Capacity of Multiple-Input Multiple-Output Wireless Communication Systems Operating in the HF Band

by

Nigel Leonard Brine

B E (COMPUTER SYSTEMS ENGINEERING)

Thesis submitted for the degree of

Doctor of Philosophy

in

School of Electrical and Electronic Engineering, Faculty of Engineering, Computer and Mathematical Sciences

The University of Adelaide, Australia

2010

© Copyright 2010 Nigel Leonard Brine All Rights Reserved

Typeset in $\operatorname{LATEX} 2_{\mathcal{E}}$ Nigel Leonard Brine

Content	ts		iii
Abstrac	:t		ix
Declara	tion		xi
Acknow	ledgem	nents	xiii
List of I	Figures		XV
List of 7	Fables		xix
List of A	Acronyr	ns	xxi
Chapter	r 1. Int	troduction	1
1.1	Measu	ring of MIMO Capacity Through Direct Recording of Channel Matrices	2
1.2	A Tech	nnique for Estimating HF MIMO Capacity	3
1.3	Appro	ach Taken in Investigating HF MIMO Capacity	4
	1.3.1	Background Theory and Literature Survey	4
	1.3.2	Initial Estimate of HF MIMO Capacity	4
	1.3.3	MCR Development	4
	1.3.4	Data Collection	5

	1.3.5	Post-Processing of HF Sounder Data	5
	1.3.6	HF MIMO Channel Matrix Model	5
	1.3.7	Gesbert Channel Matrix Equation	6
	1.3.8	Antenna and Mode Correlation Calculations	6
	1.3.9	HF MIMO Capacity Calculations	6
	1.3.10	Identification of Future Research Directions	7
1.4	Contril	outions Made in this Thesis	7
1.5	Publications		
Chapter	: 2. Ba	ckground Material	9
2.1	Capaci	ty	9
2.2	Spatial	Multiplexing	11
	2.2.1	MIMO Capacity	12
	2.2.2	MIMO Capacity Expressed in Terms of Individual Channel Eigenmode Contributions	14
	2.2.3	Transmit Power Allocation	15
	2.2.4	Simulating the MIMO Channel	16
2.3	The HI	F Band	20
	2.3.1	D Layer	20
	2.3.2	E Layer	20
	2.3.3	F Layer	21
	2.3.4	Multipath in the HF channel	21
	2.3.5	Ionospheric sounding	22
Chapter	3. Lit	erature Survey	25
3.1	MIMO	Capacity Theory	26

3.2	First Ir	nplementation of a Spatial Multiplexing System	28
3.3	MIMO	Capacity Investigations Using Ray Tracing Techniques	28
3.4	MIMO	Capacity Investigations Involving Channel Matrix Measurements	31
3.5	MIMO	Capacity Models	33
3.6	HF MI	MO Systems	34
3.7	MIMO	Techniques Requiring No Knowledge of the Channel at the Receiver	34
Chapter	:4. Ca	lculation of HF MIMO Capacity Using Ionosonde Data	35
4.1	Details	of the LLISP Network	35
4.2	HF MI	MO Capacity Calculation	36
4.3	Results	3	39
4.4	Summa	ary	42
Chapter	:5. HF	MIMO Theory	51
Chapter 5.1	5. HF HF MI	' MIMO Theory MO Channel Matrix Model	51 52
Chapter 5.1	5. HF MI 5.1.1	MIMO Theory MO Channel Matrix Model	51 52 57
Chapter 5.1	 5. HF HF MI 5.1.1 5.1.2 	MIMO Theory MO Channel Matrix Model	51 52 57 57
Chapter 5.1	 5. HF HF MI 5.1.1 5.1.2 5.1.3 	MO Channel Matrix Model	51 52 57 57 58
Chapter 5.1	F 5. HF HF MI 5.1.1 5.1.2 5.1.3 5.1.4	MIMO Theory MO Channel Matrix Model	51 52 57 57 58 60
Chapter 5.1	F. 5. HF HF MI 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5	MO Channel Matrix Model	 51 52 57 57 58 60 62
Chapter 5.1	 5. HF HF MI 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Channe 	MIMO Theory MO Channel Matrix Model	 51 52 57 57 58 60 62 63
Chapter 5.1 5.2	F. 5. HF HF MI 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Channe 5.2.1	MIMO Theory MO Channel Matrix Model	 51 52 57 57 58 60 62 63 65

