A Stochastic Space-Time Rainfall Model for Engineering Risk Assessment

by Michael Leonard

Submitted in fulfilment of the requirements for the degree of **DOCTOR OF PHILOSOPHY**

April 14, 2010

FACULTY OF ENGINEERING, COMPUTER AND MATHEMATICAL SCIENCES

School of Civil Environmental and Mining Engineering

A Stochastic Space-Time Rainfall Model for Engineering Risk Assessment

By: Michael Leonard, B.E. Civil (Hons)

April 14, 2010

Thesis submitted in fulfilment of the requirements for the degree of **Doctor of Philosophy**

School of Civil Environmental and Mining Engineering Faculty of Engineering, Computer and Mathematical Sciences The University of Adelaide SA 5005 Australia

Telephone:+61 8 8303 5451Facsimile:+61 8 8303 4359Web:www.ecms.adelaide.edu.au/civengEmail:mleonard@civeng.adelaide.edu.au

Table of Contents

1

Tab	le of Contents ii	i	
List	List of Figures vii		
List	of Tables x	i	
Abs	tract xii	i	
Stat	ement of Originality xv	V	
Ack	knowledgements xvi	i	
List	of Symbols xix	K	
Intr	oduction	l	
1.1	The Rational Method	2	
1.2	Design Events	2	
	1.2.1 AEP Neutrality	3	
	1.2.2 Intensity Frequency Duration curves	1	
	1.2.3 Temporal patterns	1	
1.3	Monte Carlo Simulation	5	
1.4	Continuous Simulation	7	
1.5	The Australian Climate	3	
1.6	Rainfall Measurement)	
	1.6.1 Daily rainfall gauges	1	
	1.6.2 Pluviograph rainfall gauges	3	
	1.6.3 Radar rainfall reflectivity	1	
	1.6.4 Summary of rainfall data	5	
1.7	Thesis Objectives	5	
1.8	Thesis Structure	3	

	1.9	Overview of Australian Case studies
2	Lite	rature Review 23
	2.1	Rainfall Homogeneity
		2.1.1 Spatial homogeneity
		2.1.2 Temporal homogeneity
	2.2	Single-site Rainfall Models
		2.2.1 Event-based models
		2.2.2 Poisson-cluster models
		2.2.3 Disaggregation models
		2.2.4 Regionalised single-site models
	2.3	Multi-site Models
	2.4	Space-time Models
		2.4.1 Radar-based models
		2.4.2 Gauge-based models
	2.5	Summary of Literature
3	Mod	lel Formulation and Calibration 43
	3.1	Model Formulation
	3.2	Calibration Statistics
	3.3	Calibration Summary
4	Sim	ulation Involving a Regional Boundary 57
	4.1	Introduction
	4.2	Algorithm for Simulation of Cells Using a Buffer Region
	4.3	Algorithm for Direct Simulation of Cells
		4.3.1 Number of Outer Cells Intersecting Target
		4.3.2 Cell Centre Conditioned on Intersecting Target
		4.3.3 Cell Radius Conditioned on Location
	4.4	Results and Discussion
	4.5	Conclusion
5	Cali	bration Involving a Monthly Boundary 67
	5.1	Introduction
	5.2	Derivation of Monthly Bias
	5.3	Case-study
	5.4	Conclusion

6	Cali	ibration Using Simulated Moments	75
	6.1	Introduction	75
	6.2	Calibration methodology	76
	6.3	Case-study	78
	6.4	Conclusion	84
7	Spa	tial Storm Extent	87
	7.1	Introduction	87
	7.2	Probability of storm occurrence at a point	87
	7.3	Model having storm extent	89
	7.4	Model calibration	92
	7.5	Model simulation	93
	7.6	Case-study application	94
		7.6.1 Modelled region and calibrated parameters	94
		7.6.2 Interpolation of Scale Parameters	96
		7.6.3 Model Comparison to Calibration Statistics	00
		7.6.4 Model Comparison to Other Statistics	01
	7.7	Visualisation of Spatial Storm Process	03
	7.8	Conclusion	07
8	Clin	natic and Seasonally Partitioned Extreme Rainfall 1	.09
	8.1	Introduction	10
	8.2	Methodology	14
	8.3	Urban Design Application - Scott Creek	17
	8.4	Climate Conditioned SNSRP Methodology	23
	8.5	Bourke Case Study	26
	8.6	Observed Partitioned Extremes	27
	8.7	Comparison of Observed and Simulated Extremes	34
	8.8	Conclusions	35
9	8.8 Spa	Conclusions 1 tially Inhomogeneous Neyman-Scott Model 1	.35 . 37
9	8.8 Spa 9.1	Conclusions 1 tially Inhomogeneous Neyman-Scott Model 1 Introduction 1	.35 . 37 37
9	8.8Spar9.19.2	Conclusions 1 tially Inhomogeneous Neyman-Scott Model 1 Introduction 1 Model Development 1	.35 . 37 .37 39
9	8.8Spar9.19.2	Conclusions 1 tially Inhomogeneous Neyman-Scott Model 1 Introduction 1 Model Development 1 9.2.1 Spatial process	.35 . 37 .37 39 39
9	 8.8 Spar 9.1 9.2 9.3 	Conclusions 1 tially Inhomogeneous Neyman-Scott Model 1 Introduction 1 Model Development 1 9.2.1 Spatial process Integral Approximation 1	.35 .37 .37 .39 .39 .39 .39

