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Appendix A

Normalisation for Impedance
Changes

In order to satisfy the equal amplitude criterion of Section 3.1.2, the cross-
correlations from sources that span an area of varying impedance should be
normalised by dividing by ρsc

sin θs , as calculated at the source location, where
ρ is medium density, c is medium sound speed, and θ is the grazing angle
with the horizontal. This can be understood by considering the following.

Consider the geometry of Figure 3.3(a). Let R be a reflection from the
bottom of the water column, R′ be a reflection from the top of the sediment,
R′′ a reflection from the bottom of the sediment, T a transmission from the
water column into the sediment, and T ′ a transmission from the sediment
to the water column. If the source amplitude is Sa, the cross-correlation
of the acoustic path from S to A with the path from S to B yields an
amplitude of SaTT ′×SaR. Similarly, for the geometry of Figure 3.3(b) the
cross-correlation of the paths from S ′ to each receiver yield an amplitude
of SbR′T ′ × SbT ′. The two will cancel only if

SaTT
′ × SaR = −SbR′T ′ × SbT ′. (A.1)

The reflection coefficient at the interface of two media is defined as [4]

R12 =
ρ2c2
sin θ2
− ρ1c1

sin θ1
ρ2c2
sin θ2

+ ρ1c1
sin θ1

, (A.2)
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A. Normalisation for Impedance Changes

where medium 1 is the medium in which the wave is travelling, and me-
dium 2 is the medium on the other side of the interface. The transmission
coefficient from medium 1 to 2 is

T12 =
2 ρ2c2sin θ2

ρ2c2
sin θ2

+ ρ1c1
sin θ1

. (A.3)

Substituting Eq. (A.2) and Eq. (A.3) into Eq. (A.1) and simplifying yields

S2
a

ρaca
sin θa

= S2
b
ρbcb
sin θb

, (A.4)

where subscript a denotes the water column and subscript b denotes the
sediment.
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Appendix B

Array Details

Four arrays were used to collect data: MPL-VLA1, SWAMI32, SWAMI52,
and Shark. The MPL-VLA1 is a vertical line array that is able to maintain
its vertical configuration after deployment due to an anchor at the array
bottom, and a buoyancy float at the top. The other three arrays are L-
shaped, with a vertical line array (VLA) component and a horizontal line
array (HLA) component. The vertical components maintain their shape due
to buoyancy floats at the top and electronics modules that are heavy enough
to anchor them at the bottom. The horizontal arrays are all anchored at
both ends so that they retain their straight horizontal configuration. De-
scriptions of the SW06 array dimensions with mooring diagrams, as well as
details of the data acquisition system for each array, are included in this
appendix. Photographs of the arrays are included in the thesis body as Fig-
ure 4.2. All of the information in this appendix has been provided courtesy
of the Marine Physical Laboratory, Scripps Institution of Oceanography
(MPL-VLA1 array), Applied Research Laboratories, University of Texas
at Austin (SWAMI arrays), and Woods Hole Oceanographic Institute [75]
(Shark array).
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B. Array Details

B.1 Array geometries
The array geometries and mooring diagrams are detailed here. The mooring
diagrams are the a priori experimental designs, and as such, the depth
specified on each mooring diagram is different from the surveyed water
depth at the experimental site.

B.1.1 MPL-VLA1 array

The MPL-VLA1 array is a 16 element VLA with elements denoted H-1–
H-16. A mooring diagram of the configuration is shown in Figure B.1.
During the SW06 experiments it was deployed at a depth of 79 m, at a
surveyed location of 39◦ 01.477′N, 73◦ 02.256′W. The elements were evenly
spaced vertically at 3.75 m intervals, the lowest, H-1, being 8.2 m above the
seafloor.
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Array geometries 

 
 

 

 

 
 
 
 
 

 
Figure B.1: MPL-VLA1 mooring diagram (source: Hodgkiss [95]). 
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B. Array Details

