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Abstract

The culmination of rapid advances made in the areas of microelectromechanical sys-

tems (MEMS), nonregenerative power sources, nanotechnology, and biomedical engi-

neering have resulted in the expansion of their horizons in modern medicine for the

deployment of a wide array of implantable devices. However, the lifetime and remote

interrogability of implants, specifically used for drug delivery applications, has been

an issue of contention, as their deployment period is limited by the battery life and

the device size. Furthermore, not much research effort is directed towards remotely

controlled flow manipulation using passive components. These shortcomings are ad-

dressed in this thesis by employing surface acoustic wave (SAW) technology to design

a novel RF powered, secure coded, active microvalve with fully passive components.

By combining the complex signal processing capabilities of the acoustic wave corre-

lator with the electrostatic actuation of the microchannel, the advantages of both the

mechanisms are incorporated into a novel microvalve design. Fluid pumping can be

achieved at ultrasonic frequencies by electrostatically actuating the edge clamped mi-

crochannel, placed in between the compressor interdigital transducer’s (IDT’s) of two

identical SAW correlators. The ability to wirelessly administer doses of drug accu-

rately, for an extended period of time, at an inaccessible target location, through an

implanted microvalve has the potential to revolutionise health care for long-term, con-

trolled drug release applications.

Three specific and diverse areas within MEMS, the new device builds on, are inves-

tigated by taking a comprehensive design, modelling, optimisation and experimental

validation approach for majority of the research endeavors in the thesis. The first area

corresponds to SAW technology followed by microfluidics, and body-centric commu-

nications; driven by the ultimate goal to demonstrate the operational feasibility of a

human implanted, wirelessly controlled microvalve. The proposed specialised design

necessitated a thorough understanding of the multiple coupled physics phenomena at

the process level, before fabrication, for the critical investigation and refinement of the

individual microvalve components. A comprehensive finite element modelling tech-

nique, where the complete set of partial differential equations are solved, was used to

design these microvalve components with low level of abstraction to enable an auto-

matic inclusion of the majority of the second order effects.
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Abstract

As a starting point for the FEM modelling of SAW devices, an infinite periodic grat-

ing was modelled to analyse the freely propagating eigenmodes and eigenvalues with

modal analysis; and electrically active waves and electrical admittance with harmonic

analysis. A curve fitting technique was employed to extract the COM/P-matrix model

parameters from these FEM results. Furthermore, an experimental validation of the

parameters extracted using this novel combination of FEM and fitting techniques was

carried out by fabricating a number of delaylines and comparing the physical struc-

ture response with the formulated P-matrix model. On the other hand, the modelling

of a 2 and 3-dimensional, 5×2-bit Barker sequence encoded acoustic wave correlator

was demonstrated using FEM. The correlator’s response was quantified in terms of

harmonic analysis, to obtain the electrical admittance and output voltage profile, and

transient analysis, to study the acoustic wave propagating characteristics and correla-

tion pulses. The validation of these simulation results was carried out by fabricating

the SAW correlators using optical lithographic techniques. A good agreement between

the numerical and experimental results highlighted the feasibility and potential of us-

ing FEM for application specific modelling of SAW correlators.

The complexity involved in combining the electroacoustic correlation and electrostatic

actuation mechanisms, necessitated a systematic design and optimization of the novel

microvalve which is best possible with FEM. In this thesis, the emphasis was on the de-

sign and optimisation of a novel microfluidic structure through the deflection analysis,

both, to verify the functionality of the concept and to investigate the working range

of the structure. Secure interrogability of the microvalve was demonstrated by utilis-

ing finite element modelling of the complete structure and the quantitative deduction

of the code dependent, harmonic and dynamic transient microchannel actuation. A

numerical and experimental analysis of the biotelemetry link for the microvalve was

undertaken in the vicinity of numerical and physical human body phantoms, respec-

tively. To accurately account for the path losses and to address the design optimisation,

the receiver coil/antenna was solved simultaneously with the transmitter coil/antenna

in the presence of a human body simulant using 3-dimensional, high frequency elec-

tromagnetic, FEM modelling. The received relative signal strength was numerically

and experimentally derived for a miniature (6×6×0.5 mm), square spiral antenna/coil

when interrogated by a hand-held 8×5×0.2 cm square spiral antenna/coil in the near

field. Finally, the experimental results confirmed well with the FEM analysis predic-

tions and hence ascertained the applicability of the developed system for secure inter-

rogation and remote powering of the newly proposed microvalve.
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Abbreviations

