f) and 7.6 (g) demonstrate the calibration of the model to 1 hour aggregate

cross-correlations for two example months, January and July respectively. These figures

show that the influence of the storm radius parameter is less significant at this time-scale.

The observed hourly correlations are not as variable as the daily correlations but still show

1Figure 7.6 (page 99) Simulated values for statistics used in calibration. (a)-(c) temporal statistics,

circles give observed 1-hour statistic, triangles give 24-hour statistic and boxplots give simulated values;

(d)-(g) cross-correlations where hollow circles give observed values, dashed lines give 90% limits from 100

simulated replicates having storm extent covering the whole region, solid lines give 90% limits of replicates

having finite storm extent. (d) 24-hour aggregate, January, (e) 24-hour aggregate, July, (f) 1-hour aggregate,

January and (g) 1-hour aggregate, July.
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more variability than the simulated replicates.

7.6.4 Model Comparison to Other Statistics

Figure 7.7 shows a selection of statistics not used to calibrate the model which are used

to assess its performance2. The assessment here is by no means exhaustive as there are

numerous statistics that can be used, a variety of aggregates and a large number of points

within the region at which they should be assessed. Figures 7.7 (a) and 7.7 (b) show a

comparison of cross-correlations of monthly totals for one simulated replicate and the

observed data, for two example months January and July respectively. Unlike the daily

cross-correlations these figures show that the model captures the variability of the ob-

served data well.

Figure 7.7 (c) shows the at-site variability in the observed and simulated annual totals

pooled across the region. Each site is standardised by dividing the distribution with re-

spect to the median value, the distributions are then collated across all sites to generate a

single regional distribution. The simulated values show the 0.05, 0.50 and 0.95 quantiles

for each order statistic to indicate the variability between simulated replicates. Figure 7.7

(c) shows that the annual mean is matched, which is expected since the modelling method-

ology uses scaling values to force the simulated and observed mean to match at each site.

However, Figure 7.7 (c) shows that the variability of the annual aggregate is significantly

under-simulated. There are several reasons for this, (i) discrepancies in variability at the

monthly aggregates, (ii) the method of independent monthly calibration, which removes

any variability due to rainfall cross-correlated between months, (iii) heterogeneity of ob-

served statistics such as coefficient of variation and (iv) non-stationarity of the observed

annual rainfall distribution due to climatic states not accounted for in the modelling. The

last point is well documented in literature, for example see Srikanthan and McMahon

[2001]. Figure 7.7 (d) reinforces the observation made in Figure 7.7 (c) by comparing

the standard deviation of the observed annual totals with respect to the standard deviation

of one simulated replicate of annual totals at all sites. This figure shows that the annual

variability is consistently underestimated at all sites within the region.

2Figure 7.7 (page 102) Cross-correlation of monthly totals, observed (black) and simulated (grey): (a)

January (b) July. (c) distribution of annual totals standardised and pooled over the region, lines give 0.05,

0.5 and 0.95 simulated order statistics. (d) comparison of simulated and observed standard deviation in

annual totals at 52 sites. Distribution of annual maximum values, lines give 0.05, 0.5, 0.95 simulated order

statistics: (e) 1 hour aggregate, one maximum taken from entire region per year, (f) 24 hour aggregate

one maximum taken from entire region per year, (g) 24 hour maximums at a selected site, (h) 24 hour
maximums at another selected site.
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Figure 7.7 Caption footnoted on page 101.
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Figures 7.7 (e) and 7.7 (f) compare the simulated and observed annual maximum fre-

quency curves for the overall region at two aggregates, 1 hour and 24 hours respectively.

For both aggregates the absolute maximum value within the region was selected for ev-

ery year on record. There is the possibility that this statistic is not a good diagnostic

of the model’s regional performance if annual maximums consistently come from only

a limited number of sites. This scenario was checked and is not the case: 35 of the 52

daily gauges contribute points to the distribution of annual maximums and 14 of the 24

sub-daily gauges contribute points to the distribution of annual maximums. Both of these

figures show reasonable agreement to the observed data. Nonetheless, considering the

region as a whole has the possibility of masking discrepancies at individual sites within

the region. Figures 7.7 (e) and 7.7 (f) demonstrate this by comparing the observed and

simulated annual maximums at two selected sites. Figure 7.7 (e) shows that the model

under-simulates the maximums at one site and Figure 7.7 (f) gives an example at another

site where the model over-simulates the observed maximums. This observation highlights

the difficulty of assessing the performance of the model and the difficulty in obtaining a

calibrated model that has a good overall fit to the region as well as for all sites in the

region See Appendix A for comparisons of annual totals and extreme value statistics at

each site.

7.7 VISUALISATION OF SPATIAL STORM PROCESS

The SNSRP model has a reasonable ability to reproduce temporal statistics due to its

heritage as a point process model. By way of contrast, the spatial characterisation of the

storm is more simplistic, which is in-part due to the limited spatial information-content

of sparse gauge networks. To illustrate the spatial performance of the model, a simulated

replicate of 12 hour duration is shown in Figure 7.8 over the region of Sydney. Alphabet

letters are marked onto the figure to show examples of raincells that persist for more than

one hour. The examples used are not exhaustive, as close inspection of the figures will

reveal more cells that persist over multiple hours. The storm was simulated using the

May set of parameters, which have the mean cell lifetime as η−1 = 0.36 hr. As a result,

only 6% of cells will persist for greater than one hour (thus appearing in at least two

images) and only 0.4% of cells will persist for more than two hours (thus appearing in

three images).

