/N

j IS,'I(OQ(—;}
3 My
P

N

Quantitative Methods for Investment

Decisions in Communication Networks

Clare Saddler

Thesis submitted for the degree of
Doctor of Philosophy
m
Applied Mathematics
at
The University of Adelaide
(Faculty of Mathematical and Computer Sciences)

Department of Applied Mathematics

September 2006

Contents

Abstract viii
Declaration ix
Acknowledgements X
1 Introduction 1
1.1 Financial Options o v v v v v i v it e e 3
1.2 Real Options o v i i it oo e 6
1.3 Description of the Project oo 9
14 ThesisOutline. v .« o v i vt it v v e b s e e 10

2 Background 13
2.1 Stochastic Calculus« . . e e 13
2.1.1 Brownian motions and Poisson processes 13

212 TtESLemma . . o . v v v o e e e e e e e e e e e e e s 14

2.1.3 Stopping Times 15

2.1.4 Optional Sampling Theorem 16

2.2 Stochastic Processes e 18
2.2.1 Geometric Brownian Motions00 19

2.2.2 Jump-Diffusion Processes 20

2.2.3 Mean-Reversion Processeso 23

2.3 Option Pricing Models oo 25

24

Conclusion v ot e e e e

Building New Infrastructure

3.1
3.2
3.3
3.4
3.5

3.6

4.1
4.2

4.3

44

Introduction

A Jump-Diffusion Process Model
Convergence of Finite Models
Stopping Times
3.5.1 Geometric Brownian Motions
3.5.2 General Stochastic Processes
3.5.3 Numerical Results

Conclusion

Decreasing Investment Costs
Inmtroduction, .5 esswesm ek s
An Investment Model with Decreasing Costs
4.2.1 The General Formula
422 ThePositive Root.
4.2.3 The Investment Trigger.
4.2.4 The Investment Value
4.2.5 Convergence of finitemodels
42.6 Stopping Times
Errors in the decay parameter
4.3.1 The Cost Error Model
4.3.2 Numerical Examples
Errors in the traffic growth parameter
Conclusion

4.5

Increasing Link Capacity

5.1

Introduction L e e

29
29
31
34
43
44
45
48
48
o1

53
93
55
56
57
29
62
64
65
68
68
70
75
80

81

52 A General Strategy« o o e 82

5.3 A Geometric Brownian Motion Model 88
5.3.1 An expression for Lyd(z)o 88
5.3.2 A unique bounded solution for £,¢(z) = min(z,S) 89
5.3.3 The discount factors E[e™™"] and E [e=C+e)7] 96
5.3.4 An expression for E [[;° min(D(s), S)ereds] ... 98
5.3.5 The Optimal Trigger i 100
5.3.6 Numerical Examples 110

54 Conclusion v v v v i e e e e e e e e 116

Demand Saturation 117

6.1 Introduction« . o e 117

6.2 Kummer’s Equation oo 118

6.3 A Logistic Model 120
6.3.1 An expression for Lxd(T)o 122
6.3.2 A general solution for L xé(z) =0 123
6.3.3 A unique bounded solution for £,¢(z) = min(z,S) 125
6.3.4 The discount factors E[e™™] and E [e=t®T] 133
6.3.5 The Optimal Trigger« oo v v v oo 136
6.3.6 Numerical Examples 139

6.4 Conclusion v v i e e 145

Summary and Conclusions 146

Mathematical Theory 149

A.1 Convergence Tests and Theorems oo 149

A.2 Differential Equations oo v o i 150

A.3 Numerical Techniques« v v v v v v v v v e oo e e oo 152

A.4 Statistical Concepts . . . « -« v v v e e e e e e e e 153

B Mathematical Results

B.1 The risk-neutral pricing formula
B.2 Dixit and Pindyck’s GBM Model
B.3 Lassila’s JDP Model,
B.4 Resultsfor Chapter 3
B.5 Resultsfor Chapter 6

C Java Classes

Cl Utility Classes vus svames miain das dailssmssa »
C.2 Stochastic Process Classeso oo v v in i .
C.3 Finite-Time Model Class v i,
C.4 Fixed-Cost Model Classes, ..
C.5 Decreasing Cost and Error Model Classes
C.6 Increasing Capacity Class

D MATLAB M-Files
D.1 The Increasing Capacity Model in Chapter 5
D.2 The Increasing Capacity Model in Chapter 6

Bibliography

157
157
159
164
168
172

183
184
189
205
208
239
255

264
264
272

283

List of Tables

1.1

3.1

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5
6.6

Optical Carrier (OC) Levels v 8
GBM and JDP Value Process Examples 31
Shifting the trigger into the third region 110
No prior investmento 114
Threshold values« o i e e 115
Logistic variations of Example 5.1a. 142
Logistic variations of Example 5.1b 142
Simulation results for logistic variations Example 5.1a 142
Simulation results for logistic variations Example 5.1b 143
Logistic variations of Example 5.2¢ 143
A logistic variation of Example 5.1a with large I 145

List of Figures

1.1 Asimpledecisiontree 2
1.2 The Black-Scholes values for European call options 5
2.1 Sample paths for X(t) =03t+B() 17
2.2 Sample paths for X(t) = —0.5t+B(t) 18
2.3 Sample paths for a geometric Brownian motion 20
2.4 Sample paths for a jump-diffusion process 22
2.5 Sample paths for an Ornstein-Uhlenbeck process 23
2.6 Sample paths for a logistic process, 24
2.7 The convergence of binomial models 25
3.1 Therootsof Pi(k), 35
3.2 A Geometric Brownian Motion model as § varies 36
3.3 The positive rootsof Po(k) 40
3.4 A Jump-Diffusion model as § varies 41
3.5 The characteristic equations for Example 3.2, 3.2a and 3.2b. 42
3.6 The convergence of finite models for Example 3.1 44
3.7 The convergence of finite models for Example 3.2a and 3.2b 45
3.8 Sample paths for V(t) = exp {0.06t +0.2B()} 46
3.9 Sample paths for V(t) = exp{-0.1¢+0.2B(¢)} 47
3.10 Stopping times for Example 3.1 as § varies 49
3.11 Stopping times for Examples 3.2a and 3.2b as § varies 50
3.12 Stopping times for Example 3.2 as § varies 51

vi

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5
6.6

Positive roots for Example 3.1 asa varies.
Positive roots for Example 3.2 asa varies.
Investment triggers for Example 3.1 as o varies
Investment triggers for Example 3.2 as o varies
Investment values for Example 3.1 as e varies
Investment values for Example 3.2 as o varies
The convergence of decreasing costs models
Stopping time probabilities for Example 3.1 as o varies
Stopping time probabilities for Example 3.2 as a varies
Expected stopping times for Example 3.1 as o varies
Conditional expected stopping times for Example 3.2 as a varies . . .
Optimistic decay predictionso
Pessimistic decay predictions o0
Investment value versus the relativeerror
Relative difference and loss versus the relative error
Optimistic decay predictions leading to negative investment values . .

Optimistic traffic predictionso

The ¢ functions for Example 5.1ao oo oo
Discount factors for Example 5.1a oo
Investment values for Example 5.1a oo oo oo
Investment values for Example 5.1b oo o000

Investment values for Example 5.2¢ oo 000

A geometric Brownian motion and a logistic variation
The ¢ functions for logistic versions of Example 5.1a
Discount factors for logistic versions of Example 5.1a
Investment bounds for logistic variations of Example 5.1a
Investment bounds for logistic variations of Example 5.1b

A logistic variation of Example 5.1a with large I

Abstract

Information and communication technology (ICT) is a multi-billion dollar indus-
try [11]. It is therefore paramount to employ the most up to date decision making
strategies when making ICT investments. This thesis uses a framework, originally
developed for perpetual American call options, to study pertinent issues in this
industry.

The models in existing literature often assume that investment costs are fixed,
but in the ICT industry we expect the cost to decrease exponentially according to
Moore’s and Gilders’ laws. The models are therefore extended to support decreasing
costs. The investment values and stopping times are determined for various decay
parameters. For large decay parameters, we find that the investment values are close
in geometric Brownian motion (GBM) and multiplicative jump-diffusion process
(JDP) models. Typical error scenarios are explored and the models are found to be
fairly robust.

Once a network link has been built, its capacity can be increased by upgrading
hardware in the associated switches. We initially develop a general strategy for
deciding when to make this investment and find an analytical solution for a GBM
demand process. A logistic process is then used to model demand with saturation
and Kummer’s equation is used to find an analytical solution for the increasing
capacity model. In the GBM model, there is a unique optimal trigger which is
greater than the link’s initial capacity. Compared to the GBM model, investments
are made later in the demand saturation model and yield lower investment values.

Furthermore, in some extreme cases, we find that the optimal trigger does not exist.

viii

Declaration

This work contains no material which has been accepted for the award of any other
degree or diploma in any university or other tertiary institution and, to the best of
my knowledge and belief, contains no material previously published or written by

another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library,

being made available in all forms of media, now or hereafter known.

Clare Saddler
September 25, 2006

ix

Acknowledgements

I am indebted to John van der Hoek for his guidance and support throughout my
program. He also provided invaluable assistance with the models and expanded my
knowledge through seminars and suggested readings. I am also grateful to Matthew
Roughan for suggesting several ICT applications and providing general advice. 1
also appreciate the general assistance which I received from Liz Cousins, Dianne
Parish, Peter Gill and Charles Pearce.

I am especially grateful to my partner Sven Delaney for his encouragement and
companionship. I am also grateful to Kathleen Lumley College for providing many
new friends, in particular Kwoping Tam, Sarah Meehan, Anand Prabhu, David
Thorn and James Menzies. I am also grateful to Mark O’Donoghue and Greg Smith

for providing meditation and yoga classes.

Chapter 1

Introduction

The information communications technology (ICT) industry is a multi-billion dollar
industry. In 2005, the Australian telecom market alone was estimated to be worth
$31 billion [11]. Given the magnitude of this market, decision making processes
which yield optimal strategies may increase profits by millions. This thesis deter-
mines whether or when an investor should make ICT investments. Similar problems
have been studied in the manufacturing industry [22, 43], but these models fail to
address pertinent issues in the ICT industry.

The investment problem depends on two functions: the current value of future
revenues V(t) (which we shall henceforth refer to as the walue process), and the
investment cost I(t). Traditional Investment Analysis is based Net Present Value
(NPV) analysis. The NPV is simply the current value of future revenues less the
current cost.

NPV = V(0) — I(0).

If this value is positive the investment is made immediately. Otherwise the invest-
ment is never made. This method is often ignored in practice because it does not
allow for management flexibility. For instance, in the current problem it ignores the
fact that the decision can be postponed.

Decision Analysis provides an alternative approach. Figure 1.1 shows a simple

CHAPTER 1. INTRODUCTION 2

invest
V(0) - 1(0)

, hever invest
| , <o

: V({1,1)-1(1)
appreciate |
q ' never invest i
wait
invest
. t=1 V(1,2)-1(1)
depreciate
1—q never invest 0

Figure 1.1: A simple decision tree

decision tree which includes the two choices given in the NPV model: invest imme-
diately or never invest. It also includes a third option: wait until time t=1, then
apply the NPV rule to decide whether to invest or not. In this simple model the
value process is expected to appreciate or depreciate with risk-neutral probabilities
q and 1 — g respectively. The decision tree is solved by evaluating options at each
branch. At time t=1, there are two possible scenarios: either the value process has
appreciated to V(1,1) or it has depreciated to V(1,2). Applying the NPV rule, the
value of each investment is (V/(1,1) —I(1))* and (V(1,2) — I(1))* respectively. The
value of waiting is the the expected value of these two values and discounted by e",
where 7 is the risk-free interest rate for the period to ¢ = 1,

wio) — VLD — IW)* + (1 - (v(1,2) ~ I)*

e’l‘

This value is then compared with the value of investing immediately V' (0) — I and
the value of never investing (0. The optimal strategy is to select the decision which
yields the greatest value.

Decision analysis has greater flexibility than NPV analysis alone, but it requires

CHAPTER 1. INTRODUCTION 3

considerable time to calculate the decision trees, and decision trees only consider
time points that have been enumerated. For instance this decision tree will determine
whether it is better to invest at ¢ = 0 or ¢t = 1, but it ignores other choices which
may yield a greater profit (e.g. t = 0.5).

This leads to a new approach called real options which is based on option pric-
ing techniques originally developed for financial options. Real options acknowledges
management flexibility, including the ability to postpone investments. Several mod-
els have been developed for the deferred investment problem [22, 41, 43, 32]. How-
ever, most of these models were developed for manufacturing investments. This
thesis uses real options to study ICT investments. But before discussing the work
in this thesis, some background information on financial options and real options is

needed.

1.1 Financial Options

Financial options can be used to provide protection against fluctuations in the mar-
ket and they also enable investors to increase their potential gains (and losses) for
a limited amount of capital. A call stock option gives the owner the right to buy a
stock 9 for a given price K (known as the strike price). In contrast, a put stock op-
tion gives the owner the right to sell the stock for the strike price. Furopean options
can only be exercised at the expiry date 7' American options can be exercised at
anytime up to the expiry date. At the time of exercise the owner receives a payoft.
The payoff on a call option is (S(t) — K)* = max(0, S(t) — K) and the payoff on a
put option is (K — S(¢))* = max(0, K — S(t)), where S(t) is the stock price at time
¢. Since the seller is obliged to cover the cost for all possible circumstances we need
to find a fair price for the option.

Option pricing models are based on setting up a portfolio of a risk-free asset (e.g.

a bond) and a risky asset S(t) (i.e. the underlying stock). The stock price S(t) may

CHAPTER 1. INTRODUCTION 4

typically be assumed to follow a geometric Brownian motion (GBM)
dS(t) = vS(t)dt + o S(t)dB(t), (1.1)

where v is the drift, o is the volatility and B(t) is a standard Brownian motion. In
1973, Black and Scholes [7] and Merton [44] derived a partial differential equation

for the call option value

ac 9C 1 ,,0C
W_TC+TSEQ~+§USB_S'2_O' (1.2)

Black and Scholes found a closed form solution for European call options with no
dividends, and Merton generalized this result for European options with continuous
dividends. The Black-Scholes formula for a European call option with strike price

K and dividend rate § is
C(S,t) = Se®TIN(d)) — Ke "N (dy), (1.3)

where

e log(S/K) + (r — 8 + Z)(T —t)
b oT —1 ’

d2 = dl—O'\/fZTt,
N(z) = /z (zg)dz
= exp| —— .
VT R W

The Black and Scholes and Merton formula [7, 44] gives an exact solution for

European call options (see Figure 1.2). If an American call option has no dividends
(i.e. 0 =0), it is better to wait until the last possible moment (i.e. the expiry date).
In this case the American call option value is equal to the European call option
value. The American call option with dividends cannot be solved analytically and
must be estimated using approximation techniques (e.g. binomial models [17, 52),
finite-difference models [9, 33, 64] or simulation techniques [8, 10]).

Perpetual American options, which have no expiry date, may be used for options
with large expiry dates. In this thesis, we use perpetual American call options to

value investment decisions. Perpetual American options are useful because they

CHAPTER 1. INTRODUCTION

0.8

e
o

Option value
(==
~

0.2

Figure 1.2: The Black-Scholes values for European call options

often have closed form prices and are therefore more tractable than standard Amer-
ican options [35, 25]. They also specify optimal strategies for exercising options.
Since the owner does not know the future behaviour of the stock price, the exercise
strategy can only depend on the current state of this underlying process and its
history. Fortunately, the optimal strategy only depends on the current state; the
optimal strategy tells the owner to exercise the option when the stock price S (t)
first reaches some threshold S* (known as the option trigger). Since the perpetual
model assumes large expiry dates, we use the binomial model to determine whether

the perpetual model is suitable for typical expiry dates. Technical details of the

__6=
- = 8%0

0

T

40 60
Time to expiry

perpetual model and the binomial model are provided in Section 2.3.

CHAPTER 1. INTRODUCTION 6

1.2 Real Options

Real Options Analysis (ROA) is a new approach to capital budgeting that uses
option pricing techniques to value real investments. Unlike traditional capital bud-
geting approaches, ROA is able to incorporate multiple outcomes and management

flexibility. Trigeorgis [60] describes the following options in his book Real Options:

e The option to defer an investment.

e The option to abandon a project.

The option to switch inputs.

The option to switch outputs.

The option to stage investments.

The option to alter operating scale.

Much of the real options literature assumes that the underlying asset is tradeable or
synthetically so by what is called what is often called a twin security (see [61, 22]).
This enables one to apply the option pricing techniques directly. Some new methods
have been developed to support derivatives on non-tradeable assets (32,24, 47]. Most
of this work is concerned with finite-time models, although Henderson [32] considers
a perpetual investment model. This approach is beyond the scope of this thesis but
may be applied in future work.

Under the twin-security assumption, the investment problem is equivalent to a
call option where the investment cost I(t) is the strike price and the present value
of future revenues V(t) replaces the stock price. Bhagat [5] suggested that the
European call model be used for now or never investment decisions. But since
most, investment decisions can be postponed, it is usually more appropriate to use
American call options. The investor can then enter the project at any time ¢t (and

thereby gain the right to any future revenues) for the investment cost, resulting in

a payoff of (V(t) — I(¢))".

CHAPTER 1. INTRODUCTION 7

As discussed in Section’1.1, the Black-Scholes formula does not apply to Ameri-
can call options on dividend paying stock. While some finite-time models (e.g. the
binomial model) have been used to study investment decisions [61], the perpetual
model is frequently used for investments with large durations [43, 22, 41]. McDon-
ald and Siegal first used perpetual models to study the investment decision. Dixit
and Pindyck considered many variations of this model in their seminal book on real
options [22]. In the simplest case, the value process V (t) is modelled using a geo-
metric Brownian Motion. They also developed a jump-diffusion model which has
subsequently been used to model bandwidth investments [41]. In this thesis, we
shall explore both models before developing specific models for ICT investments.

Most real option models assume that the investor has monopoly. However, a
new branch of real options which incorporates game theory, called option games,
has been used to study investment problems when there is some competition in the
market [28]. This approach is beyond the scope of the present work but may be
applied in future work.

Real options have been used in a wide range of areas including capital budget-
ing [57], natural resources [59], manufacturing [39], foreign investment [4], research
and development [46], shipping [6] and nuclear waste management [12]. Real op-
tions have also been used to make investments in optical networks [41, 20, 36] and
wireless networks [19]. This thesis is concerned with two investment decisions in

optical networks:
e the option to build new infrastructure (e.g. add a new link),
e the option to increase capacity on an existing link.

In optical networks, a link’s transmission capacity can be increased by upgrad-
ing hardware (i.e. the switching cards) in the switches at either end of the link.
Table 1.1 lists some common optical carrier (OC) levels [63]. Lassila [41] used a
jump-diffusion process (JDP) with upward jumps to model bandwidth supply, and

showed that the value process will be a JDP with downward jumps when the de-

CHAPTER 1. INTRODUCTION 8

Rate | Max Capacity (Mbps)
0C-1 52

0C-12 622

0C-48 2488

0C-192 9953

Table 1.1: Optical Carrier (OC) Levels

mand process is a GBM and the supply process is a JDP with upward jumps. For
simplicity, we shall henceforth we shall refer to JDPs with upward jumps and down-
ward jumps as positive JDPs and negative JDPs respectively. The decision to use
positive jump-diffusion process to model bandwidth supply is based on the fact that
supply increases dramatically when a big player makes an investment (e.g. cable
laid down in the pacific ocean between Sydney and Los Angeles in the late 90s, and
switches upgraded from OC-48 to OC-192 on cable running in conduits in the Rocky
Mountains). D’Halluin, Forsyth and Vetzal [20] developed some Partial Differential
Equations (PDEs) for increasing capacity on existing links and used a numerical
PDE solver to find the optimal solution. In this thesis, we shall extend Lassila’s
model and develop two analytical models for increasing link capacity.

Real options have also been applied to the access pricing debate. Access pricing
issues arise in many industries that were formally considered natural monopolies (e.g.
telecom, postal services, electricity, gas and railways). In the past, governments li-
censed a single provider for telecom services because it was considered inefficient to
duplicate the network architecture. In the 1980s, this approach was criticized be-
cause the service provider could finance inefficient practices by simply raising the cost
to customers, and new providers were allowed to enter the market. Since entrants
require access to the existing network they need to pay a tariff to the incumbent.
In most countries, these access prices are regulated by the government [40]. Haus-
man [30, 31] claimed that existing policies gave entrants real options for free and used

an example from Dixit and Pindyck [22] to justify higher access prices. Two simple

CHAPTER 1. INTRODUCTION 9

models for access pricing models have also been proposed [14, 58] but many authors
have questioned the application of real options to access pricing (2, 49, 23, 13]. Ac-
cess pricing issues will not be explicitly addressed in this thesis but some of the work

in this thesis could be applied to the access pricing debate.

1.3 Description of the Project

This thesis uses perpetual American call models to study two investment decisions

in optical networks:
e the option to build new infrastructure (e.g. add a new link),
e the option to increase capacity on an existing link (e.g. OC-48 to OC-192).

We begin with two existing fixed-cost models for building new infrastructure in
which the value process is assumed to follow either a geometric Brownian motion
(GBM) or a multiplicative jump-diffusion process (JDP). These models were orig-
inally solved using a PDE approach. We provide an alternative derivation using
martingale methods and investigate some timing issues that were not addressed
in the previous literature. These models are then extended to support decreasing
investment costs according to Moore’s and Gilder’s laws and some common error
scenarios are investigated.

As mentioned in Section 1.2, D’Halluin et al. [20] developed a PDE for increasing
link capacity and used a numerical PDE solver to find an optimal solution. We
develop a similar PDE for increasing link capacity and find an analytical solution
for a GBM demand process. For finite populations we expect the demand to level
off, and so another analytical solution is developed for a logistic demand process.

We then compare the results for the GBM and logistic models.

CHAPTER 1. INTRODUCTION 10

1.4 Thesis Outline

Chapter 2 (Background) provides some background material for the thesis. First,
we present some key concepts from stochastic calculus which are used in the thesis:
standard Brownian motions, Poisson processes, Itd’s lemma, stopping times, and
the optional sampling theorem. Next, we describe three stochastic processes used

in the thesis:
e A geometric Brownian motion (GBM), defined by
dY (t) = vY (t)dt + oY (t)dB(t),
where v is the drift, o is the volatility and B(t) is a standard Brownian motion.
e A multiplicative jump-diffusion process (JDP), defined by
dY (t) =vY (t)dt + oY (t)dB(t) + ¢Y (t)dN(t),

where v is the drift, o is the volatility, ¢ is the jump magnitude, B(t) is a

standard Brownian motion, and N(t) is a Poisson process with arrival rate \.

e A logistic process (LP), defined by
dY (t) = n(Y —Y())Y (t)dt + oY (t)dB(¢),

where 7 is the speed of reversion, Y is the long-run equilibrium level, o is the

volatility and B(t) is a standard Brownian motion.

Finally, we provide some technical details for the perpetual and binomial models.
Chapter 3 (Building New Infrastructure) considers two existing models for build-
ing new infrastructure: a GBM model and a JDP model. In each case, the optimal

risk-neutral expected investment value is given by

F(V) =max B [(V(r) - I(r))*e™™],

CHAPTER 1. INTRODUCTION 11

where V(t) is the time ¢ value of future revenues (with V(0) =V), I(t) =1 is the
cost of investing at time ¢, T is a stopping time, and 7 is the risk-free rate. Both
models were originally solved using a Partial Differential Equation (PDE) approach.
We provide an alternative derivation using martingale techniques. We then apply
a binomial model to two examples from the literature to determine whether the
perpetual model is appropriate for typical expiry dates. In one of these examples,
the perpetual model is only accurate for expiry dates greater than 60 years. Finally,
we use stopping times to determine investment times. Simulation programs are
used to estimate the investment times for both processes. We also used an analytic
solution to obtain more precise values for the GBM model, and then compared these
values with the simulation results.

Chapter 4 (Decreasing Investment Costs) considers investments with decreasing

costs. A negative exponential cost function
I(t) = Ie ™,

with a decay parameter a > 0, is used to support decreasing costs. We observe
similar behaviour in the GBM and JDP models, and show that investment values
in a JDP model converge to those in a related GBM model as the decay parameter
increases. We then test the robustness of the model by considering various error
scenarios. The model is found to be robust. Relatively large errors do not reduce the
investment value by more than 5% (although extremely large errors may cause a loss
of 30% or even result in negative payoffs in special cases). The results demonstrate
the value of following the optimal strategy.

Chapter 5 (Increasing Link Capacity) considers the option of increasing link
capacity. If the capacity is increased from Sp to S, when the demand process D(t)
(with D(0) = D) reaches the threshold y, then the risk-neutral expected investment

value is

FEIEE [/0 Bmin(D(t), So)e™"dt + / " Bmin(D(t), $))e " dt - Ie‘"wr] ,

CHAPTER 1. INTRODUCTION 12

where
T=1inf{t > 0: D(t) > y},
p is revenue per connection, r is the risk-free rate, I is the initial investment cost

and « is the decay parameter. We seek optimal trigger
y* = argmax F(D, y).
y
We consider a GBM demand process
dD(t) = vD(t)dt + o D(t)dB(t),

and find an analytical solution using a PDE approach. We find that the optimal
trigger is never greater than the initial capacity Sy, and prove that the optimal
trigger exists and is unique. We also provide a method for finding the optimal
trigger and perform some numerical analysis.