		9.3.2	Matrix Inversion to Find Spatial Rate Surface .		•					149
	9.4	Simula	tion Technique		•					154
	9.5	Case St	tudy		•					157
		9.5.1	Observed Data		•					157
		9.5.2	Calibration to Regional Statistics		•					163
		9.5.3	Estimation of number of cells		•					164
	9.6	Results	8		•					167
	9.7	Conclu	sions		•				•	171
10	Sum	mary ai	nd Recommendations							177
	10.1	Model	Review		•					177
	10.2	Recom	mendations	•	•	 •	•	•	•	181
Re	feren	ces								185
Ар	pendi	ices								197
Ар	pendi	ix A Sp	patial Storm Extent							199
	A.1	List of	rainfall gauges		• •					199
	A.2	Simula	ted Annual Totals		• •					202
	A.3	Simula	ted Extreme Values		•				•	212
Ар	pendi	ix B B	ourke Case Study							227
	B.1	Observ	red SOI Partitioned Annual Extremes		•					227
	B.2	Observ	ved SOI Partitioned Summer Extremes		•					231
	B.3	Observ	ved SOI Partitioned Winter Extremes		•					235
	B.4	Observ	red Seasonally Partitioned SOI+ Extremes		•					239
	B.5	Observ	ed Seasonally Partitioned SOI- Extremes		•					243
	B.6	Compa	rison of Observed and Simulated Extremes		•					247

List of Figures

1.1	24 hour design storm temporal patterns for 8 different zones of Australia.	5
1.2	Mean rainfall in millimetres depth across Australia	10
1.3	Climatic Zones of Australia.	11
1.4	Distribution of rainfall measuring devices about Australia	12
1.5	Number of commissioned gauges/radars in time	16
2.1	Schematic diagram of an alternating renewal model of storm events	27
2.2	Schematic diagrams for various point-process formulations	30
3.1	Schematic diagram of the Neyman-Scott Rectangular Pulse model	44
3.2	Schematic diagram of spatial cell process.	46
4.1	Schematic diagram of cells generated inside and outside the target region.	58
4.2	Proportion reduction in simulated rainfall depth	60
4.3	Efficiency of direct-algorithm, proportion of memory usage and run-time.	65
5.1	Schematic of rainfall landing outside the month boundary	69
5.2	Bias in mean due to monthly boundary.	72
5.3	Change in parameters accounting for monthly bias	74
6.1	Spatial coordinates of observation gauges about Launceston, Tasmania.	78
6.2	Observed and fitted temporal statistics, Launceston case-study	80
6.3	Observed and fitted spatial statistics, Launceston case-study	81
6.4	Observed and simulated annual maxima, Launceston	83
6.5	Observed and simulated annual totals, Launceston.	84
7.1	Schematic diagram showing the cause of spurious cross-correlations	88
7.2	Example of variation in cross correlation at the 24 hour aggregate	91
7.3	Sydney 24 hr spurious cross-correlations.	93
7.4	Sydney case study, gauge locations.	95
7.5	Variation in mean rainfall across Sydney	98

7.6	Simulated values for statistics used in calibration
7.7	Comparison of model to observed statistics, Sydney
7.8	Model visualisation without storm-envelope
7.9	Model visualisation including storm-envelope
8.1	Comparison of distributions of summer and winter seasonal maxima about
	Australia
8.2	Average monthly rainfall, Adelaide, South Australia
8.3	Maximum water depths in Scott Creek Basin
8.4	Maximum rainfall intensities in neighbouring catchment to Scott Creek 120
8.5	Annual maximum water depths in Scott Creek Basin, composite distribu-
	tion from seasonal maxima
8.6	Maximum water depths in Scott Creek Basin, adjusted composite distri-
	bution
8.7	Southern Oscillation Index
8.8	ACF and PACF of the SOI
8.9	Pattern of two indicator states based on partition of SOI
8.10	Locations of gauges used for Bourke case-study
8.11	Fitted correlation statistics for Bourke
8.12	Fitted coefficient of variation for Bourke
8.13	Fitted skewness for Bourke
8.14	SOI+/SOI- partitioned, observed annual extremes, site 4, Bourke 133
8.15	SOI+/SOI- partitioned, observed extremes, site 4, Bourke
8.16	Seasonally partitioned, observed SOI+ extremes, site 4, Bourke 134
8.17	Comparison of observed and simulated extremes, site 4, Bourke 135
9.1	Avon Basin from <i>Jothityangkoon et al.</i> [2000]
9.2	Schematic of rainfall process
9.3	Schematic of two pixels from gridded rainfall data
9.4	Schematic of distance between two points (u, v) and (x, y)
9.5	Integration regions used for h^- case with $i = k; j = l $
9.6	Integration regions used for h^- case with $ i - k = j = l \ge 0$ 143
9.7	Effectiveness of hypotenuse approximations for various distances 146
9.8	1-D line example of spatial cell process
9.9	1-D circular line example of spatial cell process
9.10	Inhomogeneous model simulation schematic