The spatial aesthetic of the storm is dominated by the circular shaped rain-cells.

Nonetheless, numerous other shapes are generated by the storm that obscure the under-

lying circular structure. These are due to several processes (i) the non-stationary scaling
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0 hr 1 hr 2 hr

3 hr 4 hr 5 hr

6 hr 7 hr 8 hr

9 hr 10 hr 11 hr

Figure 7.8 12-hour visualisation showing rainfall depths over Sydney of a storm in May.

Marked letters provide examples of raincells that persist over multiple hours.
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Figure 7.9 12-hour visualisation showing rainfall depths over Sydney of a storm in May.

The envelope localises rainfall in the spatial domain.
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field (as shown in Figure 7.5), (ii) overlapping raincells and (iii) the threshold levels used

to produce the plots. The scaling field is a smooth and variable surface that follows the

mean trend in the data. This shows in the images as curved lines that do not appear to

follow any particular circular arc. One example is cell ‘a’ in the 0 hr image which appears

dented on one side since the scaling field has modulated the rainfall total at those points

to a value less than 0.5 (the lowest threshold). The overlapping of raincells produces nu-

merous shapes that appear as cell portions. For low numbers of cells the location of cell

origins and radii that contribute to the overlap region are obvious (cf. cell ‘a’ cell ‘b’ and

cell ‘c’). Where a high number of cells overlap the resulting shape can be obscure and

difficult to determine how many underlying cells are contributing or whether the shape

is instead due to the scaling field (cf. points located about cell ‘j’). The threshold lev-

els also create an artefact in the plot as the overlap may not be evident unless the total

rainfall is above the next specified threshold level. Multiple examples appear where a

raincells seems to ‘disappear’, which is because it has fallen below the lowest threshold

used for plotting. Some cells that persist over multiple images appear to grow and decay

in their intensity (cf. cell ‘s’), where the model instead specified the intensity as a constant

‘pulse’. This observation is however an artefact of the temporal aggregation into hourly

‘bins’. For the example of cell ‘s’, it overlaps three hourly bins (at 9 hr,10 hr and 11 hr).

The cell entirely covers the interval at 10 hours but only partially covers the 9 hour and

11 hour intervals. As the rainfall depth is significantly lower in the latter interval it can be

concluded that the cell did not persist for a long duration into this period.

Figure 7.9 shows the same storm as Figure 7.8, but including a storm envelope simu-

lated south of metropolitan Sydney and having a radius of approximately 80 km. It can be

seen that the storm envelope causes the rainfall to fall within a specific domain rather than

over the entire catchment region. The rigid boundary of the storm is evident when there is

a high number of raincells, but when there is a lower number of cells it is less obvious to

detect. Comparing Figure 7.9 with Figure 7.8 shows that it is necessary to include rainfall

contributions from cells occurring outside of the storm envelope yet have some extent that

intersects the envelope. Also, when the size of the storm envelope is small relative to the

region it can be seen that a high number of raincells are discarded from the underlying

simulation of raincells, since the majority do not intersect the storm.

Visualising storm profiles in space is a useful analysis tool for understanding the be-

haviour of the model. While the spatial idealisation of the model may appear crude there

are several counter-points that need to be reiterated. Firstly, rain-gauges are sparsely dis-

tributed in space (especially at sub-daily scales) and as such they are restrictive in the
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amount of spatial detail that can be reproduced from this method of observation. Even if

100 sub-daily gauges were available this should be considered sparse when compared to

a radar that can produce a 100× 100 grid of observations at a 1 km resolution. Secondly,

a significant benefit of gauges is that they have significantly less bias and sources of error

when compared to radar-rainfall estimates. For this reason, a simple gauge-based model

may be more appealling than a sophisticated radar-based model that has bias induced by

measurement errors. Thirdly, lumped catchment models integrate rainfall over the spa-

tial domain to give runoff estimates into one-dimensional river reaches. The process of

integration will, to a large degree, mask unwanted effects of simplifications in the spatial

domain. This point is however largely untested due to the lack of studies using contin-

uous simulation space-time models with distributed runoff models. An important future

case-study would assess the performance of gauge-based and radar-based models using a

runoff model and compared against observed streamflows.

7.8 CONCLUSION

This chapter demonstrated an improved Neyman-Scott rainfall model so that between site

cross-correlations are modelled more realistically. Previously, separate rain cells from one

storm could cover points in space that would not realistically be covered by one storm.

An approach was developed to remedy this by letting the storm extent follow a circular

region and have a random radius following the exponential distribution. It was shown

that the properties of the extended model modulate the properties of the previous model

with respect to two probabilities: ψ the probability that the storm covers a point given

that it intersects the target region, and P (φs, d) the probability that the storm covers point

A given that it covers point B a distance d away. The model was calibrated to 52 daily

gauges and 24 sub-daily gauges from the metropolitan Sydney region according to various

statistics at three aggregates, 1 hour, 6 hours and 24 hours, and allowing for multiple storm

types. Results were presented for the statistics used in calibration and for several statistics

not used in calibration. Statistics not used in the calibration were the cross-correlations

at a monthly aggregate, the distribution of extreme values and the distribution of annual

totals. Although the model is highly idealised it provides a parsimonious representation

relative to other models and it can generate long, continuous realizations of rainfall in

time for any number of points in space.
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