PUBLISHED VERSION

Mineo, H.; Tjon, J. A.; Tsushima, Kazuo; Yang, Shin Nan
Faddeev calculation of the pentaquark $\Theta+$ in the Nambu-Jona-Lasinio model-based diquark picture Physical Review C, 2008; 77(5):055203
© 2008 American Physical Society
http://link.aps.org/doi/10.1103/PhysRevC.77.055203

PERMISSIONS

http://publish.aps.org/authors/transfer-of-copyright-agreement
"The author(s), and in the case of a Work Made For Hire, as defined in the U.S. Copyright Act, 17 U.S.C.
§101, the employer named [below], shall have the following rights (the "Author Rights"):
[...]
3. The right to use all or part of the Article, including the APS-prepared version without revision or modification, on the author(s)' web home page or employer's website and to make copies of all or part of the Article, including the APS-prepared version without revision or modification, for the author(s)' and/or the employer's use for educational or research purposes."
$27^{\text {th }}$ March 2013

Faddeev calculation of the pentaquark Θ^{+}in the Nambu-Jona-Lasinio model-based diquark picture

H. Mineo, ${ }^{1,2,3, *}$ J. A. Tjon, ${ }^{1,4}$ K. Tsushima, ${ }^{5,6,7, \dagger}$ and Shin Nan Yang ${ }^{1}$
${ }^{1}$ Department of Physics, National Taiwan University, Taipei 10617, Taiwan
${ }^{2}$ Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166, Taipei 10617, Taiwan
${ }^{3}$ Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan
${ }^{4}$ KVI, University of Groningen, The Netherlands
${ }^{5}$ National Center for Theoretical Sciences, Taipei, Taipei 10617, Taiwan
${ }^{6}$ Grupo de Física Nuclear and IUFFyM, Universidad de Salamanca, E-37008 Salamanca, Spain
${ }^{7}$ Thomas Jefferson National Accelerator Facility, Theory Center, Mail Stop 12H2, 12000 Jefferson Aveneu, Newport News, Virginia 23606, USA
(Received 30 September 2007; published 7 May 2008)

Abstract

A Bethe-Salpeter-Faddeev (BSF) calculation is performed for the pentaquark Θ^{+}in the diquark picture of Jaffe and Wilczek in which Θ^{+}is a diquark-diquark-s three-body system. The Nambu-Jona-Lasinio (NJL) model is used to calculate the lowest order diagrams in the two-body scatterings of $\bar{s} D$ and $D D$. With the use of coupling constants determined from the meson sector, we find that $\bar{s} D$ interaction is attractive in s-wave while the $D D$ interaction is repulsive in the p-wave. With only the lowest three-body channel considered, we do not find a bound $\frac{1}{2}^{+}$pentaquark state. Instead, a bound pentaquark Θ^{+}with $\frac{1}{2}^{-}$is obtained with unphysically strong vector mesonic coupling constants.

DOI: 10.1103/PhysRevC.77.055203
PACS number(s): 24.85.+p, 14.80.-j, 21.45.-v, 12.39.Ki

I. INTRODUCTION

The report of the observation of a very narrow peak in the $K^{+} n$ invariant mass distribution [1,2] around 1540 MeV in 2003, a pentaquark predicted in a chiral soliton model [3], triggered considerable excitement in the hadronic physics community. It was labeled as Θ^{+}and included by the Particle Data Group (PDG) in 2004 [4] under exotic baryons and rated with three stars. Very intensive research efforts, both theoretically and experimentally, ensued. On the experimental side, practically all studies conducted after the first sightings were confirmed by several other groups produced null results, casting doubt on the existence of the five-quark state [5,6]. Subsequently, the PDG in 2006 reduced the rating from three to one stars [4]. More recently, the ZEUS experiment at HERA [7] observed a signal for Θ^{+}in a high energy reaction, while H1 [7], SPHINX [8], and CLAS [9] did not see it. This disagreement between the LEPS [1] and other experiments could possibly originate from their differences of experimental setups and kinematical conditions. So the experimental situation is presently not completely settled [10-12]. Many theoretical approaches have been employed, in addition to the chiral soliton model [3], including quark models [13,14], QCD sum rules [15], and lattice QCD [16] to understand the properties and structure of Θ^{+}. Several interesting ideas were also proposed on the pentaquark production mechanism. Reviews of the theoretical activities in the last couple of years can be found in Refs. [17,18]. One of the most intriguing theoretical ideas suggested for Θ^{+}is the diquark picture of Jaffe and Wilczek (JW) [19] in which Θ^{+}is considered as a three-body system consisting of two scalar, isoscalar, color

[^0]$\overline{3}$ diquarks (D 's) and a strange antiquark (\bar{s}). It is based, in part, on group theoretical consideration. It would hence be desirable to examine such a scheme from a more dynamical perspective. The idea of the diquark is not new. It is a strongly correlated quark pair and has been advocated by a number of QCD theory groups since the 1960's [20-22]. It is known that a diquark arises naturally from an effective quark theory in the low energy region, the Nambu-Jona-Lasinio (NJL) model [23,24]. The NJL model conveniently incorporates one of the most important features of QCD, namely, chiral symmetry and its spontaneously breaking which dictates the hadronic physics at low energy. Models based on NJL types of Lagrangians have been very successful in describing the low energy meson physics $[25,26]$. Based on a relativistic Faddeev equation, the NJL model has also been applied to the baryon systems [27,28]. It has been shown that, using the quark-diquark approximation, one can explain the nucleon static properties reasonably well $[29,30]$. If one further takes the static quark exchange kernel approximation, the Faddeev equation can be solved analytically. The resulting forward parton distribution functions [31] successfully reproduce the qualitative features of the empirical valence quark distribution. The model has also been used to study the generalized parton distributions of the nucleon [32]. Consequently, we will employ an NJL model to describe the dynamics of a diquark-diquark-antiquark system. To describe such a three-particle system, it is necessary to resort to a Faddeev formalism. Since the NJL model is a covariant-field theoretical model, it is important to use relativistic equations to describe both the three-particle and its two-particle subsystems. To this end, we will adopt a Bethe-Salpeter-Faddeev (BSF) equation [33] in our study. For practical purposes, a Blankenbecler-Sugar (BbS) [34] reduction scheme will be followed to reduce the four-dimensional integral equation into three-dimensional ones. In Sec. II, the NJL model in flavor $\operatorname{SU}(3)$ will be
introduced with a focus on the diquark. The NJL model is then used to investigate the antiquark-diquark and diquark-diquark interaction with the Bethe-Salpeter equation in Sec. III. In Sec. IV, we introduce the Bethe-Salpeter-Faddeev equation and solve it for the system of the strange antiquark-diquarkdiquark with the interaction obtained in Sec. III. Results and discussions are presented in Sec. V, and we summarize in Sec. VI.

II. SU(3) ${ }_{\text {f }}$ NJL MODEL AND THE DIQUARK

The flavor $\operatorname{SU}(3)_{f}$ NJL Lagrangian takes the form

$$
\begin{equation*}
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+\mathcal{L}_{I} \tag{1}
\end{equation*}
$$

where $\psi^{T}=(u, d, s)$ is the $\mathrm{SU}(3)$ quark field, and $m=$ $\operatorname{diag}\left(m_{u}, m_{d}, m_{s}\right)$ is the current quark mass matrix. \mathcal{L}_{I} is a chirally symmetric four-fermi contact interaction. By a Fierz transformation, we can rewrite \mathcal{L}_{I} into a Fierz symmetric form $\mathcal{L}_{I, q \bar{q}}=\frac{1}{2}\left(\mathcal{L}_{I}+\mathcal{F}\left(\mathcal{L}_{I}\right)\right)$, where \mathcal{F} stands for the Fierz rearrangement. It has the advantage that the direct and exchange terms give an identical contribution. In the $q \bar{q}$ channel, the chiral invariant $\mathcal{L}_{I, q \bar{q}}$, is given by [35]

$$
\begin{align*}
\mathcal{L}_{I, q \bar{q}}= & G_{1}\left[\left(\bar{\psi} \lambda_{f}^{a} \psi\right)^{2}-\left(\bar{\psi} \gamma^{5} \lambda_{f}^{a} \psi\right)^{2}\right] \\
& -G_{2}\left[\left(\bar{\psi} \gamma^{\mu} \lambda_{f}^{a} \psi\right)^{2}+\left(\bar{\psi} \gamma^{\mu} \gamma^{5} \lambda_{f}^{a} \psi\right)^{2}\right] \\
& -G_{3}\left[\left(\bar{\psi} \gamma^{\mu} \lambda_{f}^{0} \psi\right)^{2}+\left(\bar{\psi} \gamma^{\mu} \gamma^{5} \lambda_{f}^{0} \psi\right)^{2}\right] \\
& -G_{4}\left[\left(\bar{\psi} \gamma^{\mu} \lambda_{f}^{0} \psi\right)^{2}-\left(\bar{\psi} \gamma^{\mu} \gamma^{5} \lambda_{f}^{0} \psi\right)^{2}\right]+\cdots, \tag{2}
\end{align*}
$$

where $a=0 \sim 8$, and $\lambda_{f}^{0}=\sqrt{\frac{2}{3}} I$. If we define G_{5} by $-G_{5}\left(\bar{\psi}_{i} \gamma^{\mu} \psi_{j}\right)^{2}=-\left(G_{2}+G_{3}+G_{4}\right)\left(\bar{\psi}_{i} \gamma^{\mu} \lambda_{f}^{0} \psi_{j}\right)^{2}-$ $G_{2}\left(\bar{\psi}_{i} \gamma^{\mu} \lambda_{f}^{8} \psi_{j}\right)^{2}$ where $i, j=u, d$, then G_{3}, G_{4}, G_{5} are related by $G_{5}=G_{2}+\frac{2}{3} G_{v}$, with $G_{v} \equiv G_{3}+G_{4}$. In passing, we mention that the conventionally used G_{ω} and G_{ρ} are related to G_{5}, G_{v} by $G_{\omega}=2 G_{5}$ and $G_{\rho}=2 G_{5}-\frac{4}{3} G_{v}$. For the diquark channel we rewrite \mathcal{L}_{I} into an form $\left(\bar{\psi} A \bar{\psi}^{T}\right)\left(\psi^{T} B \psi\right)$, where A and B are totally antisymmetric matrices in Dirac, isospin, and color indices. We will restrict ourselves to scalarisoscalar diquark with color and flavor in $\overline{\mathbf{3}}$ as considered in the JW model. The interaction Lagrangian for the scalar-isoscalar diquark channel $[36,37]$ is given by

$$
\begin{equation*}
\mathcal{L}_{I, s}=G_{s}\left[\bar{\psi}\left(\gamma^{5} C\right) \lambda_{f}^{2} \beta_{c}^{A} \bar{\psi}^{T}\right]\left[\psi^{T}\left(C^{-1} \gamma^{5}\right) \lambda_{f}^{2} \beta_{c}^{A} \psi\right] \tag{3}
\end{equation*}
$$

where $\beta_{c}^{A}=\sqrt{\frac{3}{2}} \lambda^{A}(A=2,5,7)$ corresponds to one of the color $\overline{3}_{c}$ states. $C=i \gamma^{0} \gamma^{2}$ is the charge conjugation operator, and $\lambda^{\prime} s$ are the Gell-Mann matrices. The Bethe-Salpeter (BS) equation for the scalar diquark channel $[36,37]$ is given by

$$
\begin{align*}
\tau_{s}(q)= & 4 i G_{s}-2 i G_{s} \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{tr}\left[\left(C^{-1} \gamma^{5} \tau_{f}^{2} \beta^{A}\right)\right. \\
& \left.\times S(k+q)\left(\gamma^{5} C \tau_{f}^{2} \beta^{A}\right) S^{T}(-q)\right] \tau_{s}(q) \tag{4}
\end{align*}
$$

where the factors 4 and 2 arise from Wick contractions. $S(k)=$ $(k-M+i \epsilon)^{-1}$ with $M \equiv M_{u}=M_{d}$, the constituent quark mass of u and d quarks, generated by solving the gap equation. $\tau_{s}(q)$ is the reduced t -matrix which is related to the t -matrix
by $t_{s}(q)=\left(\gamma^{5} C \tau_{f}^{2} \beta_{c}^{A}\right) \tau_{s}(q)\left(C^{-1} \gamma^{5} \tau_{f}^{2} \beta_{c}^{A}\right)$. The solution to Eq. (4) is

$$
\begin{equation*}
\tau_{s}(q)=\frac{4 i G_{s}}{1+2 G_{s} \Pi_{s}\left(q^{2}\right)} \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
\Pi_{s}\left(q^{2}\right)=6 i \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{tr}_{D}\left[\gamma^{5} S(q) \gamma^{5} S(k+q)\right] \tag{6}
\end{equation*}
$$