9.11	Inhomogeneous model accept-reject schematic	156
9.12	Location of gauges for the Avon basin case-study	157
9.13	Variation in mean rainfall over the Avon Basin.	159
9.14	Variation in the coefficient of variability over the Avon Basin	160
9.15	Variation in the probability of a dry day over the Avon Basin	161
9.16	Variation in the daily auto-correlation over the Avon Basin	162
9.17	Fitted regional coefficient of variation, Avon Basin.	163
9.18	Fitted regional autocorrelation, Avon Basin.	163
9.19	Fitted regional skewness, Avon Basin.	164
9.20	Fitted variation in the number of cells over the Avon Basin	166
9.21	Spline fitted number of cells over the Avon Basin	168
9.22	Residuals of the number of cells from spline fitting	169
9.23	Comparison of simulated and observed daily dry probability	170
9.24	Comparison of simulated and observed daily coefficient of variation	172
9.25	Simulated spatial rate of cells over the Avon Basin	173
9.26	Uncertainty in cross-correlation estimates	174
9.27	Simulated and observed cross-correl. comparison, after spline interpolation.	175
D 1	SOL /SOL partitioned observed appuel extremes sites 1 6 Pourka	าาง
D.1	SOI+/SOI- partitioned, observed annual extremes, sites 7 - 12 Bourke	220
D.2 B 3	SOI+/SOI- partitioned, observed annual extremes, sites 13 - 16 Bourke	229
D.5 B /	SOI+/SOI- partitioned, observed summer extremes, sites 1 - 6 Bourke	230 737
D.4 B 5	SOI+/SOI- partitioned, observed summer extremes, sites 7 - 12 Bourke	232
В.5 В.6	SOI+/SOI- partitioned, observed summer extremes, sites 13 - 16 Bourke	233 234
В.0 В 7	SOI+/SOI partitioned observed winter extremes sites 1 - 6 Bourke	234 236
D.7 B 8	SOI+/SOI- partitioned, observed winter extremes, sites 7 - 12 Bourke	230 237
D.0 R 0	SOI_{SOI} partitioned observed winter extremes, sites 13 - 16 Bourke	237
B 10	Seasonally partitioned observed SOI+ extremes sites 1 - 6 Bourke	$\frac{230}{240}$
B.10	Seasonally partitioned observed SOL extremes sites 7 - 12 Bourke	240 241
B.11 B.12	Seasonally partitioned observed SOI+ extremes sites 13 - 16 Bourke	241
B.12 B.13	Seasonally partitioned, observed SOL extremes, sites 1 - 6 Bourke	242 744
B.13 B 14	Seasonally partitioned, observed SOL extremes, sites 7 - 12 Bourke	245
B.14	Seasonally partitioned, observed SOL extremes, sites 13 - 16 Bourke	245
B 16	Comparison of observed and simulated extremes, sites 1 - 3 Rourke	248
B 17	Comparison of observed and simulated extremes, sites 4 - 6. Bourke	249
B 18	Comparison of observed and simulated extremes, sites 7 - 9, Bourke	250
D .10	comparison of observed and simulated extremes, sites / - /, Dourke	250

B.19 Comparison of observed and simulated extremes, sites 10 - 12, Bourke. . 251
B.20 Comparison of observed and simulated extremes, sites 13 - 15, Bourke. . . 252
B.21 Comparison of observed and simulated extremes, site 16, Bourke. 253

List of Tables

1.1	Summary statistics for varied case studies
5.1	Bias in mean due to monthly boundary
5.2	Bias in mean due to monthly boundary
6.1	Launceston parameter estimates for each month, via analytic expressions. 82
6.2	Launceston parameter estimates for each month, via MCS
7.1	Algorithm for efficiently simulating storm and cell properties 94
7.2	Parameter estimates for each month
8.1	List of gauges used for Bourke case-study
8.2	Bourke regional parameter estimates, entire record
8.3	Bourke regional parameter estimates, SOI
8.4	Bourke regional parameter estimates, SOI+
9.1	Computational requirements of matrix inversion
9.2	Conjugate Gradient Algorithm
9.3	Avon Basin regional parameter estimates for each month
A.1	List of pluviograph gauges from Sydney Water Observation Network 199
A.2	List of Bureau of Meteorology daily rainfall gauges

Abstract

The temporal and spatial variability of Australia's climate affects the quantity and quality of its water resources, the productivity of its agricultural systems, and the health of its ecosystems. This variability should be taken into account when assessing the risks associated with flooding. Continuous simulation rainfall models are one means for doing this, whereby sequences of storms are generated for an arbitrarily long time period and over some region of interest. The simulated rainfall should reproduce observed statistics in time and space so that it can be used as a suitable input for hydrologic models at the catchment scale, with particular emphasis on extreme events.

There are a variety of approaches to modelling rainfall, including a broad range of singlesite and multi-site rainfall models. By way of contrast there are few models that aim to simulate rainfall across all points within a region at daily or sub-daily increments. This thesis focuses on models calibrated solely to rain gauges, and a specific type known as Neyman-Scott Rectangular Pulse (NSRP) models. Existing NSRP models have a mature history of modelling developments including calibration methodology and an ability to reproduce key statistics across a range of timescales. Nonetheless, these models also have several limitations (and other space-time models not withstanding) that are addressed in this thesis. These developments include improvements to the conceptual representation of rainfall and improvements to calibration and simulation techniques. Specifically these improvements include (i) the development of an efficient simulation technique, (ii) assessing the impact of monthly parameter changes on on rainfall statistics, (iii) the use of simulated statistics within calibration to overcome reliance on derived model properties (iv) incorporating a storm extent parameter to better match spatial correlations, (v) incorporating long term climatic variability and developing a methodology to assess climatic and seasonal variability in simulated extremes (vi) incorporating inhomogeneity of rainfall occurrence across a region. Numerous case studies are used at various locations about Australia to illustrate these improvements and highlight the applicability of the model under varied climatic conditions.

Abstract

Statement of Originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Michael Leonard and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of my thesis to be made available on the web, via the Universitys digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

SIGNED: DATE:

Acknowledgements

Undertaking a thesis is a privileged opportunity. Amongst the many privileges, I consider the community of support I have received and the resulting friendships to be among the greatest.

