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Chapter 6

Data Collection and Analysis

The typical approach to calculating MIMO capacity involves using transmit and receive antenna
arrays to record the channel matrix, which is then substituted into the general MIMO capacity
equation. Such an approach is taken in [9]. For the HF scenario, calculating MIMO capacity
in this way requires considerable cost and effort since transmit and receive systems featuring a
large number of antenna array elements need to be implemented, and operated a large distance
apart. Furthermore, because the multipath structure of the channel is not considered using this
approach, the appropriate number of transmit and receive antenna elements to use is not known.
The number of antenna elements used places an upper limit on the rank, and hence capacity, of
recorded channel matrices.

In the previous chapter an alternate approach to calculating HF MIMO capacity was de-
vised which involves using the Gesbert MIMO channel matrix model equation (5.2) to generate
channel matrices from antenna correlation and mode correlation matrices. The generated chan-
nel matrices are substituted into the general MIMO capacity equation with no CSI (2.9) to
produce capacity results.

To determine the number of modes and calculate mode correlation, which reveals the un-
derlying eigenmodes of the channel, and hence the MIMO capacity limit, a single transmit
antenna, and a single receive antenna are required. An MCR (multi-channel receiver) with
four antenna elements was implemented so that antenna correlation calculations could also be
performed.

In the following subsections the experimental setup used to collect HF radio data is de-
scribed, along with the issues involved with processing and analysing of the data.
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6.1 Experimental Setup for Data Collection

6.1 Experimental Setup for Data Collection

A diagram of the experimental setup for data collection is shown in Figure 6.1. The receive an-
tenna array used is shown in Figure 6.2, with angles between the lines intersecting pairs of an-
tennas and True North shown. The direction of the transmitter was roughly north of the receive
array. Photos showing the implementation of the MCR system are shown in Figures 6.3–6.5.
See Appendix A for more information about the MCR system.
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Figure 6.1. Experimental setup

The transmit signal used was a pre-existing oblique FMCW ionosonde transmit signal
originating from Darwin, with a sweep rate of 125 kHz/s. The receiver was located in Adelaide
and employed a local FMCW oscillator GPS locked to the transmitter. The receiver comprises
two separate receiver sections, each with its own local oscillator. The receiver can therefore be
tuned both to the band containing the ionosonde signals as well as an adjacent band containing
just noise and interference, making it useful for the application of beamforming algorithms,
and allowing good estimates of SNR to be made. The receiver may also be tuned to two sets
of ionosonde signals simultaneously. If the two ionosonde transmit signals originate from the
same spatial location, then recorded data can be processed to obtain channel time correlation
calculations. Such calculations are important in determining the appropriate interval between
channel matrix estimates at the receive end of a MIMO system.

Data was collected using this setup during February of 2005.
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Figure 6.2. Receive antenna array
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6.1 Experimental Setup for Data Collection

Figure 6.3. A photo of the complete MCR unit

Page 72



Chapter 6 Data Collection and Analysis

Figure 6.4. A photo of the ADC board

Page 73



6.1 Experimental Setup for Data Collection

Figure 6.5. A photo of the MCR board
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Chapter 6 Data Collection and Analysis

6.2 Oblique FMCW ionosonde theory

In this section, important oblique FMCW ionosonde equations are given, which are used to
generate signals for use in the calculation of antenna and mode correlation from recorded HF
radio data.

For the oblique FMCW ionsonde scenario, the transmitted signal is synchronized to the
receive local oscillator, and the transmitted signal sweep rate is equal to the receive local oscil-
lator sweep rate. Assuming a single propagating mode exists at the currently tuned frequency,
by the time the transmitted signal arrives at the receiver, the receive local oscillator frequency
fLO has advanced by an amount given by the product of the sweep rate k and the propagation
delay t, compared with the received signal frequency fRx

fLO = fRx + kt.

Mixing the receive local oscillator and the received signal produces a signal of frequency given
by the product of the sweep rate k and the propagation delay t

cos(fLOt) cos(fRxt) =
1

2
{cos[(fLO + fRx)t] + cos[(fLO − fRx)t]}

=
1

2
{cos[(2fRx + kt)t] + cos[(kt)t]}

⇒ 1

2
cos[(kt)t] (after filtering)

where signal amplitudes have been neglected. In practice, there are often several propagating
modes present, and in such a case mixing the receive local oscillator with the received signal
will produce a signal which is a sum of different frequencies, each of value kti where ti is the
propagation delay of propagating mode i. By grouping the time series data of a complete HF
band sweep into small data blocks, and performing spectral estimation on the data blocks, the
kti values for each propagating mode can be determined at regular frequency intervals across the
HF band. If the transmit signal is not exactly synchronized to the receive local oscillator then
a constant error will be present in the kti values across the band of frequencies swept through.
Any difference between the transmit signal sweep rate and the receive local oscillator sweep
rate will introduce an error in the kti values that increases with sweep frequency. Because
the spectral data represents the group delays of propagating modes present, this data will be
referred to as group delay FFT data. An ionogram can be generated from the group delay
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6.2 Oblique FMCW ionosonde theory

FFT data. Such a plot shows the different modes of propagation present at each frequency, the
corresponding group delays and attenuation levels.

