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Abstract

Spatial multiplexing is a wireless communication technique that employs MIMO (multiple-
input multiple-output) antenna arrays and spatial signal processing to effectively establish mul-
tiple parallel spatial data pipes within the same frequency band. The number of parallel spatial
data pipes that can be supported is dependent on a number of factors, one of the most significant
of these being multipath richness. In general, a channel that is rich in multipath will be capable
of supporting a large number of parallel spatial data pipes, leading to high capacities.

The HF (high frequency) band is subject to significant multipath caused by multiple refrac-
tions and reflections between the ionospheric layers and the earth’s surface, making it a possible
candidate for MIMO techniques. In this thesis, the capacity offered by spatial multiplexing in
the HF band is investigated. To the best of our knowledge, no such investigation has previ-
ously been conducted. The approach taken involves collection of multi-channel HF sounder
data from which antenna and propagating mode correlation measurements are made. The an-
tenna and mode correlation measurements are used to generate stochastic channel matrices,
from which estimates of MIMO capacity can be calculated.

The key contributions presented include estimation of HF MIMO capacity from ionograms,
development of a multi-channel receiver for HF radio research, development of a model for the
HF MIMO channel matrix, and development and application of a technique for estimating HF
MIMO capacity from multi-channel receiver data. The results obtained from the investigation
indicate that spatial multiplexing offers a significant increase in capacity compared with single
channel communication techngiues, and should therefore be seriously considered for future HF
radio systems. A major application that stands to benefit from HF MIMO technology is ship
based communications.
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