The gap equation for u, d, and s quarks are given by

$$
\begin{equation*}
M_{i}=m_{i}-8 G_{1}\left\langle\bar{q}_{i} q_{i}\right\rangle \tag{7}
\end{equation*}
$$

with

$$
\begin{equation*}
\left\langle\bar{q}_{i} q_{i}\right\rangle \equiv-i N_{c} \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{tr}_{D}(S(k)) \tag{8}
\end{equation*}
$$

where $i=u, d, s$. The loop integrals in Eqs. (6) and (8) diverge and we need to regularize the four-momentum integral by adopting some cut-off scheme. With regularization, we can solve the gap equation and t-matrix of the diquark in Eqs. (5) and (8) to determine the constituent quark and diquark masses. However, since our purpose in this work is not an exact quantitative analysis but rather a qualitatively study of the interactions inside Θ^{+}, we will not adopt any regularization scheme and simply use the empirical values of the constituent quark masses $M=M_{u, d}=400 \mathrm{MeV}, M_{s}=600 \mathrm{MeV}$, and the diquark mass $M_{D}=600 \mathrm{MeV}$ as obtained in the study of the nucleon properties [27-29,31,32].

III. TWO-BODY INTERACTIONS FOR STRANGE ANTIQUARK-DIQUARK ($\overline{\text { sid }}$) AND DIQUARK-DIQUARK ($D D$) CHANNELS

In the JW model for Θ^{+}, the two scalar-isoscalar, color $\overline{\mathbf{3}}$ diquarks must be in a color $\mathbf{3}$ in order to combine with \bar{s} into a color singlet. Since $\mathbf{3}$ is the antisymmetric part of $\overline{\mathbf{3}} \times \overline{\mathbf{3}}=$ $\mathbf{3} \oplus \overline{\mathbf{6}}$, the diquark-diquark wave function must be antisymmetric with respect to the rest of its labels. For two identical scalar-isoscalar diquarks $[u d]_{0}$, only spatial labels remain so that the spatial wave function must be antisymmetric under space exchange and the lowest possible state is p-state. Since in JW's scheme, Θ^{+}has the quantum number of $J^{P}=\frac{1}{2}^{+}, \bar{s}$ would be in a relative s-wave to the $D D$ pair. Accordingly, we will consider only the configurations where $\bar{s} D$ and $D D$ are in relative s - and p-waves, respectively. We will employ the Bethe-Salpeter-Faddeev equation [33] to describe such a three-particle system of $\bar{s} D D$. For consistency, we will use the Bethe-Salpeter equation to describe two-particles subsystems like $\bar{s} D$ and $D D$, which read as

$$
\begin{equation*}
T=B+B G_{0} T \tag{9}
\end{equation*}
$$

where B is the sum of all two-body irreducible diagrams and G_{0} is the free two-body propagator. In momentum space, the resulting Bethe-Salpeter equation can be written as
$T\left(k^{\prime}, k ; P\right)$

$$
\begin{equation*}
=B\left(k^{\prime}, k ; P\right)+\int d^{4} k^{\prime \prime} B\left(k^{\prime}, k^{\prime \prime} ; P\right) G_{0}\left(k^{\prime \prime} ; P\right) T\left(k^{\prime \prime}, k ; P\right) \tag{10}
\end{equation*}
$$

where G_{0} is the free two-particle propagator in the intermediate states. k and P are, respectively, the relative and total momentum of the system. In practical applications, B is commonly approximated by the lowest order diagrams prescribed by the model Lagrangian and will be denoted as V hereafter. In addition, it is often to further reduce the dimensionality of the integral equation (10) from four to three, while preserving the relativistic two-particle unitarity cut in the physical region. It is well known (for example, Ref. [38]) that such a procedure is rather arbitrary and we will adopt, in this work, the widely employed Blankenbecler-Sugar (BbS) reduction scheme [34] which, for the case of two spinless particles, amounts to replacing G_{0} in Eq. (10) by

$$
\begin{align*}
& G_{0}(k, P) \\
&= \frac{1}{(P / 2+k)^{2}-m_{1}^{2}} \frac{1}{(P / 2-k)^{2}-m_{2}^{2}} \\
& \rightarrow-i(2 \pi)^{4} \frac{1}{(2 \pi)^{3}} \int \frac{d s^{\prime}}{s-s^{\prime}+i \epsilon} \delta^{(+)}\left(\left(P^{\prime} / 2+k\right)^{2}-m_{1}^{2}\right) \\
& \times \delta^{(+)}\left(\left(P^{\prime} / 2-k\right)^{2}-m_{2}^{2}\right) \\
&=-2 \pi i \delta\left(k_{0}-\frac{E_{1}(|\vec{k}|)-E_{2}(|\vec{k}|)}{2}\right) G^{\mathrm{BbS}}(|\vec{k}|, s), \tag{11}
\end{align*}
$$

with

$$
\begin{align*}
& G^{\mathrm{BbS}}(|\vec{k}|, s) \\
& \quad=\frac{E_{1}(|\vec{k}|)+E_{2}(|\vec{k}|)}{2 E_{1}(|\vec{k}|) E_{2}(|\vec{k}|)} \frac{1}{s-\left(E_{1}(|\vec{k}|)+E_{2}(|\vec{k}|)\right)^{2}+i \epsilon}, \tag{12}
\end{align*}
$$

where $s=P^{2}$ and $P^{\prime}=\sqrt{s^{\prime} / s} P$. The superscript (+) associated with the delta functions mean that only the positive energy part is kept in the propagator, and $E_{1,2}(|\vec{k}|) \equiv \sqrt{\vec{k}^{2}+m_{1,2}^{2}}$.

A. $\overline{\text { s D }}$ potential and the t-matrix

In Fig. 1 we show the lowest order diagram, i.e., the first order in $\mathcal{L}_{I, q \bar{q}}$ in $\bar{s} D$ scattering. Due to the trace properties for Dirac matrices, only the scalar-isovector $\left(\bar{\psi} \lambda_{f}^{a} \psi\right)^{2}$, the vectorisoscalar $\left(\bar{\psi} \gamma^{\mu} \lambda_{f}^{0} \psi\right)^{2}$, and the vector-isovector $\left(\bar{\psi} \gamma^{\mu} \lambda_{f}^{a} \psi\right)^{2}$ will contribute to the vertex Γ.

Furthermore, the isovector vertex $\left(\bar{\psi} \Gamma \lambda_{f}^{a} \psi\right)^{2}$ will not contribute since the trace in flavor space vanishes, $\sum_{a=0}^{8}\left(\lambda_{f}^{a}\right)_{33} \operatorname{tr}_{f}\left(\lambda_{f}^{2} \lambda_{f}^{a} \lambda_{f}^{2}\right)=0$. Thus only the vector-isoscalar term, $\left(\bar{\psi} \gamma^{\mu} \lambda_{f}^{0} \psi\right)^{2}$, remains.

For the on-shell diquarks, the lower part of Fig. 1 which corresponds to the scalar diquark form factor, can be

FIG. 1. $\bar{s} \mathrm{D}$ potential of the lowest order in $\mathcal{L}_{I, q \bar{q}}$.
calculated as

$$
\begin{align*}
& \left(p_{D i}+p_{D f}\right)^{\mu} F_{v}\left(q^{2}\right) \\
& \quad= \\
& \quad i \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{tr}\left[\left(g_{D} C^{-1} \gamma^{5} \lambda_{f}^{2} \beta_{c}^{A}\right) S(k+q) \gamma^{\mu}\right. \\
& \left.\quad \times S(k)\left(g_{D} \gamma^{5} C \lambda_{f}^{2} \beta_{c}^{A}\right) S^{T}\left(k-p_{D i}\right)\right] \tag{13}\\
& \quad=6 i g_{D}^{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{tr}\left[S(k+q) \gamma^{\mu} S(k) S\left(p_{D i}-k\right)\right]
\end{align*}
$$

where we have made use of the relations $C^{-1}\left(\gamma^{\mu}\right)^{T} C=$ $-\gamma^{\mu}, \operatorname{tr}_{c}\left[\beta_{c}^{A} \beta_{c}^{A}\right]=3 . g_{D}$ is defined by

$$
\begin{equation*}
g_{D}^{-2}=-\left.\frac{\partial \Pi_{D}\left(p^{2}\right)}{\partial p^{2}}\right|_{p^{2}=M_{D}^{2}} \tag{14}
\end{equation*}
$$

with

$$
\begin{equation*}
\Pi_{D}\left(p^{2}\right) \equiv 6 i \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{tr}[S(k) S(p-k)] \tag{15}
\end{equation*}
$$

and M_{D} is the diquark mass. $F_{v}(0)$ is normalized as $2 p^{\mu} F_{v}(0)=-g_{D}^{2} \frac{\partial \Pi_{D}\left(p^{2}\right)}{\partial p_{\mu}}$, such that $F_{v}(0)=1 .{ }^{1}$

Then the matrix element of the potential $V_{\bar{s} D}$ can be expressed as

$$
\begin{align*}
&\left\langle\bar{s}_{f} D_{f}\right| V\left|\bar{s}_{i} D_{i}\right\rangle \\
&=\left(-\bar{v}\left(p_{\bar{s} i}\right)\right)\left(-i V_{\bar{s} D}\right)\left(p_{D i}, p_{D f}\right) v\left(p_{\bar{s} f}\right) \\
&=(+16 i)\left(-G_{v}\right)\left(-\bar{v}\left(p_{\bar{s} i}\right)\right) \gamma_{\mu} v\left(p_{\bar{s} f}\right)\left[\left(\lambda_{f}^{0}\right)_{33} \cdot \operatorname{tr}_{f}\left(\lambda_{f}^{0}\left(\lambda_{f}^{2}\right)^{2}\right)\right] \\
& \times\left(p_{D i}+p_{D f}\right)^{\mu} \frac{F_{v}\left(q^{2}\right)}{\operatorname{tr}_{f}\left(\left(\lambda_{f}^{2}\right)^{2}\right)}, \tag{16}
\end{align*}
$$

i.e.,

$$
\begin{equation*}
V_{\bar{S} D}=\frac{64}{3} G_{v} F_{v}\left(q^{2}\right) \tilde{V}_{\bar{S} D}\left(p_{D i}, p_{D f}\right), \tag{17}
\end{equation*}
$$

with

$$
\begin{equation*}
\tilde{V}_{\bar{s}} D\left(p_{D i}, p_{D f}\right)=\left(p_{D i}+\not p_{D f}\right) / 2 . \tag{18}
\end{equation*}
$$

Here the factor $+16 i$ in Eq. (16) arises from the Wick contractions, and the factor $\operatorname{tr}_{f}\left(\left(\lambda_{f}^{2}\right)^{2}\right)$ in Eq. (16) is introduced to divide $F_{v}\left(q^{2}\right)$, since the factor $\operatorname{tr}_{f}\left(\left(\lambda_{f}^{2}\right)^{2}\right)$ is already included in the expression of $F_{v}\left(q^{2}\right)$ by a trace in flavor $\mathrm{SU}(3)_{f}$ space.