Chapter 6 (Demand Saturation) considers a logistic demand process
dD(t) = n(D — D(t))D(t)dt + o D(t)dB(t).

We find an analytical solution using a PDE approach with Kummer’s equation. To
compare the GBM and LP models, we define a logistic variation of the GBM, by

choosing D and then setting n = As D — oo, the logistic process converges

5
to the original GBM and so we can treat the GBM as a special case of the LP
with D = co. We find that reducing D leads to later investment times and smaller
investment values. For extremely large investment costs, we find that the optimal
trigger may not exist in some logistic models. In this case it is always better to wait
and so the investment will never be made.

Chapter 7 (Summary and Conclusions) presents some conclusions and describes
possible future directions from the work described in this thesis.

Appendices A-D provide some additional material that could not be included in

the main body of the thesis: some pertinent mathematical theory and results, Java

programs and Matlab files.

Chapter 2

Background

This chapter provides some background material for the thesis: some key concepts
of stochastic calculus, a description of three stochastic processes and some technical

details for the perpetual model and the binomial model.

2.1 Stochastic Calculus

In this section we provide some key concepts of stochastic calculus that will be used
in this thesis: Brownian motions, Poisson processes, It6’s lemma, stopping times

and the optional sampling theorem.

2.1.1 Brownian motions and Poisson processes

Two adapted processes are used to model random phenomena: the standard Brown-
jan motion B(t) and the Poisson process N(t). The definitions for adapted processes,
the standard Brownian motion (also known as the Weiner process) and the Poisson

process are given below.

Definition 2.1 (Adapted Processes[18]). We say that a process (X;,t > 0) is
Fi-adapted if X; is Fi-measurable for any t.

13

CHAPTER 2. BACKGROUND 14

Definition 2.2 (Brownian Motion [34, page 47]). A (standard, one-dimensional)
Brownian motion is a continous, adapted process B = {B:, Ft; 0 < ¢ < 00}, defined

on some probability space (2, F, P), with the properties:
1. By =0 a.s.,
2. for 0 < s <t, B; — B, is independent of F,, and
3. B; — By is normally distributed with mean 0 and variance t — s.

Definition 2.3 (Poisson Process [34, page 12]). A Poisson process with in-
tensity A > 0 is an adapted, non-negative integer-valued, right-continous with left
limits (RCLL) process N = {N;, F3;0 < ¢t < oo} such that Ny = 0 almost surely,
and for 0 < s < t, N; — N, is independent of F, and is Poisson distributed with

mean A(t — s).

2.1.2 1Itd6’s Lemma

Protter [50]’s version of It6’s lemma is needed to handle jumps. The definitions for

martingales and semimartingales and It6’s lemma, are given below (34, 50].

Definition 2.4. The process {X;, F:;0 < t < oo} is said to be a submartingale
(respectively, a supermartingale) if we have E[X,|F,] > X, (respectively, E [Xe|Fs) <
Xs) P-as., for every 0 < s < t < co. We shall say that {X, F;0 <t < o0} is a

martingale if it is both a submartingale and a supermartingale.

Definition 2.5. A continuous semimartingale X = {X;, ;0 < t < oo} is an
adapted process which has the decomposition, almost surely with probability P
(P-a.s.),

Xe=Xo+ M+ As; 0<t < o0, (2.1)

where X is Fi-measurable, My = Ag =0, M = {M,, F;;0 < t < oo} is a continuous
local martingale and A = {4;, F;0 < t < oo} is continuous adapted process of

finite variation.

CHAPTER 2. BACKGROUND 15

Theorem 2.1 (Itd’s lemma [50, page 71]). Let X be a semimartingale and let
f be a C? real function. Then f(X) is again a semimartingale, and the following

formula holds:

F(X) — f(Xo) = / F(Xo)dX, 4 2 / £"(X,)d[X, X2
+ Z{f(Xs)—f(Xs_)— "(Xoo)AX,}.

0<s<t

Proof. See Protter [50, pages 71-74]. O

2.1.3 Stopping Times

Stopping times are used to measure the first time that a stochastic process Y(t)
satisfies a pre-defined stopping rule. Clearly, the stopping rule can only depend on
the current state or history of the process. For example, a stopping rule in the
gamblers ruin problem could be when the gambler runs out of money. In general,
a stopping time is a map 7 : @ — [0,00) so that for each ¢ > 0, the set {w €
Q|r(w) < t} is Fi-measurable, where F; = a{Y(s)|s < t}. This means that the
stopping time 7 has the property that 7 <t is determined by the values of Y up to
and including time t. We note that some of the stopping times in this thesis are not
almost surely finite (i.e. P(T < 0o) < 1). In option pricing theory, stopping times
are used to measure the time when the option is exercised. The optimal strategy,
for the perpetual American call model, is to invest when the the stock price S (t)

reaches some threshold S* and so the stopping time is
r={t>0:85(@) =S}

If the underlying stochastic process (e.g. Y(t) or S(t)) is a geometric Brownian

motion we can re-write the stopping time in terms of a Brownian motion X (t) and

CHAPTER 2. BACKGROUND 16

thereby utilize Harrison’s formula below,
Tm = inf{t > 0; X (t) > m},

where

X(t) = pt+ B(2).

Harrison [29] derived the following expression for the distribution of stopping times:

P(rm>t) =N (m\;z"t> _ ey (%;“t) , (2.2)

where N(z) is the cumulative normal distribution,

N(z) = \/—% /_ oo exp (—%2) i

Rearranging (2.2) gives the probability that the stopping time 7, is less than some

time ¢,

G(t) = P(rn<t)
- N <“t\;zm) +e2mN (%;—“t) , (2.3)

Furthermore, taking limits in (2.2) as t — oo, gives the probability that the stopping

time is finite
L, 2 0;
P(1m < 00) = g (2.4)
e <0,
Thus the stopping time is almost surely finite for non-negative drift (i.e. u > 0).

Figures 2.1 and 2.2 show typical sample paths for u > 0 and p < 0, respectively.

2.1.4 Optional Sampling Theorem

The optional sampling theorem will be used Lo study investment models. We note
that the martingales in this thesis do not have a final element X, and so we need
to define a bounded time 7,, = 7 A n, apply the first case in Theorem 2.2, and then

let n — oo.

CHAPTER 2. BACKGROUND

12 . ; ;
Vi

10 X(t)(ml)—__l)e.\,l"' | WL N
r.'l W, " v

g I S TY .f v \W E T

1 1

0 5 10 15 20 25 30
Time (years)

_2 1 i

Figure 2.1: Sample paths for X (t) = 0.3t + B(t)

Theorem 2.2 (Optional Sampling [53, page 69]). If X is a martingale and
S, T are two bounded stopping times with S<T,

Xg = E[Xr|Fs| almost surely (a.s.)

If X is uniformly integrable, the family {Xg} where S runs through the set of all

stopping times is uniformly integrable and if S <T

XS = E[XTIJ:S] = E[Xoo|fs] a.s.

Proof. See Revuz and Yor [53, page 69]. O

CHAPTER 2. BACKGROUND 18

i T o e i e g O G con et AR

e oo

AEX®] A

L
S
T

=15

-20 ! L I
0 5 10 15 20 25 30

Time (years)

Figure 2.2: Sample paths for X (t) = —0.5¢ + B(t)
2.2 Stochastic Processes

Stochastic processes are used to model stock prices. Louis Bachelier first modelled
the stock price using a Brownian motion in 1900 [3]. Unfortunately this model
permits negative values (see Figure 2.1). In 1965, Paul Samuelson [55] improved the
model by using a geometric Brownian motion, which cannot become negative (see
Figure 2.3). Nowadays, gcometric Brownian motions are often used to model asset
prices and Brownian motions are used to model changes in price. However, other
stochastic processes can also be used to model prices [22, 33, 41]. In this section
we describe three stochastic processes that will be used in this thesis: geometric

Brownian motions, jump-diffusion processes and mean-reversion processes.

CHAPTER 2. BACKGROUND 19

2.2.1 Geometric Brownian Motions

Geometric Brownian motions are most commonly used to model stock prices. The

geometric Brownian motion, Y (t), is defined by a stochastic differential equation
dY (t) = vY (t)dt + oY (t)dB(t),

where v is the drift, o is the volatility and {B(t) : t > 0} is a standard Brownian

motion (or Wiener process), and has an exact solution (see Theorem B.1)

Y@}:Y@m{(u—%3t+aB@}. (2.5)

Unless otherwise stated the geometric Brownian motions in this thesis were simu-

lated using the exact solution.

Algorithm 2.3. To simulate the geometric Brownian motion Y (t) given by (2.5):
Fors =0tot by A

e Generate e ~ N(0,1).
o SetY(s+ A;) :=Y(s)exp((v —0%/2)A: + oev/Ay).

Geometric Brownian motions grow or decay exponentially on average according
to the the drift term v. For positive drift (i.e. ¥ > 0), the process grows exponen-

tially. In fact, the exponential function
Y(t) = E[Y (t)] = Y exp{vt}

is the average value for Y(t). Figure 2.3 shows some sample paths for Y(t) =
exp{0.06¢ + 0.2B(t)}. The function Y (t) = exp{0.08¢}, represented by the dashed
line, gives the expected value of Y'(t). The magnitude of the volatility o determines

how far the process will deviate from Y (¢). In fact,

E[(Y(£) = Y (£)))] = Y2 [e”™ — 1.

CHAPTER 2. BACKGROUND 20

140 T . . T T

120

100

80

Paths

60

40

LY () (@2)
40 50 60

Time (years)

Figure 2.3: Sample paths for a geometric Brownian motion

2.2.2 Jump-Diffusion Processes

Jump-diffusion processes are used to model stock prices that incur discrete jumps
(e.g. bandwidth prices [41]). The double exponential jump-diffusion process has the
dynamics [38]

N(t)
dY () = vY (t—)dt + oY (t-)dB(t) + Y(t—)d | D (Vi 1) | . (2.6)

i=1
This stochastic differential equation has two random components: the Brownian
motion B(t) and the Poisson process N(t). The Poisson process N(t) has an arrival

rate A. The sequence {V;} are i.i.d nonnegative random variables with Z = log(V)

having density

fz2(2) =p - me ™™ 10y + (1 —p) - 126™* 103, M > 1, 7 > 1.

CHAPTER 2. BACKGROUND 21

Figure 2.4 shows some sample paths for this process. Since the jump size is large
relative to the volatility, it is not difficult to discern the downward jumps in each
sample path. The process is simulated using the return process X (t) :=log (;—,/%),
which is given by

o2 N(t)
X(t) = (1/ _ 7) t+oB(t) +Y Y, X(0)=0.

i=1
Choosing the step-size A; sufficiently small, we can assume that at most one jump
will occur in the interval (s,s + A;]. Uniform variates (U; ~ U(0,1)) [42] are used
to determine whether one or zero jumps will occur and the direction of the jump
(up or down). The inverse transform method [54, 42] is used to determine the size
of the jump. Normal variates (e ~ N(0,1)) [42] are used to estimate the standard
Brownian motion. The jump and diffusion components are then added to the drift

components in the expression for X (s + A¢) to yield the corresponding value for

Y(s+ Ay).

Algorithm 2.4 (Jump-diffusion processes).
To simulate the jump-diffusion process given by (2.6):
Fors =0tot by A

o Set(:=—A (nli’r’—l_l + (17;1_:_)1712 _ 1)_

e Setd:=0.

Generate Uy, Us, Uz ~ U(0,1).

o If (Up < AA)
— If (Uy < p),9 = —),
— Otherwise, 9 = %;—@.
e Generate e ~ N(0,1).
o Set X(s+A) = (v+(—02/2)A + 0+ oe/A,.

CHAPTER 2. BACKGROUND 22

o SetY(s+ Ay) =Y (s)exp(X(s+ Ay)).

2 9 T T T T T T T

[\
o]
T

N
~
T
1

M

Vieyaon YOy

[\
N
T

23 1L 1 i 1 1 | 1
0 0.005 0.01 0.015 002 0.025 0.03 0.035 0.04
Time (years)

Figure 2.4: Sample paths for a jump-diffusion process

In this thesis, we use a much simpler process which only has jumps in one direc-

tion (i.e. downward jumps),
dY (t) = vY (t)dt + oY (t)dB(t) — Y (t)dN (1), (2.7)

where v is the drift, o is the volatility, ¢ is the jump magnitude, B(t) is a standard
Brownian motion, and N(t) is a Poisson process with arrival rate A. This process
has downward jumps provided ¢ > 0. We require that 1 — ¢ > 0, otherwise the
process goes to zero in finite time almost surely. This process is simulated using

Algorithm 2.4 and setting p =0, 7; = 0 and 7, = 1—;Q

CHAPTER 2. BACKGROUND 23

Paths

Time (years)

Figure 2.5: Sample paths for an Ornstein-Uhlenbeck process

2.2.3 Mean-Reversion Processes

Mean-reversion processes are used to model raw commodity prices (e.g. copper and

oil [22]). The Ornstein-Uhlenbeck process is the simplest mean reverting process,
dy (t) = n(Y — Y (t))dt + odB(t), (2.8)

where 7 is the speed of reversion, Y is the long-run equilibrium level, o is the
volatility and B(t) is a standard Brownian motion. Such processes are called a
mean-reversion processes because they keep returning to the equilibrium level Y:
whenever Y deviates from the equilibrium level, the dt term draws the process back
towards the equilibrium level (see Figure 2.5). In this thesis, we use the mean-

reversion process known as the logistic model

dy (t) = n(Y = Y ()Y (t)dt + oY (t)dB(t). (2.9)

CHAPTER 2. BACKGROUND 24

Figure 2.6 shows some sample paths for a logistic process. The logistic processes in

this thesis were simulated using the Euler method [37].

1400 ;

T

1200

1000 == — = =i 4 ' ' s

800 Vv o)

Paths

600 -
400

200

0 1] 1 L 1
0 100 200 300 400 500 600
Time (years)

Figure 2.6: Sample paths for a logistic process

Algorithm 2.5 (Logistic processes).
To simulate the logistic process given by (2.9):
Fors =0 tot by A,

o Generate € ~ N(0,1).

o SetY(s+As) :=Y(s) +n(Y —Y(s)Y(s)A; + oY (s)e\/A,.

CHAPTER 2. BACKGROUND 25

2.3 Option Pricing Models

As indicated in Chapter 1 perpetual models will be used to study ICT investments,
and the binomial model will be used to determine whether perpetual models are
suitable for typical investment durations. Theorem 2.6 provides a solution for the
classic perpetual American call model. Algorithm 2.7 provides the pseudo code for
a binomial model with N steps. The binomial model will converge to the option
value as N increases. Figure 2.7 shows the binomial models for three European call

options converging to their respective Black-Scholes values.

0.2 I ¥ T T

0.18

Option value

A A AAAAAAAA A bcato y T=30
0.12 -VVVV 1

0.1 : : ' ’
0 20 40 60 80 100

Number of steps

Figure 2.7: The convergence of binomial models

Theorem 2.6 (Perpetual American Call Option [35]).

If the stock price follows a geometric Brownian motion

dS(t) = (r — 6)S(t)dt + oS(t)dB(%),

CHAPTER 2. BACKGROUND 26

where T is the risk-free rate, § is the dividend rate, o is the volality and B(t) is a
standard Brownian motion. Then the value of the perpetual American call option

with strike price K is

(8"~ K)(£), 0<8< 8

F(S) =
(S - K), S>8%
where
1
A = ;[—v + Vv? 4+ 2r],
v = T~ 6 o
o 2’
B A
Proof. The proof of this theorem is given in [34]. O

Algorithm 2.7 (The Binomial Model).

If the stock price follows a geometric Brownian motion
dS(t) = (r — 6)S(t)dt + o S(t)dB(t),

where T is the risk-free rate, & is the dividend rate, o is the volality and B(t) is a
standard Brownian motion. Then the N-step binomial model for the call option with

strike price K operates as follows:

1. Split the interval (0,T) into N equally spaced time points

T 2T (N-1)T
{O,N,W’“.,_—]V_’T}.

CHAPTER 2. BACKGROUND 27

2. Set

3. Construct a tree of prices as follows:

(a) Set S(0,0) = S(0).

(b) For each time n in {0,1,...,N-1}:
For each value S(n, j):
Assumes that the stock price S(n,j) will either move up or down at the

end of the interval with real-world probabilities q and 1 — q respectively:

/ uS(j,n) with probability q,
S(j,m)

dS(j,n) with probability 1 —q.

Since ud = 1, the tree recombines and we have (n +1) S (4,n) values at

time n.
4. Use backward induction to calculate V/(0,0):
(a) At the end point T, calculate the payoff for each price S(j,N):
V{5, N) = (S(,N) - K)". (2.10)

(b) For each timen={N —1,N —2,...,1}:
For each cell (j,n):

CHAPTER 2. BACKGROUND 28

We use the risk neutral pricing formula to determine the ezxpected value
of future cash flows,

PVEi+Ln+)+ (1 -p)V(n+1)
B .

E (.7) n) -
For European options, the option value is the expected value
V(j,n) = E(j,n).

For American options, the options can be exercised at any point so we set

the option value equal to the mazimum of the ezpected value and payoff.

V(j,n) = max(E(j,n), (S(j,n) ~ K)*). (2.11)

2.4 Conclusion

This chapter presented some key concepts of stochastic calculus, a description of
three stochastic processes that will be used in this thesis, and the technical details
for the perpetual American call model and the binomial model. In the next chapter

we shall explore two simple models for building new infrastructure.

Chapter 3

Building New Infrastructure

This chapter examines two simple models for building new infrastructure: a geo-
metric Brownian motion (GBM) model and a jump-diffusion process (JDP) model.
These models were previously solved using a Partial Differential Equation (PDE)
approach [22, 41]. In this chapter, we provide alternative derivations involving mar-
tingale methods. We also discuss investment timing issues that were not addressed

in the previous literature.

3.1 Introduction

Investment models [43, 22, 41] for building new infrastructure have the same general
formulation. An investor, faced with an irreversible investment decision, must decide
the optimal time to invest. The firm can pay a sunk cost I(t) to invest in a project
whose value at time t of future revenues is V(¢). The investment opportunity’s
final value is the expected profit that the investor receives for investing at time T,
(V(r) — I(7)), discounted by e and maximized over the investment (stopping)
times 7T, i.e.

F(V) = max Eo[(V(1) = I(1))Te ™ 1(T < o0)], (3.1)
where Ey[+] is the risk-neutral expected value given that V, =V, (:)* is the positive

part, and 1(-) is the indicator function. The optimal strategy is to invest when

29

CHAPTER 3. BUILDING NEW INFRASTRUCTURE 30

the value process V(t) first reaches some threshold V* (which shall be henceforth
referred to as the optimal trigger).

As mentioned in Section 1.2, Lassila [41] provides a rationale for using a negative
jump-diffusion process to model the value process V (t). However, we shall consider
a GBM value process first because geometric Brownian motions are more tractable.
As in [22, 41], we assume that the investment cost is fixed I(t) = I. Both models
were originally solved using a Partial Differential Equation (PDE) approach (see
Appendices B.2 and B.3). In Sections 3.2 and 3.3 we solve these models using mar-
tingale methods. Regardless of the approach used we need to employ two boundary
conditions to obtain an expression for F(V). If the initial value V is zero, V'(¢) can
never move beyond zero and the investment value is also zero. This leads to the
initial condition

F(0) = 0. (3.2)

If the initial value V is greater than the investment trigger V*, the investment will

be made immediately and the investment value is
FV)y=V -1,

and the smooth pasting condition [21] is

F(V*) = d{‘i*(v* —D=1 (3.3)

The models in [22, 41] are perpetual models and therefore assume that the in-
vestment duration (which is called the expiry date in option pricing theory) is very
large. It is therefore necessary to verify that the perpetual model is a good approx-
imation for typical investment durations. In Section 3.4, we use a binomial model
to see how quickly the finite model converges to the perpetual model. Once we have
established that the models are appropriate, we then use stopping times to measure
the time when the investment is made (see Section 3.5).

We shall use two examples from [22, 41] as base cases for numerical analysis

(see Table 3.1). Example 3.1 is a GBM example from [22] and Example 3.2 is a

CHAPTER 3. BUILDING NEW INFRASTRUCTURE 31

Example | v o T Al |V [T
3.1 0 0.2 0040 [0 |1 |1
82 -0.299 1 0.328 | 0.1 [05(0.2|3.5]|3.5771
3.2a -0.299 (03281 0.1 [0 |0 |3.5]3.5771
3.2b -0.399 (0328101 |0 [0 |[3.5]3.5771

Table 3.1: GBM and JDP Value Process Examples

JDP example from [41]. Example 3.2a and Example 3.2b are GBMs with the same
parameters as Example 3.2 except that the drift is reduced by A¢ in Example 3.2b.

3.2 A Geometric Brownian Motion Model

In this section we consider a GBM value process and fixed investment costs. Mc-
Donald and Siegal [43] give a justification for using geometric Brownian motions.
Using a similar approach to Lassila [41] we can show that the value processs will
be a GBM when the demand and supply processes are both GBMs. Karatzas and
Shreve [35] used a martingale approach to solve an American call option model. We
shall use a similar approach to solve this investment problem and then provide some
numerical examples.

Suppose that supply, S(t), and demand, D(t), both follow geometric Brownian

motions:

dD(t) = wpD(t)dt+ opD(t)dBp(t),
dS(t) = vsS(t)dt+ osS(t)dBs(t),
pdt S dBD(t)st(t),

where vp and vg are drift terms, op and og are volatility terms, Bp(t) and Bg(t)
are standard Brownian motions, and p is the correlation between Bp(t) and Bg(t).

By the law of supply and demand, the spot price is

P(t) = n—g((—f)), (3.4)

CHAPTER 3. BUILDING NEW INFRASTRUCTURE 32

where k is a scaling factor. Applying It6’s lemma,

_ of oF 8% f L PF o
dP = 8D+BS+ [6D2(dD) +28DanDdb+aSQ(db)
k —kD k sz
= §dD+ g2 ds+ - [32)]
ok kD k)
= Sd 3 —dS — 3 dDdS + (dS)
kD kD
kD kD
_? (pO'DO'Sdt) + ? (J‘zgdt)
kD
= = [(vp — vs — popos + 0§) dt + cpdBp(t) — 0sdBs(t)] -

This equation can be re-written as
where

2
Vp = Vp—Vg+0g— popog,

op = \/a%—2papas+cr§,
Bp(t) — ogBg(t

Be) = 22Bpld)_csBsll)
V0% — 2popog + o

and by the Lévy theorem [34], Bp is also a standard Brownian motion. The present

value of future revenues V/(t) is then given by

V(t)=E [/t: P(s)e‘T(s_t)ds] :

where E[-] is the risk-neutral expectation and [is the delay between construction
and operation. It was shown in [41] that V/(t) has the same dynamics as P(t) (see

Appendix B.3), thus
dV (t) = vpV (t)dt + opV (t)dBp(t).
The investment cost is assumed to be constant (i.e. I(t) = I), thus

F(V) = max E[(V(r) — D)Te ™I(T < o0)]. (3.5)

CHAPTER 3. BUILDING NEW INFRASTRUCTURE 33

Theorem 3.1. If the revenue process V (t) follows a geometric Brownian motion
dV(t) = vV (t)dt + oV (t)dB(t), (3.6)
and the cost process is a constant I(t) = I. Then the investment value is given by

* lk’ *,
F(V):{(V D), 0<V <V

(V —1), V>V,
where
1
k = ;[—u+x/u2+2r],
_ v _ g
.u' - o 2)
. k
V* = k—lI'

Proof. It is shown in [35, pages 65-66] that the optimal time to invest 7" has the

form
™ = inf{t> 0|V (t) > V*}

We note that if V > V*, then 7 = 0 and F(V) = V — I. At other times the

investment value is

FV) = (V*- N Egle™™ I(1* < 00)]
= (V*=DEe™™), (3.7)

as e = 0 when 7 > 0. As p =% — %, V(t) = Vexp{out + oB(t)}. We know
that

Ve o= V()

= Vexplour™+oB(m")}.

Raising both sides of this equation to the power k and rearranging we get

k
exp{—kopt* — %kza%'* = (‘—‘//:) exp{koB(7*) — %kza%'*}. (3.8)

CHAPTER 3. BUILDING NEW INFRASTRUCTURE 34

From Theorem B.2, we know that {exp(koB(t)—1k%02¢) : ¢ > 0} is a martingale. By
the optional sampling theorem [53, page 69], we have Elexp{koB(T*) — skio?r*}] =
1 and so taking expectations in (3.8) leads to
1 k
Elexp{—kovr* — §k2027*}] - (%) .
Choosing k : 20%k? + opk — r = 0, then Elexp{e™™"}] = (£)* and

V*
w0 (L)
The quadratic Py(k) = %azkz + opk — 7 has a negative root and a positive root
because P1(0) = —r < 0. The positive root will be greater than 1 when Pi(1) =
v —r <0 (see Figure 3.1). By the initial condition F(0) = 0, we are only interested
in the positive root k = 1[—p + \/,u2—+2;] Finally, the smooth pasting condition

o

F'(V*) =1 [21] implies that EL_,,%X—*E =1 and thus

5 /

.k
V=L

O

Setting v = r — § gives an identical solution to Dixit and Pindyck [22, Chapter
5]. If & < 0, the investment value F(V) = max, Eo[(V(T) = Dte™I(T < 00)] is
infinite and there is no optimal trigger, thus we set F(V) := 0 (see Figure 3.2). This
behaviour is consistent with that in the American call options with no dividends
mentioned in Section 1.1. In finite-time models, the option is exercised at the latest
possible moment (i.e. the expiry date) and so the American and European call
options are equivalent. In perpetual models, it is always better to wait and so the

option is never exercised.