In this spirit, I would like to thank my supervisors Prof. Martin Lambert and Assoc. Prof. Andrew Metcalfe and collaborators Prof. George Kuczera, Dr. Mark Thyer and Dr. Paul Cowpertwait for their friendship, time, advice and enthusiasm. For their numerous conversations, assistance and general interest I also thank Prof. Angus Simpson, Dr. Alan Seed, Dr. Theresa Heneker, Dr. Julian Whiting, Dr. Andrew Frost, Ms. Juan Qin, Mr. Alex Osti, Mr. Steven Need, Ms. Geraldine Wong. There are many other friends I would like to mention here who encouraged me but, for the sake of avoiding long lists, to whom I hope a simple 'thank you' suffices. I will single out only Mr. Rob May as he has been especially generous in his friendship.

I am thankful to all of the staff in the School of Civil, Environmental and Mining Engineering at the University of Adelaide for creating a genuinely positive and constructive research environment. I am also indebted to fellow postgraduate students for their positive and constructive research distractions.

I am grateful to my family for their ongoing support and to J.B. for her love and patient understanding. Lastly, I am thankful to a merciful God who 'sends rain on the righteous and the unrighteous' alike (Sermon on the Mount, Matthew 5:45).

List of Symbols

Symbol Quantity

Units

Functions

A(h, l),B(h,l)	Used to calculate SNSRP covariance
E[]	Expected value
$E_1()$	First-order, exponential integral function
f_{R_c}	Probability density for random variable R_c
$f_{R_{xy}}$	Probability density for random variable R_{xy}
f(),g()	Used to calculate SNSRP skewness
$\Gamma()$	Gamma function
$p_h(t)$	Probability of no-rain in interval (t,t+h)
$P(N_o = n_o)$	Probability of obtaining n_o cells
$\psi()$	Prob. of a cell overlapping a point, given it overlaps a region
$P(\phi, d)$	Prob. of a cell overlapping a point at a distance d away
Pr()	Probability that

English

A	Rational method, catchment area	km^2
A_K	Area of target region	km^2
b_r	r^{th} order, probability weighted moment	
C	Random variable, number of cells	
C_Y	Rational method, dimensionless runoff coefficient	
d	Distance between two generic points	km
dN	Number of cells 'alive' at time t	
$D_{i,j}$	Domain of points defining a pixel	
$D_{k,l}$	Domain of points defining a pixel	
$D \equiv I_{h,i,j,k,l}$	Indicator function for data element $x_{h,i,j,k,l}$, (1=dry,0=wet)	
F_{1}, F_{2}	Least squares objective functions used in calibration	
h	Level of aggregation	hr

continued on next page

Symbol Quantity

h, h^-, h^+	Approximations for length of a hypotenuse	
$I \equiv I_{h,i,j,k,l}$	Indicator function for data element $x_{h,i,j,k,l}$, (1=valid,0=corrupt)	
$I_{t_c,Y}$	Rational method, intensity at critical period	mm/hr
k	Month index, $k = 1 \dots 12$	
K	Set of points defining a region	
l	Index of individual data interval, $l = 1 \dots 31(24/h)$	
$L, L_{i,j}$	Random variable, cell lifetime, i^{th} storm, j^{th} cell,	hr
L	Length scale of a pixel	
М	Number of observed rainfall sites in region, $i = 1 \dots M$	
n	Number of storm types in mixture of SNSRP processes	
$n_{h,k}$	Number of data elements all sites, aggregate h , month k	
$n_{h,i,k}$	Number of data elements, aggregate h , site i , month k	
N_i	Number of years in observed record at site $i, j = 1 \dots N_i$	
No	Number of successful Bernoulli trials	
N _{tot}	Total number of Bernoulli trials	
N_{xy}	Number of concurrent years in records at sites x , and y	
p_o	Arbitrary constant probability for Bernoulli trials	
Q_Y	Rational method, peak flow for ARI Y	$m^{3}s^{-1}$
r_K	Radius of target region	km
R_C	Random Variable, radius of cell centre	km
R_{xy}	Random Variable, dist. from region edge to cell centre	km
$S, S_{i,j}$	Random variable, cell start-time, i^{th} storm, j^{th} cell,	hr
t_3	The L-skewness, calculated from L-moments	
t_c	Rational method, critical period	s
T, T_i	Random variable, arrival time of i^{th} storm	hr
u, v	Dummy integration variables for a pixel	
U	Random variable, uniform distribution, $U \sim [0, 1]$	
w	Mixture ratio	
w_{ψ}, \ldots	Relative weight values for the method of moments	
x, y	Dummy integration variables for a pixel	
$x_{h,i,j,k,l}$	Individual element of data, agg. h , site i , year j , month k , interval l	
$X, X_{i,j}$	Random variable, cell intensity, i^{th} storm, j^{th} cell,	mm
X_j	j^{th} order statistic, arbitrary data X	
Y(t)	Instantaneous rainfall process at time t	mm
$Y_l^{(h)}$	Aggregate rainfall process, l^{th} interval, agg. level h	mm
$Y_Z(t)$	Instantaneous rainfall process at time t , spatial location Z	mm
Z	Generic location in \mathbb{R}^2 domain	