Determining the propagating modes present is achieved by applying a peak detection al-
gorithm to the spectral data. The propagation delay and path length for each mode can then be
calculated. The following equations are used for these calculations.

An FFT frequency fFFT is a function of the FFT index iFFT , the total number of FFT
points NFFT , and the sampling rate fs

fFFT =
iFFT fs

NFFT
. (6.1)

For complex time series data the Nyquist sampling requirement is that fs > B, where B is the
bandwidth of the data. Propagation delay t is given by

t =
fFFT

k
. (6.2)

Path length d can be calculated from the propagation delay using the equation

d = tv

where v = fλ is the speed of the propagating wave with frequency f and wavelength λ. Be-
cause the ionosphere is a refracting medium, v and λ of the signal will change over the course
of its propagation, whilst f will remain constant. We can also express the path length in terms
of number of wavelengths dλ as

dλ =
tv

λ
= tf. (6.3)

Note also that f is related to ionogram block index ib according to the equation

f = fo + (b/2)(1/fs)k + (b − Δ)(1/fs)k(ib − 1) (6.4)

where fo is the initial frequency, b is the block size, Δ is the block overlap size, and f is taken to
be exact at the middle of the data block. The signal sib,i for propagating mode i at an ionogram
block index ib is generated using amplitude Aib,i, frequency fib , and phase shift exp(j2πdλib,i

)

sib,i = Aib,i exp(j2πfibt) exp(j2πdλib,i
). (6.5)
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6.3 Path Length Resolution

The oblique FMCW ionosonde equations (6.1)–(6.5) are used to generate signals for use in the
calculation of antenna and mode correlation from recorded HF radio data. The path length res-
olution of the signals generated using these equations impacts on correlation calculations. If the
path length resolution is equal to one wavelength, each pair of generated signals has a constant
phase relationship, resulting in a correlation of one. To obtain accurate correlation values, the
path length resolution should be much less than a wavelength. The following equations show
the relationship between FFT resolution and path length resolution.

FFT resolution, ΔFFT , is given by the equation

ΔFFT =
fs

NFFT
. (6.6)

Group delay resolution Δt and path length resolution Δdλ
can be obtained from ΔFFT using

the following equations
Δt =

ΔFFT

k
=

fs

NFFT k
(6.7)

Δdλ
=

Δt v

λ
= Δtf =

fs f

NFFT k
. (6.8)

If we impose a requirement Δdλ
<< λ, then the requirement for NFFT is

NFFT >>
fs fmax

k
(6.9)

where fmax is the maximum frequency swept through. For our case, fs = 868 samples per sec-
ond (S/s), fmax = 25 MHz, and k = 125 kHz/s, corresponding to a requirement NFFT >> 218.
Antenna and mode correlation calculations were performed with NFFT = 220, corresponding to
a Δdλ

= 0.17λ. Note that while increasing NFFT gives an improved estimate of the location of
each detected frequency, spectral resolution does not improve, and is instead dependent on the
time series data block size used for each FFT.

6.4 Post-processing of HF Radio Data

Ionograms were generated from recorded HF radio data by performing spectral estimation on
small blocks of time series data, as discussed in Section 6.2. A constant error in sweep rate
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6.4 Post-processing of HF Radio Data

between the transmit signal and the receive local oscillator was found to be present, evidenced
by the propagating mode with lowest delay (the bottom line on an ionogram) showing a prop-
agation delay increase with frequency. This mode generally has a constant propagation delay
across the band of frequencies it covers. The difference between transmit signal and receive
local oscillator sweep rates introduces propagation delay errors which increase with frequency.
The receive data was multiplied by a sweep error compensation signal to account for the error.
In addition it was found that the received signal frequencies representing propagation delays oc-
cupied only a small portion of the 5 kHz receiver bandwidth. For lower processing requirements
and better FFT frequency resolution, decimation filtering around the frequencies of interest was
performed.