3.3 A Jump-Diffusion Process Model

In the previous section we considered a GBM value process and fixed investment

costs. However, Lassila [41] provided a rationale for using a positive JDP to model

CHAPTER 3. BUILDING NEW INFRASTRUCTURE 35

0.8 T 1 I T | I L] T
-—-0=0.0 : _
0.711 — §=-0.04 : N

Figure 3.1: The roots of P, (k)

the supply process in bandwidth markets and showed that value process will be
a negative JDP when the demand process is a GBM and the supply process is a
positive JDP. We shall give these details below (for completeness) before solving the
JDP model using martingale methods and providing some numerical analysis.
Suppose that supply, S(t) follows a jump-diffusion process, and demand, D(t),

follows a geometric Brownian motions:

dD(t) = wvpD(t)dt+ opD(t)dBp(t),
dS(t) = vsS(t)dt+ ogS(t)dBs(t) + ¢S(t)dN(t),
pdt = dBp(t)dBs(t),
where vp and vg are drift terms, op and og are volatility terms, Bp(t) and Bg(t)

are standard Brownian motions, N(?) is a Poisson process with arrival rate A, and

p is the correlation between Bp(t) and Bg(t). By the law of supply and demand,

CHAPTER 3. BUILDING NEW INFRASTRUCTURE 36

—-0.04 —0.03 -0.02 -0.01 0 001 002 003 0.04

L
(==
1

L

I
L
o

T

[]

-0.04 —-0.03 —0.02 —0.01 0 001 002 003 0.04

0 1 L L L 1 1
-0.04 —0.03 -0.02 -0.01 0 001 002 003 0.04

Figure 3.2: A Geometric Brownian Motion model as § varies

the spot price is
_ D®
P(t) = ES(t) , (3.9)

CHAPTER 3. BUILDING NEW INFRASTRUCTURE 37

where « is a scaling factor. Applying It6’s lemma (Protter [50, page 71]),

_8f L af i 8§
dP = Z5+7s+s [aDz(dD) +25522dDdS + 52 (dS)?
k —kD —k 2kD
= SdD+ —dS+ 3 { = (dS)]
ok kD k ,
= SdD—dS — o dDdS+—(dS)
kD

= = (vpdt + opdBp(t)) — k— (vsdt + 0sdBs(t) + ¢dN(t))

kD kD
g (popogdt) + < (asdt)

kD
= 3 [(vp — vs + 0% — popos)dt + opdBp(t) — 0sdBs(t) — ¢dN(t)] .

This equation can be re-written as

dP(t) = vpP(t)dt + opP(t)dBp(t) — ¢P(t)dN(t), (3.10)
where
vp = Vp—Vg+0%— popos,
0% = 0% —2p0p0g+ o,

O'DBD(t) s UsBs(t)

Bp(t) = .
et V0% — 2popos + 0%

By the Lévy theorem, Bp is also a standard Brownian motion. We require that
1 — ¢ > 0, otherwise P(t) goes to zero in finite time almost surely.

The present value of future revenues V'(¢) is then given by

V(it)=E [/t: P(s)e""(s_t)ds] :

where E[-] is the risk-neutral expectation and [is the delay between construction

and operation. It was shown in [41], that V(¢) has the same dynamics as P(t), thus
dV (t) = vpV (t)dt + opV (t)dBp(t) — ¢V (t)dN(t).
The investment cost is assumed to be constant (i.e. I(t) = I), thus

F(V)= max Eo[(V(T) — D)Te ™ I(1 < 00)]. (3.11)

CHAPTER 3. BUILDING NEW INFRASTRUCTURE 38

Theorem 3.2. Suppose that the revenue process is a jump-diffusion process with

Poisson arrival rate A and jump magnitude ¢
dV (t) = vV (t)dt + oV (t)dB(t) — ¢V (t)dN (t). (3.12)
and the cost process is fived I{t) = I. Then the investment value is given by

F(V):{ (V*-I)(35), 0<V<Vy
V-1, P~

where k is the positive root to the equation
2
%k(k— 1)+ vk + A1 — @) — (r+A) =0, (3.13)

and

Proof. Asin Theorem 3.1, we expect the optimal time to invest 7* to have the form
™ = inf{t >0|V(t) > V*}

We note that if V' > V*, then 7* = 0 and F(V) = V — I. At other times the

investment value is

F(V) = (V*=DEye ™ I(T* < 00)|
= (V' = DEole™], (3.14)

as €™ = () when r > 0. From Theorem B.3, we have V(t) = V exp{X (¢)} where
X(t) = (v—0?/2)t+oB(t) + log(1 — $)N(t).
We know that

Vv = V(™)
= Vexp{X(m™)}. (3.15)

CHAPTER 3. BUILDING NEW INFRASTRUCTURE 39

Defining
o2

g(k)=?k(k—1)+uk+)\((1—¢)k—1),

raising both sides of (3.15) to the power k, from each side and rearranging we get

k
eol-g®rt = () elX(r) ~) (3.16)

From Theorem B.4, we know that {exp(kX (t) — g(k)t) : t > 0} is a martingale. By
the optional sampling theorem [53, page 69] we have Elexp{kX (") —g(k)™} =1

and so taking expectations in (3.16) leads to

Blexp{—g(k)7"}] = (VK)

Choosing k : g(k) = 7, then Elexp{e™™™ }] = (%) and
k
F(V)=(V*-1) (VK) .

The function Pp(k) = Q;k(k — 1)+ vk + A1 — ¢)F — (r+ X) has a negative root and
a positive root because P(0) = —r < 0. The positive root will be greater than 1
when Py(1) = v — 7 — A¢ < 0 (see Figure 3.3). By the initial condition F(0) = 0,
we are only interested in the positive root of P,(k). Finally, the smooth pasting

condition F'(V*) =1 [21] implies that ﬂ% =1 and thus

O

This solution is equivalent to the model derived in Lassila [41, Chapter 5]. If
§ = r—v < —A¢, the investment value F(V') = max, Eo[(V(r)—I)Te™I(7 < 00)] is
infinite and there is no optimal trigger, thus we set F(V) := 0 (sce Figure 3.4). The
geometric Brownian motion model, presented in the previous section is a special case
of the jump-diffusion model. We can obtain the GBM model by setting either ¢ = 0
or A = 0. Figure 3.5 shows the characteristic equations for Examples 3.2, 3.2a and

3.2b. Since the Poisson process effectively reduces the drift by A¢, Example 32bisa

CHAPTER 3. BUILDING NEW INFRASTRUCTURE 40

10 — ———
9 §=26“.4 |
8 — 8=-0.1]
7t :]
6f .
51

4l

i

oL

ol

o

T

Figure 3.3: The positive roots of P(k)

better approximation for Example 3.2 than Example 3.2a. The graph also suggests
that the characteristic equation for Example 3.2 is bounded by the characteristic

equations for Examples 3.2a and 3.2b when &k > 1.

Proposition 3.3. The characteristic equation for the JDP model is bounded by
the characteristic equations for two GBM models (with the same parameters as the
JDP model except that the drift is reduced by A in the second GBM model) for
ke (l,00) and 0 < ¢ < 1, viz. Pi(k) < Py(k) < Pi(k) where Pi(k), Py(k) and
Pi(k) are the characteristic equations for the second GBM, JDP, and first GBM

models respectively.

CHAPTER 3. BUILDING NEW INFRASTRUCTURE 41

k
N

0.1 0.2 03 04

...O)o_

0.1 0.2 0.3 0.4

mo

Figure 3.4: A Jump-Diffusion model as § varies
Proof. Let f(k) = Py(k) — Py(k) = Agk + A(1 — ¢)k — A

fQ =0
f'(k) = Xe—Xk(1— @)
= M(1-(1-¢)1 >0

Thus we have f(k) > 0 and Py(k) > P, (k).

CHAPTER 3. BUILDING NEW INFRASTRUCTURE 42
1.5 | 1 T T T T T T T
— Example 3.2
— — Example 3.2a
1+ Example 3.2b 77
_15 i L 1 1 1 1 i L
-1 0 1 2 3 4 5 6 7 8 9
Figure 3.5: The characteristic equations for Example 3.2, 3.2a and 3.2b
Let (k) = Pa(k) — Po(k) = A(L —) — X
9(0) = 0
(k) = —Mk(1— @) <o.
Thus we have g(k) < 0 and Py(k) < Pi(k). [

Corollary 3.4. The positive Toot for the jump model is bounded by the positive
roots for two GBM models for k € (1,00) and 0 < ¢ < 1, viz. Ay(v,7) < Ay(v,7) <
A1 (v —Ag, 1) where Ay (v,7), Ao(v,7) and A1(v — Ag,T) are the positive roots for the

first GBM, JDP, and second GBM models respectively.
Proof. Let ky := As(v,r). By Proposition 3.3,

ﬁl(kl) < P(ki)=0

CHAPTER 3. BUILDING NEW INFRASTRUCTURE 43

and so

A(v = Ap,) > ki = Ay(v, 7).

Let k, := A1(v, 7). By Proposition 3.3,
Py(ky) < Pi(kz) =0

and so

Ao(v,7) > ko = Ay (v, 7).

3.4 Convergence of Finite Models

In the previous sections, we developed two simple investment models. But these
models assume large investment durations (expiry dates). It is therefore of inter-
est to determine whether the perpetual model is a good approximation for typical
investment durations. The binomial model, introduced in Section 2.3, was used
to observe the rate at which the finite model converged to the perpetual model.
The binomial model for Example 3.1 was initially tested with investment duration
T = 150 and step size N = 150. This result turned out to be inaccurate because the
step size was too small relative to the expiry date. In subsequent tests we were able
to achieve far greater accuracy for much smaller expiry dates (e.g. T = 60) when
we used N = 5T. Figure 3.6 shows the rate of convergence for Example 3.1. This
graph suggests that perpetual model is not a good approximation for Example 3.1
when the investment duration less than 60 years.

Figure 3.7 shows the rate of convergence for Examples 3.2a and 3.2b. This
graph suggests that these examples converge much more quickly than Example 3.1;
the binomial model converges to the perpetual model in ten years. However, the
upper limit for the binomial tree value for N = 5T is significantly smaller than the
perpetual value. Choosing N = 50T gives better accuracy and we could continue to

improve the accuracy by choosing finer interval lengths. Since the investment value

CHAPTER 3. BUILDING NEW INFRASTRUCTURE 44

0.3 T T T T T T T
025 == mm e m e e e e e
Q
=
s 02f 1
B
E
$ 0.15}]
g
0.1 "
- — Perpetual Value
— Binomial Tree (N=5T)
0.05 1 1 L 1 | 1 L
0 10 20 30 40 50 60 70 80

Time to expiry (years)

Figure 3.6: The convergence of finite models for Example 3.1

for Example 3.2 is between that of these two examples, we expect that the perpetual
model is a good approximation for Example 3.2 when the investment duration is

greater than ten years.

3.5 Stopping Times

In the previous section, we determined whether the perpetual model is a good ap-
proximation for typical investment durations. In this section we use stopping times
to determine whether and when the investment will be made. Geometric Brownian
motions are considered separately because they have exact solutions for the stopping
times. In general, however, the stopping times must be estimated using simulation

techniques.

CHAPTER 3. BUILDING NEW INFRASTRUCTURE 45

0.26 i T T T T T

0-24 -""" _— e e e T LT T T e e T e T TR e T ST T TS ._-E.“x?a]."_‘ljl.p_-‘l‘.e;'.z._a Pt ,:

022 - - B ' e
2
S 02} .
- [R ————Y xample3.2b |
w 0.18f 0
>
|

0.16 - : : i B

014} — — Perpetual Value |

) —— Binomial Tree (N=50T)
-~ Binomial Tree (N=5T)
0-12 L)] 1 I 1 1
0 10 20 30 40 50 60 70 80

Time to expiry (years)

Figure 3.7: The convergence of finite models for Example 3.2a and 3.2b

3.5.1 Geometric Brownian Motions

A stopping time
™ = inf{t > 0|V (t) > V*},

where V/(t) is a geometric Brownian motion, can be re-written in terms of a Brownian

motion X (t) = put + B(t) with p =% — 3,

™ = inf{t > 0|V (t) > V*}
= inf{t > 0|Vexp{oX(t)}>V*}

— inf {t >0 X(¢) > '},‘k’g <%’>}

— int{t > 0|X(t) > m},

m—llo Y—*
I & V)]

where

CHAPTER 3. BUILDING NEW INFRASTRUCTURE 46

12 - - - | '
1o E[V(©H]-
L7
/ I
s
gl | / lll i
V(t)(@1)— Mo Ao T
[72) | \ | ‘t‘l v Lcyl W | M
% 6 = | \ /| | o Fe g L b
& ! vy -
I_.|-' L as
4rV*=3.6861 | o
2 - x> 1 K I._.".- 4
Wariogr Vo
0 : : ' | '
0 5 10 15 20 25 30

Time (years)

Figure 3.8: Sample paths for V (t) = exp {0.06¢ + 0.2B(t)}

'ITransforming the stopping time for Geometric Brownian motion into a stopping
time for a Brownian motion, allows us to use the formulae provided in Section 2.1.3.
From (2.4), we know that the stopping time is almost surely finite when 4 = v — 102
is non-negative. Furthermore, (2.3) gives us the probability that the investment
occurs before some time ¢, P(r* < t). Thus we require v > "72 for guaranteed
investment. Figures 3.8 and 3.9 show typical sample paths for 4 > 0 and p < 0,
respectively.

We would also like to calculate the real-world expected stopping times, but these
depend on the market price of risk which is often difficult to determine. We shall
therefore calculate the risk-neutral expected stopping times. From earlier, we know
that the stopping time will always be zero if the initial value of V(t) is greater than
or equal to the optimal trigger (ie. V > V*). For V. < V*, the average stopping

time is only finite when x4 > 0 [56]. Thus we seek an expression for E[r*] when

CHAPTER 3. BUILDING NEW INFRASTRUCTURE 47

]..5 L] I T T T

_ . V*=1.2808

Paths

E[V(®)]
!

0 5 10 15 20 25 30
Time (years)

Figure 3.9: Sample paths for V(t) = exp{—0.1¢t + 0.2B(t)}

> 0. From earlier, choosing A such that %02)\2 + ouX — 3 =0, we have

Ele "] =

1% %(—;H—\/m
(%)
— e~ m=nt /1P +20)

Taking the derivative with respect to g,

E[—’r*e_ﬂT*] - i e—m(—#-ir\/trZﬂ).
Vit 428
Setting @ = 0 gives,
m
E[t* = —. 3.17
"] r (3.17)

It is also useful to calculate the expected stopping time given that the stopping time

is less than ¢,
Js 59(s)ds

Blrirt < 1 = S,

CHAPTER 3. BUILDING NEW INFRASTRUCTURE 48

where
t
G(t) = / g9(s)ds = P(1* < t).
0
We can estimate it using integration by parts,

[tG(s)]6 — Jy G(s)ds

E[*|m <t]= G

(3.18)

Since there is no closed form solution, numerical integration techniques (e.g. Simp-

son’s rule) can be employed.

3.5.2 General Stochastic Processes

In general, there are no exact solutions for the stopping times. However, the prob-
ability that the investment will be made before some time t, P(7 < t), and the
conditional expectation, E(7|T < t), can be estimated by simulating the revenue

process up to time £, N times,

N
1<t
P(T*<t) = 2y i <)

SN T < t)
N % :
% Zj:;l 1(Tj <t)

Furthermore, when t is chosen sufficiently large, we have

(3.19)

(3.20)

P(r < 00) = P(T < 1),
and if 7* is almost surely finite (i.e. P(T < 0o0) = 1), then

El[r] = E[T*|T* <].

3.5.3 Numerical Results

Figures 3.10 and 3.11 show the stopping times for Examples 3.1 and 3.2a. Since
Example 3.2a and 3.2b only differ by §, Figure 3.11 also shows the stopping times

for Example 3.2b. Since these examples are GBM models, we can use the exact

CHAPTER 3. BUILDING NEW INFRASTRUCTURE 49

= P(T*<e0)
1 — P(t* < 100)
' O Simulation Result |]

e
o0
T

Stopping Time Probabilities
=)
=)}

041 D
02+)
0 i 1 1 1 L
0 0.01 0.02 0.03 0.04 0.05 0.06
3

3007, T] - T] !
o - E[t*]

— E[t*t* < 100]

(O Simulation Result

N

(%]

(=]
T

\®]

=]

<
T

(¥,]
<o
1]
f 1
Ly

100

Average Stopping Times
&
[

Figure 3.10: Stopping times for Example 3.1 as & varies

formulae given in Section 3.5.1. The processes were also simulated for N = 1000
runs at selected points. The 95% confidence intervals are shown in both graphs. As
mentioned in Section 3.2, the investment will never be made if § < 0.0, so there is
no stopping time. We note that the investment is guaranteed for & € (0,0.02) and

(0,0.0462) respectively.
Figure 3.12 shows the stopping times for Example 3.2. Since Example 3.2 is a

CHAPTER 3. BUILDING NEW INFRASTRUCTURE 50

jum—
i

ping Time Probabilities
S
(o <]
] J

0.6
a 0.4 =
202 — P(1* < 100) d
n (O Simulation Result

0 1 1 i L 1
0 0.01 0.02 0.03 0.04 0.05 0.06
b
300 i . Y y

E[t*]
"| — E[t*jr* < 100] |
Simulation Result |

[\

W

<
!

[\
=
(=]

Average Stopping Times
&
S

100 . |
SOM o 5 :
0 i 1 1 \T} I L _‘i)
0 0.01 0.02 0.03 0.04 0.05 0.06
]

Figure 3.11: Stopping times for Examples 3.2a and 3.2b as & varies

JDP model we cannot use the exact formulae given in Section 3.5.1. Instead the
graphs connect the sample means for simulation results, with NV = 1000 runs and
t = 100 or ¢ = 1000, at selected values of §. As mentioned in Section 3.3, the
investment is never made when § < —A¢ = —0.1. The upper graph suggests that
the investment is guaranteed for § € (—0.1,0) but it is difficult to determine the

first value for which P(7* < c0) ceases to be equal to one.

CHAPTER 3. BUILDING NEW INFRASTRUCTURE 51

Stopping Time Probabilities

0.6 u for P(t* < 1000) D
> u for P(t* < 100)
0.4 : : :
=0.1 —0.05 0 0.05 0.1
3
60 ; 1

- u for E[T*|t* < 1000] A
| © u for E[t*t* < 100]

W
S
I

S
[
L]

L

Average Stopping Times
N W
[o

—
o

Figure 3.12: Stopping times for Example 3.2 as § varies

3.6 Conclusion

In this chapter, we presented two simple models for building new infrastructure.
These models were previously solved using a PDE approach. We provided an al-
ternative derivation using martingale methods. Since these models are perpetual
models the investment duration is assumed to be very large. The binomial model

was used to determine whether the perpetual model is a good approximation for

CHAPTER 3. BUILDING NEW INFRASTRUCTURE 52

typical investment durations. Stopping times were used to determine whether and
when the investment will be made. In the next chapter we shall extend these models

to support decreasing investment costs and investigate common error scenarios.

Chapter 4

Decreasing Investment Costs

In the previous chapter we presented two simple models for building new infras-
tructure: a geometric Brownian motion (GBM) model and a jump diffusion process
(JDP) model. These models assume that investment costs are fixed. In the Informa-
tion and Communication Technology (ICT) industry, however, we expect investment
costs to decrease exponentially according to Moore’s and Gilder’s laws. This chapter
extends the GBM and JDP models to decreasing investment costs and studies the

impact of common error scenarios.

4.1 Introduction

The dominant feature of investments in the ICT industry is that following Moore’s
law, the cost of investment decreases approximately exponentially over time. In
1965, Moore predicted that the number of transistors per chip would double each
year for the next ten years [45]. At the end of the period, he predicted that the the
capacity per chip would increase by a factor of two every 18 months [48]. Regardless
of the decay parameter chosen, these predictions suggest exponential decay in costs
(for a computer of the same power).

Similar relationships to Moores’ law also apply in the telecommunications indus-

try. Gilder [27, 26] predicted that bandwidth would triple each year for the next

o3

CHAPTER 4. DECREASING INVESTMENT COSTS o4

25 years. Although Coffman and Odlyzko [48] believe that these predictions are
exaggerated, their own projections suggest that the transmission capacity of each
fiber will increase by a factor of two each year.

This chapter is concerned with quantifying investment decisions in this context.
In Section 4.2 we develop a model for valuing investment decisions that allows for
declining investment costs. This model assumes that the true decay parameter is
known. However, the above literature suggests that this is seldom the case. Sec-
tion 4.3 develops an error model for the decay parameter (which we shall henceforth
call the cost error model) and explores a variety of error scenarios.

Several authors have suggested that flawed analysis of internet growth con-
tributed to the Internet bubble. Coffman and Odlyzko [15] suggest that the ex-
pectation of data traffic doubling every few months (rather than the more realistic
estimates of doubling every year) led individuals and companies to invest inappro-
priately. For example, in North America more than half a dozen long-haul carri-
ers laid down enough optical fiber to provide much more capacity than was really
needed [15]. In Section 4.4 we provide a brief overview of how traffic errors may be
analyzed and explain how this error model differs from the cost error model.

Lemma 4.1 defines a general formula which encompasses the geometric Brownian
motion and jump-diffusion process models described in Chapter 3. This formula will
be useful in Sections 4.3-4.4. By defining the more sophisticated models in terms of

this general formula we obtain solutions for both models.

Lemma 4.1. If the revenue process V (t) follows a geometric Brownian motion or
Jump-diffusion process given by (8.6) or (3.12) respectively, and the cost process is

a constant I(t) = I, then the investment value is given by

vV =D (%), 0<v<v

F(V) =
V=1, V>V

CHAPTER 4. DECREASING INVESTMENT COSTS 95

where

k = Aly,r),

k
¢ =
v k—1

If the revenue process follows a geometric Brownian motion, A(v,r) denotes the

positive Toot of

1
Pi(k) = 502192 + opk —r,

1.6,

é] + \/(V— ”72)2+2r02

Aly,r) = _ [V _

If the revenue process follows a jump-diffusion process, A(v,r) denotes the positive

root of

2
guoz%%m—1yum+xu—¢ﬁ—@+xy
Proof. Combining Theorems 3.1 and 3.2 gives the generic formula. O

The examples in Table 3.1 will be used as base cases for numerical analysis.
Section 4.2 investigates the behaviour of Example 3.1 and 3.2 as the decay parameter
increases. In Sections 4.3 and 4.4 we restrict our analysis to the original GBM
example (Example 3.1) because the GBM model is more tractable than the JDP
model. We expect the two models to behave in a similar fashion, and our results in
Section 4.2 suggest that the JDP model does not provide much advantage over the
GBM model when the decay parameter is large.

4.2 An Investment Model with Decreasing Costs

The literature suggests that chip capacity and bandwidth capacity are increasing
exponentially over time or conversely costs are decreasing. We therefore expect
investment costs to decrease over time and adopt a negative exponential function

for the cost function

I(t) = Te~®®, (4.1)

CHAPTER 4. DECREASING INVESTMENT COSTS 56

For decreasing investment’ costs, the decay parameter o will be positive. In this
section, we use (4.1) to develop a general formula for the cost model and investigate

the behaviour of various parameters in the GBM and JDP models.

4.2.1 The General Formula

Substituting (4.1) in (3.1) yields

F(V) = max E[(V(r) —Ie™*)*e ™|V (0) = V]. (4.2)
This expression can be re-written as

F(V) = max E[(Y () — I)*e~ 7Y (0) = V],

where Y (t) = V(¢)e**. This is equivalent to increasing v and 7 by a, and leads to
the following lemma. Note that the formula is the same as that given in Lemma, 4.1

except that k = A(v,r) is replaced by k = A(v + o, + a).

Lemma 4.2. If the revenue process V(t) follows a geometric Brownian motion or
Jump-diffusion process given by (8.6) or (3.12) respectively, and the cost process is

I(t) = Ie™®, then the investment value is given by

V-1 (%), 0<V <V*
(V -1, V >V*,

where

k= Av+ao,r+a),

Y= ——I.
4 k—1

If the revenue process follows a geometric Brownian motion, A(v+a,r+a) denotes

the positive root of

Pe(k) = %azk(k D+ vtk — (r+a),

CHAPTER 4. DECREASING INVESTMENT COSTS 57

1.€.

