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Abstract

Many types of life threatening global health problems such as cardiovascular deceases,
cancer, and diabetes have placed human life at high risk. These critical health problems
may be eliminated and/or controlled with effective early diagnostic and/or targeted
treatment methodologies. Conventional drug delivery methods such as oral tablets
or injections consist of various limitations. Among them, the problem with variable
absorption profiles and need of frequent dosing are yet to be successfully addressed.
Therefore conventional methods are not effective for delivering the drug within their
therapeutic range. The implementation of targeted micro drug delivery methods is

recognised as a critical solution space for twenty first century healthcare.

Micro Electromechanical Systems (MEMS) based typical micropump is a fundamen-
tal part of a drug delivery system which provides the actuation source to effectively
transfer an accurate amount of fluid/drug to a targeted location. However, the lack
of availability of accurate and easy to use, implantable and low-powered micropumps
has been identified as a significant problem. Furthermore, the ease of control of im-
plantable biological devices would be greatly improved by incorporation of wireless
and secure actuator mechanism with no battery attached with the device. Therefore,
in this thesis, several significant contributions to address the above highlighted issues

are presented and discussed.

In this thesis, various types of actuation and micropump mechanisms were reviewed;
in addition to investigating how Surface Acoustic Wave (SAW) devices can be used
for secure, wireless and batteryless actuation. Consequently, SAW based novel tran-
scutaneous interrogation mechanism was proposed for low—powered electrostatic ac-
tuations, without the need for active electronics to meet the biocompatibility require-
ments. A SAW correlator was used for the secure interrogation, where the device re-
sponds only to a uniquely coded RF signal, which has to be matched with the code im-
planted in the SAW correlator. The proposed micro actuation mechanism was demon-
strated by utilising a Finite Element Model (FEM). This allowed the investigation of
this device performance using a sophisticated computational numerical method. A
new theoretical analysis was also developed to derive both electric potential and elec-

trostatic force equations for SAW based microactuators. Then the Rayleigh-Ritz method
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Abstract

based theoretical model was developed to validate the FEM results. Based on these re-
sults the SAW based low-powered actuator is able to achieve displacements up to 3 ym

at low operating voltages.

Once the proposed mechanism was verified both analytically and using FEM, the mod-
elling was then extended to analyse the performance of SAW based microdiaphragms,
as a critical performance dictator for the diaphragm part of the micropumps. Several
new methods were developed and modelled to overcome the existing drawbacks in
flat microdiaphragms, such as the incorporation of highly effective corrugated profiles,
and effective use of flexible materials. As a result a number of these corrugation pro-
files were examined using FEA. As a result it is demonstrated that the proposed design
approaches have substantially enhanced microdiaphragm performance, compared to

a flat diaphragm.

As much as the effectiveness of microdiaphragms, the flow rectification mechanism
also dictates a critical role in micropumps. In this research, the proposed micropump
was designed to be valveless for simplicity and ease of fabrication, and used diffuser
elements for flow rectification. However, most of the existing computational analyses
of diffusers are mainly based on 2D or simplified 3D models. Hence, the relation-
ship between diffuser parameters, Reynolds number, and the diffuser performance at
microscale, are not well established. Therefore, FEM based Computational Fluid Dy-
namic (CFD) was successfully utilised to analyse flat-walled diffuser elements. These
analyses provide a qualitative and quantitative relationship between the diffuser effi-

ciency and Reynolds numbers for laminar flow.

Building on the developed actuation mechanism and various corrugated micro di-
aphragms, and diffuser models, an integrated device analysis are presented. This
includes a full 3D model of the SAW based electrostatically actuated, diffuser microp-
ump, and complex microfluidic behaviour of the micropump was analysed. A strong
emphasis was given in utilising CFD to analyse the Fluid—-Solid Interaction (FSI) phe-
nomena of the micropump and the overall pumping effect was successfully demon-
strated. The knowledge and new contributions made in this thesis in modelling, sim-
ulation, and analysis of implantable drug delivery micropumps, will be able to effec-
tively utilise in a range of fields such as advanced computational numerical modelling
of Bio-MEMS, secure transcutaneous communication, and implantable drug delivery

systems and other biomedical aplications.
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