An example ionogram without any post-processing is shown in Figure 6.6. In the middle
of the diagram we see a dark patch, which corresponds to the cut-off region of the receiver
FIR (finite impulse response) filters. The time series data being analysed is complex, formed
by adding the in-phase signal and the quadrature signal multplied by j. For this reason received
signal frequencies appear only in the region 0 to B, where B is the bandwidth of the receiver
FIRs. Because the receiver FIRs are real, noise appears in the region fs −B to fs. For the case
of complex data we note that fs can be reduced by a factor of 2 without any aliasing problems.

A number of ionograms were surveyed in order to determine an appropriate sweep error
compensation signal, with exp(−j2π0.725t2) selected. The example ionogram after sweep
error compensation is shown in Figure 6.7.
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Unfiltered Ionogram (Zoomed Out) − 10:45:10 UTC 16 Feb 2005
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Figure 6.6. An example ionogram without any post processing
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Unfiltered Ionogram (Zoomed In) − 10:45:10 UTC 16 Feb 2005
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Figure 6.7. The example ionogram following sweep error compensation
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Decimation filtering around the frequencies of interest was performed by multiplying the
receiver data by a constant frequency signal to shift the frequencies of interest close to zero
frequency, or baseband, and then applying a low pass FIR filter. A baseband conversion signal
of exp(−j2π990t) was used. FIR coefficients were generated using fdatool in Matlab, with
the filter parameters given in Table 6.1. A conservative FIR bandwidth of 700 Hz was set to
accommodate modes with unusually long propagation delays. The data was then resampled at
approximately fs = 868 S/s which corresponds to a post processing decimation factor of 12.

Sampling rate 10417 S/s
Passband ripple 0.01 dB
Passband frequency 700 Hz
Stopband frequency 800 Hz
Stopband attenuation 160 dB

Table 6.1. Table of parameters used to generate the coefficients for the post-processing deci-
mation FIR filter

Additional filtering can be provided using a basic image processing technique which in-
volves the removal of points without a given number of neighbouring points within a defined
search radius. Figure 6.8 shows the final post processed ionogram, both with and without the
additional image processing filtering.
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Unfiltered Ionogram − 10:45:10 UTC 16 Feb 2005
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Figure 6.8. Final post processed ionogram
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A further consideration is the selection of time series data block size to use in generating the
group delay FFTs. A larger block size improves group delay resolution at the cost of ionogram
frequency resolution, while a smaller block size improves ionogram frequency resolution at the
cost of group delay resolution. This effect can be seen in Figures 6.9–6.14. A block size of
512 was selected which offers a reasonable compromise between group delay resolution and
ionogram frequency resolution.
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Unfiltered Ionogram − 10:45:10 UTC 16 Feb 2005
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Figure 6.9. The example ionogram for a block size of 128
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Unfiltered Ionogram − 10:45:10 UTC 16 Feb 2005
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Figure 6.10. The example ionogram for a block size of 256
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Unfiltered Ionogram − 10:45:10 UTC 16 Feb 2005
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Figure 6.11. The example ionogram for a block size of 512
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Unfiltered Ionogram − 10:45:10 UTC 16 Feb 2005
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Figure 6.12. The example ionogram for a block size of 1024
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Unfiltered Ionogram − 10:45:10 UTC 16 Feb 2005
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Figure 6.13. The example ionogram for a block size of 2048
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Unfiltered Ionogram − 10:45:10 UTC 16 Feb 2005
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Figure 6.14. The example ionogram for a block size of 4096
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6.5 Peak Detection

6.5 Peak Detection

A peak detection algorithm was used to determine the propagating modes present in each block
of group delay FFT data. Details of the algorithm are provided in Figures 6.15–6.17.

Figure 6.15. Peak detection algorithm steps 1-4
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Figure 6.16. Peak detection algorithm step 5
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6.5 Peak Detection

Figure 6.17. Peak detection algorithm step 6
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6.6 Spectral Estimation and Windowing

Analysis of the recorded HF radio data involved dividing the data into small blocks and per-
forming spectral estimation on the blocks. In this section issues concerning spectral estimation
and windowing are considered, and different spectral estimation and windowing techniques are
compared. The following useful resources were consulted [79], [80], [81], [82].

6.6.1 Windowing

The DFT (discrete Fourier transform) considers a sampled data sequence to be periodic. Peri-
odic extension of such a sequence is achieved by replicating the sequence in both negative and
positive time. If the finite duration interval over which the sequence is sampled is not an integer
multiple of the period of a signal which is present, discontinuities are introduced at the bound-
aries of the replicated sequence. These discontinuities give rise to the phenomenon of spectral
leakage. Windowing of data blocks is a technique used to reduce spectral leakage. Figure 6.18
provides a comparison between an unwindowed and a windowed signal. From this plot we see
that the amplitude of the windowed signal is reduced at the boundaries of the set of samples.