continued on next page

Units

Symbol Quantity

Units

 Z_C Random Variable, location of cell centre in \mathbb{R}^2 domain

Greek		
α	Storm intensity parameter	
$\alpha^{(p)}$	Storm intensity parameter, $SNSRP^{(p)}$ mixture	
β	Cell dispersion parameter	hr^{-1}
$\beta^{(p)}$	Cell dispersion parameter, $SNSRP^{(p)}$ mixture	hr^{-1}
$\gamma_{d,h, au}$	Covariance, distance d (km), aggregation h , time-lag τ	mm^2
$\gamma_{d,h,\tau}^{(p)}$	Covariance of $SNSRP^{(p)}$ mixture	mm^2
$\gamma_{0,h, au}$	Auto-covariance, from $\gamma_{d,h,\tau}$	mm^2
$\gamma_{0,h,0}$	Variance, from $\gamma_{d,h,\tau}$	mm^2
δr	Elemental radius length	km
$\delta \xi$	Elemental angle	rad.
ϵ_i,ϵ	Rainfall falling beyond month <i>i</i> boundary	mm
ζ_h	Unstandardised skewness, aggregation h	mm^3
$\zeta_h^{(p)}$	Unstandardised skew of $SNSRP^{(p)}$ mixture, agg. h	mm^3
η	Cell lifetime parameter	hr^{-1}
$\eta^{(p)}$	Cell lifetime parameter, $SNSRP^{(p)}$ mixture	hr^{-1}
θ	Storm intensity parameter / scale parameter	mm
$\hat{ heta}_{h,i,k}$	Estimate of scale parameter, agg. h , site i , month k	mm
κ_h	Standardised skewness	
$\hat{\kappa}_{h,k}$	Non-dim., pooled skew estimate, agg. h , month k	
λ	Storm rate parameter	hr^{-1}
$\lambda^{(p)}$	Storm rate parameter, $SNSRP^{(p)}$ mixture	hr^{-1}
μ_C	Mean number of cells covering a point in space	
μ_C	Other interpretation: Mean number of cells per storm	
$\mu_C^{(p)}$	Mean number of cells per storm, $SNSRP^{(p)}$ mixture	
μ_h	Mean rainfall intensity at agg. level h	mm
$\mu_h^{(p)}$	Mean rainfall intensity of $SNSRP^{(p)}$ mixture, agg. level h	mm
$\hat{\mu}_{h,i,k}$	Estimate of mean, agg. h , site i , month k	mm
$\hat{\mu}_{h,k}$	Pooled estimate of mean, agg. h , month k	mm
μ_y	Mean rainfall of instantaneous rainfall intensity	mm
$ u_h$	Coefficient of variation	

