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Abstract

Information and communication technology (ICT) is a multi-billion dollar indus-
try [11]. It is therefore paramount to employ the most up to date decision making
strategies when making ICT investments. This thesis uses a framework, originally
developed for perpetual American call options, to study pertinent issues in this
industry.

The models in existing literature often assume that investment costs are fixed,
but in the ICT industry we expect the cost to decrease exponentially according to
Moore’s and Gilders’ laws. The models are therefore extended to support decreasing
costs. The investment values and stopping times are determined for various decay
parameters. For large decay parameters, we find that the investment values are close
in geometric Browhian motion (GBM) and multiplicative jump-diffusion process
(JDP) models. Typical error scenarios are explored and the models are found to be
fairly robust.

Once a network link has been built, its capacity can be increased by upgrading
hardware in the associated switches. We initially develop a general strategy for
deciding when to make this investment and find an analytical solution for a GBM
demand process. A logistic process is then used to model demand with saturation
and Kummer’s equation is used to find an analytical solution for the increasing
capacity model. In the GBM model, there is a unique optimal trigger which is
greater than the link’s initial capacity. Compared to the GBM model, investments
are made later in the demand saturation model and yield lower investment values.

Furthermore, in some extreme cases, we find that the optimal trigger does not exist.
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