—[V+a—”72]+\/(V+a—"72)2+2(r+a)02

Av+a,r+a)= s

If the revenue process follows a jump-diffusion process, A(v,r) denotes the positive

root of
o

P(k) = ;k(k— 1)+ (v +a)k+ M1 —@)F — (r+a+ N

Proof. Replacing v with v+« and r with 7+« in Corollary 4.1 gives the formula. O

Note that it will be convenient below to write A = Ay, A, for these two cases.
On the surface, it would appear that the general formula also applies to increasing
investment costs (i.e. @ < 0). However, the proofs given in Sections 3.2 and 3.3
assumed r > 0, and so we require 7 + o > 0 to get the formula. This means that

Lemma 4.2 only applies for small negative values (i.e. a > —r).

4.2.2 The Positive Root

Figure 4.1 shows the positive roots for Example 3.1 as the decay parameter, «,
varies on (0,6). Figure 4.2 shows the positive roots for Example 3.2 as o varies
on (0,4). Since the positive root was greater than one in the original (fixed-cost)
examples, they will remain greater than one in the decreasing cost examples because
the relationship between the drift rate v and the interest rate r (i.e. v < r) is
preserved when they are both increased by a. However, the graphs suggest that k

is converging to one as « increases.

Lemma 4.3. The positive root k := A(v + o, 7 + a) converges to one as a — oo.

CHAPTER 4.

DECREASING INVESTMENT COSTS

o8

Positive Root
— - =
~ o o0

—
3]
T

0.8

Decay Parameter o

Figure 4.1: Positive roots for Example 3.1 as a varies

Proof. Case (i) GBM, welet z=r+aandd=r—v

lim

a—0o0

Case (ii) JDP,

2
b - tm L ﬂ(z%_z)ﬂ/(z—«s_z)
2—00 @ o 2 o
(-9 (-9 2]
= Jim :
gy (5-9) 2
2z
= lim 4 = 1.

o

z—»ooz;_%+\/(2__‘s_-‘2l)2+22

by Corollary 3.4, we have

Mv+aor+o)<Mrv+art+o) < Ay+o—Ag,r+a)

By Case (i), we have Aj(v + a,7 + @) and A (v + a — A\@,r + &) converging to one

as @ — 0o. Thus by the sandwich theorem we know that As(v + o, 7 +) must also

converge to one.

(]

CHAPTER 4. DECREASING INVESTMENT COSTS 59

9 T T T T T T T

— Example 3.2
— — Example 3.2a
Example 3.2b

Positive Root

0 0.5 1 1.5 2 25 3 35 4
Decay Parameter o

Figure 4.2: Positive roots for Example 3.2 as « varies

4.2.3 The Investment Trigger

Figure 4.3 shows the investment triggers for Example 3.1 as « varies on (0,0.5). The

graph is approximately linear, V* = 25a.+ 1.5. In general (using order notation),

[2e)] w0 2).

(see Lemma 4.4) and the related linear approximation gives investors a simple rule
for making decisions when « is large. Figure 4.4 shows the investment triggers for
Example 3.2, 3.2a and 3.2b as « varies on (0,2). Example 3.2a converges to linear

f(a) and Examples 3.2 and 3.2b converge to linear g(c).

CHAPTER 4. DECREASING INVESTMENT COSTS 60
15
8 10
£
H
5
E
2
g 5
0 L i i i
0 0.1 0.2 0.3 0.4 0.5
Decay Parameter o
Figure 4.3: Investment triggers for Example 3.1 as o varies
Lemma 4.4. Ifk=MA(r+a,r+a), V= kkTII) and 6 =r — v then
% I
lim — = = 4.3
Jim — 3 (4.3)
lim V* — %I = g(r + a%/2), (4.4)
ol rI o?I a’l
i s = — 4,
JEEO(V 5 8 25)“ 2 (45)
Proof. We need to establish an intermediate result:
lim (k—1)(r + a) = 4. (4.6)

CHAPTER 4. DECREASING INVESTMENT COSTS 61
20 T T .
— Example 3.2
- Example 3.2a
— — Example 3.2b
15F
3]
on
=
=
H
“2’ 10F flo) = 8.7719¢ +I.34?_l~a
o “Cg(00) = 7.0140, +1.0787
0 1 1 L
0 0.5 1 1.5 2
Decay Parameter o
Figure 4.4: Investment triggers for Example 3.2 as « varies
Let z=1+0¢,
1 z—0 o z—6 o\’
lim(k—1)z = 1 - |- — - = 2z —1
dm (k=17 = fim | 7 (- 2)+\/(- 2) 2 g
2
VA I E-n A WY [Sl BRCA PY:
z—0o0 O g 2 g 2
[P (P g) + 2]
= lim =
T g (5 g
226
= lim =S = 4.
Teatig (524 9) 2
Combining Lemma 4.3 and (4.6) leads to
LA T
a—o0 2 —zaooz(k—l) a 6

CHAPTER 4. DECREASING INVESTMENT COSTS 62

Subtracting zJ—I from V* leads to

zl

e 2 _ 2 [+ 0+ /12 + 22 .
6 O | p+/12+22
zl

| 1+ 12 —|—2z]

)
=0
4 PH‘\/H +2z
1
)

&

By Lemma 4.3
zI %I
li e — =
V5= 5
Subtracting the constant term from V* — ZJI we get:
. 2l ol
Vi ——— = (k—1)

By (4.6) we get

4.2.4 The Investment Value

Figure 4.5 shows the investment values for Example 3.1 as « varies on (0,30). Fig-
ure 4.6 shows the investment values for Example 3.2 as o varies on (0,1000). These
graphs suggest that the investment value is converging to the initial value as « in-
creases. This result is not particularly surprising because we would expect that I(t)
will drop to zero and the investment will be made almost instantly when « is large.
We note that

max EV(r)e V() =V]=V.

CHAPTER 4. DECREASING INVESTMENT COSTS 63

e
o0
T
1

Investment Value
o
(@)

- - =
— F(V)

0 1 L 1
0 5 10 15 20 25 30
Decay Parameter o

Figure 4.5: Investment values for Example 3.1 as o varies

Proposition 4.5. The investment value, F(V) defined in (4.2), converges to the

initial value, V, as the decay parameter a increases.

Proof. We apply Lemma 4.3 twice to get the result.

v k
lim F(V) = lim(V*—1I) (F)
4
= lim (V' =1) (=
agrolo(I)(V*)
_ Vi1
- tmv ()
. war—1
- J%OV(’%_I)
k-1
, I
- JE&V(H)
=V

CHAPTER 4. DECREASING INVESTMENT COSTS 64

R
W
1

Investment Value
[\

1.5]
1 -
0.5 - V=35771 |
— F(V)
0 I 1 1 1
0 200 400 600 800 1000

Decay Parameter o

Figure 4.6: Investment values for Example 3.2 as a varies

4.2.5 Convergence of finite models

In Section 3.4, the binomial model was used to measure how quickly the finite-model
converged to the perpetual model. We are also interested in the rate of convergence
for the decreasing cost models. Algorithm 2.7 is easily extended to decreasing strike

prices K (t) = Ke™** by replacing (2.10) and (2.11) with

V(]’N) = (S(j’N)_Ke_aT)+,

V(,n) = max(E(j,n), (S(j,n) — Ke%)*),

where the N is the number of steps in the binomial model. F igure 4.7 shows
the rate of convergence for Example 3.1 with N = 5T and decay parameters
a € [0,0.462,0.693,1.099]. The graph suggests that the finite-time model converges

more rapidly as the decay parameter increases.

CHAPTER 4. DECREASING INVESTMENT COSTS 65

o= 1.0%9

o=0.462 |

Investment Value

0 1 1 1 1
0 10 20 30 40 50

Time to expiry (years)

Figure 4.7: The convergence of decreasing costs models

4.2.6 Stopping Times

The stopping time formulae presented in Section 3.4 can be extended to the decreas-
ing cost model by replacing v with v + a and r with r + «. Figure 4.8 shows the
stopping time probabilities for Example 3.1. In the base case (o = 0), the drift is
negative (u = —0.02) and so there is only a 50% chance that the investment will
be made. The investment is guaranteed for positive drift (i.e. when a > 0.02).
Larger decay parameters are needed to ensure that the investment occurs before
time ¢ = 100 (i.e. a > 0.1). This probability is verified at selected points using the
simulation estimate (3.19). The confidence intervals for N = 1000 runs are shown
as vertical lines.

Figure 4.9 shows some stopping time probabilities for Example 3.2. Since Ex-
ample 3.2 is a JDP model we do not have an exact solution for the stopping time

probability. In this figure, the graphs connect the sample means for simulation es-

CHAPTER 4. DECREASING INVESTMENT COSTS 66

1-2 ' T T T
g 1t S—)
-
el
e
[T
[} = -
8 0.8
H
on
g
A,
g
&7 0.6F §
P(T*<o0)
— P(t* < 100)
(() Simulation Result
0.4 1 1 1 1
0 0.02 0.04 0.06 0.08 0.1

Decay Parameter o

Figure 4.8: Stopping time probabilities for Example 3.1 as « varies

timate (3.19), with N = 1000 runs and ¢ = 100 or ¢ = 1000, at selected values of o
Combining these results with those in Figure 4.8, we note that the stopping time
probabilities converge to one as the decay parameter increases.

Figure 4.10 shows the risk-neutral expected stopping times E[r*] and E[*|T* <
100] for Example 3.1. The expected stopping times are infinite when o < 0.02. At
other times, the expected stopping time decreases (i.e. on average the investment
will be made sooner) when the decay parameter increases. The expected stopping
times and the conditional expected stopping times are the same for o > 0.1, because
the investment will always be made before ¢ = 100. This conditional expected
stopping time is verified at selected points using the simulation estimate (3.20).
The confidence intervals for N = 1000 runs are shown as vertical lines.

Figure 4.11 shows some conditional expected stopping times for Example 3.2.

Since Example 3.2 is a JDP model we do not have an exact solution for the con-

CHAPTER 4. DECREASING INVESTMENT COSTS 67

1.1

w for P(t* < 1000)
& u for P(t* < 100)

—
1

0.9

1

0.8

0.7

0.6

Stopping Time Probabilities

0.5
"t
0.3 , :
0 0.125 0.25 0.375 0.5 0.625
Decay Parameter o

Figure 4.9: Stopping time probabilities for Example 3.2 as « varies

ditional expected stopping times. In this figure, the graphs connect the sample
means for the simulation estimate (3.20), with N = 1000 runs and time ¢ = 100 or
t = 1000, at selected values of a. Since simulation data for ¢ = 100 and ¢ = 1000
are collected from the same sample paths, the sample means for E[r*|7* < 100] are
never greater than than those for E[r*|r* < 1000]. However, this property may not
hold when different sample paths are used. In fact, we observed this anomaly in
some initial simulations where the processes were instantiated with the same seed
but run longer (for the case t = 1000) causing the sample paths to diverge. Com-
bining these results with those in Figure 4.10, we note that the conditional expected

stopping times decrease as the decay parameter increases.

CHAPTER 4. DECREASING INVESTMENT COSTS 68

100 1 . .

. E[t*]
| — E[t*|t* < 100]
80} | (O Simulation Result |
]
=
[_4
<V} L -
ki 60
a
=]
)
:%, 401 : .
§ \
<
26]
5
O L 1 | O _6\ O)
0 0.2 04 0.6 0.8 1

Decay Parameter o

Figure 4.10: Expected stopping times for Example 3.1 as « varies
4.3 Errors in the decay parameter

In the previous section, we presented a model which gives the optimal strategy for
a given decay parameter. However, in Section 4.1 we cited two cases where decay
predictions had been optimistic (i.e. the predicted decay parameter was greater
than the true decay parameter). Moore’s original estimate for decay was roughly
50% greater than his revised estimate. Similarly, Gilder’s decay estimate was about
50% greater than Odlyzko’s estimate. Section 4.3.1 develops the cost error model

and Section 4.3.2 applies various error scenarios to Example 3.1.

4.3.1 The Cost Error Model

Given the decay parameter a, the analysis in Section 4.2 tells us to invest at time

T =inf{t > 0|V (¢) > e~ *V™*},

CHAPTER 4. DECREASING INVESTMENT COSTS 69

30

u for E[T*t* < 1000]
> u for E[t*[t* < 100]

[\®]
(W]
T

!

[\®}
[
T

Average Stopping Times
o 7

0 0.125 0.25 0.375 0.5 0.625
Decay Parameter o,

Figure 4.11: Conditional expected stopping times for Example 3.2 as « varies

with

k = Alv+o,r+a),

This strategy yields the maximum possible value

V*—ID) (%), o<V <V

F(V) =
V-1, V>V

Now suppose that the predicted decay parameter is a;, then we believe that the

optimal time is to invest is

7 = inf{t > 0|V (t) > e""*V}*},

CHAPTER 4. DECREASING INVESTMENT COSTS 70

with

kl = A(V+a1,r+a1),
k1
e I
Vi ki—1

Following this strategy, the predicted investment value is
k1
-1 (Vl) , 0<V <V

(V)=

Summarizing these results, the predicted value is F; (V') and the maximum value
is F(V). In reality, neither of these values will be achieved because the errors in
the estimate will cause the investment to be made at the wrong time: the analysis
recommends investment at time 77 but the optimal investment time is 7*. Since
this strategy is not optimal, the expected value will be lower than the optimal value

F(V). The suboptimal value, H(V), is given by

H(V) = E[(V(r}) — Ie®T)e ™ I(1y < o0)]
= ‘/on[e_(T—Fal)Tl‘I(Tl < OO)]

—IEple ™o [(1 < 00)]

k1 k2

(Y (2
4 v

ky = Av+oq,7+0).

where

Unlike the original expression for F(V'), the expression for H(V') does not involve
the positive part (-)* because the investment strategy is based on error-prone data
and may yield a negative net payoff. However, we will see that this does not happen

in the current example.

4.3.2 Numerical Examples

Gilder’s decay estimate was approximately 50% greater than that given by Odlyzko.

Figure 4.12 shows the investment values and expected stopping times when the

CHAPTER 4. DECREASING INVESTMENT COSTS 71

1 T T T T
0.8F
0.6F
041 / ~ — Predicted Value
—— Optimal Value
- Actual Value
0.2 ' : ' :
0 0.2 0.4 0.6 0.8 |
Decay Parameter o
100 T . ; ;
- — Predicted Stopping Time
80 —— Optimal Stopping Time |-
60 g
40 .
20 i
0 | L il T = e
0 0.2 0.4 0.6 0.8 1

Decay Paramter o

Figure 4.12: Optimistic decay predictions

predicted decay parameter is 50% greater than the true decay parameter. These
graphs suggest that optimistic predictions will encourage an investor to invest earlier
and that the investor will expect unreasonably high net investment values. The
premature investment will also cause the investor to forfeit some net investment

value, although the reduction in value is less than 5%. In this example, we have

CHAPTER 4. DECREASING INVESTMENT COSTS 72

-) ()")

and ky — 1 — k; < 0; hence the actual value is greater than zero. However, this

V=I=1,so0

condition may not hold when V < I (which is likely for many start-up companies),
and we provide an example with H(V) < 0 at the end of this section. Thus optimistic

predictions could lead to negative net payofTs.

Proof. Want to show k; — k; — 1 < 0. For GBM V(¢),

[+ 1+ 26+ 00)] = ~ [+ i+ 2 +)

_ ;1_-[\/,[1,% +2(r +ay) — \/u? +2(r + a)]

== 2(0£1 — a)
o2 tar) + ViE+2(r +a) (4.7)

k1~k2 -

Q|+

—

For the conservative case (a >), (4.7) is non-positive so k; — ky < 0 < 1. We
want to show that the relationship also holds for oy > a > 0.

In our example,

i
by —ky = 5[\/2500a3 +100a; +9 — \/25000@ — 1000y + 2000 4 9]

1 250007 + 100a; + 9 — (250002 — 100c; + 2000 + 9)

2 /250002 + 100a; + 9 + /25000 — 100a, T 200a 1 0
100(a; —)

/250007 + 1000 + 9 + /250007 — 1000 + 2000 + 9

Set

g9(a) = 100(a; — a) — \/25000@ +100a; +9 — \/2500a§ — 1000y + 200a + 9,

then &y —ky —1 < 0 iff g(a) < 0. We want to show that g(a) < 0 for all & > 0,
thus we need to show that the following conditions hold:
9(0) <0, (4.8)
g'(a) <0. (4.9)

CHAPTER 4. DECREASING INVESTMENT COSTS 73

g(0) = 100(ay) — \/250001% +100a; +9 — \/25000[{ —100a; + 9

< 100(ey) — \/25000@ +100a; + 1 — \/2500a§ — 1000 + 1
= 100(ey) — /(500 + 1)2 — /(500 — 1)2
= 100(&1) . 50(11 +1-— |50a —]_l

< 50a; —1— (50 — 1)
= 0.

Since the first condition holds, we now need to show that ¢'(a) < 0:

1 200
21/250002 — 100c; + 2000 + 9

gd(a) = =100

< 0.

Hence the second condition also holds and we have established that g(a) < 0. Thus
we have shown that k; — ky — 1 < 0. O

It is also useful to consider pessimistic predictions. The dominance of optimistic
estimates may lead a cautious investor to use a lower value than the true decay
parameter. Figure 4.13 shows the investment value and expected stopping time
when the estimated decay parameter is 50% less than the true decay parameter.
These graphs show that pessimistic predictions will lead an investor to wait too
long for investment and thereby reduce the investment value. Again the reduction

in value is less than 5%. For pessimistic predictions, & > a; and ky > k1, so we have
VM V*
HV) = V| — —I|—
v =% () (%)

L (V& V&
> () (%)

— F(V)2o0.

Thus the actual value is bounded by the predicted value. This means that actual

CHAPTER 4. DECREASING INVESTMENT COSTS 74

value is always greater than zero and so the net payoff is never negative. Therefore

pessimism is a safe strategy.

l T T T T
0.8F
0.6
0.4 g — — Predicted Value |-
v — Optimal Value
Actual Value
0.2 1 1] 1
0 0.2 0.4 0.6 0.8 1
Decay Parameter o
150
— - Predicted Stopping Time
— Optimal Stopping Time
100 .
501 y
0 1 - im EEE—————— e
0 0.2 0.4 0.6 0.8 1

Decay Parameter o

Figure 4.13: Pessimistic decay predictions

The above examples suggest that our model is robust; it is insensitive to relatively
large errors (£50%). In Figures 4.14 and 4.15, the decay parameter is fixed at
a = 0.5 and the relative error varies from -400% to 400%. Figure 4.14 shows the

investment values and Figure 4.15 shows the relative difference and loss. These

CHAPTER 4. DECREASING INVESTMENT COSTS 75

graphs demonstrate the need for measuring the decay parameter. Extremely large
errors (e.g. 400%) may reduce the value by as much as 30%. Furthermore, in some

special cases (e.g. V = 0.11), the net payoffs may even be negative (I'igure 4.16).

1 T 1 T T]] ¥
-~ — Predicted Value
—— Optimal Value .
09+ ~ Actual Value .= - -
0.8F g J
s
L
V'
0.7+ P i
V4
”
; >~
~
0.6+ P -
05F -~~~ |

0.4 1 1 1 1 1 1
-400 300 -200 -—100 0 100 200 300 400
Relative Error (%)

Figure 4.14: Investment value versus the relative error

4.4 Errors in the traffic growth parameter

In the previous sections we extended the fixed cost model to support decreasing
costs and studied the impact of errors in the decay parameter. In this section we
shall explain how to increase the traffic rate and investigate errors in the traffic
parameter. For simplicity we shall work with the fixed cost model described in
Corollary 4.1. However, we note that this model can be easily transformed into a
decreasing cost model by adding the decay parameter to the drift and interest rate.

In Chapter 3, we explained that the traffic rate is included in the drift v and so

CHAPTER 4. DECREASING INVESTMENT COSTS 76

0-4 I 1 I r 1 T T

Relative Difference
—— Relative Loss

a— 0 % 3 1 i 1 L 1 1 1
400 -300 -200 -—100 0 100 200 300 400
Relative Error (%)

Figure 4.15: Relative difference and loss versus the relative error

increasing the traffic rate by traffic parameter v is simply a matter of adding v to
the drift v. This means that the positive root is k = A(v +«y,7). We note that this
is different from the decreasing cost model with decay parameter . In that case,
the positive root is k = A(v + 7,7 +). In Chapter 3, we noted that there is no
optimal trigger in the GBM model when the drift is greater than or equal to the
interest rate, and that there is a similar relationship for the JDP model. Since both
v and <y are increased by the same amount in the decreasing cost model, there is an
optimal trigger in decreasing cost model whenever an optimal trigger exists in the
original model. However, only the drift parameter is increased when the traffic rate
is increased and so there is no optimal trigger in the GBM model when v + 7y > r.

Suppose that the estimated traffic parameter is wrong and that the true traffic

parameter is 7y, then the optimal time to invest is

™ = inf{t > 0|V (t)e™ > V*},

CHAPTER 4. DECREASING INVESTMENT COSTS 7

015 T T T
0.1 e e == e e .
0.05 y g — — Predicted Value
- — Optimal Value
Or -~ Actual Value b
—0.05F i
—0.1+ .
—0.15F 4
_0.2 1 1 1 1
0 0.2 04 0.6 0.8 1

Decay Parameter o

Figure 4.16: Optimistic decay predictions leading to negative investment values
with

k= Av+q,7),

. k
V' = k—lL

This strategy yields the maximum possible value

V-1 (%), o<V <y
V=1, V>V

F(V) =

However, the investor believes that the traffic parameter is v, and so it would

appear that the optimal investment time is

7 = inf{t > 0|V (t)e™* > V}'},

CHAPTER 4. DECREASING INVESTMENT COSTS 78

with

ki = AWw+mn,r),
ki

I.
k-1

=
Following this strategy the investor expects to receive

k1
V=D (%), o<V <vy
(V_I)’ VZ‘/l*

Fi(V) =

Based on the analysis, the investor will expect to receive Fj (V), however the
most they can receive is F(V). In reality, neither of these values will be achieved
because the errors in the estimate will lead to investment being made at the wrong
time: the analysis recommends investment at time 77 but the optimal investment
time is 7*. Since the investor observes V'(¢)e™ instead of V(t)e™?, the investment

will be made at another time
75 = inf{t > 0|V ()" > V*}.

Since this strategy is not optimal, the investment value will be less than the optimal

value F'(V'). The suboptimal value, H(V'), is given by

H(V) = Ey[(V(ry) - De™™I(1y < o0)]
= Eo[(V —De™ ™ I(n < 00)]
= (V¥ =De ™ I(r < 00)]

As in the predicted traffic model, the investment will only be made when the optimal
trigger exists and V* > 1.

Figure 4.17 shows the investment values and expected stopping times for Exam-
ple 3.1 with a = 0.462, v varying on [0,0.04] and the predicted traffic parameter y;
being 50% greater than the true traffic parameter 4. From earlier, we know that

there is no optimal trigger when the drift is greater than the interest rate, and so

CHAPTER 4. DECREASING INVESTMENT COSTS

79

Investment Values

Expected Stopping Times

1 T T — = T
08f _ _ ammm==T— K
}
0.6F i
!
0.4 "
~ - Predicted Value |
0.2 — Optimal Value |
~ Actual Value '-
O 1 1 - | el e
0 0.01 0.02 0.03
Traffic Parametery
nH=— - Predicted Stopping Time !,!:"
—— Optimal Stopping Time i
- Actual Stopping Time y
10

o 0]

(=)

0.02 0.03

Traffic Parametery

Figure 4.17: Optimistic traffic predictions

0.04

the predicted model and true model have no optimal trigger when <y is greater than

0.026 and 0.04 respectively. Prior to 0.026, the predicted model indicates much

larger investment values and this analysis prompts the investor to delay investment

until the value process reaches a higher threshold. After 0.026, the predicted model

indicates that there is no optimal trigger but this is false for v < 0.04.

CHAPTER 4. DECREASING INVESTMENT COSTS 80

4.5 Conclusion

Two simple models for building new infrastructure were presented in the previous
chapter. In this chapter we extended these models to support decreasing investment
costs. We found that the investment values are close for a JDP model and a related
GBM when the decay parameter is large. We then studied the impact of errors in
the decay parameter. We found that they reduced the investment value, but for
relatively large errors the reduction was less than 5%. For much larger errors the
loss is more significant. These results suggest that the optimal strategy, when duly
followed, will protect investors from large losses.

Unfortunately, models with small errors in decay parameter promise much higher
investment values. In the light of these inflated values, the investor may disregard
the optimal strategy and invest prematurely. Premature investment (based on op-
timistic predictions) may produce a negative investment value. Thus the investor
should adopt a conservative practice of following the optimal strategy and treating
predictions of the decay parameter with caution.

We also studied errors in the traffic rate and provided some brief analysis for the
original GBM example. As with the cost error model, the traffic error model predicts
incorrect investment values and encourages investors to invest at a suboptimal time.
Unlike the cost error model, however, the traffic error model may indicate that
there is no optimal trigger. This may lead an investor to postpone the investment
indefinitely even though an optimal trigger may exist.

In the next two chapters we shall develop a strategy for deciding when to increase
the transmission capacity on an existing link. We shall find an analytical solution

for two demand processes: a geometric Brownian motion and a logistic process.