continued on next page

Symbol Quantity

$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\hat{\mathcal{U}}_{i}$,	Pooled estimate of coefficient of variation and h month k	
ζ Finitially aligned at which a cert is located Ξ Random variable, uniform angle, $Xi \sim [0, 2\pi]$ ρ_h Lag-1 auto-correlation $\rho_{x,y,h}$ Lag-0 cross-correlation between site x and site y, agg. h $\hat{\rho}_{x,y,h,k}$ Estimate of lag-0 cross-correlation, sites $x \& y$, agg. h,month k σ_h^2 Variance, aggregation h $\sigma_{h,k}^2$ Non-dim., pooled variance estimate, agg. h, month k τ Correlation lag in time φ_C Spatial rate parameter ϕ_c Cell radius parameter, either ϕ_c or ϕ_s km^{-1} ϕ_c Cell radius parameter, $SNSRP^{(p)}$ mixture ϕ_s Storm radius parameter, $SNSRP^{(p)}$ mixture ψ_h Dry portion / probability of a dry interval $\psi_h^{(p)}$ Dry portion of $SNSRP^{(p)}$ mixture Ψ_i, Ψ Rainfall bias in mean / portion of month i rainfall $\psi_{h,k}$ Pooled estimate of dry portion, agg. h, month k ω ratio of radius parameter ϕ to radius of target region r_t Ω Generic parameter of Poisson distribution	$\nu_{h,k}$	A rhitrary angle at which a cell is located	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ς		
$\begin{array}{lll} \rho_h & \mbox{Lag-1 auto-correlation} \\ \rho_{x,y,h} & \mbox{Lag-0 cross-correlation between site x and site y, agg. }h \\ \hline \rho_{x,y,h,k} & \mbox{Estimate of lag-0 cross-correlation, sites }x \& y, agg. h, month k \\ \hline \sigma_h^2 & \mbox{Variance, aggregation }h & mm^2 \\ \hline \sigma_{h,k}^2 & \mbox{Non-dim., pooled variance estimate, agg. }h, month k \\ \hline \tau & \mbox{Correlation lag in time} \\ \hline \varphi_C & \mbox{Spatial rate parameter} & km^{-2} \\ \hline \phi_c & \mbox{Generic radius parameter, either } \phi_c \mbox{ or } \phi_s & km^{-1} \\ \hline \phi_c^{(p)} & \mbox{Cell radius parameter} & km^{-1} \\ \hline \phi_s & \mbox{Storm radius parameter} & km^{-1} \\ \hline \phi_s & \mbox{Storm radius parameter} & km^{-1} \\ \hline \phi_s^{(p)} & \mbox{Storm radius parameter} & km^{-1} \\ \hline \phi_h & \mbox{Dry portion }/ \mbox{ probability of a dry interval} \\ \hline \psi_h & \mbox{Dry portion of $SNSRP^{(p)$ mixture} & km^{-1} \\ \hline \psi_h & \mbox{Dry portion of $SNSRP^{(p)$ mixture} & km^{-1} \\ \hline \psi_h & \mbox{Dry portion of $SNSRP^{(p)$ mixture} & km^{-1} \\ \hline \psi_h & \mbox{Dry portion of $SNSRP^{(p)$ mixture} & km^{-1} \\ \hline \psi_h & \mbox{Dry portion of $SNSRP^{(p)$ mixture} & km^{-1} \\ \hline \psi_h & \mbox{Dry portion of $SNSRP^{(p)$ mixture} & km^{-1} \\ \hline \psi_h & \mbox{Dry portion of $SNSRP^{(p)$ mixture} & km^{-1} \\ \hline \psi_h & \mbox{Dry portion of $SNSRP^{(p)$ mixture} & km^{-1} \\ \hline \psi_h & \mbox{Dry portion of $SNSRP^{(p)$ mixture} & km^{-1} \\ \hline \psi_h & \mbox{Dry portion of $SNSRP^{(p)$ mixture} & km^{-1} \\ \hline \psi_h & \mbox{Dry portion of $SNSRP^{(p)$ mixture} & km^{-1} \\ \hline \psi_h & \mbox{Dry portion of $SNSRP^{(p)$ mixture} & km^{-1} \\ \hline \psi_h & \mbox{Dry portion of $SNSRP^{(p)$ mixture} & km^{-1} \\ \hline \psi_h & \mbox{Dry portion of $SNSRP^{(p)$ mixture} & km^{-1} \\ \hline \psi_h & \mbox{Dry portion of $SNSRP^{(p)$ mixture} & km^{-1} \\ \hline \psi_h & \mbox{Dry portion of $SNSRP^{(p)$ mixture} & km^{-1} \\ \hline \psi_h & \mbox{Dry portion of $SNSRP^{(p)$ mixture} & km^{-1} \\ \hline \psi_h & \mbox{Dry portion of $SNSRP^{(p)$ mixture} & km^{-1} \\ \hline \psi_h & \mbox{Dry portion of $SNSRP^{(p)$ mixture} & km^{-1} \\ \hline \psi_h & \mbox{Dry portion of $SNSRP^{(p)$ mixture} & km^{$	ī	Random variable, uniform angle, $Xi \sim [0, 2\pi]$	
$\begin{array}{lll} \rho_{x,y,h} & \mbox{Lag-0 cross-correlation between site x and site y, agg. }h \\ \hline \rho_{x,y,h,k} & \mbox{Estimate of lag-0 cross-correlation, sites }x & \mbox{ψ}, agg. $h, month k \\ \hline \sigma_h^2 & \mbox{Variance, aggregation }h & mm^2 \\ \hline \sigma_{h,k}^2 & \mbox{Non-dim., pooled variance estimate, agg. }h, month k \\ \hline \tau & \mbox{Correlation lag in time} \\ \hline \varphi_C & \mbox{Spatial rate parameter} & km^{-2} \\ \hline \phi & \mbox{Generic radius parameter, either ϕ_c or ϕ_s & km^{-1} \\ \hline \phi_c & \mbox{Cell radius parameter} & km^{-1} \\ \hline \phi_s & \mbox{Storm radius parameter} & km^{-1} \\ \hline \phi_s^{(p)} & \mbox{Storm radius parameter} & km^{-1} \\ \hline \phi_s^{(p)} & \mbox{Storm radius parameter}, $SNSRP^{(p)}$ mixture & km^{-1} \\ \hline \phi_h^{(p)} & \mbox{Dry portion }/$ probability of a dry interval \\ \hline \psi_h^{(p)} & \mbox{Dry portion of $SNSRP^{(p)}$ mixture \\ \hline \Psi_i, \Psi & \mbox{Rainfall bias in mean }/$ portion, agg. h, month k \\ \hline \omega & \mbox{ratio of radius parameter ϕ to radius of target region r_t \\ \hline \Omega & \mbox{Generic parameter of Poisson distribution} \\ \end{array}$	$ ho_h$	Lag-1 auto-correlation	