	5.2.3 The Effect of Full Receive Antenna, Transmit Antenna, and Propagat-	
	ing Mode Decorrelation on the Gesbert Model Channel Matrix	67
	5.2.4 Summary	67
Chapter	6. Data Collection and Analysis	69
6.1	Experimental Setup for Data Collection	70
6.2	Oblique FMCW ionosonde theory	75
6.3	Path Length Resolution	77
6.4	Post-processing of HF Radio Data	77
6.5	Peak Detection	90
6.6	Spectral Estimation and Windowing	93
	6.6.1 Windowing	93
	6.6.2 Spectral Estimation	95
6.7	SNR Measurement	100
	6.7.1 Average Mode SNR Calculation - Method 1	101
	6.7.2 Average Mode SNR Calculation - Method 2	101
6.8	Summary	101
Chapter	7. Correlation Calculations	103
7.1	Calculating Antenna Correlation from Ionograms	104
	7.1.1 Antenna Correlation Results	107
7.2	Calculating Mode Correlation from Ionograms	109
7.3	Calculating Time Correlation from Ionograms	112
7.4	Summary	119
Chapter	8. HF MIMO Capacity Calculations	121

8.1	HF MI	MO Capacity Results	122
	8.1.1	Capacity for an Example Ionogram	122
	8.1.2	Capacity Across a Set of Ionograms	133
	8.1.3	Accuracy of Capacity Results	140
	8.1.4	Summary of HF MIMO Capacity Results	141
Chapter	9. Col	nclusion	143
9.1	Calcula	ation of HF MIMO Capacity Using Ionosonde Data	143
9.2	HF MI	MO Channel Matrix Model	144
9.3	HF MI	MO Capacity Calculations	145
9.4	Possibi	lities for Future Research	146
Append	ix A. M	lulti-Channel Receiver Development	147
A.1	Require	ements Specification	147
	A.1.1	Operational Requirements	147
	A.1.2	User Requirements	148
	A.1.3	Logical Requirements	148
	A.1.4	Functional Requirements	148
	A.1.5	System Requirements	149
	A.1.6	Subsystem Requirements	149
A.2	Archite	ecture of the MCR board	150
A.3	Archite	ecture of the full MCR system	153
A.4	Labora	tory Testing	154
Bibliogr	aphy		157

Abstract

Spatial multiplexing is a wireless communication technique that employs MIMO (multipleinput multiple-output) antenna arrays and spatial signal processing to effectively establish multiple parallel spatial data pipes within the same frequency band. The number of parallel spatial data pipes that can be supported is dependent on a number of factors, one of the most significant of these being multipath richness. In general, a channel that is rich in multipath will be capable of supporting a large number of parallel spatial data pipes, leading to high capacities.

The HF (high frequency) band is subject to significant multipath caused by multiple refractions and reflections between the ionospheric layers and the earth's surface, making it a possible candidate for MIMO techniques. In this thesis, the capacity offered by spatial multiplexing in the HF band is investigated. To the best of our knowledge, no such investigation has previously been conducted. The approach taken involves collection of multi-channel HF sounder data from which antenna and propagating mode correlation measurements are made. The antenna and mode correlation measurements are used to generate stochastic channel matrices, from which estimates of MIMO capacity can be calculated.

The key contributions presented include estimation of HF MIMO capacity from ionograms, development of a multi-channel receiver for HF radio research, development of a model for the HF MIMO channel matrix, and development and application of a technique for estimating HF MIMO capacity from multi-channel receiver data. The results obtained from the investigation indicate that spatial multiplexing offers a significant increase in capacity compared with single channel communication technques, and should therefore be seriously considered for future HF radio systems. A major application that stands to benefit from HF MIMO technology is ship based communications.

Declaration

This work contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed

Date

Acknowledgements

First and foremost I would like to thank my supervisor Cheng Chew Lim for providing me with the opportunity to undertake this research, and for the considerable effort he has put in during the lengthy process of reviewing and editing this thesis.

Secondly I would like to thank Angus Massie of DSTO who came up with the idea for this project, and provided valuable technical supervision.

Design and implementation of the Multi-Channel Receiver system was a challenging task which involved contributions from several individuals. Kevin Zacher created the layouts and schematics for the ADC and MCR boards. Kiet To designed the DDC chip. Darren Dicera wrote firmware and embedded software for the controller FPGA. Matthew Goss assisted with the layout of the DDC chip, performed systems engineering tasks, and wrote the Console software. Matthew Trinkle assisted with integration and testing of the MCR system during the final stages of the project.

Collection of radio data could not have been possible without the assistance of Warren Marwood, Angus Massie, and the ISRD of DSTO who provided access to the receive antenna array and RF front-end infrastructure. The ISRD also provided ionosonde data logs required to perform initial HF MIMO capacity calculations.