Chapter 5

Increasing Link Capacity

In the previous chapters we investigated the option of adding a link between two
cities. This chapter considers the situation where the link has already been built
and there is an option to increase capacity on the existing link. We present a general
strategy for deciding when to make this investment and then provide an analytical

solution for a GBM demand process.

5.1 Introduction

The previous models assume that no cash flows can be obtained before the invest-
ment is made (e.g. no link has been built) and that the transmission capacity is

unlimited, that is

V(t)=FE [/oo P(s)e_r("’—t)ds]
where P(s) is the cash flow per unitt time. D’Halluin, Forsyth and Vetzal [20]
developed some PDEs for increasing the transmission capacity from a lower level
(e.g. OC-3) to a higher level (e.g. OC-48) and then applied a numerical PDE solver.
In this chapter we formulate a similar model and find an analytical solution.
Section 5.2 presents a general strategy for deciding when to increase the trans-

mission capacity from level Sy to level S;. This strategy could be applied to various

demand processes D(t). We assume that regulators have capped the price so that

81

CHAPTER 5. INCREASING LINK CAPACITY 82

each connection produces B dollars in revenue. The transmission capacity (also
called the supply level), denoted by S, is the maximum number of connections
which can be carried during a given time interval. If D(t) < S, the revenue per
unit time is SD(t). If D(t) > S some of the demand will not be met, packets will
be dropped or otherwise prevented from using the network, and so the revenue per
unit time is 8S. Thus the revenue per unit time is fmin(D(t), S).

In Section 5.3 we use a geometric Brownian motion to model the demand process.
This assumption was employed in the model of d’Halluin, Forsyth and Vetzal [20],
and in all of the previous models presented in this thesis. However, this assumption

will be questioned in the following chapter.

5.2 A General Strategy

In this section we devise a general strategy for deciding when to increase the trans-
mission capacity from Sy to S;. We first determine an expression for the expected
investment value that will be received if the investment is made when the demand
process D(t) first hits the threshold y. This function is represented by F'(D,y) where
D is the initial value for the demand process (D(0) = D). We then maximize this
function over all y > 0 to find the optimal trigger

y* = argmax F\(D, y).
y

The investment will be made when D(t) hits some threshold z. We define the
stopping time 7(y) = inf{¢t > 0 : D(¢t) > y} and write 7 = 7(y) when there is no
confusion. The revenue per unit time will depend on whether or not the investment

has been made:
e Prior to time 7, the transmission capacity is Sy. Thus the revenue per unit

time is Bmin(D(t), Sp).

e After time 7, the transmission capacity is increased to S;. Thus the revenue

per unit time is Amin(D(?), S1).

CHAPTER 5. INCREASING LINK CAPACITY 83

The present value of all revenues is obtained by multiplying the revenue per unit
time by e (where r is the risk-free interest rate) and integrating over [0, co).
As discussed in Chapter 4, we assume that investment costs are decreasing, thus
I(t) = Ie~®. For a sample path with stopping time 7, the present value of all

revenues is
R(r) = / min(D(t), So)e " dt + ﬂ/ min(D(t), Sy)e " dt,
and the present value of the investment cost is
I(1) = Ie ™™ = g~ (rta)T,
Thus the expected investment value for threshold y is
F(D,y)=F [/T Bmin(D(t), So)e "dt + /°° Bmin(D(t), Sy)e "dt — Ie~ T+ | .
0 T

The optimal trigger is
y* = argmax F'(D,y),
]

and the optimal investment value is
F(D) = F(D,y").
The function F(D,y) can be divided into three separate terms

F(D,y) = BE [/ " min(D(t), So)e'”dt] + BE [/ ~ min(D(®), Sl)e‘”dt]
_IE[e=(r+or],

In the remainder of this section, we shall present some general theorems which can
be used to calculate these terms for various demand processes. The general strategy

for optimizing the investment value is as follows:

e Find an operator £y on ¢ which satisfies

d[p(D(t))e™™] = Lad(D(s))e Mdt + opd'(D(t))D(t)e dB(2). (5.1)

CHAPTER 5. INCREASING LINK CAPACITY 84

¢ Find a unique bounded solution ¢ of £,.¢ = min(z, S) with |z¢/(z)| bounded on
[0, 00). Apply Theorem 5.1 to yield an expression for E [[T min(D(t), Sp)e "dt].

Since
0<C E [/0'00 min[D(s),Sl]e_”ds] <E [Sl /000 e_”ds} < 00,
we also have an expression for E [[~ min(D(t), S;)e"d]
E [/00 min(D(t), Sl)e_”dt} =C-FE []: min(D(t), Sl)e_”di] , (5.2)
and 0 < C < &,

¢ Find a unique bounded solution ¢ of L3¢ = 0 with |z¢'(z)| bounded on [0, y].
Apply Theorem 5.2 to yield expressions for the discount factors E[e™""] and
EJe=tr+o)7].

e Collect all the terms together in Theorem 5.3 to obtain an expression for

investment value F'(D,y).

e Maximize F(D,y) to obtain the optimal trigger y* and investment value

F(D,y").
Theorem 5.1. If ¢ is the unique bounded solution of
L.¢(z) = min(z, S),
where Lad(x) satisfies (5.1) and |z¢'(x)| is bounded on [0, 00), then

B| [nin(D(®), $)ett| = p(3)Ble™ - 4(D)

Proof. Integrating from 0 to ¢

#(D(t))e™™ — ¢(D) =/0 e‘”[L‘,gb(D(s))]ds-}—/O opd' (D(s))D(s)e " dB(s).

CHAPTER 5. INCREASING LINK CAPACITY 85

Recall that £,¢(z) = min[z,S] and put t = 7 A n, then

TAT

s —g(D) = [win(D(s), Sledst [oot (D(o)Dls)e " dB(s)
Taking expectations
Blot Am)e] - 30) = B| [minlD(e),sje7ras|
48| [ond (D) D)8 ()|
Note that M; = f; opD(s)¢'(D(s))e™™dB(s) is a marlingale as

E[M| < E[IM])

= B[[B DErEOE]]

N|=

and since |z¢'(z)| is bounded

(1

E [/0 o3 B [D(s)(¢(D(s))?)] e_ZNds} ‘oo [/0 t UZDe_z”ds] e
By the optional sampling theorem
E [./:M 0D¢’(D(s))D(s)e_”dB(s)] = 0.
When 7 < o0,

lim7An = 7,

n—oo

Tim ¢(D(rAn) = #(D(7) = d(),

as ¢ is continuous, and ¢ — D(t) can be assumed to be continuous along each sample

path, as B is. When 7 =00, T An =n and
|¢(D(n))e™™| — 0 as n — oo,
since ¢ is bounded and r > 0. Also

[#(D(r An))e™™| < [p(D(1 An))| < C < oo,

CHAPTER 5. INCREASING LINK CAPACITY 86

and so by Lebesgue dominated convergence
lim E [(D(r An)e™ "] = g(y)B 7] .
Let 1(-) denote the indicator function then
E [/OTAn min[D(s), S]e_”ds] =F [/000 1(s < 7 An)min[D(s), Sle”"*ds| .
Taking limits as n — oo
nlggo 1(s < 7 An)min[D(s), Sle™ = 1(s < 7) min[D(s), S]e™",
by considering 7 < co and 7 = oo as above.

[1(s < 7 An) min[D(s), Sle™™| < Se ™,

and 0 < f0°° Se "*ds < 00. By Lebesgue dominated convergence

n—0o0

lim E [/0 o min[D(s),S]e_”ds] ~E [/0 " min[D(s), Sle~"*ds| .

Thus i
5| [wisln) Sleds| = 8)Ele ™) - 4(D).

O
Theorem 5.2. If ¢ is the unique bounded solution of
Lxé(z) =0,
where Lag(z) satisfies (5.1) and |x¢/(z)| is bounded on [0,y), then
Ee?] = #D) (5.3)

d(y)

Proof. For A > 0

$DW)e = 4(D)+ [[Lp(D(o)leds + [" 056 (D(s)) D(s)edB(s).

CHAPTER 5. INCREASING LINK CAPACITY 87

Since Lx¢(z) = 0
$D@)e™ = 6(D) + [o (D) Dle)e B ().
Put t = 7 An, then
$Dr A = gD)+ [ot (D(E)D(s)e B
_ #(D)+ /0 " o min[¢ (D(s))D(s), Cile=>dB(s).

But
t o M, = /0 opmin|¢(D(s))D(s), Ci]e >dB(s),

is a martingale for each ¢:

t 3
E[|M:]] < [/ U%Cfds]
0

< topCi < o0.

So E[¢(D(1An))e "] = ¢(D), then taking limits with the same argument above:

WE[eX] = ¢(D).

Theorem 5.3.

F(D,y) = B {do(w) Ele ™ — 6o(D) + C — $i(y) Ele™™] + $(D)} — [Ele™ "),

where ¢ , ¢1 are bounded C? solutions of

L.do(x) = min(z,So),
£r¢1(m) = min(xasl),

C = E [[;° min(D(t), S1)e~"tdt] and E[e™7] is given by (5.3).

CHAPTER 5. INCREASING LINK CAPACITY 88

Proof. Applying Theorem 5.1 leads to
E [/OT min(D(t), So)e_”dt] = ¢o(y)Ele™™] — ¢o(D).
Applying Equation (5.2) and Theorem 5.1 leads to
E [/oo min(D(t), Sl)e—”dt] =C—¢1(y)Ele™™| + ¢1(D),

where C = E [[;° min(D(t), S1)e~"dt]. Collecting these results yields the expres-
sion for F(D,y). O

5.3 A Geometric Brownian Motion Model

In this section we start with the simplest case where the demand process D(t) is

assumed to follow a geometric Brownian motion
dD(t) = vpD(t)dt + op D(t)dB(t), (5.4)

where vp and op are the drift and volatility terms. Sections 5.3.1-5.3.4 are used to
derive the investment value F(D,y). Section 5.3.5 explains how the optimal trigger
is found, and Section 5.3.6 gives some numerical examples. From (2.4), we know

that the stopping time 7 is almost surely finite when vp — % > 0.

5.3.1 An expression for £y ¢(x)

We seek an expression for £Ly¢(z) which satisfies (5.1), where £ is an operator
applied to the function ¢(z). Lemma 5.4 provides an expression for the demand

process defined in (5.4).

Lemma 5.4. If the demand process D(t) follows a geometric Brownian motion
dD(t) = vpD(t)dt + opD(t)dB(t)

then Lip = 2ob22¢"(z) + vpzd'(z) — A(z) satisfies (5.1).

CHAPTER 5. INCREASING LINK CAPACITY 89

Proof. By Itd’s lemma, we have for any C? function ¢
dp(D(t))e™] = —X$(D(t))e Mdt + e ¢ (D(t))dD(t) + e"‘tqb”(D(t))%dD(t)Q
= —Xp(D(t))e Mdt + e ¢/ (D(t))[vpD(t)dt + opD(t)dB(t)]
+e"\t¢"(D(t))%D(t)2dt
= > {-x(D0) + DD + LDEPH D) | a
+ope ¢ (D(t))D(t)dB(t).
Let Lad(z) = —Ap(z) + vpzd/ (z) + F05H2°¢" (),

dB(DW)e™) = Lxp(D(s))e™dt + opd (D(6)) D(t)e dB(1).

5.3.2 A unique bounded solution for £,¢(z) = min(z, S)

Lemma 5.5 provides a unique bounded solution ¢(z) which satisfies L,¢(z) =
min(z,S) when vp # r. Lemma 5.6 provides an alternative solution for the spe-
cial case vp = r. Henceforth, we shall let ¢o(z) and ¢;(z) denote the solutions for
S = Sp and S = S; respectively. Figure 5.1 shows the ¢ functions for Example 5.1a
(see Table 5.1).

Lemma 5.5. If vp # r, the unique bounded solution of L.¢(x) = min(z, S) 4s:

ym_r—I—A:ckl, ifx <8,
P(z) = ¥ (5.5)
=8+ Bz*, ifz>S,
= VDkQ
A =)
r(vp — 1)(ka — k) Ski—1’ (5.6)
B = r— Vpki (5.7)

T(UD — T‘)(kz == kI)S"Q" ’
and k; and ko are the positive and negative roots of

%Usz(k —1)+vpk—r=0.

CHAPTER 5. INCREASING LINK CAPACITY 90

0 I T T T
— 0,®
—10¥ — 0,]
_20 =
__30 - d
—40 1
|
_50 _\\ -
\
\

=60 1

\

o~ N
_70 = Y~ - - _ N =
_80 L i | i —
0 2 4 6 8 10
X
Figure 5.1: The ¢ functions for Example 5.1a
Proof. We seek a unique, bounded solution of
1 z, ifx <S8,
502Dw2¢” (x) + vpxd'(z) — T = (5.8)
S, ifx >S5,
with |z¢'(z)| bounded. For z < S,
1
~052*¢"(z) + vpxd'(z) — rd = . (5.9)

2

The homogeneous solution is
¢(z) = Aiz™ + Az,
where k; and k; be the positive and negative roots of the characteristic equation
%a%k(k)+ upk—r=0. (5.10)

The particular solution is

CHAPTER 5. INCREASING LINK CAPACITY 91

In order that ¢ be bounded near 0, Ay = 0 (¢(0) = 0 from (5.9)), and so

H(z) = —— + Az™,

vVp—T

for z < S, which establishes the first part of (5.5).
For z > S,

%0’%372(15"(.’17) +vpzd' (z) — 19 = S.

The homogeneous solution is
#(z) = Byz™ + Bya*2.

The particular solution is

For ¢ bounded, we require B; = 0, and so
d(x) = _TS + Bz*,

for z > S, which establishes the second part of (5.5).
For ¢ smooth, ¢(S7) = ¢(S*) and ¢'(S7) = ¢/'(ST),
S -5

+ AS* = — 4 BSk, (5.11)
Vp—T T
1
+ Ak;SM71 = Bk,S*l (5.12)
Vp—T
Re-arranging (5.11) leads to

1 s .8

A = — |BS* - - =

Sk [vp—r r]
— BSkh _ = (5.13)

r(vp —r)Sk—1

Substituting this expression into (5.12) yields an expression for B

1 v
ko—1 B ko—k1 __ D k1—1
Bk, S — + [S r(vp = r) ST kS ,
1 vpk
B(k, — ko—1 _ DR1
(k2 = k1)S vp—r r(vp—r)

r — vpk;

R o s o

CHAPTER 5. INCREASING LINK CAPACITY 92

Finally, substituting this expression into (5.13) yields an expression for A

A = r— I/Dkl ko—ki __ Vp

r(vp —r)(ky — kl)S’“z‘lS r(vp —r)Sk—1
B r —vpk; vp
" r(up—1)(ky — k))S®T r(up — 1) Sk-T
r— I/Dkl'z

’I"(VD - ’I‘)(kg — kl)Skl_l .
We note that |z¢/(z)| < C for all z > 0. For z € [0, 5],

x

@) = [+ ks
S k1
= |1/D—r| +k1|A\S < 00.
For z € [S, 00),
|z¢'(z)| = |k2B.’L‘k2|
= |ks|| Blz*

< |k’2||B|Sk2 (as k, <0)

N

00.

So

|24/ (z)] < max [— + k| A|SH, ko BIS*2 | < 0.

lvp — 7|
We also note that ¢ is twice differentiable. We only need to show that the second

derivatives match at S,
¢”(S—) — ¢"(S+)
Re-arranging the PDE

&(z) = min(S, z) + :"qﬁ(x) — vpzd/(z)

2

, T#S.

z202

Since

¢(5+) = ¢(5-),
¢(S+) = #(5-),

CHAPTER 5. INCREASING LINK CAPACITY 93

we must have ¢”(S+) = ¢"(S—).

Finally, we note that ¢ is unique. Suppose that ¢; and ¢, are two solutions. Let
5 = ¢1 - ¢2a

then
L.¢=0.

The general solution is

é(x) = Az* 4 Bx*:.

Since ¢ bounded, we must have B = 0. Since ¢(0) = 0, we must have A = 0.
Therefore ¢ = 0. O

Lemma 5.6. If vp = r, the unique bounded solution of L,¢(x) = min(z, S) is:

27b+T (5.14)

-1—““(’) + Az, ifz <SS,
p(z) =

_TS+B:L';TD, ifx > S,
(n(S) + DA+ &) +1

A = i
G+ D) R

1 o qag+l
B - — 275 (5.16)
r(aa% + r)(é +1)

Proof. We seek a unique, bounded solution of

, ifx<S;
L2 2 () +rad (@) —r(z) = & (5.17)
2 S, ifz >S5,

with |z¢'(z)| bounded. Note that the only difference between (5.8) and (5.17) is
that vp has been replaced by r. For x < S,

%a%m%"(w) +rzd(z) — ré(z) = z. (5.18)

The homogeneous solution is

P(x) = Azt + Apzh,

CHAPTER 5. INCREASING LINK CAPACITY 94

where k; and k; are the positive and negative roots of the characteristic equation

(%asz + r) (k—1)=0. (5.19)

In fact, &y = 1 and ky = ;—%’ Particular solutions of the form ¢(z) = cx do not
D

apply here, so we use ¢(z) = cz In(z):

1 I :
Ea%xQd)”(m) +rzd'(z) —re(z) = 50‘%}1‘2 (g) + rz(cln(z) + ¢) — r(cin(z))
L 5
= ‘2”01_) +7) cx.
Hence the particular solution is
_ zIn(x)
¢($) - %UzD 4 'f‘.

In order that ¢ be bounded near 0, Ay = 0 (¢(0) = 0 from (5.18)), and so

_ zln(x)
#l) = 305+

for z < S, which establishes the first part of (5.14). For z > S,

+ Azk ,

%afjwzq&”(m) + vpxd'(z) —rd = S.

The homogeneous solution is
¢(z) = Bia® + Bya®2.
The particular solution is
#a) = 2.
For ¢ bounded, we require B; = 0, and so
#(z) = ~2 + Ba,

for z > S, which establishes the second part of (5.14).
For ¢ smooth, ¢(57) = ¢(St) and ¢'(S7) = ¢'(ST),

SIS | gg0 = =5 e, (5.20)
30pt+T T
BT, Apsht = BrySh, (5.21)

1.2
50p+T

CHAPTER 5. INCREASING LINK CAPACITY 95

Re-arranging (5.20) leads to

A = ! [Bskz—

L [asn— S0

oL +r T
rin(S) + 305 +7

_ ko—k1
= BS — T(%O’%—F’I‘)Skl—l ; (5.22)

Substituting this expression into (5.21) yields an expression for B

Brght = DO FL, [BS’“”"“ L ha i RPN
1oL+ r(30% +1)Sk-1 ’

In(S)+1 ki(rin(S)+ 305 +7)

S5+ T a r(305+7)

r(In(8) + 1)(1 — k1) — 0pk:
r(io% +r)(ky — k1)Sk—t

B(ky — ky)S®™ =

B =

Finally, substituting this expression into (5.22) yields an expression for A

r(n(S) + 1)(1 — k1) — 30%k1 4, 5, TIN(S) + 305+

A = B
'r(%U% + 1) (k2 — ky)Sk2—1 S 7‘(%0'123 r)Ski-1
= r(In(S) +1)(1 — k1) — ?I;Ufjlﬁ r(ln(S) +1) + %g%
T TrGeh k- kDS r(jeh+ Sk

r(in(S) + 1)(1 - ks) — lodks
’I"(%O’% + 'l")(kz — kl)Skl_l ’

Substituting k; = 1 and ky = ;—%’" leads to

In(S) + DA+ Z)+1
~(zop+m)(E+1)

B = =g22
r(30%+ T)(f_% +1)

We note that |z¢/(z)] < C for all z > 0. For z € [0, 5],

’ _ |=(n(=) +1) ks
@) = [FE2E) b
M)+—1)‘+k1lA|Skl %5 50,
1.2 +r

2V D

CHAPTER 5. INCREASING LINK CAPACITY 96

For z € [S,),

|z¢/(z)| = |k.Ba'2|
|ks|| B|z*2

< |ko||B|S* (as ky < 0)

A

Q.

So
S(In(S)+1)

2
5UD+7‘

|z¢'(z)| < max [+ ki A|S™, |k2HB|Sk2} < oo.

We also note that ¢ is unique and twice differentiable. This can be shown using

similar arguments to those given in the proof of Lemma 5.5. O

5.3.3 The discount factors E[e”""] and E [e—(r+a)f]

Lemma 5.7 provides expressions for the discount factors E[e™""] and E[e~("+%)7]

feg
E[e—(r-i-a)'r] — (g) A

where

o2 o2\ 2
_I:VD—_QQ] —l—\/(uD—TD) + 2ro?,
kl — D) 3

9p

2

2
_[VD—%D—] —I-\/(VD—%) +2(r + a)o?,

k‘g = D)
Op

Figure 5.2 shows the discount factors for Example 5.1a (see Table 5.1).
We note that the discount factor in Lemma 5.7 is equivalent to the discount

factor E[e~*7], which we derived for a GBM value process V (¢) in Section 3.2,

. (1%)%(—w\/m ,

v+

where pp = £ —

l9

CHAPTER 5. INCREASING LINK CAPACITY

97

4 I T T ! :
| — E[exp(r1)]
3.541 ~ — E [exp((r+o)t)] [1
3f -
|
_|

Figure 5.2: Discount factors for Example 5.1a

Lemma 5.7.

Ele™>] = (D) o (—ut /)

Y

]

where pu = %—522

Proof. We seek a unique, bounded solution of

%asz2¢"(x)+VD-’L‘¢'($) — (@) = 0,

with |z¢/(z)| bounded. The solution is
é(x) = Az*,
where A > 0 and k is the positive root of

%a?)k(k —1)+wvpk—A=0.

CHAPTER 5. INCREASING LINK CAPACITY 98

Hence

o? o2\ 2 9
~ |- —22] n (uD - —22) + 2202,

72
—p+ /B + 2X
1
op

D

where pu = 5% — %2, For z on [0,y],
lzg/ (z)] < Kk|AlyF = Ci < oo,

Applying Theorem 5.2,

. 9(D)
B[] = d(y)
AD¥
AyF

30

5.3.4 An expression for E [[;° min(D(s), S)e~"*ds]

Theorem 5.8 provides an expression for Ej [[min(D(s), S)e~"*Vds]. Setting

t = 0 provides an expression for

o0
C=E [/ min(D(s), S)e_”ds] .
0
Since there is no closed form solution, numerical integration techniques (e.g. Simp-

son’s rule) can be employed.

Theorem 5.8.
E, [/ min(D(s),S)e"(s‘t)ds] _ / {D(£)e">-ICDN(~dy(s)) + Se "D N(das))} ds
t t

where

log(D(t)/S) + (vp + 0?/2)(s — 1)
dl(s) O’\/m 1
do(s) = di(s) —ovs—t,

N(z) = —\/15—; /_ lexp (—z—;) iz

CHAPTER 5. INCREASING LINK CAPACITY 99

Proof. We seek
V(t) = By [/is ” min(D(s), §) exp(—r(s — t))ds] |
We can take the expectation inside the integral and note that
min(D(s), S) = D(s) — (D(s) = §)",
SO

dv(s) = {Et[D(s)e_T("t)] — Ei[(D(s) — S)te)] }ds
= {D(t)er™"Et — E,[(D(s) — S)te Y] }ds.

We note that E,[(D(s) — S)Te "] is like a call option and so
E[(D(s) — 8)* e 9] = D(1)e"> "IN (d1(s)) — Se™"" I N(da(s)),

where

dy(s) = log(D(t)/S) + (vp +0?/2)(s — 1)
' ovs—1 '
and dy(s) = d1(s) — 0+/s —t. Combining these two results we have

dV(s) = {D()e¥> "=t — De@>=IN(dy(s)) + Se "I N(dy(s))} ds
— {D(t)e®P "IN (—dy(s)) + Se "IN (da(s)) } ds.

Thus

V(t) = /t ” {D(t)e*P= N (—dy(s)) + Se "I N(dy(s))} ds.

Lemma 5.9.

E [/0 h min(D(s), S)e‘”ds] = /0 h { De®P~"2*N(—dy(s)) + Se " N(dy(s))} ds,

CHAPTER 5. INCREASING LINK CAPACITY 100

where
2
di(s) = log(D/S)+ (vp+ 0o /2)31
oy/s
dg(S) = dl(S) '—0'\/5,
N(z) = L/ac ex (_z_.!) dz
T Vo) P\ T2)%

Proof. Set t := 0 in Theorem 5.8. [

5.3.5 The Optimal Trigger

In this section we shall find the optimal trigger y* for F(D,y). The investment
function F(D,y) has a distinct form on the following three regions: [0, Sp], [Sp, Si]
and [S7,00). A local maximum may be found by applying the bisection method to
ol 65’”) = 0, but we must first establish uniqueness and existence. We would also
like to determine the region in which the optimal trigger ¥* will reside. Lemma 5.10
shows that y* must be greater than the initial transmission capacity (Sy) so y* may
be in the second region (Sy,S1) or the third region (S;,00). Theorem 5.16 shows
that the optimal trigger exists and is unique, and Algorithm 5.17 provides a method

for finding »*.
Lemma 5.10. The optimal trigger y* is not in [0, Sy).