The three-dimensional scattering equation for the $\bar{s} D$ system shown in Fig. 2 is now given by

$$
\begin{align*}
& t_{\bar{s} D}\left(p_{D i}, p_{D f}\right) \\
& =V_{\bar{s} D}\left(p_{D i}, p_{D f}\right)+4 \pi \int \frac{d\left|\vec{p}_{D}^{\prime}\right|\left|\vec{p}_{D}^{\prime}\right|^{2}}{(2 \pi)^{3}} \frac{1}{2} \\
& \quad \times \int_{-1}^{1} d x_{i} G_{\bar{s} D}^{\mathrm{BbS}}\left(\left|\vec{p}_{D}^{\prime}\right|, s_{2}\right) K_{\bar{s} D}\left(\left|\vec{p}_{D i}\right|,\left|\vec{p}_{D}^{\prime}\right|, x_{i}\right) \\
& \quad \times t_{\bar{s} D}\left(\vec{p}_{D}^{\prime}, p_{D f}\right), \tag{19}
\end{align*}
$$

[^1]

FIG. 2. The BS equation for $\bar{s} D$.
where $\quad x_{i} \equiv \hat{p}_{D i} \cdot \hat{p}_{D}^{\prime}, \hat{p} \equiv \vec{p} /|p|, s_{2}=\left(p_{D i}+p_{\bar{s} i}\right)^{2}=$ $\left(p_{D f}+p_{\bar{s} f}\right)^{2}, p_{D i}^{0}=\sqrt{\vec{p}_{D i}^{2}+M_{D}^{2}}, p_{D f}^{0}=\sqrt{\vec{p}_{D f}^{2}+M_{D}^{2}}$ and

$$
\begin{aligned}
K_{\bar{s} D}\left(\left|\vec{p}_{D i}\right|,\left|\vec{p}_{D}^{\prime}\right|, x_{i}\right) \equiv & \frac{64}{3} G_{v} F_{v}\left(\left(p_{D}^{\prime}-p_{D i}\right)^{2}\right) \\
& \times\left.\tilde{K}_{\bar{s} D}\left(p_{D i}, p_{D}^{\prime}\right)\right|_{p_{D}^{\prime}}=\sqrt{\vec{p}_{D}^{\prime}+M_{D}^{2}} \\
\tilde{K}_{\bar{s} D}\left(p_{D i}, p_{D}^{\prime}\right)= & \left(p_{D i}+\not p_{D}^{\prime}\right)\left(-\not p_{\bar{s}}^{\prime}+M_{s}\right) / 2
\end{aligned}
$$

with M_{s} being the constituent quark mass of \bar{s} and s.
We also present the results for the interactions between diquark and \bar{u} or \bar{d}, which would be of interest when we study nonstrange pentaquarks. One can just repeat the derivations we describe in the above and easily obtain
$V_{\bar{u} D}=V_{\bar{d} D}=-16 G_{1} F_{s}\left(q^{2}\right)+32 G_{5} F_{v}\left(q^{2}\right) \tilde{V}_{\bar{s} D}\left(p_{D i}, p_{D f}\right)$,
in analogous to Eqs. (17) and (18).
We add in passing that the sign of the potential for $s D$ is opposite to that of $V_{\bar{s} D}$ due to charge conjugation, i.e.,

$$
\begin{equation*}
V_{s D}\left(p_{D f}, p_{D i}\right)=-V_{\bar{s} D}\left(p_{D i}, p_{D f}\right) \tag{21}
\end{equation*}
$$

which only holds at tree level.
We can immediately write down the scattering equation for the $s D$ as

$$
\begin{align*}
& t_{s D}\left(p_{D f}, p_{D i}\right) \\
&= V_{s D}\left(p_{D f}, p_{D i}\right)+4 \pi \int \frac{d\left|\vec{p}_{D}^{\prime}\right|\left|\vec{p}_{D}^{\prime}\right|^{2}}{(2 \pi)^{3}} \\
& \times \frac{1}{2} \int_{-1}^{1} d x_{f} G_{s D}^{\mathrm{BbS}}\left(\left|\vec{p}_{D}^{\prime}\right|, s_{2}\right) K_{s D}\left(\left|\vec{p}_{D f}\right|,\left|\vec{p}_{D}^{\prime}\right|, x_{f}\right) \\
& \times t_{s D}\left(\vec{p}_{D}^{\prime}, p_{D i}\right) \tag{22}
\end{align*}
$$

where $x_{f} \equiv \hat{p}_{D f} \cdot \hat{p}_{D}^{\prime}, G_{s D}^{\mathrm{BbS}}\left(\left|\vec{p}_{D}^{\prime}\right|, s_{2}\right)=G_{\bar{s} D}^{\mathrm{BbS}}\left(\left|\vec{p}_{D}^{\prime}\right|, s_{2}\right)$, and

$$
\begin{align*}
& K_{s D}\left(\left|\vec{p}_{D f}\right|,\left|\vec{p}_{D}^{\prime}\right|, x_{f}\right) \\
& \left.\quad \equiv \frac{64}{3} G_{v} F_{v}\left(\left(p_{D}^{\prime}-p_{D f}\right)^{2}\right) \tilde{K}_{s D}\left(p_{D f}, p_{D}^{\prime}\right)\right|_{p_{D}^{\prime}=0}=\sqrt{\vec{p}_{D}^{\prime 2}+M_{D}^{2}} \\
& \quad \tilde{K}_{s D}\left(p_{D f}, p_{D}^{\prime}\right) \\
& \quad=-\left(p_{D f}+\not p_{D}^{\prime}\right)\left(\not p_{s}^{\prime}+M_{s}\right) / 2 \tag{23}
\end{align*}
$$

with $p_{s}^{\prime}=p_{\bar{s}}^{\prime}$.

B. Representation in ρ-spin notation

In the $\bar{s} D$ (or $s D$) center of mass system the wave function which describes the relative motion in $J=\frac{1}{2}$, is given by the

Dirac spinor of the following form (see [39,40]):

$$
\begin{align*}
\Psi_{s D, m_{s}}\left(p_{s}^{0}, \vec{p}_{s}\right) & =\binom{\phi_{s 1}\left(p_{s}^{0},\left|\vec{p}_{s}\right|\right)}{\vec{\sigma} \cdot \hat{p}_{s} \phi_{s 2}\left(p_{s}^{0},\left|\vec{p}_{s}\right|\right)} \chi_{m_{s}} \\
\Psi_{\bar{s} D, m_{s}}\left(p_{\bar{s}}^{0}, \vec{p}_{\bar{s}}\right) & =\binom{\vec{\sigma} \cdot \hat{p}_{\bar{s}} \phi_{\bar{s} 2}\left(p_{\bar{s}}^{0},\left|\vec{p}_{\bar{s}}\right|\right)}{\phi_{\bar{s} 1}\left(p_{\bar{s}}^{0},\left|\vec{p}_{\bar{s}}\right|\right)} \chi_{m_{s}} \tag{24}\\
& =\gamma^{5}\binom{\phi_{\bar{s} 1}\left(p_{\bar{s}}^{0},\left|\vec{p}_{\bar{s}}\right|\right)}{\vec{\sigma} \cdot \hat{p}_{\bar{s}} \phi_{\bar{s} 2}\left(p_{\bar{s}}^{0},\left|\vec{p}_{\bar{s}}\right|\right)} \chi_{m_{s}} \tag{25}\\
\bar{\Psi}_{s D}\left(p_{s}^{0}, \vec{p}_{s}\right) & \equiv \Psi_{s D}^{\dagger}\left(p_{s}^{0}, \vec{p}_{s}\right) \gamma^{0} \tag{26}\\
\bar{\Psi}_{\bar{s} D}\left(p_{\bar{s}}^{0}, \vec{p}_{\bar{s}}\right) & \equiv \Psi_{\bar{s} D}^{\dagger}\left(p_{\bar{s}}^{0}, \vec{p}_{\bar{s}}\right) \gamma^{0} \tag{27}
\end{align*}
$$

where $\vec{p}_{D}=-\vec{p}_{s}=-\vec{p}_{\bar{s}}$, i.e., $\Psi_{s D}\left(p_{s}^{0}, \vec{p}_{s}\right)=\Psi_{s D}\left(p_{s}^{0},-\vec{p}_{D}\right)$ and $\Psi_{\bar{s} D}\left(p_{\bar{s}}^{0}, \vec{p}_{\bar{s}}\right)=\Psi_{\bar{s} D}\left(p_{\bar{s}}^{0},-\vec{p}_{D}\right)$. In the following we simply write $p_{Q}^{\prime}=\left|\vec{p}_{Q}^{\prime}\right|, p_{Q i(f)}^{\prime}=\left|\vec{p}_{Q i(f)}^{\prime}\right|, Q=s, \bar{s}$ or D. Note that the index 1 (2) corresponds to large (small) components for both \bar{s} and s quark spinors.

For a discretization in spinor space, we define the complete set of ρ-spin notation $([39,41])$ for the operators $\mathcal{O}_{s D}=$ $V_{s D}, t_{s D}, \tilde{V}_{s D}$ and $\mathcal{K}_{s D}=K_{s D}, \tilde{K}_{s D}$ of $s D$:

$$
\begin{align*}
& \mathcal{O}_{s D, n m}\left(p_{D f}, p_{D i}\right) \\
& \quad \equiv \operatorname{tr}\left[\Omega_{n}^{\dagger}\left(p_{s f}\right) \mathcal{O}_{s D}\left(p_{D f}, p_{D i}\right) \Omega_{m}\left(p_{s i}\right)\right] \tag{28}\\
& \mathcal{K}_{s D, n m}\left(p_{D f}, p_{D}^{\prime}, x_{f}\right) \\
& \quad \equiv \operatorname{tr}\left[\Omega_{n}^{\dagger}\left(p_{s f}\right) \mathcal{K}_{s D}\left(p_{D f}, p_{D}^{\prime}, x_{f}\right) \Omega_{m}\left(p_{s}^{\prime}\right)\right] \tag{29}
\end{align*}
$$

where $n, m=1,2, \Omega_{1}(p)=\frac{\Omega}{\sqrt{2}}$ and $\Omega_{2}(p)=\vec{\gamma} \cdot \hat{p} \frac{\Omega}{\sqrt{2}}, \Omega=$ $\frac{1+\gamma_{0}}{2} . \Omega_{1}(p)$ and $\Omega_{2}(p)$ satisfy $\operatorname{tr}\left[\Omega_{n}^{\dagger}(p) \Omega_{m}\left(p^{\prime}\right)\right]=\delta_{n 1} \delta_{m 1}+$ $\hat{p} \cdot \hat{p}^{\prime} \delta_{n 2} \delta_{m 2}$.

Concerning the $\bar{s} D$ spinor, the large and small components can be reversed by γ^{5}, with the minus sign which comes from the definitions Eqs. (25) and (27): $\bar{\Psi}_{\bar{s} D} \mathcal{O} \Psi_{\bar{s} D}=$ $-\bar{\Psi}_{s D} \gamma^{5} \mathcal{O} \gamma^{5} \Psi_{s D}$. Then we can define the ρ-spin notation for $\bar{s} D$, i.e., $\mathcal{O}_{\bar{s} D}=V_{\bar{s} D}, t_{\bar{s} D}, \tilde{V}_{\bar{s} D}$ and $\mathcal{K}_{\bar{s} D}=K_{\bar{s} D}, \tilde{K}_{\bar{s} D}$,

$$
\begin{align*}
& \mathcal{O}_{\bar{s} D, n m}\left(p_{D i}, p_{D f}\right) \\
& \quad \equiv-\operatorname{tr}\left[\Omega_{n}^{\dagger}\left(p_{\bar{s} i}\right) \gamma^{5} \mathcal{O}_{\bar{s} D}\left(p_{D i}, p_{D f}\right) \gamma^{5} \Omega_{m}\left(p_{\bar{s} f}\right)\right] \tag{30}\\
& \mathcal{K}_{\bar{s} D, n m}\left(p_{D i}, p_{D}^{\prime}, x_{i}\right) \\
& \quad \equiv-\operatorname{tr}\left[\Omega_{n}^{\dagger}\left(p_{\bar{s} i}\right) \gamma^{5} \mathcal{K}_{\bar{s} D}\left(p_{D i}, p_{D}^{\prime}, x_{i}\right) \gamma^{5} \Omega_{m}\left(p_{\bar{s}}^{\prime}\right)\right] \tag{31}
\end{align*}
$$

From Eqs. (19), (22), (28)-(31), each component $n(n=$ 1,2) of spinors for the $\bar{s} D$ satisfy the following quadratic equation:

$$
\begin{align*}
& \phi_{\bar{s} n}^{\dagger}\left(p_{\bar{s} i}\right) t_{\bar{s} D, n m}\left(p_{D i}, p_{D f}\right) \phi_{\bar{s} m}\left(p_{\bar{s} f}\right) \\
&= \phi_{\bar{s} n}^{\dagger}\left(p_{\bar{s} i}\right)\left[V_{\bar{s} D, n m}\left(p_{D i}, p_{D f}\right)+4 \pi \sum_{l=1}^{2} \int \frac{d p_{D}^{\prime}}{(2 \pi)^{3}} p_{D}^{\prime 2} \frac{1}{2}\right. \\
& \quad \times \int_{-1}^{1} d x_{i} G_{\bar{s} D}^{B b S}\left(p_{D}^{\prime}, s_{2}\right) K_{\bar{s} D, n l}\left(p_{D i}, p_{D}^{\prime}, x_{i}\right) \\
&\left.\times t_{\bar{s} D, l m}\left(p_{D}^{\prime}, p_{D f}\right)\right] \phi_{\bar{s} m}\left(p_{\bar{s} f}\right) . \tag{32}
\end{align*}
$$

A similar equation can be obtained for the $s D$ by exchanging $i \leftrightarrow f$ and $s \leftrightarrow \bar{s}$ in Eq. (32).