B.1.2 SWAMI arrays

The SWAMI32 array consists of a 12 element VLA, with elements denoted
H-1–H-12, and a 20 element HLA, with elements denoted H-13–H-32. A
mooring diagram of the configuration is shown in Figure B.2. During the
SW06 experiments it was deployed at a depth of 68.5 m, with the base
of the VLA at a surveyed location of 39◦ 03.6180′N, 73◦ 07.8970′W. The
two lowest VLA elements, H-11 and H-12, were tied off approximately 2 m
above the seafloor. The other 10 VLA elements were evenly spaced at 5.95 m
intervals, the lowest, H-10, being 4.65 m above the seafloor. The first HLA
element, H-13, was located 7.795 m from the base of the VLA at a bearing of
224◦True. The vector of distances of H-14–H-32 from H-13 in metres was
[20.32, 39.66, 58.06, 75.57, 92.24, 108.10, 123.20, 137.57, 151.24, 164.25,
176.63, 188.42, 199.64, 210.31, 220.47, 230.14, 239.34, 248.10, 256.43].

The SWAMI52 array consists of a 16 element VLA, with elements de-
noted H-1–H-16, and a 36 element HLA, with elements denoted H-17–H-52.
A mooring diagram of the configuration is shown in Figure B.3. During the
SW06 experiments it was deployed at a depth of 73.8 m, with the base of the
VLA at a surveyed location of 39◦ 12.0010′N, 72◦ 57.9740′W. The two low-
est VLA elements, H-15 and H-16, were tied off approximately 2 m above the
seafloor. The other 14 VLA elements were evenly spaced at 4.37 m intervals,
the lowest, H-14, being 4.3 m above the seafloor. The first HLA element, H-
17, was located 7.795 m from the base of the VLA at a bearing of 314◦True
(i.e. perpendicular to the SWAMI32 array). The vector of distances of H-
18–H-52 from H-17 in metres was [15.84, 29.48, 41.21, 51.32, 60.00, 67.49,
73.94, 79.48, 84.60, 89.33, 93.70, 97.74, 101.47, 104.91, 108.09, 111.03,
113.75, 116.25, 118.97, 121.91, 125.09, 128.53, 132.26, 136.30, 140.67, 145.40,
150.52, 156.07, 162.51, 169.99, 178.69, 188.79, 200.52, 214.16, 230.00].
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Array geometries 

 
 

 

 

 
 
 
 
 

 
Figure B.3: SWAMI52 mooring diagram (source: ARL-UT [96]). 
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NOTE:  This figure is included on page 195 in the print copy of the 
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B. ARRAY  DETAILS 

 
 

 

 

 
 
 
 
 

 
Figure B.3: SWAMI52 mooring diagram (source: ARL-UT [96]). 
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NOTE:  This figure is included on page 196 in the print copy of the 

thesis held in the University of Adelaide Library. 
 



Array geometries

B.1.3 Shark array

The Shark L-array consists of a 16 element VLA, with elements denoted
H-0–H-15, and a 32 element HLA, with elements denoted H-16–H-47. A
mooring diagram of the configuration is shown in Figure B.4. During the
SW06 experiments the array was deployed at a depth of 79 m, with the
base of the VLA at a surveyed location of 39◦ 01.2627′N, 73◦ 02.9887′W.
The three lowest VLA elements, H-13–H-15, were tied off 1.25 m above the
seafloor. The vector of depths in metres below the sea surface of the other
12 VLA elements, H-0–H-12, was [13.5, 17.25, 21.0, 24.75, 28.5, 32.35, 36.0,
39.75, 43.5, 47.25, 54.75, 62.25, 69.75]. The HLA bearing was 1.45◦True.
The HLA elements, H-47–H-16, were evenly spaced at 15 m intervals, with
the closest, H-47, located 3 m from the base of the VLA.
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B. ARRAY  DETAILS 

 
 

 

 

 
 
 
 
 