Financial assistance was provided to this project by Ebor Computing and the Australian Research Council through the Linkage-Projects grant LP0219662. Additional funding was also provided by the IEEE AP & MTT Chapter through the Young RF Engineer Project Award 2004, which enabled me to visit an overseas conference and the headquarters of Airgo Networks in Palo Alto.

My friends made things a lot of fun along the way, in particular Tony Sarros who I thank for introducing me to a wealth of new terminology, stealing my LATEX templates, and that near death

Acknowledgements

experience, Brian Ng and Bobby Yau who provided crazy times involving tiny table tennis, tuna and sandwich toasters, and Hong Gunn and Troy Townsend who helped me fine-tune my XBlast skills on a daily basis.

Lastly I would like to thank Mum for the love and support she provided along the way, particularly during 2005 when my scholarship had run out.

Nigel Brine

2.1	Diagram of a spatial multiplexing system	11
2.2	Ergodic capacity versus $n = n_T = n_R$	17
2.3	Plots of CCDF of capacity	19
2.4	Multipath in the HF band due to multiple hops	21
2.5	A depiction of an ionogram for a channel with 1-hop, 2-hop and 3-hop propa- gating modes	23
2.6	An ionogram recorded using the MCR	24
3.1	A timeline of MIMO developments	26
4.1	A map showing the locations of the LLISP ionosonde transmitter and receivers	36
4.2	A diagram outlining the steps performed for mode detection	39
4.3	Capacity histograms for the Eleven Mile transmitter	41
4.4	Capacity histograms for the Saipan transmitter	45
4.5	Capacity histograms for the Vanimo transmitter	45
4.6	Capacity histograms for the Manila transmitter	46
4.7	Capacity histograms for the Tennant Creek transmitter	47
4.8	Capacity histograms for the Cocos Keeling transmitter	48
4.9	Capacity histograms for the Townsville transmitter	49
4.10	Ionogram yielding the highest calculated capacity	50

5.1	Diagram of an HF MIMO system	52
5.2	Signal paths in an HF MIMO system when transmit and receive antenna ele- ments are closely spaced	53
5.3	Ionograms recorded simultaneously from two closely spaced antennas appear to be very similar and thus the antennas share approximately the same propagating modes	54
5.4	Signal paths in an HF MIMO system when transmit antenna elements are widely spaced and receive antenna elements are closely spaced	61
6.1	Experimental setup	70
6.2	Receive antenna array	71
6.3	A photo of the complete MCR unit	72
6.4	A photo of the ADC board	73
6.5	A photo of the MCR board	74
6.6	An example ionogram without any post processing	79
6.7	The example ionogram following sweep error compensation	80
6.8	Final post processed ionogram	82
6.9	The example ionogram for a block size of 128	84
6.10	The example ionogram for a block size of 256	85
6.11	The example ionogram for a block size of 512	86
6.12	The example ionogram for a block size of 1024	87
6.13	The example ionogram for a block size of 2048	88
6.14	The example ionogram for a block size of 4096	89
6.15	Peak detection algorithm steps 1-4	90
6.16	Peak detection algorithm step 5	91
6.17	Peak detection algorithm step 6	92

6.18	A comparison between an unwindowed and a windowed signal	94	
6.19	The 4-term Blackman Harris versus Kaiser-Bessel ($\beta = 7.25$) window for two frequencies 3.5 Hz apart. The two frequencies can (just) be distinguished when		
	the Kaiser-Bessel window is used.	95	
6.20	A zoomed in plot of the PSD of the synthetic test data generated using periodog	ram	97
6.21	A zoomed in plot of the PSD of the synthetic test data generated using pwelch	98	
6.22	A zoomed in plot of the PSD of the synthetic test data generated using $pmcov$.	99	
7.1	Signal paths for the antenna correlation calculations	105	
7.2	A diagram outlining the steps required for calculating antenna correlation	106	
7.3	Number of samples versus frequency	107	
7.4	Antenna correlation versus frequency - antenna 1 and 2	108	
7.5	Signal paths for the mode correlation calculations	110	
7.6	A diagram outlining the steps required for calculating mode correlation	111	
7.7	A diagram outlining the steps required for calculating time correlation	114	
7.8	Ionograms recorded two seconds apart	115	
7.9	Ionograms recorded four seconds apart	116	
7.10	Ionograms recorded six seconds apart	117	
7.11	Ionograms recorded eight seconds apart	118	
8.1	The example ionogram being examined	123	
8.2	Number of propagating modes versus frequency for the example ionogram	124	
8.3	Capacity versus frequency for the example ionogram, under the assumption that propagating modes and antennas are fully uncorrelated	125	
8.4	Channel matrix rank versus frequency for the example ionogram	126	
8.5	Capacity versus frequency for the example ionogram, taking into account mode correlation under the assumption antennas are fully uncorrelated	127	

