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Abstract

Information from accurate ocean acoustic Green’s function estimations can
potentially be used to determine environmental characteristics such as water
column and seafloor properties, knowledge of which is beneficial in numer-
ous fields including sedimentology, oil exploration, and defence. Good esti-
mates of acoustic Green’s functions between two locations have previously
been determined from cross-correlation of sound and vibration in other re-
search fields. There is, however, limited literature that addresses Green’s
function approximation from cross-correlation of sound in the ocean. The
work in this thesis therefore aims to further the understanding of Green’s
function approximation from cross-correlation of sound recorded at two lo-
cations in a shallow water oceanic waveguide, an approach referred to as
ocean acoustic interferometry. Both active source and ship dominated am-
bient noise ocean acoustic interferometry are considered.

A stationary phase argument is used to relate cross-correlations from
active sources to the Green’s function between hydrophones. A vertical
line source, a horizontal line source, and a horizontal hyperbolic source
are considered. The theory and simulations are in agreement with related
theory presented by others. The advantages and disadvantages of each
source configuration are discussed.

Empirical Green’s function approximations (EGFAs) were determined
from ship dominated ocean noise cross-correlation. Direct and secondary
path travel times between hydrophones were determined, and agree well
with simulated data. Averaging the cross-correlations between equi-spaced
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horizontal line array hydrophone pairs is shown to increase the signal-to-
noise ratio. Analysis of temporal variations in the cross-correlations con-
firms that at any one time the signal is generally dominated by one or two
sources. Cross-correlations obtained from data recorded during a tropical
storm are shown to be clearer than those obtained at other times. This is
due to both a reduction in nearby shipping, and an increase in overall sound
levels caused by the increased wave action associated with the storm.

Ocean experiments were performed on the New Jersey Shelf. The direct
acoustic path of the given ocean environment is shown to be highly sensitive
to changes in sound speed profile, making reflection coefficient inversion
difficult.

Cross-correlations of experimental data from a source lowered vertically
and a source towed horizontally are compared and contrasted with the ship
dominated noise cross-correlations, and also with cross-correlations of noise
from a stationary ship. The EGFAs and their relationship to simulated
Green’s functions are explained using theory and simulations.

Two practical applications of ocean noise cross-correlation are also de-
tailed: diagnosis of a multichannel hydrophone array, and array hydrophone
self-localisation. Results obtained from active source measurements reveal
that signals from several hydrophones, which were recorded on certain chan-
nels before a storm, were subsequently recorded on different channels after
the storm. Noise cross-correlation of data recorded during the storm show
when, and in what manner, these changes took place. Differences in travel
times from any given source to hydrophone pairs were consistently less than
expected for the assumed geometry. Travel times extracted from day long
noise cross-correlations were used in an inversion to estimate array geome-
try. The resulting curved array geometry provided more consistent acoustic
travel times from active noise sources than the assumed straight line geom-
etry.

In summary, the findings documented in this thesis increase the under-
standing of Green’s function approximation from cross-correlation of sound
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in the ocean by providing: a theoretical and practical understanding of
Green’s function estimations for both active sources and passive ship dom-
inated ambient noise; and examples of how the extracted travel times can
be applied to practical situations.
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