Proof. We can establish this result by first showing that

D\
F(D7y) =Cl -1 (;) Vy € [O’SO]’

for some constant C;. This implies that

OF(D,y)

. 1 k3+1
— kIDR (2
8’y k3 (y) > 0, Vy < [0, So],

and so the optimal trigger is not in [0, Sy].

CHAPTER 5. INCREASING LINK CAPACITY

101

First, consider the case vp # r,

F(D,y) = ﬂ(y +A0y’°1) (%)h — B¢o(D) + BC

Vp—T

’Cl k'.'.
5 (y +A1y’“) (9) T Bu(D)— T (9)
vp—rT Y v

kg
= B(AeD* — ¢o(D) + C — A D" + ¢(D)) — I (g)

k3
e
Yy

where C; = B(AyD* — ¢o(D) + C — A D*¥* + ¢1(D)) and

- - 2
- I/D—E;’Q —I—\/(VD—%B) + 2ro?,
kl = - = O'E)]
[o3] AN 2
— VD—T - (VD—T) +2’I"0'D
k2 - 0'% ?
- o2] 02\ 2 5
—|vp— 2|+ (VD — —22) +2(r + a)o%
ks = 0213 .

Now, consider the case vp =7,

F(D,y) = B (yfn(y) ; Aoy) (g) — Bo(D) + BC

°D
2 T

(0 40) (2) s -1 (2)"

k3
= B(AD* — ¢o(D) + C — A, D" + ¢(D)) — I (%)

ks
o)
Yy

where C; = B(AoD — ¢o(D) + C — A1D + ¢1(D)) and

ki, = 1,
—2r
S
0'2 o 2
—[T—TD]-F (T‘-I—TD) + 2a0%
ks =

CHAPTER 5. INCREASING LINK CAPACITY 102

Lemma 5.11. Fory € Sy, Si], we can write

16)
F, D7 = -1 f— Y),
(D,y) 7\ ()
where
ks—Fk
il B +(’,‘,’” Bl 4 (ky — k) Boy + 82 (2) 7, vp #15
= y = _2T k3—1
% + f“z”—l)Boy"D +—3—(§) , VUp=T.

Proof. First, consider the case vp # r,

F(D,y) = ﬂ(—S—O+B)(%)kl—ﬂqﬁo(D)ﬂLﬂC

y : D k1 D k3
(e ant) (3) +osw-1(7)

= B(—o(D)+ C — A, D" + ¢,(D))

+B8D" (_Soy—k1 _ y—(kl—l) _|_Boyk2—k1)
T

@

OF(D,y) _ B (Q)kl (leO " (k1 — 1)y

oy y\y r vp—T
1 ka-F1
+ks I D" (Q)

e

Now consider the case vp =,

F(D,y) = ﬂ<ﬁ+30y;'2;) g—ﬂ%(D)‘FﬂC

k3
(o)y e -1(7)
= B(—¢o(D) +C — A1 D + ¢:1(D))

—So 2In(y) =21
Dk - B
P (ry o4 +2r +Boyh

@

vVp—T

Thus

+ (kg — k1)Boyk2_1>

CHAPTER 5. INCREASING LINK CAPACITY 103

Thus

i —2r __
Oy yy \r oh+2r o

k3+1
+kgI D (1> "
y

()

O
Lemma 5.12. If f_(y) =0 then f' (y) <0.
Proof. We need to establish three intermediate results:
'!'(kl + k)z - 1) — VDklkz = 0, (523)
-1
Bzl oy, (5.24)
Vp—T
r—vok (5.25)
r(vp —T)

First, consider (5.23)

o7 o2 o2\ ‘
—9) ~ 2 — D32 | 9pg?
T(kl + kz bl 1) — VDk1k2 = r (ip—ﬂl — 1) —Up [yD 2] {(VD 2) + To-D}

7% g X
r(—2vup + 05 —0%) + 2vpr

0
5 .
oh

Second, consider (5.24). If vp > r, we have k; < 1. Thus k; —1 <0 and vp—r > 0,

and so

Vp —T

Suppose instead that vp < r, then k; > 1. Thus k; —1 > 0 and vp —r <0, and so

.(_k:l__9<0_
Vp—T

Third, consider (5.25). Using (5.23) we know that

(7‘ e VDkl)kz = —’f‘(kl — 1)

CHAPTER 5. INCREASING LINK CAPACITY 104

Thus
T — I/Dkl N —T(kl == 1)
rlup—r1) rko(vp—7)
_ —lk -1
" kyvp—r1

Since ;—: > (} and ;kll)_?lr < 0, this expression must be negative. Since B is a product
of two negative terms (T(V;L')’E’:—)l and ﬁ) and some positive terms (% and Sl_kz),
this result also establishes that By and B; are positive.

Now let’s return to our original problem. We want to show that f (y) = 0

B
setting f_(y) = 0, and substitute this expression into f’ (y) to give a new function

ks—k
implies f’ (y) < 0. In each case, we shall find an expression for — %I (%) o by

9(y). We will then show that g(y) < 0, Yy > Sy, by showing that

g(SO) S 0;

gdy) < 0Ofory>5S,.

First let’s consider the case vp # r,

ksI (D\™™ kS, (k1—1
Taking derivatives and substituting (5.26) into f’ (y),
_ I
g(y) _ M + kz(kg _ kl)BOykg—l + —(kg _ kl kLDka—hy—k:s—l—kl—l
vp—r B
k-1
e
Vp—T
k1S k-1
+(k3—k1){ 1% (ky)+(k2—k1)Boyk2_1}
TY Vp—T

kyS ky—1
— (k3—k1);—?/()+(k3—k1+1)(1= 1)

kalks = k) So | o g)z D)
T Y vVp—r

r —vpky
(ks — by + ko) (ks — ko
(ks =k + ko) (k2 1)7'(1/D —1)(ky — ky) S

ks — k1 4 ko) (r — vpky) (Y)’“2—1

+ (ks — k1 + ko) (kg — kl)Boyk2_1

Vp—T

ko—1
= i

falks =) 5o | (g, gy Lz D)
r Y vp—T r(vp —r)

So

CHAPTER 5. INCREASING LINK CAPACITY 105

At y = Sy, we have

_ ki(ks — k1) So B (ki —1) (ks — k1 + ko) (r — vpky) (8™
9(S0) = r So + (ks — k1 + 1) vp—T + r(vp —r) &

= kl(k3 - kl) + (k3 o kl i 1) (k}l - 1) 4 (k3 — kl + kz)(’f' — I/Dkl)
r Vp—T r(vp —)
. kl(k3 o kl)(VD — 'r) -+ 'I"(k?l — 1)(]63 — kl + 1) + (k3 — kl -+ kg)(’/‘ — I/Dkl)
B r(vp —r)
i I/Dkl(kg e kl) - rkl(k3 — k‘l) + T'kl(kg, — kl) -+ T‘k?l - ’f‘(kg — kl) —-T
N r(vp—r)
‘}_?‘(kg — kl) + 'f“kg = Vpkl UC;; — kl) — VDkag
r(vp — 1)

o T(kl + kg — 1) — VDklkg -0

r(vp—r))

Taking derivatives

oy —ki(ks — ki) So | (ko — 1) (ks — ki + ky)(r — vpky) (Y72
g ('!/) = = 92 + T(VD — 7‘) S(I;:-_;—i
ka
_ ioz_ —kl(kg—k1)+ (kg—l)(k3—k1+k2)(T—VDk1) _yT .
rYy Vp—T So

The first expression —k; (k3 — k1) is negative because k; > 0 and k3 > k1. We note
that k; —1 < 0 and (r —vpk:1)/(vp —) < 0. Thus the second term has the same
sign as ks — ky + ko. If k3 — k1 + k2 < 0, both terms are negative and we have
established that g'(y) < 0. Now let’s consider the case where k3 — k1 + ko > 0. Since

the second term is positive and (3%)’“2 <1,

’ S[) (kg—l)(k3—k1+k2)(r—u kl)
g(y)<r—y5{—k1(k3—k1)+ - P }

We can split our positive term into a positive and negative part

(kg — 1)(’63 — kl + kg)(’l" s VDk'l) = (kz s 1)(k3 — kl)(’f‘ - VDkl)_{_ (k2 — 1)k2(T — VDkl) ‘

Vp —T Vp—T Vp —T

CHAPTER 5. INCREASING LINK CAPACITY 106

Since k3 < 0, the second term is negative and

dly) < %OE {—kl(k3 — k) + (ka2 — 1)(’631/[—) ﬁ13'(1‘ — VDkl)}

~ So(ks — k1)

= vy =) p =)+ (e = 1) —vphk)}

= So(ks — ki) {=kwp+ 1k + ks — 7 — Upk1 Ky + vpk} = 0.
ry2(vp — 1)

Now consider the case vp = r,
koI (D\®' 8, 2y —2r =g
e = —— I p— - —_—]_ B y . 527
2 (y) rohter \dh W G20

Taking derivatives and substituting (5.27) into our expression for f_(y),

2 —2r [=2r =21 ksl k1 _kgr1—
= - + —1)Boy“d — (ks — 1) pha—Ly—kat1-1
g(y) 9 o (T%) (D)) oYy P (3) ,6 Yy

2 —2r (=2 =2
= S +— (2T_1)Bo’yaD
op -+ 2r op op

So 2 —2r =2r 1
ks —1)¢ — — — 1) Byy°
il){ry 0%+2r+(0%) e }

S 2k —2r —2r =2
— (kg‘—l)r—;—) 2 +<k3—1+—2) (?——1)BoyaD

op +2r 0P D
(k=18 2k
h roy o4+2r

=2r\ [—2r 192§D =2r_y
+(k3—1+ 2)(- —1) e ——y b
D D T(EUDWLT)(g +1)

(hs=1)S 2k 2r—o}(ks—1) (&) 4

r Y B 0% +2r r(o% + 2r) Y

At y = Sy, we have

(ks—1)Sy 2ks 2r—od(ks—1) (So\ 5™
r S, o%L+2r r(o% + 2r) (S_O)
(hs—1) 2y 2r— o (ks —1)
r oL +2r r(o} + 2r)
(ks — 1)(0% + 2r) — 2rks + 2r — 0% (ks — 1)
r{o% + 2r)
obks — b + 2rks — 2r — 2rks + 2r — o}hks + 0h
r(o% + 2r)

9(S) =

0.

CHAPTER 5. INCREASING LINK CAPACITY 107

Taking derivatives

dy) = —(ks =15 <j’j B 1) (2r — o2 (ks — 1)) (&) o

r Y2 e ry(o2 + 2r) Y

Ip
S, 02(ks—1)—2r (S f%r;
= T—;z-{—(k3—1)+ piks 2) (—0) }

255} y

The first expression —(k3 — 1) is negative because k3 > k1 = 1. The second term
may be positive or negative depending on the value of k3. If the second term is
negative, both terms are negative and we have established that g'(y) < 0. Now let’s

consider the case where the second term is positive. Since (3%’3)’“2 <1,

gy < So {_(k3 1)+ op(ks —21) — 27'}

ry? o5

—2r

0p

Lemma 5.13. Fory € [S;,00), we can write

F(D,y) =1 (5) /@),

where

ka—ki
4 (ky — ky)(Bo — By + 2L (9> |

k -8
f+(y) = I(SO,’_ 1) ,8 y

Proof. In each case we have,

s k1
Fw) = 6(Z2 4 mu) () —saD)+sC

k1 k3
o () (2) p0m)-1(3)
r Y)

= B(—¢o(D) + C + ¢:1(D))
+BD* (——_(SOT_ Sl)‘y_kl + (Bo — Bl)ykz_kl)

@

CHAPTER 5. INCREASING LINK CAPACITY 108

Thus
OF(D,y) _ B (D\" (k(So—) "
— = == _ — By — B)y™
By o\ " + (k2 — k1)(Bo — Br)y
1 k3+1
+k3 1 D (—)
Yy
-6
v \y Fi(y).
O
Lemma 5.14. f'(y) <0 Vy & (S;,00)
Proof. Taking derivatives
7 o ko kSI ks—ky,,—ka+ki—1
Fi(y) = kalks — k1)(Bo — Bi)y™ — (ks — kl)FD Yy .
Since By — By < 0 and k3 — k; > 0, both expressions are negative and so
fi(y) <o.
O
Lemma 5.15.
i ki(So— S

Proof. Since ky < 0 and —(k3 — k1) < 0 the expressions containing y* and y—(ks—k1)

vanish as y — oo. O

Theorem 5.16. If f_(S;) < 0 then the optimal trigger lies in the second region
(S0, S1] and y* is the unique root of f_(y) = 0. Otherwise, the optimal trigger lies
in the third region [Si,00) and y* is the unique root of f,(y) = 0.

Proof. From (5.23) we know that f_(Sp) > 0. Suppose that f_(S;) < 0 then there
exists some value y; € (Sp, S1) with f_(y1) = 0. Since f_(y) = 0 implies f’ (y) <0
(Lemma 5.12), we know that this zero is unique. Since f1(S;) = f-(S1) < 0 and

CHAPTER 5. INCREASING LINK CAPACITY 109

fi(y) is a decreasing function, there are no zeros for f.(y) on (S1,00). Thus ¥
is the unique optimal trigger. Now suppose that f_ (S1) > 0. Lemma 5.12 implies
that there are no zeros for f_(y) on (S, S1). Since f.(S1) = f-(S1) > 0 and
f+(y) is a decreasing function (Lemma 5.14) and converges to a negative number
(Lemma 5.15), there exists some value g € (S1,00) for which fy(y2) = 0. Thus y,

is the unique optimal trigger. O

Algorithm 5.17. If f_(S)) < 0, then apply the bisection method to f_(y) on
[So, S1]. Otherwise, apply the bisection method to F+(y) on [S1,y4] where

kl(Sl —_ So) 1/k2 ,Bkl(sl _ S[)) —1/(k3—k1)
Yy = max ,D PR1P1 ™ O0) ‘
3r(ky — k1)(Bo — B1) 3rks]

Proof. This algorithm comes directly from Theorem 5.16. We need only find an end
value y, which satisfies f,(y4+) < 0. Choose y; such that

k1(S1 — So)

(ks — k1)(Bo — Byl < =

i.e.

:[k1(S1 — So)]1/’“2
N Bk, —k)(Bo— Br)|

Next, we choose ¥, such that

ksl (D)ks_kl < k(81 = 5)

ﬁ% 3r ’

i.e.
-D Bk (S) — Sp) | /e

e 3rksl ‘

Finally, choose y™ = max(y1, %) then
ki(So— S ksI (D\5™
felys) = —1(—0—1—) + (ko — k1)(Bo — Bl)y—kl:—z + = (—)
r B \y+
< BS=5)
3r

CHAPTER 5. INCREASING LINK CAPACITY 110

5.3.6 Numerical Examples

This section provides some numerical examples for the vp # r and vp = 7 cases.
The vp # r examples, labelled 5.1a-d, use the vp, op and r parameters in d’Halluin
et al. [20]. The vp = r examples, labelled 5.2a-d, use the r and o parameters in
Dixit and Pindyck [22]. As explained in Chapter 4, we assume that costs decrease by
a factor of two every 18 months (i.e. & = 0.462). For each case, we give an example
where the optimal trigger y* lies in the second and third regions. Next, we explain
how our model is used when there is no prior investment (i.e. Sop = 0). Finally, we
explain how to shift the trigger between the two feasible regions by changing one of
the initial parameters and holding the other parameters constant.

As discussed previously, the trigger may lie in the second or third region. Ta-
ble 5.1 includes some examples for both cases. In Examples 5.1a and 5.2a, y* lies
in the second region (see Figure 5.3). In Examples 5.1b and 5.2b, y* lies in the
third region (see Figure 5.4). Note that in each case, y* was shifted from the second

region to the third region by increasing the ratio I : 3 by a sufficient amount.

Example |vp |op |7 D|S |8 |1 Jé] y* F(D,y*)
5.1a 07510950051 [1 |4 |1 0.9 | 1.9819 | 56.8090
5.1b 0751095100511 |1 |4 |2 0.2 |4.3544 | 11.9094
5.2a 004102 [004|1 |1 [4 |5 0.2 | 1.9803 | 8.5534
5.2b 00402 (0041 |1 [4 [200]0.15] 4.0515 | 5.3642

Table 5.1: Shifting the trigger into the third region

Figures 5.3 to 5.5 show investment values and derivatives for selected examples.
The upper graphs show the investment values and the lower graphs show their
derivatives. The optimal triggers and transmission capacities are indicated on each
graph. We used the values of F'(D,y) at each step (dy = 0.01) to validate the

derivative function given in Section 5.3.5:

OF(D,y) F(D,y+d8y)—F(D,y) F(D,y+0.01)—F(D,y)
oy Sy - 0.01 '

CHAPTER 5. INCREASING LINK CAPACITY 111

54

Investment Value F(D,y)
(9,1
(\®)

wn
=]
o

5 10 15 20

e
W
T

|
e
w
T

Derivative of F(D,y)

0 5 10 15 20

Figure 5.3: Investment values for Example 5.1a

Note that the solid line in Figure 5.5 corresponds to the vp = r model (i.e. Ex-
ample 5.2¢). Two close examples with 7 = 0.039 and r = 0.041 are also shown for
verification purposes.

The models in Chapters 3 and 4 assume that there is no prior investment. For
bandwidth investments, this means that there is no capacity on the link; either no

fibre has been laid or no switches have been installed. In the current framework, we

CHAPTER 5. INCREASING LINK CAPACITY 112

—
(V3]

J—
\S)

Investment Value F(D,y)
= =

1= . :
= :
[.
o :
R
w® :
> .
o
5 0.5} SG SI T
_1 1 1 1
0 5 10 15 20

Figure 5.4: Investment values for Example 5.1b
have Sy = 0 and the investment value is
Fi(D,y) = B{C — ¢1(y)Ele™""] + $:(D(0))} — IE[e~)],

where C = E [[{° min(D(t), S1)e"dt]. We observe that F(D,y) and Fy(D, y) only
differ by 8 {¢(y)E[e™""] — ¢o(D(0))},

F(D,y) — Fi(D,y) = 8 {¢o(y) E[e™™"] — ¢o(D(0))} -

CHAPTER 5. INCREASING LINK CAPACITY 113

10 . | |
5 - —r=0.039
A — 1=0.04]
: -~ 1=0.041
2 4
5 6 |
>
g 4r -
.
D ’— —
E]
0
0 20
0.5 . | |
>
g 0 .
[ad
[
o
.“é’ -0.5F |
w
2
= - —1r=0.039 |
] — r=0.04
— 1=0.041
-1.5 ; . |
’ > 10 T -
y
Figure 5.5: Investment values for Example 5.2c
But
___SQ. r—unk; s .
¢ (.’17) = u) + r(VD—'I‘)(kZ_kl)S:;';;—l T, Vp # T
0 %l + r(in(So)+1)(1—k1)—gohk1 k2 Vp=T.

r(3o%4r)(ka—k1)S52 T

and since ks — 1 < 0, we have ¢o(z) = 0 for all z > 0. This means that the two

functions are equivalent and so the general formula also works for this special case.

We note, however, that only the second and third regions are meaningful. Table 5.2

CHAPTER 5. INCREASING LINK CAPACITY 114

lists some examples with Sy = 0. We observe that y* is in the second region [So, 5]
in Examples 5.1c and 5.2c. But as before, we can shift y* into the third region
[S1, 00) by increasing the ratio of I : 8 (see Examples 5.1d and 5.1d). Example 5.2c

is shown in Figure 5.5.

Example |vp |op |7 D[Sy |8 | I 6 |y F(D,y*)
5.1c 07510951005[1 [0 |4 |1 0.9 | 0.8108 | 56.5320
5.1d 0.751095|1005(1 [0 |4 |5 0.2] 5.6488 | 10.5174
5.2¢ 004102 (0041 [0 [4 |5 0.2 | 1.5262 | 6.9211
5.2d 004102 |004|1 [0 [4 |200]0.1]4.0111 | 1.8501

Table 5.2: No prior investment

In the previous examples, we shifted y* between the feasible regions (i.e. (So,S]
and [S;,00)) by changing the values of I and #. Theorem 5.16 provides some
threshold values for I, 8, D, Sy and S;. Holding other parameters constant and
raising (or lowering) the given parameter beyond its threshold value shifts y* into
the adjacent feasible region. In fact, y* € [S,00) is equivalent to each of the

following relations:

I > T (5.28)
B < B, (5.29)

> D, (5.30)
So > 5, (5.31)
S, < 8. (5.32)

The threshold value for a given parameter is simply the parameter value which

makes g(I, 3, D, Sy, S1) = 0 where

Q(I,ﬂ,D, So, 51) . f—(Sl) == f+(Sl)-

Since fi(z) is identical for the vp # r and vp = r cases, we rearranged f,.(S)) = 0

CHAPTER 5. INCREASING LINK CAPACITY 115
Example | D So S 1 8 y* F(D,y")
5.1a 22.5234 | 1 4 1 0.9 4 75.7079
5.1a 1 2.8779 | 4 1 0.9 4 57.1321
5.1a 1 1 19819 | 1 0.9 1.9819 | 30.1267
5.1a 1 1 4 7.4781 0.9 4 54.0884
5.1a 1 1 4 1 0.1204 | 4 7.2360
5.1b 0.7507 |1 4 2 0.2 4 11.6116
5.1b 1 0.7235 | 4 2 0.2 4 11.8178
5.1b 1 1 4.3343 | 2 0.2 4.3343 | 12.8445
5.1b 1 1 4 1.6618 0.2 4 12.0197
5.1b 1 1 4 2 0.2407 | 4 14.4656
5.2¢ 3.4421 |0 4 5 0.2 4 12.7682
5.2¢ 1 3.6267 | 4 5} 0.2 4 9.0547
5.2¢ 1 0 1.5262 | 5 0.2 1.5262 | 3.7094
5.2¢ 1 0 4 394.9862 | 0.2 4 3.7094
5.2¢ 1 0 4) 0.0025 | 4 0.0470

Table 5.3: Threshold values

to obtain a general formula for the first three threshold values:

™) ~)

o

£(%
ks \ D

tat

S

)ka—kl {er;go_) + (ks — k) (By — BU)S}""} ;
D)’“S_k1 {ﬁslr;sﬂ + (ky — k1) (By — BG)S{‘"*}_I :

ki(S1— S s L)
S (k_ff {L“TL) + (k2 — k1) (By — BO)S{‘”}) .

The threshold values for the supply levels, 6”\0 and S\'l, can be found by applying

numerical techniques (i.e. the bisection method) to fi(S81) = 0. Table 5.3 shows

the threshold values for Examples 5.1a, 5.1b and 5.2c. In each case we replaced

the original value with the threshold value and thereby shifted y* to the boundary

between the second and third regions (i.e. S;). We note that the ,5/‘\1 = y* in

CHAPTER 5. INCREASING LINK CAPACITY 116

Examples 5.1a and 5.2c. This result is generalized in Lemma 5.18. We also note
that in some cases it may not be possible to find a value of .% that lies is within

[0, S1].
Lemma 5.18. If f_(S1) <0, then 5 = y*.

Proof. Observe that 3 is the unique root of f_(y) =0. If f_(S;) <0, y* is also a
root of f_(y) =0 and so 5 = y*.
O

5.4 Conclusion

In this chapter we formulated a general strategy for deciding when to increase the
transmission capacity, found an analytical solution for the GBM model and gave
some numerical examples. The analysis suggests that there is a unique optimal
trigger which is greater than the original transmission capacity. In the next chapter,
we will find an analytical solution for an increasing capacity model that incorporates
demand saturation. The behaviour of that model will be compared with that of the

GBM model.

Chapter 6

Demand Saturation

In the previous chapter we developed a model for increasing link capacity. Like
earlier models, this model assumed that the demand process follows a geometric
Brownian motion (GBM). However, this assumption raises some questions in a finite
population. This chapter extends the increasing link capacity model to support

demand saturation.

6.1 Introduction

The previous models assumed that the demand process D(t) followed a GBM. As
noted in Chapter 2, a GBM with positive drift will grow exponentially on average,
but the demand must be limited by a finite population. Thus we would expect that
the demand process will ultimately taper off to some value D. In Section 6.3 we will
use a logistic demand model to model demand saturation

dD(t) = n(D — D(t))D(t)dt 4 o D(t)dBp(t).
A logarithmic process

D(t
dD(t) = —nln [%] D(t)dt + oD(t)dB(t),

and other mean-reversion processes could also be used. Once the logistic demand

model is developed, we would like to compare its behaviour to that of the GBM

117

CHAPTER 6. DEMAND SATURATION 118

demand model. We define ‘a logistic variation of the GBM defined by
dD(t) = vpD(t)dt + opD(t)dB(t),

by choosing D arbitrarily and then setting n = %D and 0 = op. Figure 6.1 shows
the sample paths for a GBM and a logistic variation with D = 1000, LP(1000).
We note that the sample paths are close prior to reaching this demand saturation
point (i.e. when D(t) << D), however the GBM continues to grow after the logistic

process reaches the demand saturation point.