The explicit expressions of the ρ-spin notation for $\tilde{V}_{\bar{s}(s) D}$ and $\tilde{K}_{\tilde{s}(s) D}$ are given in Appendix B. We note that there are important relations:

$$
\begin{aligned}
V_{\bar{s} D, n m}(p, q) & =-V_{s D, n m}(p, q), \\
V_{\bar{s} D}(p, q) & =-V_{s D}(p, q), \\
K_{\bar{s} D, n m}\left(|\vec{p}|,|\vec{q}|, x_{p q}\right) & =-K_{s D, n m}\left(|\vec{p}|,|\vec{q}|, x_{p q}\right), \\
K_{\bar{s} D}\left(|\vec{p}|,|\vec{q}|, x_{p q}\right) & =-K_{s D}\left(|\vec{p}|,|\vec{q}|, x_{p q}\right) .
\end{aligned}
$$

By the partial wave expansion in Eq. (A1) in Appendix A, the BS equation for $t_{\bar{s} D, n m}$ in Eq. (32) for s-wave can be written as

$$
\begin{align*}
& t_{\bar{s} D, n m}^{l_{\bar{s} D}=0}\left(p_{D i}, p_{D f}\right) \\
&= V_{\bar{s} D, n m}^{l_{\bar{s} D}=0}\left(p_{D i}, p_{D f}\right)+4 \pi \int \frac{d p_{D}^{\prime}}{(2 \pi)^{3}} p_{D}^{\prime 2} \sum_{l=1}^{2} G_{\bar{s} D}^{B b S}\left(p_{D}^{\prime}, s_{2}\right) \\
& \times K_{\bar{s} D, n l}^{l_{\bar{s} D}=0}\left(p_{D i}, p_{D}^{\prime}\right) t_{\bar{s} D, l m}^{l_{\bar{s}}=0}\left(p_{D}^{\prime}, p_{D f}\right) \tag{33}
\end{align*}
$$

C. $\boldsymbol{D} \boldsymbol{D}$ potential and t-matrix

In the case of $D D$ interaction, the lowest order diagrams are depicted in Figs. 3(a) and (b), with (a) the quark rearrangement diagram and (b) of the first order in $\mathcal{L}_{I, q \bar{q}}$, respectively.

We first show that the quark exchange diagram in Fig. 3(a) does not contribute due to its color structure, where $a \sim d$ and $i \sim l$ denote the color indices of the diaquarks and quarks, respectively. Since each diquark is in the color $\overline{\mathbf{3}}$ [19,36], the color factor for the $q q D$ vertex is proportional to $\epsilon_{a i j}$. Hence the color factor of the quark exchange diagram is given by

$$
\begin{equation*}
\epsilon_{a i j} \epsilon_{b i k} \epsilon_{c l k} \epsilon_{d l j}=\delta_{a b} \delta_{c d}+\delta_{a d} \delta_{b c} . \tag{34}
\end{equation*}
$$

As we discussed earlier, the color of the $D D$ pair inside Θ^{+} is of $\mathbf{3}$ in order to combine with \bar{s} to form a color singlet pentaquark. As a color $\mathbf{3}$ state is antisymmetric under the exchange between diquarks in the initial and final states, the matrix element of Eq. (34) vanishes.

For the contact interaction diagram, Fig. 3(b), only the direct term is shown since the exchange term does not contribute as it has the same color structure as the quark rearrangement diagram of Fig. 3(a). It is easy to see that the color structure of Fig. 3(b) is proportional to $\delta_{a b} \delta_{c d}$. Then the terms in the interaction Lagrangian in Eq. (2) that can give rise to nonvanishing contributions are

$$
\begin{equation*}
G_{1}\left(\bar{\psi} \lambda_{f}^{a} \psi\right)^{2},-G_{2}\left(\bar{\psi} \gamma^{\mu} \lambda_{f}^{a} \psi\right)^{2},-G_{v}\left(\bar{\psi} \gamma^{\mu} \lambda_{f}^{0} \psi\right)^{2} \tag{35}
\end{equation*}
$$

with $a=0 \sim 8$.
We next calculate the form factors, which diagrammatically correspond to the lower part of the diagram in Fig. 1. For
$\Gamma=\gamma^{\mu} \lambda_{f}^{a}$, we obtain

$$
\begin{align*}
& \operatorname{tr}_{f}\left(\lambda_{f}^{a}\left(\lambda_{f}^{2}\right)^{2}\right)\left(p_{D i}+p_{D f}\right)^{\mu} \frac{F_{v}\left(q^{2}\right)}{\operatorname{tr}_{f}\left(\left(\lambda_{f}^{2}\right)^{2}\right)} \\
& \quad=\left(\sqrt{\frac{2}{3}} \delta_{a 0}+\sqrt{\frac{1}{3}} \delta_{a 8}\right)\left(p_{D i}+p_{D f}\right)^{\mu} F_{v}\left(q^{2}\right), \tag{36}
\end{align*}
$$

and for $\Gamma=\lambda_{f}^{a}$, we get

$$
\begin{align*}
& \operatorname{tr}_{f}\left(\lambda_{f}^{a}\left(\lambda_{f}^{2}\right)^{2}\right) \frac{F_{s}\left(q^{2}\right)}{\operatorname{tr}_{f}\left(\left(\lambda_{f}^{2}\right)^{2}\right)} \\
& \quad=\left(\sqrt{\frac{2}{3}} \delta_{a 0}+\sqrt{\frac{1}{3}} \delta_{a 8}\right) F_{s}\left(q^{2}\right) \tag{37}
\end{align*}
$$

where the factor $\operatorname{tr}_{f}\left(\left(\lambda_{f}^{2}\right)^{2}\right)$ in Eqs. (36) and (37) is introduced by the same reason for Eq. (16), and we have used $\operatorname{tr}\left(\lambda_{f}^{2} \lambda_{f}^{a} \lambda_{f}^{2}\right)=2\left(\sqrt{\frac{2}{3}} \delta_{a 0}+\sqrt{\frac{1}{3}} \delta_{a 8}\right)$.

For the on-shell diquarks, $F_{s}\left(q^{2}\right)$ is calculated as ${ }^{2}$

$$
\begin{align*}
F_{S}\left(q^{2}\right)= & i \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{tr}\left[\left(g_{D} C^{-1} \gamma^{5} \lambda_{f}^{2} \beta^{A}\right) S(k+q) S(k)\right. \\
& \left.\times\left(g_{D} \gamma^{5} C \lambda_{f}^{2} \beta^{A}\right) S^{T}\left(k-p_{D i}\right)\right] \\
= & 6 i g_{D}^{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{tr}\left[S(k+q) S(k) S\left(k-p_{D i}\right)\right] . \tag{38}
\end{align*}
$$

With the form factors $F_{v}\left(q^{2}\right)$ and $F_{s}\left(q^{2}\right)$ obtained in the above, $V_{D D}$ is given by

$$
\begin{align*}
& -i V_{D D}\left(\vec{p}_{D i}, \vec{p}_{D f}\right) \\
& =\quad+128 i\left[G_{1} F_{s}^{2}\left(q^{2}\right)-\left(G_{2}+\frac{2}{3} G_{v}\right)\left(p_{D 1 i}+p_{D 1 f}\right)\right. \\
& \left.\quad \cdot\left(p_{D 2 i}+p_{D 2 f}\right) F_{v}^{2}\left(q^{2}\right)\right] \\
& = \\
& \quad 128 i\left[G_{1} F_{s}^{2}\left(q^{2}\right)-G_{5}\left(p_{D 1 i}+p_{D 1 f}\right) \cdot\left(p_{D 2 i}+p_{D 2 f}\right)\right. \tag{39}\\
& \left.\quad \times F_{v}^{2}\left(q^{2}\right)\right]
\end{align*}
$$

where the factor $+128 i$ in a first line of Eq. (39) comes from the Wick contractions, and in a second line we have used the relation between coupling constants in meson sectors; $G_{5}=$

[^2]

FIG. 4. BS equation for $D D$.
$G_{2}+\frac{2}{3} G_{v}$ which is explained in Sec. II. The momenta of the diquarks in the initial and final states in Fig. 4 are given by

$$
\begin{align*}
& p_{D 1 i(f)}=\left(\sqrt{s_{2}} / 2, \vec{p}_{D i(f)}\right), \tag{40}\\
& p_{D 2 i(f)}=\left(\sqrt{s_{2}} / 2,-\vec{p}_{D i(f)}\right),
\end{align*}
$$

with $q=p_{D 1 f}-p_{D 1 i}=p_{D 2 i}-p_{D 2 f} \cdot s_{2}=4\left(\vec{p}_{D i}^{2}+M_{D}^{2}\right)=$ $4\left(\vec{p}_{D f}^{2}+M_{D}^{2}\right)$ is the $D D$ center of mass energy squared.

As in the case of $\bar{s} D$ scattering, we use the BbS threedimensional reduction scheme and the resulting equation for $D D$ scattering reads as

$$
\begin{align*}
t_{D D}\left(\vec{p}_{D f}, \vec{p}_{D i}\right)= & V_{D D}\left(\vec{p}_{D f}, \vec{p}_{D i}\right)+\int \frac{d^{3} p^{\prime}}{(2 \pi)^{3}} V_{D D}\left(\vec{p}_{D f}, \vec{p}^{\prime}\right) \\
& \times G_{D D}^{B b S}\left(\left|\vec{p}^{\prime}\right|, s_{2}\right) t_{D D}\left(\vec{p}^{\prime}, \vec{p}_{D i}\right) \tag{41}
\end{align*}
$$

with

$$
\begin{align*}
G_{D D}^{\mathrm{BbS}}\left(\left|\vec{p}^{\prime}\right|, s_{2}\right) & =\frac{1}{4 E_{D}\left(\left|\vec{p}^{\prime}\right|\right)\left(s_{2} / 4-E_{D}\left(\left|\vec{p}^{\prime}\right|\right)^{2}+i \epsilon\right)} \\
& =\frac{1}{4 E_{D}\left(\left|\vec{p}^{\prime}\right|\right)\left(\vec{p}_{D f}^{2}-\vec{p}^{\prime 2}+i \epsilon\right)} \tag{42}
\end{align*}
$$

with $E_{D}\left(\left|\vec{p}^{\prime}\right|\right)=\sqrt{\vec{p}^{\prime 2}+M_{D}^{2}}$.
In the JW model for Θ^{+}, the diquark-diaquark spatial wave function must be antisymmetric and we will consider here only the lowest configuration, namely, $D D$ are in a relative p-wave. The partial wave expansion of Eq. (A1) then gives

$$
\begin{align*}
t_{D D}^{l=1}\left(p_{f}, p_{i}\right)= & V_{D D}^{l=1}\left(p_{f}, p_{i}\right)+4 \pi \int \frac{d p^{\prime}}{(2 \pi)^{3}} p^{\prime 2} G_{D D}^{\mathrm{BbS}}\left(p^{\prime}, s_{2}\right) \\
& \times V_{D D}^{l=1}\left(p_{f}, p^{\prime}\right) t_{D D}^{l=1}\left(p^{\prime}, p_{i}\right) \tag{43}
\end{align*}
$$

with $p_{i(f)} \equiv\left|\vec{p}_{D i(f)}\right|, p^{\prime} \equiv\left|\vec{p}^{\prime}\right|$.