 
Figure B.4: Shark mooring diagram (source: Newhall et al. [75]). 
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NOTE:  This figure is included on page 198 in the print copy of the 
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Array data acquisition specifications

B.2 Array data acquisition specifications
Details of the data acquisition system for each array are presented in Ta-
ble B.1.
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Table B.1: Data acquisition capabilities of the SWAMI arrays, MPL-VLA1
array, and Shark array.
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Appendix C

The Inversion Process

The inversion process attempts to determine a model, m, which optimises
an objective function, φ, for a set of physical data measurements, p. The
solution of an inverse problem has two components, namely the forward
model, and the inverse model. The forward model determines the mathe-
matical relationship between the unknown parameters to be estimated and
the acoustic field. Using the measured acoustic field and the forward mathe-
matical relationship, the inverse model determines the rule used to calculate
the unknown parameters.

The inverse problem requires P data measurements, forming vector

p = [p1, p2, ..., pP ]T . (C.1)

The Q unknown parameters to be determined form vector

q = [q1, q2, ..., qQ]T , (C.2)

where P > Q. Using the forward model, p is predicted for different com-
binations of q. The inverse model is employed to identify values of q that
give the best prediction of p. As the number of measurements exceeds
the number of unknown parameters, an exact solution that satisfies all N
measured parameters does not generally exist. Hence, a solution that best
satisfies the measured parameters must be obtained. This is done by re-
peatedly running the forward and inverse models with different q vectors, as
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C. The Inversion Process

depicted in Figure C.1, until the difference between the measured acoustic
field and the field predicted by the forward model is minimised.

q p

forward modelling

inverse modelling

Figure C.1: The inversion process.

The inversion process can be carried out using either non-linear tech-
niques based on full-field global optimisation, or using linear inversion tech-
niques that match only selected features of the acoustic field with corre-
sponding replica features, that is, features that are estimated from the
inversion. These optimisation techniques seek to minimise the objective
function φ = f (p,q (m)), where m is the set of physical parameters to be
estimated.

202



Appendix D

Publications

Journal publications and conference proceedings that have directly resulted
from the work presented in this thesis are listed here:

D.1 Journal papers

L. A. Brooks and P. Gerstoft, “Ocean acoustic interferometry,” J. Acoust.
Soc. Am. 121(6), pp. 3377–3385, June 2007.

L. A. Brooks, P. Gerstoft, and D. P. Knobles, “Multichannel array diagnosis
using noise cross-correlation,” J. Acoust. Soc. Am. 124(4), pp. EL203–
EL209, October 2008.

L. A. Brooks and P. Gerstoft, “Ocean acoustic interferometry of 20–100 Hz
noise,” J. Acoust. Soc. Am. Submitted 2008.

L. A. Brooks and P. Gerstoft, “Experimental ocean acoustic interferome-
try,” J. Acoust. Soc. Am. Submitted 2008.
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D. Publications

D.2 Refereed conference papers
L. A. Brooks and P. Gerstoft, “Ocean acoustic interferometry experiment,”
proceedings of ICSV14, Cairns, Australia, July 2007.

D.3 Invited talks
P. Gerstoft, L. A. Brooks*, S. Fried, W. A. Kuperman, and K. G. Sabra,
“Ocean acoustic interferometry using noise and active sources,” AGU Fall
Meeting, San Francisco, December 10–14 2007.

D.4 Other conference proceedings
L. A. Brooks and P. Gerstoft, “Green’s function retrieval through ocean
acoustic interferometry (A),” 153rd Meeting of the Acoustical Society of
America J. Acoust. Soc. Am. 121(5), p. 3102, May 2007.

L. A. Brooks and P. Gerstoft, “Extracting Green’s functions from noise cor-
relation of SW06 data,” Acoustics ’08, Paris, June 29 – July 4, 2008.
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source: "Piled Higher and Deeper" by Jorge Cham - www.phdcomics.com. 
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