AC Alternating Current

BAW Bulk Acoustic Wave

BEM Boundary Element Method

BPSK Binary Phase Shift Keying

COM Coupling Of Modes

DC Direct Current

DIL Dual In Line

DOF Degress Of Freedom

EM Electromagnetic

FDS Frequency Domain Sampling

FDTD Finite Difference Time Domain

FEM Finite Element Method

FM Frequency Modulation

HFEM Hybrid Finite Element Method

IDT Interdigital Transducer

LSAW Leaky Surface Acoustic Wave
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MR Metallization Ratio

PBC Periodic Boundary Condition

Q-factor Quality Factor

RF Radio Frequency
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RTO Remote Turn On

SAW Surface Acoustic Wave

SDA Spectral Domain Analysis

SEM Scanning Electron Microscope

STW Surface Transverse Wave

TDS Time Domain Sampling

UV Ultra Violet
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Abbreviations and Symbols

Symbol Name Unit

a displacement vector m

A delayline admittance matrix mixed

A0 overlapping area m2

B bandwidth Hz

B( f ) susceptance S

c loaded wavenumber rad/m

c stiffness N/m2

C capacitance F

Cn normalised capacitance F

Cp periodic capacitance F

D electrical flux C/m2

DRo dispersion relation for open circuit grating -

DRs dispersion relation for short circuit grating -

d distance m

E electric field V/m

Ec electromechanical coupling energy J

Ek electric field vector V/m

e piezoelectric stress constant C/m2

F force N

FE electrostatic force N

FE nodal electrostatic force N

FN noise figure dB

FN nodal force vector N

FTH thermal force vector N

fc center frequency Hz

fB bit rate Hz

fM+ anti-symmetric SAW modal frequency Hz

fM− symmetric SAW modal frequency Hz

G gain -

G(x) Green’s function mixed

G( f ) conductance S

G( f ) transfer function mixed

[G] strain-displacement matrix mixed

g spacing between coil turns m

H magnetic field strength A/m

Page xiv



Abbreviations and Symbols

Symbol Name Unit

I current A

[I] identity matrix -

j unit imaginary number -

K Boltzmann’s constant -

[K] structural stiffness matrix mixed

[Kd] dielectric permittivity matrix mixed

L IDT length m

L inductance H

Leff effective inductance H

lavg average diameter of the square spiral m

ltot total length of the square spiral m

M mutual inductance H

[M] mass matrix mixed

[N] structural shape function mixed

[NE] electrical shape function mixed

NB binary bits -

n normalised wavenumber -

n number of coil turns -

P power W

P( f ) P-matrix mixed

p period of the grating m

pa radiation pressure Pa

Q quality factor -

q complex charge of the electrodes C

qn nodal charge density C/m

R resistance Ω

Rs residual vector of elastostatic field -

Re residual vector of electromechanic field -

S strain -

S12 insertion loss dB

SP power density W/m2

SNR signal-to-noise ratio -

T stress N/m2

TC temperature ◦C

TB bit time sec
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Abbreviations and Symbols

Symbol Name Unit

ts substrate thickness m

u particle displacement m

V voltage V

vi nodal electrical potential V

W width of the coil m

Y admittance S

Z impedance Ω

ω angular frequency rads−1

µ propagation constant -

µ0 permeability of vacuum Vs/Am

λ wave length m

λt wave length in lossy medium m

ν Velocity m/s

δ normalised COM wavenumber -

κ COM reflection -

γ COM attenuation parameter Nep/m

α COM transduction parameter Ω−1/2m−1

ε permittivity F/m

εr relative dielectric constant -

εt complex permittivity F/m

ρ mass density kg/m3

φ electrical scalar potential V

σ conductivity S/m2

∇ gradient of a scalar field m−1

∇. divergence of a vector field m−1

ΘD diffraction angle -

σM Maxwell stress vector N/m2

δp penetration depth m

æ fill ratio -

δc skin depth m
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