IV. RELATIVISTIC FADDEEV EQUATION

A. Three-body Lippmann-Schwinger equation

For a system of three particles with momenta $\vec{k}_{i}^{\prime} s(i=$ $1,2,3$), we introduce the Jacobi momenta with particle 3 as a special choice:

$$
\begin{align*}
& \vec{k}_{1}=\mu_{1} \vec{P}+\overrightarrow{\tilde{p}}+\alpha_{1} \overrightarrow{\tilde{q}}_{3}, \\
& \vec{k}_{2}=\mu_{2} \vec{P}-\overrightarrow{\tilde{p}}+\alpha_{2} \tilde{\tilde{q}}_{3}, \tag{44}\\
& \vec{k}_{3}=\mu_{3} \vec{P}+\alpha_{3} \overrightarrow{\tilde{q}}_{3}
\end{align*}
$$

with $\sum \mu_{n}=1$ and $\alpha_{3}=-\alpha_{1}-\alpha_{2}$. For the coefficients we find $\mu_{n}=m_{n} / M, M=m_{1}+m_{2}+m_{3}$, and $\alpha_{1}=m_{1} / m_{12}, \alpha_{2}=m_{2} / m_{12}, \alpha_{3}=-1$, where $m_{i j}=m_{i}+$ $m_{j}(i \neq j)$. In terms of the Jacobi momenta the total kinetic
energy is given by

$$
\begin{equation*}
K_{\mathrm{tot}}=\frac{P^{2}}{2 M}+\frac{\tilde{p}^{2}}{2 m_{12}}+\frac{\tilde{q}_{3}^{2}}{2 m_{(12) 3}}, \tag{45}
\end{equation*}
$$

where $m_{(i j) k}=m_{k} m_{i j} / M$.
New integration variables are chosen to be $\tilde{p}=f_{p 3} p$ with $f_{p 3}=\sqrt{2 m_{12}}$ and $\tilde{q_{3}}=f_{q 3} q$ with $f_{q 3}=\sqrt{2 m_{(12) 3}}$, and in general for cyclic $(i j k), f_{p i}=\sqrt{2 m_{j k}}$ and $f_{q i}=\sqrt{2 m_{(j k) i}}$. In terms of the new integration variables we have

$$
\begin{equation*}
K_{\mathrm{tot}}=\frac{P^{2}}{2 M}+p^{2}+q^{2} \tag{46}
\end{equation*}
$$

and the three-body Lippmann-Schwinger equation for the T-matrix becomes

$$
\begin{align*}
T(\vec{p}, \vec{q})= & V+f_{p 3^{3}} f_{q 3}{ }^{3} \int \frac{d^{3} p^{\prime}}{(2 \pi)^{3}} \int \frac{d^{3} q^{\prime}}{(2 \pi)^{3}} V G_{3}\left(p^{\prime}, q^{\prime}\right) \\
& \times T\left(\vec{p}^{\prime}, \vec{q}^{\prime}\right) \tag{47}
\end{align*}
$$

with $G_{3}(p, q)=1 /\left(z-K_{\text {tot }}\right)$. The parameter z is implicit in the arguments of T and G_{3} in Eq. (47), a convention to be followed hereafter.

Similarly we define the Jacobi momenta \vec{p}_{i}, \vec{q}_{i} with particle i as the special choice. The momenta are related to each other as

$$
\begin{equation*}
\vec{p}_{i}=a_{i j} \vec{p}_{j}+b_{i j} \vec{q}_{j}, \quad \vec{q}_{i}=c_{i j} \vec{p}_{j}+d_{i j} \vec{q}_{j} \tag{48}
\end{equation*}
$$

where $(i j k)$ are cyclic, and $a_{i j}=-\left[m_{i} m_{j} /\left(m_{i}+m_{k}\right)\left(m_{j}+\right.\right.$ $\left.\left.m_{k}\right)\right]^{1 / 2}, b_{i j}=\sqrt{1-a_{i j}^{2}}=-b_{j i}, c_{i j}=-b_{i j}$ and $d_{i j}=a_{i j}$.

It can be shown that the total angular momentum is related to the angular momentum $\vec{l}_{p i}$ and $\vec{l}_{q i}$ by

$$
\begin{equation*}
\vec{L}=\sum_{i=1}^{3}\left(\vec{r}_{i} \times \vec{k}_{i}\right)=\sum_{i=1}^{3}\left(\vec{l}_{p i}+\vec{l}_{q i}\right)+\vec{l}_{c} \tag{49}
\end{equation*}
$$

With these three choices of Jacobi momenta we may introduce corresponding three-particle states $\left\rangle_{n}\right.$ where particle n plays a special role. For the three-particle T-matrix we have

$$
\begin{equation*}
\left\langle\vec{k}_{1}, \vec{k}_{2}, \vec{k}_{3}\right| T|\alpha\rangle={ }_{n}\left\langle\vec{p}_{n}, \vec{q}_{n}\right| T|\alpha\rangle, \tag{50}
\end{equation*}
$$

or in terms of the Faddeev amplitudes T_{n},

$$
\begin{equation*}
\left\langle\vec{k}_{1}, \vec{k}_{2}, \vec{k}_{3}\right| T|\alpha\rangle=T_{1}\left(\vec{p}_{1}, \vec{q}_{1}\right)+T_{2}\left(\vec{p}_{2}, \vec{q}_{2}\right)+T_{3}\left(\vec{p}_{3}, \vec{q}_{3}\right) \tag{51}
\end{equation*}
$$

with $T_{n}\left(\vec{p}_{n}, \vec{q}_{n}\right)={ }_{n}\left\langle\vec{p}_{n}, \vec{q}_{n}\right| T_{n}|\alpha\rangle$.
For the pentaquark system we now chose particles 1 and 3 as the diquark and particle 2 to be the \bar{s}. The Faddeev equations for $T=T_{1}+T_{2}+T_{3}$ with $T_{i}=t_{i}+\sum_{j \neq i} t_{i} G_{2}(s) T_{j} \quad(i=1,2,3)$, with t_{i} denoting the two-body t -matrix between particle pair ($j k$), become

$$
\begin{align*}
T_{1}\left(\vec{p}_{1}, \vec{q}_{1}\right)= & f_{p 3}^{3} f_{q 3}^{3} \int \frac{d^{3} p_{3}^{\prime}}{(2 \pi)^{3}} \\
& \times \int \frac{d^{3} q_{3}^{\prime}}{(2 \pi)^{3}} K_{13} G_{3}\left(p_{3}^{\prime}, q_{3}^{\prime}\right) T_{3}\left(\vec{p}_{3}^{\prime}, \vec{q}_{3}^{\prime}\right) \\
& +f_{p 2}^{3} f_{q 2}^{3} \int \frac{d^{3} p_{2}^{\prime}}{(2 \pi)^{3}} \int \frac{d^{3} q_{2}^{\prime}}{(2 \pi)^{3}} K_{12} \\
& \times G_{3}\left(p_{2}^{\prime}, q_{2}^{\prime}\right) T_{2}\left(\vec{p}_{2}^{\prime}, \vec{q}_{2}^{\prime}\right) \tag{52}
\end{align*}
$$

where the channels 1 and 3 correspond to $D(\bar{s} D)$ states and channel 2 to the $\bar{s}(D D)$ states. Since diquarks obey Bose-Einstein statistics, we have $T_{3}\left(\vec{p}_{3}, \vec{q}_{3}\right)=T_{1}\left(-\vec{p}_{3}, \vec{q}_{3}\right)$ and $T_{3}\left(\vec{p}_{3}, \vec{q}_{3}\right)=T_{1}\left(-\vec{p}_{1}, \vec{q}_{1}\right)$. We note that the symmetry property which requires the amplitude T be antisymmetric with respect to interchange of the two diquarks is automatically satisfied by the angular momentum content $L=l_{q 1}=l_{p 2}=$ $1, l_{p 1}=l_{q 2}=0$.

The $\bar{s}(D D)$ T-matrix T_{2} satisfies

$$
\begin{align*}
T_{2}\left(\vec{p}_{2}, \vec{q}_{2}\right)= & 2 f p_{1}^{3} f q_{1}^{3} \int \frac{d^{3} p_{1}^{\prime}}{(2 \pi)^{3}} \int \frac{d^{3} q_{1}^{\prime}}{(2 \pi)^{3}} K_{21} G_{3}\left(p_{1}^{\prime}, q_{1}^{\prime}\right) \\
& \times T_{1}\left(\vec{p}_{1}^{\prime}, \vec{q}_{1}^{\prime}\right) \tag{53}
\end{align*}
$$

The kernels K_{13} and K_{12} are expressed in terms of the $\bar{s} D$ t-matrix

$$
\begin{equation*}
K_{13}=K_{12}=t_{\bar{s} D}\left(\vec{p}_{1}, \vec{p}_{1}^{\prime} ; z-q_{1}^{2}\right) \frac{(2 \pi)^{3}}{f_{q_{1}}^{3}} \delta^{(3)}\left[\vec{q}_{1}-\vec{q}_{1}^{\prime}\right] . \tag{54}
\end{equation*}
$$

Similarly the kernel K_{21} is given by

$$
\begin{equation*}
K_{21}=t_{D D}\left(\vec{p}_{2}, \vec{p}_{2}^{\prime} ; z-q_{2}^{2}\right) \frac{(2 \pi)^{3}}{f_{q_{2}}^{3}} \delta^{(3)}\left[\vec{q}_{2}-\vec{q}_{2}^{\prime}\right] . \tag{55}
\end{equation*}
$$

The term with K_{13} can be worked out by making use of the δ-function relation

$$
\begin{align*}
\delta^{(3)}\left[\vec{q}_{1}-\vec{q}_{1}^{\prime}\right]= & \frac{2}{q_{1}} \delta\left(q_{1}^{2}-q_{1}^{\prime 2}\right) \delta\left(\cos \theta_{q_{3}}-\cos \theta_{q_{3}^{\prime}}\right) \\
& \times \delta\left(\phi_{q_{3}^{\prime}}-\phi_{q_{3}}\right), \tag{56}
\end{align*}
$$

and the linear relation $\vec{q}_{1}^{\prime}=c_{13} \vec{p}_{3}^{\prime}+d_{13} \vec{q}_{3}^{\prime}$, which lead to

$$
\begin{align*}
\delta^{(3)} & {\left[\vec{q}_{1}-\vec{q}_{1}^{\prime}\right] } \\
= & \frac{1}{q_{1} c_{13} d_{13} p_{3}^{\prime} q_{3}^{\prime}} \delta\left(\cos \theta_{p_{3}^{\prime} q_{3}^{\prime}}-\frac{q_{1}^{\prime 2}-c_{13}^{\prime 2} p_{3}^{\prime 2}-d_{13}^{2} q_{3}^{\prime 2}}{2 c_{13} d_{13} p_{3}^{\prime} q_{3}^{\prime}}\right) \\
& \times \delta\left(\cos \theta_{q_{3}}-\cos \theta_{q_{3}^{\prime}}\right) \delta\left(\phi_{q_{3}^{\prime}}-\phi_{q_{3}}\right) . \tag{57}
\end{align*}
$$

We mention that similar expression for a delta function in the term K_{12} can also be obtained by replacing $3 \rightarrow 2$.

