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Abstract:

Na' accumulation is a significant component in salt toxicity in plants. Although many
proteins that facilitate Na* flux have been identified in plants, investigations aimed at
identifying the initial mechanism of Na" entry into plants have failed. The catalysis of
rapid, high capacity flux of Na" across plant cell membranes, currently through
unknown means, is of particular importance. Observations of Na" flux across cellular
membranes, using techniques such as electrophysiology and radiotracer flux, suggests
this is a protein-based catalysis (Demidchik, 2002a; Demidchik and Tester, 2002c)
(Essah et al., 2003). Based on these data, a class of protein described as voltage
insensitive non-selective cation channel(s) (ViINSCCs) are considered a good
candidate for this Na' flux. This is due in part to characteristics they possess. These
characteristics include catalysis of high capacity / low affinity cation flux, being
relatively non-selective to the point where Na", K, NH,;" and MA" flux with similar

properties and this flux being sensitive to elevated Ca®>" and changes in pH.

A screen using the toxic ammonium analogue methylammonium (MA") was
developed using Saccharomyces cerevisiae strains that have minimal high affinity
ammonium uptake capability. An in silico screen was developed and a number of
candidate genes were identified as being possible viNSCCs. Preliminary selection of
these was then conducted using the developed S. cerevisiae screen. Two genes,

belonging to the same protein family, were selected based upon these results.

Analysis of these proteins using radiotracer flux in S. cerevisiae and

electrophysiological examination using Xenopus laevis oocytes revealed these



proteins catalyse the non-selective flux of mono-valent cations following unsaturable
kinetics, indicative of a low affinity transport system. Further analysis revealed this
cation flux is sensitive to external Ca®". These properties strongly indicate these

proteins form voltage insensitive non-selective cation channels in their native system.
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