8.6	The zoomed out view of the group delay FFT at the ionogram frequency index yielding the highest capacity	129
8.7	The zoomed in view of the group delay FFT at the ionogram frequency index yielding the highest capacity	130
8.8	The path length variation for each mode across the 10 samples used at the iono- gram frequency index yielding the highest capacity	131
8.9	The path length variation for each mode across the 10 samples used at 20 MHz	132
8.10	Maximum number of propagating modes for each ionogram	134
8.11	Maximum capacity for each ionogram, under the assumption that propagating modes and antennas are fully uncorrelated	135
8.12	Maximum channel matrix rank for each ionogram, taking into account mode correlation under the assumption antennas are fully uncorrelated	136
8.13	Maximum capacity for each ionogram, taking into account mode correlation under the assumption antennas are fully uncorrelated	137
8.14	Maximum channel matrix rank for each ionogram when both mode and antenna correlation is taken into account	138
8.15	Maximum capacity for each ionogram, taking into account both mode and an- tenna correlation	139
A.1	Block diagram of the MCR board	151
A.2	Block diagram of the full MCR system	153
A.3	Power versus frequency plot for a single 10.417 kS/s receive channel when the input signal was set to a fixed frequency and the receive LO was swept from 0 to 25 MHz	154
A.4	PSD plot for a single 10.417 kS/s receive channel when both the input signal and receive LO were set to a fixed frequency	155
A.5	Plot of the passband ripple for a single 10.417 kS/s receive channel	156
A.6	Plot of the transition band for a single 10.417 kS/s receive channel	156

List of Tables

4.1	LLISP network specifications	37
4.2	Number of samples and availability	42
4.3	Average capacity results for $P_T = 100 \text{ W} \dots \dots \dots \dots \dots \dots \dots \dots \dots$	43
4.4	Maximum capacity results for $P_T = 100 \text{ W}$	44
6.1	Table of parameters used to generate the coefficients for the post-processing decimation FIR filter	81
6.2	Table of spectral estimation techniques available in Matlab	96
7.1	Average antenna correlation matrix	108
A.1	Parts list for the MCR board	152

List of Acronyms

- 3GPP..... 3rd Generation Partnership Project
- ADC analog-to-digital converter
- AGC automatic gain control
- AM..... amplitude modulation
- AWGN additive white Gaussian noise
- BER..... bit error rate
- BLAST Bell Laboratories layered space-time
- BPF band pass filters
- CCDF complementary cumulative distribution function
- CIC cascade integrate comb
- codec coder decoder
- CORDIC co-ordinate rotation digital computer
- COTS commercial off-the-shelf
- CSI..... channel state information
- DDC digital down converter
- demux demultiplexer
- DFT discrete Fourier transform

List of Acronyms

DSTO	Defence Science and Technology Organisation
FDTD	finite difference time domain
FFT	fast Fourier transform
FIFO	first-in first-out
FIR	finite impulse response
FMCW	frequency modulated continous wave
FPGA	field programmable gate array
GPS	global positioning system
HF	high frequency
I/O	input/output
IEEE	Institute of Electrical and Electronics Engineers
IF	intermediate frequency
iid	independent identically distributed
LAN	local area network
LCM	lowest common multiple
LLISP	Low Latitude Ionospheric Sounding Project
LO	local oscillator
LOS	line-of-sight
MCR	multi-channel receiver
MIMO	multiple-input multiple-output
MISO	multiple-input single-output
MTBF	mean time between failures
MTTR	mean time to recovery

- MUF maximum usable frequency
- OFDM orthogonal frequency division multiplexing
- PDF probability density function
- PLL phase locked loop
- PPS pulses per second
- PRBS pseudo-random binary sequence
- PSD power spectral density
- QAM quadrature amplitude modulation
- Rx..... receiver
- SFDR spur free dynamic range
- SIMO single-input multiple-output
- SISO single-input single-output
- SNR signal-to-noise ratio
- SRAM..... static random access memory
- TCP/IP transmission control protocol/internet protocol
- Tx..... transmitter
- UTC..... co-ordinated universal time
- UTRA..... Universal Terrestrial Radio Access
- V-BLAST vertical BLAST
- WiSE..... Wireless Systems Engineering