4000 T T T T ™ T

3500

L]
1

3000

Demand D(t)
ot N N
19, o wn
[(] (=]
o < [

1

0 1 1 1
0 100 200 300 400 500 600 700
Time t

Figure 6.1: A geometric Brownian motion and a logistic variation

6.2 Kummer’s Equation

Dixit and Pindyck used a logistic process to extend the classic investment model

to mean-reversion models [22, pages 161-167]. Kummer’s Equation, which has the

CHAPTER 6. DEMAND SATURATION 119

form
29" (2) + (b — 2)g (z) — ag(z) = 0,
was used to solve their model and it will also be used to solve the logistic model in

Section 6.3. Abramowitz and Stegun [1] list eight possible solutions for Kummer’s

equation. In this thesis we only use three of these solutions

w(z) = M(a,b,z),
up(z) = 2"°M(1+a—b,2-b,2),
uz(z) = Ula,b,2),

where

M(a,b,z) = 2_; (((lg::z‘ ,

(@n = Iola+i),

o M(a,b, 2) Ly M1 +a—b2-b,2)
Ulab2) = o [I‘(l Ta_bre) I'(a)T(2 - b)] - (6.3)
The Wronskians are as follows
w(1,2) = (1-b)z7’, (6.2)
wW(1,3) = -T(b)z7%/T(a), (6.3)
W(2,3) = -T(2—-b)z%*/T(1+a—b). (6.4)

We note that W(1,2) is non-zero when b # 1. This property ensures that u1(z) and

uy(z) are linearly independent. The Kummer functions have the following limits

s (=2) [+ 0(lz|)], 2 <0;

lim M(a,b,z) = (6.5)
z2—00 ;_%ezza—b[l + O(|z\‘1)], 2> 0.
lim U(a,b,2) = z7°[1+O(|z]™)]. (6.6)

Z2—00

where I'(-) is the gamma function defined in Definition 6.1. We shall use the following

equations from [1] in subsequent calculations:

13.1.27 M(a,b,2z) = e*M(b—a,b,—2),

CHAPTER 6. DEMAND SATURATION 120

13.1.28 2'°M(14+a—b,2—b,z) = 2'%*M(1 — a,2 — b, ~z),

13.4.08 M'(a,b,z) = $M(a+1,b+ 1, 2),

13.4.10 aM(a + 1,b,2) = aM(a, b, 2) + zM(a, b, 2),

13.4.13 (b—1)M(a,b—1,2) = (b— 1)M(a,b,2) + 2M(a,b, z).

13.4.23 a(l1+a—b)U(a+1,b,2) = aU(a,b, 2) + 2U'(a, b, z).

Definition 6.1 (Gamma Function). The Gamma function I'(z) is defined by

0
/ t*"le7tdt (Rz > 0),

o0

and has the following properties [1, Chapter 6]:

[(z+1) = 2T(2), (6.7)
I'(n+1) = n! ifneZ". (6.8)

6.3 A Logistic Model

The demand process D(t) is assumed to follow a logistic process
dD(t) = n(D — D(t))D(t)dt + o D(t)dB(t),

where 7 is the speed of reversion, D is the long-run equilibrium level, o is the
volatility and B(t) is a standard Brownian motion. We observe that vp > r (where
vp is the drift) for both GBM examples in the literature [41, 20]. Since the logistic
variation of a GBM has the property that nD = vp, we will assume that nD > r.

Sections 6.3.1- 6.3.4 are used to derive an upper bound for the investment value

G(Dy) =4 {¢0(y)E [€777] = ¢o(D) + % ~ $1(y)Ele™] + ¢1(D)} — IE[e~(r+oT),

CHAPTER 6. DEMAND SATURATION 121

where 7 = inf{t > 0 : D(t) > y}. Note that G(D,y) comes directly from Theo-
rem 5.3 and the property that

C E [/ min[D(s),Sl]e_”ds] < %
0

Section 6.3.5 discusses whether the optimal trigger can be found. Finally, some nu-
merical examples are presented in Section 6.3.6. Note that the following ¢ functions

and some results in Appendix B.5 are used to simplify calculations:

Pi(z) = =M (a b, QTIZ)

Po(z) = 2 PM (a+ 1—-5b,2-b, 2nw) ;

Ps(z) = M (al,bl, 2;’2:6) ,

y(z) = U (a b, 217x) ,

vs(z) = M (a b, 2nm)

Yo() = (2””) M(+1-b,2- 2;’2””) ,
Yola) = (2”’”)1_“1/ (1 —a2-b jj’”) ,
)

ds(z) — (2””” - (b—ab 2”‘”),

F) "M (-a2-b)
bolz) = (=) c; -
(2=) " M (b—a—1,b, %)

Yo(z) = =2 b—a—1 ’ »

CHAPTER 6. DEMAND SATURATION 122

where

— [nﬁ—z;] +\/(7)_5—"2—2)2+2r02
a = — ,

0-2
o)
b = 7—{—2(1],
—[nﬁ—%z]+\/(nﬁ—%2)2+2(r+a)a2
a; = 0_2 y
2D
b1 — —2'1?+2(11.
o

6.3.1 An expression for £,¢(z)

Lemma 6.1 provides an expression for £)¢ which satisfies (5.1) when the demand

process follows the logistic process.

Lemma 6.1. If the demand process D(t) follows a logistic process
dD(t) = n(D — D(t))D(t)dt + o D(t)dB(t),
then La¢ = 10522¢"(z) + n(D — z)xd' (z) — Ao satisfies (5.1).
Proof. By Itd’s lemma, we have for any C? function ¢
dlg(D(t)e™] = —M(D(t))e dt+e™¢/(D(t))dD(t) + e"”¢”(D(t))%dD(t)2
= —A$(D(t))e Mdt + e ¢ (D(t))[n(D — D(t))D(t)dt + opD(t)dB(t)]
+e"‘t¢”(D(t))%D(t)2dt

::g»{aamm+m5—nwﬂmwwwy+%mm%%mm}ﬂ
+ope N (D) D(t)AB().

Let Lx(z) = ~\p(z) + (D — z)ad(z) + S03a%"(z)

dl¢(D(t))e™] = LP(D(s))e Mdt + opd'(D(t)) D(t)e dB(t).

CHAPTER 6. DEMAND SATURATION 123

6.3.2 A general solution for L ¢(z) =0
Lemma 6.2 uses Kummer’s equation to find a general solution for £x¢(z) = 0.
Lemma 6.2. The general solution of
Lx¢(z) =0,
has the following form

¢($> = Az M (a, b’ 27:?;) + Bxa_l—l—bM (a + 1—- b, 2 - ba 27’1‘))

o2
where a is the positive root of
%aza(a —1)+nDa— A =0, (6.9)
and b= 2—?7’1 + 2a.

Proof. We seek a solution to

Lro(z) = —é—anqu"(z) + (D — z)z¢'(z) — Ap(z) = 0. (6.10)

If ¢(x) = Az®h(z) then
¢(z) = Az'h(z),
¢(z) = Afx2’'h(z)+ Az’H (z),
¢"(x) = AB(6— 1)z 2h(z) + 2402° N (z) + Az’h ().
Substituting these expressions into (6.10) we get
0 = %a:z? [A6(8 — 1)2°~2h + 2402° 'K (z) + Ax’h/(z)]
+n(D — z)z [A02° h(z) + Az’H (z)] — MAz®h(z)
= h BUZB(B —1)+nD8 — X z° + %2029x0+1h’(x) + %02m0+2h”(m)
—n8z%h(z) + n(D — z)z° 'K (z).
Now choose 6 such that

%(720(9 — 1)+ 4D8—A=0,

CHAPTER 6. DEMAND SATURATION 124

then

—nbh(z) + [n(D — z) + o*0] K'(z) + %o%h"(w) =0,

By making the substitution z = z—a’sz

h(z) = g(2),

W@ = g,
#@ = o ()

So
— o’z , 12 o? o? on\ >
—nlg(z) + |nD — n% +o 6’] ;g'(z) + 7%29"(2,) ﬁ) =0.

If welet a =6, b= 2824 24, then

Q

n{zg"(2) + (b — 2)g'(2) — ag(2)} = 0.

The equation
29"(z) + (b— 2)g'(2) — ag(z) = 0, (6.11)

is known as Kummer’s Equation. Abramowitz and Stegan [1] list eight possible

solutions. If b #£ 1, then

w(z) = M(a,b,2),
u(z) = 2'PM(1+a—5,2-b,2)

are linearly independent (since the Wronskian is zero [1]) and

9(z) = AiM(a,b,2) + Biz' °M(1 +a — b,2 — b, 2)
is a general solution of (6.11). Thus
p(x) = z°h(z)=z° {AlM (a, b, ?—f) + B (2;’—2””) l_bM (1 +a—b,2—b, 2”—””) }

o2
onz on\'° onz
= A 2°M (a, b, %) + B (0_7]) aaind (a +1-— b, 2— b, L) .

CHAPTER 6. DEMAND SATURATION 125

1-b
N 2 .
Since (‘2’—") is a constant we have

¢(x) = Az*M (a, b, 277:5) + Bzttt M (a +1—5,2-b, 27;_z> ,

o2 o2

2\ 1-b
where A; = Aand B= B, (‘—2’;) . O

6.3.3 A unique bounded solution for £,¢(z) = min(z, S)

Lemma 6.3 provides a unique bounded solution for £,¢(z) = min(z, S). Henceforth,
we shall let ¢g(z) and ¢;(z) denote the solutions for S = Sy and S = S respectively.
Figure 6.2 shows the ¢ functions for selected logistic versions of Example 5.1a. As

expected, the ¢ functions converge to that of the GBM model as D — oo.
Lemma 6.3. The unique bounded solution of L,¢(z) = min(z, S) is:

A¢1(m)+%, 0<z<S;
T) =
By (z) — g, x> S,

where

Yi(z) = =M (a,b,?—f),
e 2nz
1/)4(17) = z%U a,b,? y

B(z) = aM 1+a—b,2—b,2ﬂ)y(b—a,b,ﬂ)

o2 o2

Y(a,b,z) = Z(a)n_z—

CHAPTER 6. DEMAND SATURATION

126

LP(50)
LP(100) |
~ — LP(500)
— GBM
¥
s !
10 15 20 25
X
_30 T T T T
- LP(50)
~ LP(100) [
~ — LP(500)
— GBM
®
-e-‘_‘ -
15 20 25

Figure 6.2: The ¢ functions for logistic versions of Example 5.1a

Proof. We seek a unique, bounded solution of
L.¢(z) = min(z, S),
with |z¢/(z)| bounded. Let’s consider z < S first

L.d(z) = z.

CHAPTER 6. DEMAND SATURATION 127

By Lemma 6.2, the general solution of £,.¢ = 0 is
2 2
¢(z) = Az°M (a, b, L:;) + Bzt M (a +1-5,2-0, Lj) ,
o a
where a is the positive root of

1 =
502a(a —1)+nDa—r=0,

and b = 275271 + 2a. In the proof of this lemma we observed that L¢ = 0 can be

reduced to the Kummer equation

n{z9"(2) + (b— 2)g (z) —ag(2)} = 0, (6.12)
and chose the linear independent solutions

ul(z) - M(a,b,z),
u(z) = 22 PM(14+a—b,2—b,2).

So the general solution of (6.12) is
g(z) = AM(a,b,z) + Bz' °M(1 4+ a—b,2 — b, 2).
Using the method of variation of parameters, a particular solution of
ao(2)g"(2) + a1(2)g'(2) + ax(2)g(2) = f(2)

is

99(2) = a(2)ua(2) + b(2)uz(2),

where
Ji) = _wl) f(z)
S
vy w(?) f(z)
b(Z) - W(—z)'ao(z),

W(z) = w(2)us(2) — up(2)us(2)-

CHAPTER 6. DEMAND SATURATION 128

Using (6.2),
W(z) = (1 — bzt
Thus
oy Z7°M(1+a—b,2—b,2) f(z)
ale) = = (1 — b)z—bex z '

Applying the Kummer transformations [1, Equations 13.1.27 and 13.1.28] leads to
21PM(1+a—b,2-b,2) f(z)
B (1 — b)z—be* z
217 M(1 —a,2 - b,—2) f(2)
B (1 —b)zbex z
M —-a,2—-b,—2)
== = (1 — b) .f(z)a
M(a,b,z) f(2)
(1—b)zbe* 2
e“M(b— a,b,—z) f(z)
(1 —b)z"be* 2
2 IM(b— a,b,

_ —%)

ad(z) =

b (2)

Now we need to find an expression for f(z). Recall that

= 20b¢(@) +9(D - 2)ad(z) - r9(a)
= got! {%ozwh”(x) + (n(D — z) + o*a)' (z) — nah(m)} ;
Substituting z = "Zinz,
2 o? a+l
- (2—;) (1(20"(2) + ¢ (Db — 2 — ag(2))}

Thus

F(z) = 29"(2) + (b—2)g'(2) — ag(2)

n \o? 2n

CHAPTER 6. DEMAND SATURATION

129

) M(1—a,2-b,—2)1 (2n* _,
a0 = MR (3)
B i 2m* _,
= ~oi-D) (02> 27 °M(1—a,2—b,—2),
b—1 a
, _ 2'M(b-a,b—2)1 (2n\" _,
b(z) = 1=0) 7\ o2 z

1 20\ % oo
— W_—b)*(?) Zb 1M(b—a,b,—z).

Consider the following functions

filz) = 217 (1—a,2—b,—2),

falz) = 27°Y (b—a,b,—2),

where

(@)n 2"
G,bZ) Z(b) (a+n)n‘

By Lemma B.12,

8f1(2’) 2"’] e
ONZ) _ 2 apr(1—a,2—b,—
Fp 527 (1—a,2-b,—2),

8f2(z) - 277 b —a—1

g = 0_2 M((b-6,b,—-2),
and so we can choose
gp(z) = ! 2m\° Z2PM(1+a—b,2—b,2)22°Y(b—a,b,—2)
14 ,,7(1 _ b) 0_2 ’ ? » Yy
L () p(a,b,)oY (1 — 0,2 — b, —2)
7’(1 _ b) 0_2 a’ 7 4

- o (;21) 01(2),

where

g1(z) = M(1+a—b,2—b,2)Y (b— a,b,—z) — M(a,b, 2)Y(1—a,2—-b,—2).

CHAPTER 6. DEMAND SATURATION 130

Thus
s 2nzx
tio) ~ g ()
— i 2 i—a 2nx
Coa-pt (o?)
20(z)
o?(1 —b)’
where
2nwx
®(z) = zgy (-07)
~ M (1+a—b,2—b,&’2£)}’(b—a,b,igx)
o o
—aM (a,b,QLf) Y (1 —a,z—b,ig’“’) .
o o
The general solution is
20(x)
¢(z) = Arhi(z) + Astha(z) + 21 —b)

In order that ¢ be bounded near 0, A, = 0 for b > 1 + a. Thus the general solution

B 20(x)
¢(x) = Aty (z) + OT(ljb_)'

Now consider z > S,

Lrp(z) =S.

The general solution of £,¢ = 0 is

¢(x) = Bih1(x) + Batha(z).

A particular solution is
-5
bp() = —
We require ¢(z) bounded as z — oo, but both ;(z) and t(x) are unbounded
(Lemmas B.20 and B.21). Fortunately, 14(z) is bounded (Lemma B.22) and using

CHAPTER 6. DEMAND SATURATION 131

(6.1) we can choose B; and Bs so that

By (z) + Bayha(z) = Bpu(z).

Thus the general solution is
S
¢(x) = Bipu(2) — —

For ¢ smooth, ¢(S~) = ¢(ST) and ¢'(S™) = ¢'(S7)

A () + 2O = 4 BU(S),

20/(S)

A¢§(S)+m = Byy(S).

Re-arranging leads to

20 (S)9a(S) _ 20(S)¥a(S) _ Sv4(8)
A = o?(1-b) o?(1-b) T
W (#1(S), ¥4(5)) ’
20 (§)¢1(S) _ 22(8)$,(S) _ S¥,(S)
B — a*(1—b) a2(1-b) T
W (41(S5), %4(S))

Using Lemma B.14,

& (S)pu(S) — 2(SWL(S) = S"—“Y(5, - >W(¢2(3) u(9))
2778’

~5=2Y (1= 0,2-6, 22) WO(5), 0u(5)
F(S)(S) - SWAS) = S (b-aud ‘—U—) WWa(8),9:(5))

_gi-ey (1—a 2-b, 2”5) W (S), $1(S)).

CHAPTER 6. DEMAND SATURATION 132

Applying Lemma B.13,

_ gba 215\ qaa—s_—T(2-0) 2nS
W(Q/)4(S),(I)(S)) e Sb Y (b— (I,b o2) S bm_—b) €Xp (o2)

1-a —2nS wp—L(b 28\ /on\ 1Y
(1o) e () ()
Wi (S), 8(S)) = Sy (b—ab 2"3) goa- b{ (1—b)exp (2:,;9)},

W) = R (25) (25)

I'(a) o? o?

Thus

4 - T (2_72;)”‘1 {Sl+b-2a¢g(5) _A-bse (b_ . ins)}

T'(b) rexp (%) o[(1+a—b) o2

+2.S‘““Y (1—a,2—b,=2%)
a?(1 —b) '

_ T(a) (29\"" [Stto-2ay(S) 2gb-a —218
B = m(;) {Texp(@g) T T2 Y(b—a,b,——o2 > :

We note that |z¢/(z)| < C for all z > 0. For z € [0, 5],

229’ (x)
o%(1 —b)

< 0.

|z¢' ()]

4+ aAz®M (a+ 1,5, 27].’1:)

For z € [S, 00), |z¢/(x)| < oo, since |S¢'(S)| < oo and using (6.6),

2
lim |z¢'(z)] = lim az®U (a—I— 1,b, m:)
—a—1 -1
= lim az® (2—7722> [1 +0 (2"2:6)] =0.
T—00 (o2 g

Using Lemmas B.18 and B.19, we can show that ®'(z), M (a + 1,b, ;”2—) and U (a + 1,b, —;’2—)
are convergent for all z < oo.
We also note that ¢ is twice differentiable. We only need to show that their

second derivatives match at S,

¢II(S_) = ¢”(S+).

CHAPTER 6. DEMAND SATURATION 133

Re-arranging the PDE
min(S, z) + ré() — n(D — 2)od/(z)

¢'(z) = T2 , T# 8.
Since
¢(S+) = ¢(S-),
¢(S+) = ¢(5-),
we must have
¢"(S+) = ¢"(5—).

Finally, we note that ¢ is unique. Suppose that ¢; and ¢, are two solutions. Let
5 = ¢1 - ¢2’
then
L.d=0.

The general solution is

#(z) = A’ M (0, b, 2”—2x> + B’ °M (0 +1-b,2-b, 2”—2“’) :
o o
Since ¢ bounded, we must have B = 0. Since #(0) = 0, we must have A = 0.
Therefore ¢ = 0.

O

6.3.4 The discount factors E[e”""] and E [e—(“ra)f]

Lemma, 6.4 provides expressions for the discount factors Ee™""] and E[e~("*)7],

-] ¢1 (D)
o [e] ()’
E [e—(r+a)—r] — 1"/,)[}5;3((5)) i

Figure 6.3 shows the discount factors for selected logistic versions of Example 5.1a.

As expected, the discount functions converge to that of the GBM model as D — .

CHAPTER 6. DEMAND SATURATION 134

1-5] i I L]
— GBM
— — LP(500)
-~ LP(100)
= 1} - LP(50) |1
5 \
g
83| J
0 | [T e i i =t
0 100 200 300 400 500
y
0.1 T T T T
.;I - GBM
o0sk - — LP(500) ||
— -~ LP(100)
l—)
= 0.06- LP(50)
3
E 0.04}
m
0.02F
0
0

Figure 6.3: Discount factors for logistic versions of Example 5.1a,

Lemma 6.4. () D)
- () Mlab
E[e]_(y M(a,bz—’m)’

Y o2

where

~[1D-%] + /(D - 2)* + 2207
a = - p s

CHAPTER 6. DEMAND SATURATION 135

Proof. We seek a unique, bounded solution of
1 —
502¢" +n(D — z)z¢/'(z) — Ap(x) = 0, (6.13)
with |z¢/(x)| bounded. By Lemma 6.9, the general solution is
a 27’-’” a+1—b 2’!’](17
o(z) = Az°M a,b,72— + Bz M{a+1-0b2-b—},
where a is the positive root of
il p —
g a(a — 1) +nDa— X =0,

and b= 281 4 2a. For ¢(0) = 0, the general solution is simply

o(z) = Az°M (a, b, 2:—;”) .

By Lemma B.7,
¢'(z) = Aaz* ' M (a b, an)

Y M (a b, 2’“’)'_

Thus |z¢'(z)| is bounded on [0,y]. Applying Theorem 5.2,

Ele>] = %
AD*M (a,b, 222

y o2

Ay*M (a b —’”i)

) g2

_ (D) M (a,b,°F) (6.14)

y) M(a,b)

Y g2

For z € [0,y],

z¢(z)] < Aa

CHAPTER 6. DEMAND SATURATION 136

6.3.5 The Optimal Trigger

In Section 5.3.5 we divided the investment function F(D,y) into three regions:

[0, S0), [So, S1) and [S1, 00), and then established four results for the GBM model:
1. F'(D,y) >0on [0,5;) (Lemma 5.10),
2. F'(D,y) =0= F"(D,y) <0 on [Sy,S:) (Lemma, 5.12),
3. F"(D,y) <0 on [S,00) (Lemma 5.14),
4. limy o F'(D,y) < 0 (Lemma 5.15).

These results implied that a unique optimal trigger exists and that it may reside
in either the second or third region. We would like to establish similar results
for the logistic model. It is not difficult to establish that Result 1 also holds for
the logistic model (see Lemma 6.5). We could neither find any counter examples
to refute Results 2 and 3 nor establish these results for the logistic model. For
I>> g, F'(D,y) may converge to a positive value (Lemma 6.6). In this case there
is no optimal trigger and since it is always better to wait the investment will be

postponed indefinitely.

Lemma 6.5.

’ _ (D) Itps (D)5 (y)
F(byy) = ﬂ¢1(y)2 W)+ Va(y)?
where
0, 0 <y < Sp;
fly) =1 2yi(y) - (%U)s(y) + 18 ()" Bo) y**bexp () 429, S <y < Sy

_ —b
&)T_S:L/(pi(y) = II:J(% (i—’zl)l (By — B1)y** P exp (2—}2“) , S1 <y < oco.

CHAPTER 6. DEMAND SATURATION

137

Proof. For y € [0, Sy], the investment value is given by

F(D,y) = B (Aow1<y> T 2(‘1)(”))> ‘f;((D)) ~ (D) + C

-3 (A:L%(y) + 22;1;(?!)1)) P1(D) + Bé(D) — ¢3(D)

P1(y) ¥3(y)
= B(Av1(D) — ¢o(D) + C — Aythi(D) + ¢1(D)) — 1;3((5))
B ¢3()
- G- 7»[)3(?/)
where Cy = B[Ao1 (D) — ¢o(D) + C — A1h1(D) + ¢1(D)]. Thus
U — (D)~ o) Wilw)
(D)%)
PYa3(y)?
For y € [Sy, S1], the investment value is given by
P, = 8 (=2 Bovnt)) S — pow) + 80
) 22)) (D)

= B(A(D) — do(y) + C + ¢ (y))

20(y) i B Yi(D) 1/J:*.(D)
+ﬂ{eﬂ(b— 1) * Biuly)} Y1 (y) 1/’3(?/)

Applying Lemma B.13,

W), 2(),) = —(1— byt exp (2”—*") Ys(¥),
W) b)) = o (25)7

Thus
DD — (D)W1) W)
+691(D) By 125)’) (229) vt () o

D) s (1 = 0o ()) st

—I¢3(D)((¢3(1/)) 2)‘/1’3(9)
(D) Inps(D)4 (y)
= P YT gy

CHAPTER 6. DEMAND SATURATION 138

£i) = i) - {%ws(w -1 ()™ Bo} e (1)),

For y € [S1, 00], the investment value is given by

where

F(D,y) = B (—ﬁ + Bouly)) '“((D)) ~ Béo(y) + BC
D)

v)

%(D)
3(1/)

(D) ¢3(D)
(21 (y) ¢3 (y)

8 (=4 Buni)) &
= B(—¢o(y) + C + ¢1(y))
+4 { = —(B1 - BO)¢4(?/)}

+ Béi(y) — 1

Thus
L E= I
+0u(D)(Bo — B) T (22) Tyt JEAI
~Igs(D) (~(s(0)Wh(w)
- AP) + DI,
where

fo(y) =

% yiy) - P(—"% (?)b (Bo = By oxp (:S) '

Lemma 6.6.