There are many windows to choose from, each with varying main lobe widths and sidelobe
amplitudes. There is a trade off between main lobe width and sidelobe amplitude. A window
with a wide main lobe will generally have low sidelobes, while a window with a narrow main
lobe will generally have higher sidelobes. A wide main lobe makes it harder to detect two
closely spaced frequencies, while high sidelobes are detected as peaks if they are higher than the
peak detection threshold. Commonly used windows include Hanning, 4-term Blackman-Harris,
and Kaiser-Bessel. The Hanning window has a fairly narrow main lobe, and moderate sidelobes,
while the 4-term Blackman-Harris window has a wider main lobe than the Hanning window,
but considerably lower sidelobes. The Kaiser-Bessel window is an example of a parameterized
window, which uses the parameter β to trade off between main lobe width and sidelobe level.
The optimal window choice for a set of data is the window with the narrowest main lobe that
has sidelobes below the noise level.

To test out different windows, a block of test data comprising two closely spaced frequen-
cies was generated, and sampled at fs = 868 S/s. The spacing of the frequencies was adjusted
to investigate the spectral resolution of each window. To determine the sidelobe attenuation
required, data recorded for a single sweep of the HF band was analysed, and the maximum
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Figure 6.18. A comparison between an unwindowed and a windowed signal

difference between peaks and the peak threshold level calculated. A value of 43 dB was calcu-
lated, and a conservative target sidelobe attenuation of 53 dB was set. A rectangular window
was found to give a sidelobe attenuation of 13 dB, while the Hanning window gave 32 dB and
the 4-term Blackman-Harris 98 dB. The Kaiser-Bessel window was tuned to match the desired
sidelobe attenuation of 53 dB, with a corresponding parameter β = 7.25. Figure 6.19 shows
a comparison between the 4-term Blackman-Harris and Kaiser-Bessel (β = 7.25) windows
for two frequencies 3.5 Hz apart. The two frequencies can be distinguished using the Kaiser-
Bessel window, but not using the 4-term Blackman-Harris window. The ability to tune the
Kaiser-Bessel window to suit the recorded HF radio data make it the best choice from the set
of windows considered.
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Figure 6.19. The 4-term Blackman Harris versus Kaiser-Bessel (β = 7.25) window for two
frequencies 3.5 Hz apart. The two frequencies can (just) be distinguished when
the Kaiser-Bessel window is used.

6.6.2 Spectral Estimation

There are many spectral estimation techniques offered in Matlab in addition to the standard
FFT or periodogram technique, and these are listed in Table 6.2.

To test out the different spectral estimation techniques available, a block of synthetic test
data was generated which comprised 12 unit amplitude complex signals with increasing fre-
quency separations, and with frequencies contrained to between 100 and 650 Hz. This data was
sampled at fs = 868 S/s. Unit amplitude complex noise was also added, to give an SNR
of 0 dB for each of the 12 frequency components. This corresponded to a dynamic range of
approximately 30 dB, similar to that of the recorded HF radio data.
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Matlab function Name of spectral estimation technique
periodogram Periodogram method
pwelch Welch’s method
pmtm Thomson multitaper method
pburg Burg’s method
pcov Covariance method
pmcov Modified covariance method
pyulear Yule-Walker autoregressive method
peig Eigenvector method
pmusic MUSIC method

Table 6.2. Table of spectral estimation techniques available in Matlab

The PSD (power spectral density) generated using the modified periodogram function8

with a Kaiser-Bessel window with β = 7.25 is shown in Figure 6.20. The plot shows that
the periodogram has a spectral resolution of around 4-8 Hz and gives a good estimate of the
frequency locations and power content of each frequency.

One problem with the periodogram is the variance of the resulting PSD estimate. The
variance of the estimate can be reduced using pwelch, which partitions the block of data to be
analysed into segments, performs a modified periodogram on each segment, and then averages
the PSD estimates to give an overall PSD estimate. The variance is inversely proportional to
the number of data segments used, but at the same time spectral resolution degrades as more
data segments are used, so there is a tradeoff between PSD variance and spectral resolution.
Figure 6.21 shows the PSD generated using the pwelch function with a Kaiser-Bessel window
with β = 7.25, and a partition value of 4. The plot clearly shows the reduced spectral resolution
compared to the periodogram plot given in Figure 6.20.