$ \begin{array}{lll} \hat{\rho}_{x,y,h,k} & \mbox{Estimate of lag-0 cross-correlation, sites $x \ \& y, agg. h,month k \\ σ_h^2 Variance, aggregation h mm^2$ \\ \hat{\sigma}_{h,k}^2 & \mbox{Non-dim., pooled variance estimate, agg. h, month k \\ τ Correlation lag in time \\ φ_C Spatial rate parameter & km^{-2} \\ ϕ Generic radius parameter, either ϕ_c or ϕ_s km^{-1}$ \\ ϕ_c Cell radius parameter & km^{-1} \\ ϕ_c Cell radius parameter, $SNSRP^{(p)}$ mixture & km^{-1} \\ ϕ_s Storm radius parameter, $SNSRP^{(p)}$ mixture & km^{-1} \\ $\phi_h^{(p)}$ Dry portion / probability of a dry interval $ \\ $\psi_h^{(p)}$ Dry portion of $SNSRP^{(p)}$ mixture & km^{-1} \\ $\psi_h^{(p)}$ Mixture & km^{-1} \\ $\psi_{h,k}$ Pooled estimate of dry portion, agg. h, month k \\ ω ratio of radius parameter ϕ to radius of target region r_t \\ Ω Generic parameter of Poisson distribution \\ \end{array}$	$ ho_{x,y,h}$	Lag-0 cross-correlation between site x and site y, agg. h	
$\begin{array}{lll} \sigma_h^2 & \mbox{Variance, aggregation }h & mm^2 \\ & & \\ \hat{\sigma}_{h,k}^2 & \mbox{Non-dim., pooled variance estimate, agg. }h, \mbox{month }k \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	$\hat{ ho}_{x,y,h,k}$	Estimate of lag-0 cross-correlation, sites $x \& y$, agg. h ,month h	k
$\begin{array}{lll} \hat{\sigma}_{h,k}^2 & \text{Non-dim., pooled variance estimate, agg. } h, \text{ month } k \\ \tau & \text{Correlation lag in time} \\ \\ \varphi_C & \text{Spatial rate parameter} & km^{-2} \\ \phi & \text{Generic radius parameter, either } \phi_c \text{ or } \phi_s & km^{-1} \\ \phi_c & \text{Cell radius parameter} & km^{-1} \\ \phi_c^{(p)} & \text{Cell radius parameter} & km^{-1} \\ \phi_s & \text{Storm radius parameter} & km^{-1} \\ \phi_s^{(p)} & \text{Storm radius parameter} & km^{-1} \\ \phi_h^{(p)} & \text{Storm radius parameter} & km^{-1} \\ \psi_h & \text{Dry portion / probability of a dry interval} \\ \psi_h^{(p)} & \text{Dry portion of } SNSRP^{(p)} \\ \text{mixture} & 4m^{-1} \\ \psi_h^{(p)} & \text{Dry portion of } SNSRP^{(p)} \\ \psi_h,k & \text{Pooled estimate of dry portion, agg. } h, \\ \omega & \text{ratio of radius parameter} \\ \phi & \text{Generic parameter of Poisson distribution} \\ \end{array}$	σ_h^2	Variance, aggregation h	mm^2
$\begin{array}{lll} \tau & \mbox{Correlation lag in time} \\ \varphi_C & \mbox{Spatial rate parameter} & km^{-2} \\ \phi & \mbox{Generic radius parameter, either } \phi_c \mbox{ or } \phi_s & km^{-1} \\ \phi_c & \mbox{Cell radius parameter} & km^{-1} \\ \phi_c^{(p)} & \mbox{Cell radius parameter, } SNSRP^{(p)} \mbox{ mixture} & km^{-1} \\ \phi_s & \mbox{Storm radius parameter} & km^{-1} \\ \phi_s^{(p)} & \mbox{Storm radius parameter, } SNSRP^{(p)} \mbox{ mixture} & km^{-1} \\ \phi_s^{(p)} & \mbox{Storm radius parameter, } SNSRP^{(p)} \mbox{ mixture} & km^{-1} \\ \phi_h^{(p)} & \mbox{Dry portion / probability of a dry interval} \\ \psi_h & \mbox{Dry portion of } SNSRP^{(p)} \mbox{ mixture} & \\ \Psi_i, \Psi & \mbox{ Rainfall bias in mean / portion of month } i \mbox{ rainfall} \\ \hat{\psi}_{h,k} & \mbox{ Pooled estimate of dry portion, agg. } h, \mbox{ month } k \\ \omega & \mbox{ ratio of radius parameter } \phi \mbox{ to radius of target region } r_t \\ \Omega & \mbox{ Generic parameter of Poisson distribution} \\ \end{array}$	$\hat{\sigma}_{h,k}^2$	Non-dim., pooled variance estimate, agg. h , month k	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	au	Correlation lag in time	
$ \begin{array}{lll} \phi & & \mbox{Generic radius parameter, either } \phi_c \mbox{ or } \phi_s & km^{-1} \\ \phi_c & & \mbox{Cell radius parameter} & km^{-1} \\ \phi_s^{(p)} & & \mbox{Cell radius parameter, } SNSRP^{(p)} \mbox{ mixture} & km^{-1} \\ \phi_s & & \mbox{Storm radius parameter} & NSRP^{(p)} \mbox{ mixture} & km^{-1} \\ \phi_s^{(p)} & & \mbox{Storm radius parameter, } SNSRP^{(p)} \mbox{ mixture} & km^{-1} \\ \psi_h & & \mbox{Dry portion / probability of a dry interval} \\ \psi_h^{(p)} & & \mbox{Dry portion of } SNSRP^{(p)} \mbox{ mixture} & \\ \Psi_i, \Psi & \mbox{ Rainfall bias in mean / portion of month } i \mbox{ rainfall} \\ \hat{\psi}_{h,k} & & \mbox{Pooled estimate of dry portion, agg. } h, \mbox{ month } k \\ \omega & & \mbox{ ratio of radius parameter } \phi \mbox{ to radius of target region } r_t \\ \Omega & & \mbox{ Generic parameter of Poisson distribution} \end{array} $	φ_C	Spatial rate parameter	km^{-2}
$ \begin{array}{lll} \phi_c & \mbox{Cell radius parameter} & km^{-1} \\ \phi_c^{(p)} & \mbox{Cell radius parameter}, SNSRP^{(p)} \mbox{mixture} & km^{-1} \\ \phi_s & \mbox{Storm radius parameter} & km^{-1} \\ \phi_s^{(p)} & \mbox{Storm radius parameter}, SNSRP^{(p)} \mbox{mixture} & km^{-1} \\ \psi_h & \mbox{Dry portion / probability of a dry interval} \\ \psi_h^{(p)} & \mbox{Dry portion of } SNSRP^{(p)} \mbox{mixture} \\ \Psi_i, \Psi & \mbox{Rainfall bias in mean / portion of month } i \mbox{rainfall} \\ \psi_{h,k} & \mbox{Pooled estimate of dry portion, agg. } h, \mbox{month } k \\ \omega & \mbox{ratio of radius parameter } \phi \mbox{ to radius of target region } r_t \\ \Omega & \mbox{Generic parameter of Poisson distribution} \end{array} $	ϕ	Generic radius parameter, either ϕ_c or ϕ_s	km^{-1}