Performing a partial wave expansion for the $D(\bar{s} D)$ amplitude

$$
\begin{equation*}
T_{1}\left(\vec{p}_{1}, \vec{q}_{1}\right)=4 \pi Y_{l p_{1} 0}^{*}\left(\Omega_{p_{1}}\right) Y_{l q_{1} 0}\left(\Omega_{q_{1}}\right) T_{1}^{L}\left(p_{1}, q_{1}\right) \tag{58}
\end{equation*}
$$

and for the $\bar{s} D$ t-matrix $t_{\bar{s} D}\left(\vec{p}_{1}, \vec{p}_{1}^{\prime} ; z-q_{1}^{2}\right)$,

$$
\begin{align*}
& t_{\bar{s} D}\left(\vec{p}_{1}, \vec{p}_{1}^{\prime} ; z-q_{1}^{2}\right) \\
& \quad=4 \pi Y_{l p_{1} 0}^{*}\left(\Omega_{p_{1}}\right) Y_{l p_{1} 0}\left(\Omega_{p_{1}^{\prime}}\right) t_{\bar{s} D}^{\left(l_{p 1}\right)}\left(p_{1}, p_{1}^{\prime} ; z-q_{1}^{2}\right) \tag{59}
\end{align*}
$$

yield

$$
\begin{align*}
& T_{1}^{L}\left(p_{1}, q_{1}\right) \\
& =c_{3} \int_{0}^{\infty} q_{3}^{\prime 2} d q_{3}^{\prime} \int_{A_{13}}^{B_{13}} p_{3}^{\prime 2} d p_{3}^{\prime} t_{\bar{s} D}^{\left(l p_{1}\right)}\left(p_{1}, p_{1}^{\prime} ; z-q_{1}^{2}\right) X_{13} \\
& \quad \times \frac{1}{c_{13} d_{13} q_{1} p_{3}^{\prime} q_{3}^{\prime}} G_{3}\left(p_{3}^{\prime}, q_{3}^{\prime}\right) T_{3}^{L}\left(p_{3}^{\prime}, q_{3}^{\prime}\right) \\
& \quad+c_{2} \int_{0}^{\infty} q_{2}^{\prime 2} d q_{2}^{\prime} \int_{A_{12}}^{B_{12}} p_{2}^{\prime 2} d p_{2}^{\prime} t_{\bar{s} D}^{\left(l p_{1}\right)}\left(p_{1}, p_{1}^{\prime} ; z-q_{1}^{2}\right) \\
& \quad \times X_{12} \frac{1}{c_{12} d_{12} q_{1} p_{2}^{\prime} q_{2}^{\prime}} G_{3}\left(p_{2}^{\prime}, q_{2}^{\prime}\right) T_{2}^{L}\left(p_{2}^{\prime}, q_{2}^{\prime}\right), \tag{60}
\end{align*}
$$

with

$$
\begin{equation*}
c_{3}=\frac{2}{\sqrt{\pi}}\left(f_{p 3} f_{q 3} / f_{q 1}\right)^{3}, \quad c_{2}=\frac{2}{\sqrt{\pi}}\left(f_{p 2} f_{q 2} / f_{q 1}\right)^{3}, \tag{61}
\end{equation*}
$$

and where the boundaries A, B for the p^{\prime} integration can easily be found from the condition $q_{1}^{2}=q_{1}^{\prime 2}$ in Eq. (57), given by

$$
\begin{align*}
A_{i j} & =\left|\frac{c_{i j} q_{j}^{\prime}+q_{i}}{d_{i j}}\right| \tag{62}\\
B_{i j} & =\left|\frac{c_{i j} q_{j}^{\prime}-q_{i}}{d_{i j}}\right| \tag{63}
\end{align*}
$$

For the $\bar{s}(D D)$ amplitude T_{2}, partial wave expansion gives

$$
\begin{align*}
T_{2}^{L}\left(p_{2}, q_{2}\right)= & 2 c_{1} \int_{0}^{\infty} q_{1}^{\prime 2} d q_{1}^{\prime} \int_{A_{21}}^{B_{21}} p_{1}^{\prime 2} d p_{1}^{\prime} \\
& \times t_{D D}^{\left(l p_{2}\right)}\left(p_{2}, p_{2}^{\prime} ; z-q_{2}^{2}\right) X_{21} \frac{1}{c_{21} d_{21} q_{2} p_{1}^{\prime} q_{1}^{\prime}} \\
& \times G_{3}\left(p_{1}^{\prime}, q_{1}^{\prime}\right) T_{1}^{L}\left(p_{1}^{\prime}, q_{1}^{\prime}\right), \tag{64}
\end{align*}
$$

where A_{21} and B_{21} are given by Eq. (63), and

$$
\begin{equation*}
c_{1}=\frac{2}{\sqrt{\pi}}\left(f_{p 1} f_{q 1} / f_{q 2}\right)^{3} \tag{65}
\end{equation*}
$$

In the above equations $X_{i j}$ are angular momentum functions depending on the states we consider. In our case, the $\bar{s} D$ two-body channel is an s-wave, $l p=0$, and the $D D$ channel a p-wave, $l p=1$. Hence, for the three-body channel with total angular momentum $L=1$ we have for the $D(\bar{s} D)$ three-body channel $l p_{1}=0, l q_{1}=L$ and $l p_{3}=0, l q_{3}=L$, while for $\bar{s}(D D) l p_{2}=1, l q_{2}=0$. The obtained $X_{i j}$ have the form

$$
\begin{align*}
X_{13} & =\frac{1}{4 \pi \sqrt{3}} Y_{l q_{3} 0}\left(\theta_{q_{3} q_{1}}\right), \quad X_{12}=\frac{1}{4 \pi \sqrt{3}} Y_{l q_{2} 0}\left(\theta_{q_{2} q_{1}}\right), \tag{66}\\
X_{21} & =\frac{1}{4 \pi \sqrt{3}} Y_{l p_{2} 0}\left(\theta_{p_{2} p_{1}}\right)
\end{align*}
$$

B. Relativistic Faddeev equations

Following Amazadeh and Tjon [42] (see also [33]) we adopt the relativistic quasipotential prescription based on a dispersion relation in the two-particle subsystem. Then the three-body Bethe-Salpeter-Faddeev equations have essentially the same form as the nonrelativistic version. Taking the representation with particle 3 as a special choice we may write down for the three-particle Green function a dispersion relation of the (1,2)-system, i.e.,

$$
\begin{align*}
& G_{3}\left(p_{3}, q_{3} ; s_{3}\right) \\
& \quad=\frac{E_{1}\left(k_{1}\right)+E_{2}\left(k_{2}\right)}{E_{1}\left(k_{1}\right) E_{2}\left(k_{2}\right)} \frac{1}{s_{3}-q_{3}^{2}-\left(E_{1}\left(k_{1}\right)+E_{2}\left(k_{2}\right)\right)^{2}} \tag{67}
\end{align*}
$$

with $E_{1}\left(k_{1}\right)=\sqrt{k_{1}^{2}+m_{1}^{2}}, E_{2}\left(k_{2}\right)=\sqrt{k_{2}^{2}+m_{2}^{2}}$, and $s_{3}=P^{2}$ being the invariant three-particle energy square. In the threeparticle c.m. system we have $\sqrt{s_{3}}=M+E_{b}$. The resulting two-body Green function with invariant two-body energy square s_{2} has then the form of the BSLT quasipotential Green
function

$$
\begin{equation*}
G_{2}\left(p_{3} ; s_{2}\right)=\frac{E_{1}\left(k_{1}\right)+E_{2}\left(k_{2}\right)}{E_{1}\left(k_{1}\right) E_{2}\left(k_{2}\right)} \frac{1}{s_{2}-\left(E_{1}\left(k_{1}\right)+E_{2}\left(k_{2}\right)\right)^{2}} . \tag{68}
\end{equation*}
$$

This quasipotential prescription for G_{3} has obviously the advantage that the two-body t-matrix in the Faddeev kernel satisfies the same equation as the one in the two-particle Hilbert space with only a shift in the invariant two-body energy. So the structure of the resulting three-body equations are the same as in the nonrelativistic case.

v. RESULTS AND DISCUSSIONS

In the NJL model some cut-off schemes must be adopted since the NJL model is nonrenormalizable. However, in this work we will not use any cut-off scheme but simply employ the dipole form factors for the scalar and vector vertices. Namely, the NJL model is only used to study the Dirac, flavor, and color structure of the $\bar{s} D$ and $D D$ potentials.

For the values of the masses $M_{u, d}, M_{s}$, and M_{D}, we use the empirical values $M=M_{u}=M_{d}=400 \mathrm{MeV}$ and $M_{s}=$ $M_{D}=600 \mathrm{MeV}$ [32]. We will treat the coupling constants G_{i} ($i=1 \sim 5$) in Eq. (2) as free parameters. For the $\bar{s} D$ channel, it depends only on $G_{v}=G_{3}+G_{4}=\frac{3}{2}\left(G_{5}-G_{2}\right)$ as seen in Eq. (16).

In the NJL model calculation with the Pauli-Villars (PV) cut-off regularization [32], the coupling constants G_{π}, G_{ρ}, and G_{ω} are related with the parameters used in our work by $G_{1}=G_{\pi} / 2, G_{2}=G_{\rho} / 2$, and $G_{5}=G_{\omega} / 2$. Thus by using the values of mesonic coupling constants in the NJL model, G_{v} is determined as $G_{v}=\frac{3}{2}\left(G_{\omega} / 2-G_{\rho} / 2\right)=\frac{3}{2}(7.34 / 2-$ $8.38 / 2)=-0.78 \mathrm{GeV}^{-2}$. We remark that the sign of G_{v} is definitely negative since experimentally the omega meson is heavier than the rho meson. Then the interaction between the \bar{s} and diquark in s-wave is attractive, as can be seen from the $\bar{s} D s$-wave phase shift shown in Fig. 5 with $G_{v}=$ $-0.78 \mathrm{GeV}^{-2}$, while the interaction between s and diquark is repulsive which can be seen in Fig. 6. In both figures we find

FIG. 5. Three-momentum p_{E} dependence of the phase shift δ_{l} for the $\bar{s} D$ interaction with the coupling constant $G_{v}=-0.78 \mathrm{GeV}^{-2}$.

FIG. 6. Three momentum p_{E} dependence of the phase shift δ_{l} for the $s D$ interaction with the coupling constant $G_{v}=-0.78 \mathrm{GeV}^{-2}$.
that the magnitudes of the phase shift is within 10 degrees, that is, $G_{v}=-0.78 \mathrm{GeV}^{-2}$ gives a very weak interaction between $\bar{s}(s)$ and the diquark. As we can see in Figs. 5 and 6, generally the phase shift in the s-wave is more sensitive to the threemomentum than that in the p-wave. We note that the $\bar{s} D$ and $s D$ phase shift are not symmetric around the p_{E} axis, which can be understood from the decompositions of $t_{s D}$ and $t_{\bar{s} D}$ in the spinor space in Appendix B. We further mention that if G_{v} is determined from the Λ hyperon mass $M_{\Lambda}=1116 \mathrm{MeV}$ within the $s D$ picture, one obtains $G_{v}=6.44 \mathrm{GeV}^{-2}$, which is different from $G_{v}=-0.78 \mathrm{GeV}^{-2}$ determined from the meson sector in the NJL model in sign. In this case the rho meson mass is larger than the omega meson mass, that is, the vector meson masses are not correctly reproduced.

The $D D$ phase shift is plotted in Fig. 7 where we have used the values of coupling constants $G_{1}=G_{\pi} / 2=5.21 \mathrm{GeV}^{-2}$ and $G_{5}=G_{\omega} / 2=3.67 \mathrm{GeV}^{-2}$ which are determined from meson sectors in the NJL model calculation with the PauliVillars cutoff [32]. We can easily see that the phase shift δ_{l} is definitely negative, i.e., the $D D$ interaction is repulsive, and its dependence on three-momentum p_{E} is very strong and

FIG. 7. Three momentum p_{E} dependence of the phase shift δ_{l} for the $D D$ interaction.