The other spectral estimation functions listed in Table 6.2 were also used on the test block
of data. Functions such as pmcov, peig, and pmusic gave improved spectral resolution over
the periodogram function, but also gave poor estimates of the power content of each frequency.
The PSD plot obtained using the pmcov function is shown in Figure 6.22.

The periodogram function and a Kaiser-Bessel window with β = 7.25 was selected for the
processing of the recorded HF radio data, since this combination offers good spectral resolution
and a good estimate of the power content of each frequency. The ability to tune the main lobe

8A modified periodogram differs from a conventional periodogram in that a (non-rectangular) window is first
applied to the input signal.
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width and the side lobe attenuation of the Kaiser-Bessel window gave it a significant advantage
over other windows such as the Hanning and Blackman-Harris.
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Figure 6.20. A zoomed in plot of the PSD of the synthetic test data generated using
periodogram
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Figure 6.21. A zoomed in plot of the PSD of the synthetic test data generated using pwelch
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Figure 6.22. A zoomed in plot of the PSD of the synthetic test data generated using pmcov
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6.7 SNR Measurement

6.7 SNR Measurement

Measurement of SNR, which appears in the general MIMO capacity equation (2.8), is another
issue requiring consideration.

To investigate the measurement of SNR from spectral data, a block of synthetic test data
was generated from a single unit amplitude complex signal and unit amplitude complex noise,
to give an SNR of 0 dB. This data was sampled at fs = 868 S/s. The PSD of both the signal
plus noise data, and the noise only data was generated using the periodogram function and a
Kaiser-Bessel window with β = 7.25. To measure the power P contained in a data block from
the PSD, the PSD needs to be integrated over the band of frequencies the signal covers. The
integral can be calculated simply by using the rectangular approximation to give

P = ΔFFT

NFFT∑
i=1

Pxxi
=

fs

NFFT

NFFT∑
i=1

Pxxi

where Pxxi
are the elements of the PSD vector Pxx.

Denoting the power of the signal plus noise PS+N , the power of the signal PS , and noise
power PN , the SNR in dB is given by

SNR = 10 log10

PS

PN
= 10 log10

PS+N − PN

PN
.

It is important to note that the window used affects power measurements, so the window
values need to be scaled by the coherent gain of the window, and the noise power measurement
needs to be scaled by the equivalent noise bandwidth of the window. However, because the
periodogram function already performs the appropriate scalings, no further steps are required.

Measuring the SNR of the individual signals present in blocks of the recorded HF data is
complicated by the fact that peaks may be close together and interfere with one another, and
not all the peaks present will be detected. In addition the noise measurement is taken in a band
adjacent to the signal band, and so the noise only data will not be the same as the noise contained
in the signal plus noise data.
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6.7.1 Average Mode SNR Calculation - Method 1

The average mode SNR can be calculated using

Average mode SNR = 10 log10

((
PS+N − PN

PN

) (
1

m

))

where the bandwidth the SNR is being measured in is equal to the bandwidth of the post-
processed data. The bandwidth the SNR is measured in affects the measurement, with a larger
bandwidth yielding a larger noise power. For the flat fading assumption to hold, the band-
width of a MIMO communication system should be set to be lower than the coherence band-
width, which is inversely proportional to the multipath delay spread. The bandwidth of the
post-processed data, 868 Hz, was found to be higher than the typical coherence bandwidth. In
addition, negative values of average mode SNR were measured in 868 Hz.

6.7.2 Average Mode SNR Calculation - Method 2

Alternatively, the SNR of a mode can be measured in a bandwidth equal to the FFT bin size
(1.69 Hz in our case), by subtracting the value of the signal plus noise PSD at the index of a
detected mode, from the value of the noise only PSD at the same index. The average mode
SNR can be found by averaging the SNRs for each of the detected modes. Capacity results
presented in this thesis were calculated for SNRs measured using this approach. By measuring
SNR in a small bandwidth, a large SNR value is obtained. In Figure 2.2 of Section 2.2.4,
increasing SNR was shown to steepen the slope of the capacity plot. The bandwidth used to
measure SNR should always be kept in mind when interpreting capacity results.

6.8 Summary

In this chapter the experimental setup used to collect HF radio data was described, along with
the issues involved with processing and analysing of the recorded HF radio data. Equations
provided in Section 6.2 (6.1)–(6.5) are used to generate signals for use in the calculation of
antenna and mode correlation from recorded HF radio data. The antenna and mode correlation
calculations are discussed in detail in the next chapter.
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