$\begin{array}{lll} \phi_{c}^{(p)} & \mbox{Cell radius parameter, } SNSRP^{(p)} \mbox{ mixture } & km^{-1} \\ \phi_{s} & \mbox{Storm radius parameter } & km^{-1} \\ \phi_{s}^{(p)} & \mbox{Storm radius parameter, } SNSRP^{(p)} \mbox{ mixture } & km^{-1} \\ \psi_{h} & \mbox{Dry portion / probability of a dry interval } \\ \psi_{h}^{(p)} & \mbox{Dry portion of } SNSRP^{(p)} \mbox{ mixture } \\ \Psi_{i}, \Psi & \mbox{ Rainfall bias in mean / portion of month } i \mbox{ rainfall } \\ \psi_{h,k} & \mbox{Pooled estimate of dry portion, agg. } h, \mbox{ month } k \\ \omega & \mbox{ ratio of radius parameter } \phi \mbox{ to radius of target region } r_t \\ \Omega & \mbox{ Generic parameter of Poisson distribution } \end{array}$	ϕ_c	Cell radius parameter	km^{-1}
$ \begin{array}{lll} \phi_s & & \text{Storm radius parameter} & km^{-1} \\ \phi_s^{(p)} & & \text{Storm radius parameter, } SNSRP^{(p)} \text{ mixture} & km^{-1} \\ \psi_h & & \text{Dry portion / probability of a dry interval} \\ \psi_h^{(p)} & & \text{Dry portion of } SNSRP^{(p)} \text{ mixture} \\ \Psi_i, \Psi & & \text{Rainfall bias in mean / portion of month } i \text{ rainfall} \\ \hat{\psi}_{h,k} & & \text{Pooled estimate of dry portion, agg. } h, \text{ month } k \\ \omega & & \text{ratio of radius parameter } \phi \text{ to radius of target region } r_t \\ \Omega & & \text{Generic parameter of Poisson distribution} \end{array} $	$\phi_c^{(p)}$	Cell radius parameter, $SNSRP^{(p)}$ mixture	km^{-1}
$ \begin{array}{ll} \phi_s^{(p)} & \text{Storm radius parameter, } SNSRP^{(p)} \text{ mixture } km^{-1} \\ \psi_h & \text{Dry portion / probability of a dry interval} \\ \psi_h^{(p)} & \text{Dry portion of } SNSRP^{(p)} \text{ mixture} \\ \Psi_i, \Psi & \text{Rainfall bias in mean / portion of month } i \text{ rainfall} \\ \psi_{h,k} & \text{Pooled estimate of dry portion, agg. } h, \text{ month } k \\ \omega & \text{ratio of radius parameter } \phi \text{ to radius of target region } r_t \\ \Omega & \text{Generic parameter of Poisson distribution} \end{array} $	ϕ_s	Storm radius parameter	km^{-1}
ψ_h Dry portion / probability of a dry interval $\psi_h^{(p)}$ Dry portion of $SNSRP^{(p)}$ mixture Ψ_i, Ψ Rainfall bias in mean / portion of month <i>i</i> rainfall $\hat{\psi}_{h,k}$ Pooled estimate of dry portion, agg. <i>h</i> , month <i>k</i> ω ratio of radius parameter ϕ to radius of target region r_t Ω Generic parameter of Poisson distribution	$\phi_s^{(p)}$	Storm radius parameter, $SNSRP^{(p)}$ mixture	km^{-1}
$\psi_h^{(p)}$ Dry portion of $SNSRP^{(p)}$ mixture Ψ_i, Ψ Rainfall bias in mean / portion of month <i>i</i> rainfall $\hat{\psi}_{h,k}$ Pooled estimate of dry portion, agg. <i>h</i> , month <i>k</i> ω ratio of radius parameter ϕ to radius of target region r_t Ω Generic parameter of Poisson distribution	ψ_h	Dry portion / probability of a dry interval	
Ψ_i, Ψ Rainfall bias in mean / portion of month <i>i</i> rainfall $\hat{\psi}_{h,k}$ Pooled estimate of dry portion, agg. <i>h</i> , month <i>k</i> ω ratio of radius parameter ϕ to radius of target region r_t Ω Generic parameter of Poisson distribution	$\psi_h^{(p)}$	Dry portion of $SNSRP^{(p)}$ mixture	
$\hat{\psi}_{h,k}$ Pooled estimate of dry portion, agg. h, month kωratio of radius parameter ϕ to radius of target region r_t ΩGeneric parameter of Poisson distribution	Ψ_i, Ψ	Rainfall bias in mean / portion of month <i>i</i> rainfall	
$ω$ ratio of radius parameter $φ$ to radius of target region r_t $Ω$ Generic parameter of Poisson distribution	$\hat{\psi}_{h,k}$	Pooled estimate of dry portion, agg. h , month k	
Ω Generic parameter of Poisson distribution	ω	ratio of radius parameter ϕ to radius of target region r_t	
	Ω	Generic parameter of Poisson distribution	

Acronyms

ABARE	Australian Bureau of Agriculture and Resource Economics
ABS	Australian Bureau of Statistics
AMF	Annual Maximum Frequency
ARI	Annual Recurrence Interval
ARMA	Auto-Regressive Moving-Average
BLRP	Bartlett-Lewis Rectangular Pulse
BOM	Bureau of Meteorology
BTE	Bureau of Transport Economics
CV	Coefficient of Variation
ENSO	El Niño Southern Oscillation
FFT	Fast Fourier Transform
GDP	Gross Domestic Product
GRF	Gaussian Random Field

Units

Symbol	Quantity	Units
IPO	Interdecadal Pacific Oscillation	
MTB	Modified Turning Bands	
NSRP	Neyman-Scott Rectangular Pulse	
MCS	Monte Carlo Simulation	
SNSRP	Spatial Neyman-Scott Rectangular Pulse	
$SNSRP^{(p)}$	The p^{th} superimposed SNSRP process	
SOL	Southern Oscillation Index	