FIG. 8. G_{v} dependence of the $\bar{s} D$ binding energy.
almost proportional to p_{E} both for the s-wave and p-wave. This strong p_{E} dependence of the phase shift comes from the p_{E}^{2} dependence of a second term $\left(p_{D 1 i}+p_{D 1 f}\right) \cdot\left(p_{D 2 i}+\right.$ $p_{D 2 f}$) in Eq. (39).

The G_{v} dependence of the $\bar{s} D$ binding energy, $E_{\bar{s} D}$, is presented in Fig. 8. We find that the $\bar{s} D$ bound state begins to appear around $G_{v}=-5 \sim-6 \mathrm{GeV}^{-2}$, and becomes more deeply bound as G_{v} becomes more negative. It is easily seen that $E_{\bar{S} D}$ is almost proportional to G_{v}. However even for the case of a weakly bound state with $\left|E_{\bar{s} D}\right|$ less than 0.1 GeV , it will require a value of $-G_{v}=5 \sim 6 \mathrm{GeV}^{-2}$ which is about eight times larger than the $-G_{v}$ determined from the meson sector in the original NJL model with the PV cut-off regularization.

For the calculation of the pentaquark binding energy we use the relativistic three-body Faddeev equation which is introduced in Sec. IV. If the pentaquark state is in the $J^{P}=\frac{1}{2}^{+}$ state with which we are concerned in the present paper, the total force is attractive but there is no pentaquark bound state.

On the other hand if the pentaquark state is in the $J^{P}=\frac{1}{2}^{-}$ state, a bound pentaquark state begins to appear when G_{v} becomes more negative than $-8.0 \mathrm{GeV}^{-2}$, a value inconsistent with what is required to predict a bound Λ hyperon with $M_{\Lambda}=$ 1116 MeV in a quark-diquark model as mentioned in Sec. V. The lowest configuration which would correspond to a $J^{P}=$ $\frac{1}{2}^{-}$state is for the spectator \bar{s} to be in p-wave with respect to a $D D$ pair in the p-wave, or alternatively speaking, the spectator diquark in the relative s-wave to $\bar{s} D$ in the s-wave. Our results

TABLE I. The binding energy of the $J^{P}=\frac{1}{2}^{-}$ pentaquark state. $E_{B}^{0}(5 q)\left(E_{B}(5 q)\right)$ is the binding energy without (including) the $D D$ channel.

$G_{v}\left[\mathrm{GeV}^{-2}\right]$	$E_{B}^{0}(5 q)[\mathrm{MeV}]$	$E_{B}(5 q)[\mathrm{MeV}]$
-8.0	47	77
-9.0	87	139
-10.0	132	205
-12.0	226	333
-14.0	316	505

FIG. 9. Three-momentum p_{E} dependence of the phase shift δ_{l} for the $\bar{s} D$ interaction with the coupling constant $G_{v}=-8.0 \mathrm{GeV}^{-2}$.
for the binding energy of a $J^{P}=\frac{1}{2}^{-}$pentaquark state for the case with and without the $D D$ channel are given in Table I. It is found that although the $D D$ interaction is repulsive, including the $D D$ channel gives an additional binding energy which is leading to the more deeply pentaquark bound state. It is because the coupling to the $D D$ channel is attractive due to the sign of the effective kernel K_{21} in Eqs. (53) and (55). This depends on the recoupling coefficients X_{21}, X_{12} in Eq. (66) and the two-body t-matrices.

In Fig. 9 (Fig. 10) the phase shift of $\bar{s} D$ is plotted, where the coupling constant is fixed at $G_{v}=-8.0 \mathrm{GeV}^{-2}\left(G_{v}=\right.$ $-14.0 \mathrm{GeV}^{-2}$). It is easily seen that in Figs. 9 and 10 the phase shift of $\bar{s} D$ in the s-wave is positive for small $p_{E}<0.3 \mathrm{GeV}$ and $p_{E}<0.45 \mathrm{GeV}$, but it changes the sign around $p_{E}=0.3$ and $p_{E}=0.45 \mathrm{GeV}$, thus the phase shift of $\bar{s} D$ in the s-wave is very sensitive to three-momentum p_{E}. Whereas the phase shift of $\bar{s} D$ in the p-wave is definitely positive.

In Fig. 11 we plot the phase shift of $s D$ with the coupling constant $G_{v}=-14.0 \mathrm{GeV}^{-2}$ which is the same as the one used in Fig. 10. Different from the phase shift of $\bar{s} D$, the phase shifts of $s D$ in the s - and p-waves do not change the sign for

FIG. 10. Three-momentum p_{E} dependence of the phase shift δ_{l} for the $\bar{s} D$ interaction with the coupling constant $G_{v}=-14.0 \mathrm{GeV}^{-2}$.

FIG. 11. Three-momentum p dependence of the phase shift δ_{l} for the $s D$ interaction with the coupling constant $G_{v}=-14.0 \mathrm{GeV}^{-2}$.
higher three-momentum p_{E}, i.e., the sign of the phase shifts are definitely negative.

From the above results we find that even if we use a very strong coupling constant G_{v} which is unphysical because it gives much larger mass difference of rho and omega mesons than the experimental value, $M_{\omega}-M_{\rho}=13 \mathrm{MeV}$, it is impossible to obtain the pentaquark bound state with $J^{P}=$ $\frac{1}{2}^{+}$. With only the $J=\frac{1}{2}$ three-body channels considered, we do not find a bound $J^{P}=\frac{1}{2}^{+}$pentaquark state. The $J^{P}=\frac{1}{2}^{-}$ channel is more attractive, resulting in a bound pentaquark state in this channel, but for unphysically large values of vector mesonic coupling constants.

VI. SUMMARY

In this work, we have presented a Bethe-Salpeter-Faddeev (BSF) calculation for the pentaquark Θ^{+}in the diquark picture of Jaffe and Wilczek in which Θ^{+}is treated as a diquark-diquark- \bar{s} three-body system. The BlankenbeclerSugar reduction scheme is used to reduce the four-dimensional integral equation into three-dimensional ones. The two-body diquark-diquark and diquark- \bar{s} interactions are obtained from the lowest order diagrams prescribed by the Nambu-JonaLasinio (NJL) model. The coupling constants in the NJL model as determined from the meson sector are used. We find that the $\bar{s} D$ interaction is attractive in the s-wave while the $D D$ interaction is repulsive in the p-wave. Within the truncated configuration where $D D$ and $\bar{s} D$ are restricted to p - and s-waves, respectively, we do not find any bound $\frac{1}{2}^{+}$pentaquark state, even if we turn off the repulsive $D D$ interaction. It indicates that the attractive $\bar{s} D$ interaction is not strong enough to support a bound $D D \bar{s}$ system with $J^{P}=\frac{1}{2}^{+}$.

However, a bound pentaquark with $J^{P}=\frac{1}{2}^{-}$begins to appear if we change the vector mesonic coupling constant G_{v} from $-0.78 \mathrm{GeV}^{-2}$, as determined from the mesonic sector, to around $G_{v}=-8 \mathrm{GeV}^{-2}$. And it becomes more deeply bound as G_{v} becomes more negative.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Council of ROC under grant no. NSC93-2112-M002-004 (H.M. and S.N.Y.). J.A.T. wishes to acknowledge the financial support of NSC for a visiting chair professorship at the Physics Department of NTU and the warm hospitality he received throughout the visit. K.T. acknowledges the support from the Spanish Ministry of Education and Science, Reference no. SAB2005-0059.

APPENDIX A: PARTIAL WAVE EXPANSION

In the two-body center of mass frame the partial wave expansion is defined by

$$
\begin{align*}
t\left(\vec{p}_{f}, \vec{p}_{i}\right) & =\sum_{l} \frac{2 l+1}{4 \pi} P_{l}\left(\cos \theta_{p_{i} p_{f}}\right)\left\langle p_{f} l\right| t\left|p_{i} l\right\rangle \\
& \equiv \sum_{l}(2 l+1) P_{l}\left(\cos \theta_{p_{i} p_{f}}\right) t^{l}\left(\left|\vec{p}_{f}\right|,\left|\vec{p}_{i}\right|\right) \tag{A1}
\end{align*}
$$

with $\vec{p}_{i(f)} \equiv \vec{p}_{1 i(f)}=-\vec{p}_{2 i(f)}$. Then $t^{l}\left(\left|\vec{p}_{f}\right|,\left|\vec{p}_{i}\right|\right)$ in Eq. (A1) is written in terms of $t\left(\vec{p}_{f}, \vec{p}_{i}\right)$ by
$t^{l}\left(\left|\vec{p}_{f}\right|,\left|\vec{p}_{i}\right|\right)=\frac{1}{2} \int_{-1}^{1} d \cos \theta_{p_{i} p_{f}} P_{l}\left(\cos \theta_{p_{i} p_{f}}\right) t\left(\vec{p}_{f}, \vec{p}_{i}\right)$.
The phase shift δ_{l} is given by

$$
\begin{equation*}
t^{l}(p, p)=-\frac{8 \pi \sqrt{s_{2}}}{p} e^{i \delta_{l}} \sin \delta_{l} \tag{A3}
\end{equation*}
$$

where $p \equiv\left|\vec{p}_{1 i}\right|=\left|\vec{p}_{2 i}\right|=\left|\vec{p}_{1 f}\right|=\left|\vec{p}_{2 f}\right|$ and $s_{2}=\left(p_{1 i}+\right.$ $\left.p_{2 i}\right)^{2}=\left(p_{1 f}+p_{2 f}\right)^{2}$.

APPENDIX B: THE RESULTS FOR $\tilde{V}_{\bar{s}(s) D, n m}$ AND $\tilde{K}_{\tilde{(}(s) D, n m}$

$$
(n, m=1,2)
$$

In this appendix we show the results for $\tilde{V}_{\bar{s}(s) D, n m}$ and $\tilde{K}_{\bar{S}(s) D, n m}(n, m=1,2)$ defined in Eqs. (28)-(31):

$$
\begin{aligned}
& \tilde{V}_{\bar{s} D, 11}\left(p_{D i}, p_{D f}, x\right)=\frac{p_{D i}^{0}+p_{D f}^{0}}{2}, \\
& \tilde{V}_{\bar{s} D, 12}\left(p_{D i}, p_{D f}, x\right)=-\frac{p_{D f}+x p_{D i}}{2}=-\frac{p_{\bar{s} f}+x p_{\bar{s} i}}{2}, \\
& \tilde{V}_{\bar{s} D, 21}\left(p_{D i}, p_{D f}, x\right)=\frac{p_{D i}+x p_{D f}}{2}=\frac{p_{\bar{s} i}+x p_{\bar{s} f}}{2}, \\
& \tilde{V}_{\bar{s} D, 22}\left(p_{D i}, p_{D f}, x\right)=\frac{x}{2}\left(p_{D i}^{0}+p_{D f}^{0}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \tilde{K}_{\bar{s} D, 11}\left(p_{D i}, p_{D}^{\prime}, x_{i}\right) \\
& \quad=\frac{1}{2}\left[\left(p_{D i}^{0}+p_{D}^{\prime 0}\right) M_{s}+\left(\sqrt{s_{2}}-p_{D}^{\prime 0}\right)\left(p_{D}^{\prime 0}+p_{D i}^{0}\right)\right. \\
& \left.\quad+p_{D}^{\prime 2}+x_{i} p_{D}^{\prime} p_{D i}\right], \\
& \tilde{K}_{\bar{s} D, 12}\left(p_{D i}, p_{D}^{\prime}, x_{i}\right) \\
& = \\
& \quad-\frac{1}{2}\left[\left(p_{D}^{\prime}+x_{i} p_{D i}\right)\left(M_{s}-\sqrt{s_{2}}+p_{D}^{\prime 0}\right)-p_{D}^{\prime}\left(p_{D i}^{0}\right.\right. \\
& \left.\left.\quad+p_{D}^{\prime 0}\right)\right],
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{K}_{\bar{s} D, 21}\left(p_{D i}, p_{D}^{\prime}, x_{i}\right) \\
& \quad=\frac{1}{2}\left[\left(p_{D i}+x_{i} p_{D}^{\prime}\right)\left(M_{s}+\sqrt{s_{2}}-p_{D}^{\prime 0}\right)+x_{i} p_{D}^{\prime}\left(p_{D i}^{0}+p_{D}^{\prime 0}\right)\right], \\
& \tilde{K}_{\bar{s} D, 22}\left(p_{D i}, p_{D}^{\prime}, x_{i}\right) \\
& \quad=-\frac{1}{2}\left[x_{i} M_{s}\left(p_{D i}^{0}+p_{D}^{\prime 0}\right)-\left(p_{D i} p_{D}^{\prime}+x_{i} p_{D}^{\prime 2}\right)\right. \\
& \left.\quad+x_{i}\left(p_{D}^{\prime 0}-\sqrt{s_{2}}\right)\left(p_{D i}^{0}+p_{D}^{\prime 0}\right)\right],
\end{aligned}
$$

where $x \equiv \hat{p}_{D i} \cdot \hat{p}_{D f}, x_{i} \equiv \hat{p}_{D i} \cdot \hat{p}_{D}^{\prime}$.
$\tilde{V}_{\bar{s} D, n m}$ and $\tilde{K}_{\bar{s} D, n m}$ are related with $\tilde{V}_{s D, n m}$ and $\tilde{K}_{s D, n m}$ by
$\tilde{V}_{\bar{s} D, n m}\left(p, q, x_{p q}\right)=-\tilde{V}_{s D, n m}\left(p, q, x_{p q}\right)$,
$\tilde{K}_{\bar{s} D, n m}\left(p, q, x_{p q}\right)=-\tilde{K}_{s D, n m}\left(p, q, x_{p q}\right)$.

APPENDIX C: PARAMETRIZATIONS FOR $\boldsymbol{t}_{\bar{s} \boldsymbol{D}}$ AND $\boldsymbol{t}_{s} \boldsymbol{D}$

$t_{\bar{s} D}$ can be parametrized as

$$
\begin{equation*}
t_{\bar{s} D}\left(p_{D i}, p_{D f}\right)=\sum_{\rho, \rho^{\prime}= \pm} \Lambda_{\rho}\left[F_{S}^{\rho \rho^{\prime}}+F_{T}^{\rho \rho^{\prime}} i \sigma_{\mu \nu} p_{D f}^{\mu} p_{D i}^{\nu}\right] \Lambda_{\rho^{\prime}} \tag{C1}
\end{equation*}
$$

where $\Lambda_{ \pm}=\frac{1 \pm \gamma_{0}}{2}$. Components of $t_{\bar{s} D}$ are written as
$t_{\bar{s} D}\left(p_{D i}, p_{D f}\right)=\left(\begin{array}{cc}F_{S}^{++}+F_{T}^{++} i \vec{\sigma} \cdot \vec{n} & F_{T}^{+-} \vec{\sigma} \cdot \vec{v} \\ F_{T}^{-+} \vec{\sigma} \cdot \vec{v} & F_{S}^{--}+F_{T}^{--} i \vec{\sigma} \cdot \vec{n}\end{array}\right)$,
where $\vec{n}=\vec{p}_{D f} \times \vec{p}_{D i}, \vec{v}=p_{D f}^{0} \vec{p}_{D i}-p_{D i}^{0} \vec{p}_{D f}$, and \pm means upper and lower components in the spinor space, i.e., $\left(t_{\bar{s} D}\right)_{\rho, \rho^{\prime}}=\Lambda_{\rho} t_{\bar{s} D} \Lambda_{\rho^{\prime}}$.

The decomposition into upper and lower components in Eq. (30) for $t_{\bar{s} D}$ gives

$$
\begin{aligned}
& t_{\bar{s} D, 11}\left(p_{D i}, p_{D f}\right)=-F_{S}^{--}, \\
& t_{\bar{s} D, 12}\left(p_{D i}, p_{D f}\right)=-F_{T}^{-+}\left(x p_{D f}^{0} p_{D i}-p_{D i}^{0} p_{D f}\right), \\
& t_{\bar{s} D, 21}\left(p_{D i}, p_{D f}\right)=-F_{T}^{+-}\left(p_{D f}^{0} p_{D i}-x p_{D i}^{0} p_{D f}\right), \\
& t_{\bar{s} D, 22}\left(p_{D i}, p_{D f}\right)=-F_{T}^{++} p_{D i} p_{D f}\left(x^{2}-1\right) .
\end{aligned}
$$

We can parametrize $t_{s D}$ in the same way [equal to Eq. (C1)]:

$$
\begin{equation*}
t_{s D}\left(p_{D f}, p_{D i}\right)=\sum_{\rho, \rho^{\prime}= \pm} \Lambda_{\rho}\left[F_{S}^{\rho \rho^{\prime}}+F_{T}^{\rho \rho^{\prime}} i \sigma_{\mu \nu} p_{D f}^{\mu} p_{D i}^{\nu}\right] \Lambda_{\rho^{\prime}}, \tag{C3}
\end{equation*}
$$

where $\Lambda_{ \pm}=\frac{1 \pm \gamma_{0}}{2}$.
Similar to $t_{\bar{s} D}$, the decomposition into upper and lower components by Eq. (28) gives

$$
\begin{aligned}
& t_{s D, 11}\left(p_{D f}, p_{D i}\right)=F_{S}^{++} \\
& t_{s D, 12}\left(p_{D f}, p_{D i}\right)=F_{T}^{+-}\left(p_{D f}^{0} p_{D i}-x p_{D i}^{0} p_{D f}\right), \\
& t_{s D, 21}\left(p_{D f}, p_{D i}\right)=F_{T}^{-+}\left(x p_{D f}^{0} p_{D i}-p_{D i}^{0} p_{D f}\right), \\
& t_{s D, 22}\left(p_{D f}, p_{D i}\right)=F_{T}^{--} p_{D i} p_{D f}\left(x^{2}-1\right) .
\end{aligned}
$$

[1] T. Nakano et al. (LEPS Collaboration), Phys. Rev. Lett. 91, 012002 (2003).
[2] S. Stepanyan et al. (CLAS Collaboration), Phys. Rev. Lett. 91, 252001 (2003).
[3] D. Diakonov, V. Petrov, and M. V. Polyakov, Z. Phys. A 359, 305 (1997).
[4] S. Eidelman et al. (Particle Data Group), Phys. Lett. B592, 1 (2004); W.-M. Yao (Particle Data Group), J. Phys. G 33, 1 (2006).
[5] K. T. Knopfle, M. Zavertyaev, and T. Zivko (HERA-B Collaboration), J. Phys. G 30, S1363 (2004).
[6] K. Abe et al. (BELLE Collaboration), hep-ex/0411005.
[7] A. Raval (on behalf of the H1 and ZEUS Collaborations), Nucl. Phys. B Proc. Suppl. 164, 113 (2007).
[8] Y. M. Antipov et al. (SPHINX Collaboration), Eur. Phys. J. A 21, 455 (2004).
[9] M. Battaglieri et al. (CLAS Collaboration), Phys. Rev. Lett. 96, 042001 (2006).
[10] K. Abe et al. (BELLE Collaboration, Phys. Lett. B632, 173 (2006)).
[11] K. Hicks, Proceedings of the IXth International Conference on Hypernuclear and Strange Particle Physics, Mainz, Germany, 10-14 Oct. 2006, hep-ph/0703004.
[12] S. V. Chekanov and B. B. Levchenko, Phys. Rev. D 76, 074025 (2007).
[13] F. Stancu and D. O. Riska, Phys. Lett. B575, 242 (2003).
[14] F. Stancu, Phys. Lett. B595, 269 (2004); erratum-ibid. B598, 295 (2004).
[15] T. Kojo, A. Hayashigaki, and D. Jido, Phys. Rev. C 74, 045206 (2006).
[16] F. Csikor, Z. Fodor, S. D. Katz, and T. G. Kovacs, J. High Energy Phys. 11 (2003) 70; F. Csikor, Z. Fodor, S. D. Katz, T. G. Kovacs, and B. C. Toth, Phys. Rev. D 73, 034506 (2006); S. Sasaki, Phys. Rev. Lett. 93, 152001 (2004).
[17] M. Oka, Prog. Theor. Phys. 112, 1 (2004).
[18] R. L. Jaffe, Phys. Rep. 409, 1 (2005).
[19] R. L. Jaffe and F. Wilczek, Phys. Rev. Lett. 91, 232003 (2003).
[20] M. Ida and Kobayashi, Prog. Theor. Phys. 36, 846 (1966); D. B. Lichtenberg and L. J. Tassie, Phys. Rev. 155, 1601 (1967).
[21] R. L. Jaffe and K. Johnson, Phys. Lett. B60, 201 (1976); R. L. Jaffe, Phys. Rev. D 15, 267 (1977); 15, 281 (1977).
[22] For a review and further references, M. Anselmino, E. Predazzi, S. Ekelin, S. Fredriksson, and D. B. Lichtenberg, Rev. Mod. Phys. 65, 1199 (1993).
[23] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1960); 124, 246 (1961).
[24] C. G. Callan, Jr., R. Dashen, and D. J. Gross, Phys. Rev. D 17, 2717 (1978).
[25] S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).
[26] M. Takizawa, K. Tsushima, Y. Kohyama, and K. Kubodera, Nucl. Phys. A507, 611 (1990).
[27] S. Huang and J. Tjon, Phys. Rev. C 49, 1702 (1994).
[28] N. Ishii, W. Bentz, and K. Yazaki, Nucl. Phys. A587, 617 (1995).
[29] H. Asami, N. Ishii, W. Bentz, and K. Yazaki, Phys. Rev. C 51, 3388 (1995).
[30] A. Buck, R. Alkofer, and H. Reinhardt, Phys. Lett. B286, 29 (1992).
[31] H. Mineo, W. Bentz, and K. Yazaki, Phys. Rev. C 60, 065201 (1999); Nucl. Phys. A703, 785 (2002).
[32] H. Mineo, S. N. Yang, C. Y. Cheung, and W. Bentz, Phys. Rev. C 72, 025202 (2005).
[33] G. Rupp and J. A. Tjon, Phys. Rev. C 37, 1729 (1988).
[34] R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966).
[35] S. Klimt, M. Lutz, U. Vogl, and W. Weise, Nucl. Phys. A516, 429 (1990); U. Vogl, M. Lutz, S. Klimt, and W. Weise, ibid. A516, 469 (1990).
[36] U. Vogl and W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991).
[37] N. Ishii, W. Bentz, and K. Yazaki, Nucl. Phys. A587, 617 (1995).
[38] C. T. Hung, S. N. Yang, and T.-S.H. Lee, Phys. Rev. C 64, 034309 (2001).
[39] S. Z. Huang and J. Tjon, Phys. Rev. C 49, 1702 (1994).
[40] M. Oettel, G. Hellstern, R. Alkofer, and H. Reinhardt, Phys. Rev. C 58, 2459 (1998).
[41] J. L. Gammel, M. T. Menzel, and W. R. Wortman, Phys. Rev. D 3, 2175 (1971).
[42] A. Ahmadzadeh and J. Tjon, Phys. Rev. 147, 1111 (1966).

[^0]: *mineo@gate.sinica.edu.tw
 ${ }^{\dagger}$ tsushima@jlab.org

[^1]: ${ }^{1}$ In the actual calculation we use the dipole form factor, $F_{v}\left(q^{2}\right) \equiv$ $\left(1-q^{2} / \Lambda^{2}\right)^{-2}$ with $\Lambda=0.84 \mathrm{GeV}$ since the q^{2} dependence for $F_{v}\left(q^{2}\right)$ in the NJL model is not well reproduced.

[^2]: ${ }^{2}$ Same as the case for $\bar{s} D$ potential, we use the dipole form factor, $F_{s}\left(q^{2}\right) \equiv c_{s}\left(1-q^{2} / \Lambda^{2}\right)^{-2}$ with $\Lambda=0.84 \mathrm{GeV}$ and c_{s} is a constant. In the original NJL model calculation with the Pauli-Villars (PV) cutoff, c_{s} is given by $F_{s}(0)=c_{s}=0.53 \mathrm{GeV}$ [32].