W1)P*F'(Dy) _ So—8 ., 20\ Is(D) (29" T(B)[(ay)
a-5)(5) oo (7)) Tore

lim

vooo B (D)Yi(y) v

Proof. Let

So—Sl
1=b 2a—b o 2_7,§
ey = FE?)() (Bo — By)Y wl(p)()
aly) = I3(D) 95 (y) (v ())?
B (D) (s(y)) > (y)’

giy) =

CHAPTER 6. DEMAND SATURATION 139

then
F'(D,y) = E%D(ﬂ)b)l—@{gl()+ 92(y) + 9s(v)}-
Using (6.5),
. rg (& — By)y* exp (%)
lim go(y) = lim r;{a} ati-
e W = e a—lﬁg%exp()(ﬂ) "L+ 0()]

Using (6.6) and observing that 2a — b = 2a, — b, = 20D,
i gufy) = lim 28D Y i) exp (2) (3) " 11+ O(%I
v v B (D) \ you R exp () (%)™ [1+ O(ZH ™)
1 a1 —by i
ay® s exp () ()T L+ O]
ay* 0 exp (2) (23)7 7 [+ O3]

T'(a+1)
_ Iyy(D) (2_7;)“1‘“ T(b)T(ay)
B (D) \o? T'(b1)l(a)

6.3.6 Numerical Examples

In this section we shall use Examples 5.1a and 5.1b to compare the logistic and
GBM models. As discussed earlier, we define a logistic variation of a GBM by
choosing D arbitrarily and setting n = %. Figures 6.4 and 6.5 show some investment
bounds for Example 5.1a and 5.1b respectively. We observe that the investment
bounds and derivatives are close near the optimal trigger even though they diverge
in other regions. We expect demand processes with larger values of D to yield higher

investment values, as

F(Dyy)=E [/0 Tﬂmin(D(t), So)e "tdt + / N Bmin(D(t),S;)e "dt — Ie—<r+a>r] .

So it is surprising to note that their investment bounds are in fact lower (see Ta-

bles 6.1 and 6.2). Since the investment bound G(D,y) assumes the same upper

CHAPTER 6. DEMAND SATURATION 140

80 ; . . ;
= — GBM
a8 — — LP(50)
3 151 R LP(10) |
9 y
=
R 70
k=
g |
§ 65
RS
60 1 1 1]
0 5 10 15 20 25
y
1 T T T T
— GBM
= — — LP(50)
>
g 05f 5, LP(10) |1
S
kS
o
2
b
>
O
(&)
A
_1 i 1 i i
0 5 10 15 20 25

Figure 6.4: Investment bounds for logistic variations of Example 5.1a

bound % for C for all D, the investment bound does not provide enough informa-
tion to compare the investment values for the GBM and logistic models. We used
simulation techniques to estimate the investment values and stopping time distribu-
tions. The geometric Brownian motions and logistic processes were simulated using
Euler’s method [37] for N=10000 runs, and the same seed was used to instantiate

each process. Tables 6.3 and 6.4 show the 95% confidence intervals for the invest-

CHAPTER 6. DEMAND SATURATION 141

17 . : : .
N — GBM
g 16f — ~ LP(50) |
o) LP(10)
o]
g 15}
o
m
2 14f /) ;
S 13r1S, 5 -
RS ! :
12 . 1 L i
0 5 10 15 20 25
y
0.5— — . , .
' : —— GBM
5 z -~ LP(50)
) : LP(10)
2 éy*
o ~
g 0 \K\; S ——
= s -
Z -
g% B
0.5 ' - - -
0 5 10 15 20 25

Figure 6.5: Investment bounds for logistic variations of Example 5.1b

ment values and stopping time distributions for Examples 5.1a and 5.1b. From (2.4),
we know that the stopping times are almost surely finite in the GBM model when
vp > 5222 We observe that larger values of D yield earlier stopping times and larger
investment values. These results provide some insight into what happens when a
GBM is used to approximate a logistic process. In each example, the GBM model

predicts inflated investment values and recommends a different trigger level (e.g. a

CHAPTER 6. DEMAND SATURATION 142

higher trigger in Example 5.1a and a lower trigger in Example 5.1b). Following this
strategy will yield suboptimal investment values, but Figures 6.4 and 6.5 suggest
that the reduction in value will be small. So the GBM is a good approximation in

these examples.

D nD |op |7 D|S|S|I|8 |y G(D,y*)
10 0.75 1095|0051 |0 [4 [1]09]1.9935|71.3316
100 [0.75|095[005|1 |0 |4 |1]0.9]1.9831 | 71.3128
1000 [0.75/0.95[005(1 |0 |4 |1/0.9]1.9821 | 71.3109
10000 | 0.75 | 0.95 [0.05 |1 |0 |4 |1]0.9]1.9820 | 71.3107
00 0.750.95]0.05|1 [0 [4 [1]09]1.9819 |71.3107

Table 6.1: Logistic variations of Example 5.1a.

D nD |op |r D|S |5 |18 |y G(D,y")
10 07510950051 [0 [4 |2]0.2]4.2417 | 15.1966
100 0.75 (0950051 [0 |4 |2]0.2]4.3431 | 15.1384
1000 [0.75 (0950051 |0 |4 |2]0.2]4.3533 | 15.1326
10000 | 0.75 {095 |0.05|1 |0 |4 [2]0.2]4.3543 | 15.1321
00 07510950051 [0 [4 |2]0.2]4.3544 | 15.1320

Table 6.2: Logistic variations of Example 5.1b

D D* P(r < 1000) | E[r|T < 1000] G(D,y*) | F(D,y*)

10 1.9935 | 1 2.99287 + 0.125587 | 71.3316 | 38.00653 & 0.228603
100 1.9831 |1 2.608529 + 0.113257 | 71.3128 | 53.485399 + 0.260235
1000 | 1.9821 |1 2.576671 £ 0.112577 | 71.3109 | 56.190303 4= 0.261484
10000 | 1.9820 | 1 2.574076 £ 0.11255 | 71.3107 | 56.573874 + 0.261743
00 1.9819 | 1 2.573749 + 0.11255 | 71.3107 | 56.638977 & 0.261877

Table 6.3: Simulation results for logistic variations Example 5.1a

CHAPTER 6. DEMAND SATURATION 143
D D* | P(r < 1000) | E[r|r < 1000] G(D,y*) | F(D,y")
10 |4.2417 |1 6.523659 + 0.183835 | 15.1966 | 7.791029 + 0.050801
100 | 4.3431 |1 5.337618 = 0.153946 | 15.1384 | 11.176755 + 0.05783
1000 | 4.3533 | 1 5.235404 + 0.151486 | 15.1326 | 11.772467 + 0.058107
10000 | 4.3543 | 1 5.225129 + 0.151331 | 15.1321 | 11.85725 + 0.058165
co |4.3544 |1 5.224642 + 0.151327 | 15.132 | 11.871617 + 0.058195

Table 6.4: Simulation results for logistic variations Example 5.1b

In Chapter 5 we derived a separate formula for the special case vp = r and found

that the GBM model supported the special case Sy = 0. Neither of these special

cases are supported in the logistic case. However, we can find estimates for these

cases by taking limits in the logistic model. Recall that Example 5.2c exhibits both

properties (i.e. vp = and S, = 0). Table 6.5 shows the results for r = vp — 1077

and Sy = 10~7. We note that the GBM (i.e. D = oo) results are correct to four

decimal places, and expect that the logistic results are also close.

D nD |op |7 DS, Si|I|B8 |y G(D,y*)
10 004102]004—10"7|1 [107|4 |5|0.2]|1.5110 | 17.8389
100 004102]004—10"7|1 [1077|4 |5]0.2|1.5246 | 17.8540
1000 (00402004 —10"7]1 [1077|4 |5]0.2]1.5260 | 17.8556
10000 | 0.04 [0.2 004 —-10"7|1 |1077 |4 |5]0.2|1.5262 | 17.8557
00 004(021004—10"7|1 (1077 |4 |5|0.2]|1.5262 | 17.8557
00 0.04 {0.2|0.04 110 4 |5(0.2]1.5262 | 17.8557

Table 6.5: Logistic variations of Example 5.2¢

In Chapter 5 we used the fact that F'(D,y) converged to a negative number

to prove that the optimal trigger exists in the GBM model. In the logistic model,

however, F'(D,y) may converge to a positive number. Figure 6.6 shows an example

with this property: a logistic variation of Example 5.1a with D =15 and I =100,

500, 1000, and 2000. Further details are provided in Table 6.6. The optimal trigger

CHAPTER 6. DEMAND SATURATION 144

60 ; , , -
250} - I
3 | ¥
g 40 i
R 30} i
k= :
g 20 — 1=2000 |
z | - — 1=1000
BU — 1=500 §
- ~ 1=100
0 1 1
0 150 200 250
y
5] T T T
\ — 1=2000
> \ ~ — 1=1000
) o ~ T=500
o L - 1=100
3 g N
o 0 o —— = = et
2 - =
<§ R
g
(&)
A
__5 1] 1 i
0 50 100 150 200 250
y

Figure 6.6: A logistic variation of Example 5.1a with large I

exists for low values of D, but there is no optimal trigger when I = 2000. As
discussed previously in Chapter 3, when there is no optimal trigger it is always
better to wait and so the investment is never made. Yet the graph suggests that
waiting yields diminishing returns. Hence, it may be pragmatic to choose a trigger

y with the property that F’(D,7%) is less than some threshold e.

CHAPTER 6. DEMAND SATURATION 145

D|nD |op | DSy |S |1 8 |y G(D,y*)
1510751095005 |1 |1 |4 |100 |0.9|18.7835 | 57.9868
1510751095005 [1 |1 |4 |500 [0.9]|39.8442 | 48.4290
1510751095005 1 |1 |4 |1000 |0.9 |53.9448 | 44.9741
15(075(1095|1005|1 |1 |4 |2000|0.9]o0 0

Table 6.6: A logistic variation of Example 5.1a with large I
6.4 Conclusion

In this chapter we found an analytical solution for an increasing link capacity model
with demand saturation. In the GBM Model, we obtained an explicit expression for
C = E [[;° min(D(s), S)e~"*ds] and could therefore calculate the investment value
F(D,y). In the logistic model, we could not find an explicit expression for the C'
and so we calculated the investment bound G(D,y). When greater precision was
required, we used simulation techniques to estimate C and thereby estimate F(D,y).
These simulations were also used to estimate the stopping times. For low demand
saturation levels, we found that the estimated investment values were significantly
(nearly 50%) less than the investment bounds. While the logistic model does not
explicitly support two special cases (Sp = 0 and nD = r) which are supported by the
GBM model, we were able to estimate these values by taking limits. One surprising
property of the logistic model is that it may not have an optimal trigger, meaning
that it is always better to wait. However, waiting offers diminishing returns and
so it may be pragmatic to invest when the demand reaches the lowest threshold at

which the investment value is within some neighbourhood of the optimal value.

Chapter 7

Summary and Conclusions

This thesis explored two investment decisions in optical networks:

e the option to build new infrastructure,

e the option to increase capacity on an existing link.

Within this framework, we also considered two pertinent issues in the information
communications technology (ICT) industry: decreasing investment costs and de-
mand saturation.

In Chapter 3, we considered two fixed cost models for building new infrastruc-
ture. In the first model, a geometric Brownian motion (GBM) was used to model
the value process. In the second model, a multiplicative jump-diffusion process
(JDP) was used to model the value process. These models were previously solved
using a Partial Differential Equation (PDE) approach. We provided an alternative
derivation using martingale techniques. The binomial model was used to determine
whether perpetual models are a good approximation for typical expiry dates. In
an example from the literature, we found that the perpetual model is not a good
approximation when the expiry date is less than 60 years. Stopping times were used
to measure investment times. We found exact formulae for stopping time distribu-
tions in the GBM models and used simulation techniques to verify these results. In

the JDP model, there is no exact formula for the stopping time distributions and so

146

CHAPTER 7. SUMMARY AND CONCLUSIONS 147

these must be estimated using simulation techniques. This makes the JDP models
more difficult to study.

In Chapter 4, we extended the new infrastructure models to support decreasing
investment costs. For large decay parameters we found that the GBM and JDP
models were close and that the optimal trigger could be estimated using a linear
approximation under these conditions. We also observed that the perpetual model
was a good approximation for significantly lower expiry dates (e.g. 5 years instead
of 60 years). Next, we developed an error model for the decay parameter and inves-
tigated various error scenarios. The model was found to be robust, since relatively
large errors did not reduce the investment value by more than 5%. We also found
that pessimistic predictions will never produce a negative payoff, but optimistic pre-
dictions may produce negative payoffs in some extreme cases. Finally, we developed
an error model for traffic errors and presented a simple example. We found that
there is no optimal trigger when the traffic parameter is large.

In Chapter 5, we presented a general strategy for deciding when to increase the
link capacity and found an analytical solution for a GBM demand process. We
showed that there is a unique optimal trigger that is greater than the initial link
capacity, and found an explicit expression for the investment value. We also showed
that the GBM model supported the special case of no prior investment.

In Chapter 6, we developed an increasing capacity model with demand satura-
tion. A logistic process was used to model demand with saturation and Kummer’s
equation was used to find an analytical solution for the increasing capacity model.
As in the GBM model, the optimal trigger is always greater than the initial link
capacity, but we found that the optimal trigger may not exist when the investment
cost is large. Since the investment value cannot be evaluated explicitly, we calculated
upper bounds for the investment values or used simulation techniques to estimate
the investment values. We found that the logistic model had lower investment values

and later stopping times than the corresponding GBM model.

CHAPTER 7. SUMMARY AND CONCLUSIONS 148

For each investment decision, we considered a GBM model first because it has
exact formulae for many values. In the other models, simulation techniques were
necessary to estimate these values. In each case, we observed that the GBM models
were a good approximation for the more realistic JDP and logistic models under
certain conditions (e.g. when the decay parameter or long-run equilibrium value were
large). Future work may investigate this premise more systematically by developing
error models for each case.

In Chapter 6, we mentioned that other models could have been used to model
demand saturation (e.g. a logarithmic process) and our numerical results suggested
that the logistic model had at most one optimal trigger. Future work may develop
alternative demand saturation models to see whether they offer any further insights
and determine whether this property is true in general.

There are several possible extensions to this thesis. It would be useful to fit real-
world data to the models and calculate the real-world stopping time distributions,
although real-world data is often difficult to obtain because of proprietary issues.
While this thesis has focused on investment decisions in optical networks, future
work may apply these techniques in related areas. These could include wireless
networks, access pricing issues and other industries with decreasing costs or demand

saturation.

Appendix A

Mathematical Theory

This appendix provides some of the mathematical theory used in this thesis: con-
vergence tests and limits, differential equations, numerical techniques and statistical

concepts.

A.1 Convergence Tests and Theorems

The following theorems were used to show that a function or series converges (63, 62].

Theorem A.1 (Lebesgue Theorem of Dominated Convergence).
If {f.} is a sequence of measurable functions, with f, — [pointwise almost every-

where as n — 00, and |fu| < g, ¥n, where g is integrable. Then f is integrable,

[fdu=tim [fuiu

Theorem A.2 (The Sandwich Theorem).

and

Let f, g and h be functions defined on I\{a} and suppose that

f(z) < g(z) < h(z)

and

L = lim f(z) = lim h(x)

149

APPENDIX A. MATHEMATICAL THEORY 150

then
lim g(z) = L.

T—a

This theorem is also known as the squeeze theorem or the pinching theorem.

Theorem A.3 (The Ratio Test).

If uy, is the nth term in a series and we let

un+1
Un

L = lim

n—oo

then
o If L < 1, the series converges.
o If L > 1, the series diverges.
e If L =1, the series may converge or diverge

The test is also known as d’Alembert ratio test or the Cauchy ratio test.

A.2 Differential Equations

A Partial Differential Equation (PDE) approach was used to solve the increasing
capacity models in Chapters 5 and 6. The Euler-Cauchy equation was used to
find homogeneous solutions in Section 5.3. Kummer’s Equation was used to find
homogeneous solutions in Section 6.3. The method of variation of parameters was
used to find a particular solution for the non-homogeneous Kummer Equation in

Section 6.3.

Theorem A.4 (Euler-Cauchy Equation [62]).

The homogeneous differential equation

d?y dy
2— _— =
T dx2+amd$—|—ﬂy 0,

APPENDIX A. MATHEMATICAL THEORY 1561

has solutions
c1|z|™ + eolz|™, (a—1)2 > 40,
y=1 (a1 + czloglz))|z|?, (a—1)2 =48,
|z|%[c1 cos(blog |z|) + cosin(blog |z|)], (o —1)* < 48,

where
ro= %[1—a+ (a—1)2—4ﬁ],
ry = %[1—a— (a—12 -4,
o = 3(1-a),
b = v/ (a1

Theorem A.5 (Kummer’s Equation [1]).

The homogeneous differential equation
zg"(2) + (b — 2)g'(2) — ag(2) =0,

has two independent solutions M(a,b, z) and U(a,b, z), where

o0

Mabz) = 32

o (b)pn!’

(a’)ﬂ = H?=O(a‘ + 7’)’
o M(a,b, z) 1 yM(1+a—b,2-b,2)
Uieb2) = S [F(l Ya—brm) - ’ T'(a)T(2 - b)

Theorem A.6 (Method of variation of parameters [51]).

Let uy(z) and ua(z) be two linearly independent solutions of the homogeneous equa-
tion
ao(2)y"(2) + a1(z)y/ (z) + ax(z)y(z) = 0.
A particular solution yp(x) of
ao(z)y" () + a1(z)y/ (z) + az(z)y(z) = f(2),

has the following form

w(@) = a(@)us(z) + b(2)wi (2),

APPENDIX A. MATHEMATICAL THEORY 152

where

a/(x) g _Uz(“") f(=)
W(z) ao()’
w(z) (=)
W(z) ag(z)’
W(z) = w(z)uy(z) — up(z)ui(2).

<
~

8
N’

Il

A.3 Numerical Techniques

Three numerical techniques were used in this thesis: the bisection method[16],
Newton’s method[16] and Simpson’s rule [1]. The bisection method and Newton’s

method were used to:
e Calculate the positive root in the jump-diffusion models in Chapters 3 and 4.
e Find the optimal triggers in Chapters 5 and 6.
Simpson’s rule was used to:
e Calculate the conditional expected stopping time E[7*|7* < ¢] using (3.18).
e Calculate C = E [f;° min(D(s), S)e "ds] directly using Lemma 5.9.
e Estimate C = E [[;° min(D(s), S)e "*ds] using simulation techniques.

Note that the stopping conditions (i.e. While (n < N)) in Algorithms A.7 and A.8
can be replaced by a stopping condition based on tolerance (e.g. While (|f(z,) —
f(@n_1)| <€) or While (|z, — z,_1| < €)).

Algorithm A.7 (Bisection method). Given a function f(z) continuous on the

interval [ag, by] and such that f(ag)f(by) < 0.
o Setn:=1.

o While (n < N)

APPENDIX A. MATHEMATICAL THEORY 153

e Gn—1+bn_
— Set m ;= n=lont
— If f(an-1)f(m) <0, set ap = an_1, by =m.
— Otherwise, set a, :==m, by :=bp_1.

—n:=n+1.

Algorithm A.8 (Newton’s method). Given f(x) continuously differentiable and

a point Ty
e Setn:=1.

e While (n < N).

f(@n—1)

— Set z,, 7= Tp_1 — L

— Setn:=n-+1.

Theorem A.9 (Simpson’s Rule).

b . 5
/ f(z)dz = %{f0+4(f1+f3+- A fon—1)F2(foHfat. '+f2n—2)+f2ﬂ}—%f(4)(£)’

where
b—a
on '’

fi = f(h).

A.4 Statistical Concepts

The following statistical concepts were used in this thesis: the cumulative nor-
mal distribution, normal variates and confidence intervals. The cumulative nor-
mal distribution was used to calculate the Black-Scholes formula (1.3) and the C-
value, C = E[[}° min(D(s), S)e""*ds], for the GBM increasing capacity model
(Lemma 5.9). The polynomial approximation in Theorem A.10 was used to es-

timate the cumulative normal distribution. Normal variates are used to simulate

APPENDIX A. MATHEMATICAL THEORY 154

any stochastic process that involves a standard Brownian motion, and therefore
apply to every stochastic process discussed in this thesis. The polar method (Al-
gorithm A.11) was used to generate normal variates. Theorem A.12 was used to
calculate confidence intervals for the simulation results in this thesis. The upper
0.975 critical value for the standard normal distribution, 27 = 1.96, is used for a

95% confidence interval,

(X(n) — 1.964/ SQé"),Y(n) + 1.96\/527(%)) .

By maintaining the following counters:

Il

%51

n

E Xi,
=1
n

§ 2

0-2 — Xi 5
=1

we were able to calculate the sample mean and variance on the fly:
Y(TL) =

o - 227(2-(2)).

Theorem A.10. If N(z) is the cumulative normal distribution,

N(z) = \/%_W /_ oo S (—%2) dz,

then the following polynomial approzimation gives siz-decimal place accuracy [1]

N(z) =1 — N'(x)(bit + bot® + bst® + byt* + bst®),

APPENDIX A. MATHEMATICAL THEORY 155

where
;= 1
 14px’
p = .2316419,
by = .319381530,
b, = —.356563782,

by — 1.781477937,
by = —1.821255978,
bs = 1.330274429.

Algorithm A.11 (Polar method [42, page 491]}).

To generate two N(0,1) random variates:

1. Generate Uy and U, as IID U(0,1), let V; = 2U; — 1 for i = 1,2, and let
W =V2+ VL

2. If W > 1, go back to step 1. Otherwise, letY = V(—2log(W))/W, X; = ViY,
and X, = VoY . Then X, and X, are IID N(0,1) random variates.

Theorem A.12 (Confidence Intervals [42, Chapter 4]).
If X1, Xs,..., X, are independent identically distributed random variables with

EX]=p,
and
Var[X] = o?,
then the sample mean .
= 1
X(n)=— > X,

i=1

APPENDIX A. MATHEMATICAL THEORY 156

15 an unbiased estimator for u, the sample variance
1 - . 2
i=1

is an unbiased estimator for o® and an appropriate 100(1 —)% confidence interval

for u, is given by

(7(71) — Z1—a/2}/ S2T(Ln)’)—((n) + Z1-q/2 Szfln)))

where z1_q/2 15 the upper 1 — o /2 critical value for the standard normal distribution.

Appendix B

Mathematical Results

This appendix contains derivations for mathematical results used in the thesis: the
risk-neutral pricing formula, Dixit and Pindyck’s work on the fixed-cost GBM model,
Lassila’s work on the fixed-cost JDP model, and some key results for Chapters 3
and 6.

B.1 The risk-neutral pricing formula

Consider a portfolio of A shares of stock and $B dollars in riskless bonds and let
R = exp(rt) denote one plus the risk-free rate. To avoid arbitrage between the stock
and the riskless asset, we require d < R < u. The values of the portfolio at the two

times and in the upstate and downstate are shown below.

/ AuS + RB with probability g,

AS+ B
AdS + RB with probability 1 — g.

We may choose A and B in such a way that our portfolio replicates the value of the

157

APPENDIX B. MATHEMATICAL RESULTS 158

option in each state:

AuS+RB = VT,
AdS+RB = V~.

Solving for A and B gives

Vt—v-
A = (u—d)S’

uV~ —dvT
YT Tu—ar

Provided there are no arbitrage opportunities, the value of the option should be

equal to the value of its replicating portfolio:

Vt+— V"S -i'- wV— —dv+
(u—d)S (u—d)R
(EHV +(=V-

= — B.1
7 (B.1)
Defining
R—d
= B.2
P=2"a (B-2)
we can rewrite Equation (B.1) as
+ 4 (1 =)V~
y_ BT (R V™ (B.3)

Since p and 1 — p are between zero and one, they can be regarded as probabilities.
They are called the risk-neutral probabilities and (B.3) is called the risk-neutral
pricing formula. Notice that the risk-neutral pricing formula is independent of the
real world probabilities ¢ and (1 — g).

A related formula applies when there are continuous dividends [33]. For contin-
uous dividends 4, we let A = exp((r — 4)t) and define

=A—d
P= u—d’

(B.4)

The risk-neutral value V is still given by (B.3).

APPENDIX B. MATHEMATICAL RESULTS 159

B.2 Dixit and Pindyck’s GBM Model

Dixit and Pindyck [22] considered a deterministic case of the investment model and
then used dynamic programming and contingent claim analysis to solve the GBM

model. This section provides an overview of their work.

The Investment Problem

McDonald and Siegel (1986) considered the following problem: At what point is it
optimal to pay a sunk cost I in return for a project whose value is V, given that V

evolves according to the following geometric Brownian motion:
dV = (p— 6)Vdt +oVdB(1), (B.5)

where p is the discount rate, ¢ is the dividend rate, o is the volatility, and B(%) is
a standard Brownian motion. Dixit and Pindyck (1994) analysed the value of the

investment opportunity,
F(V) = max E[(Vy — I)e™*"], (B.6)

where E denotes the expectation, T is the (unknown) future time that the investment
is made, p is a discount rate, and the maximization is subject to Equation (B.5)
for V. We assume that § > 0, otherwise the intergral in Equation (B.5) could be
made infinitely larger by choosing a larger T. Dixit and Pindyck first considered the
deterministic case (i.e. ¢ = 0) and then used dynamic programming and contingent
claims analysis to analyse the stochastic case. Their results are given in the following

sections.

The Deterministic Case

If o = 0, then V(t) = Ve~ where V(0) = V. Thus the value of the investment

opportunity assuming we invest at some arbitrary future time T is

F(V) = (Vel=0T — [)e™*T. (B.7)

APPENDIX B. MATHEMATICAL RESULTS 160

Suppose p < 4. Then V(t) will remain constant or fall over time, so the optimal
strategy is to invest immediately if V' > I, and never invest otherwise. Hence
F(V) = (V —I)*. Now consider 0 < § < p. Then F(V) > 0 even if currently
V < I, because eventually V will exceed I. Also even if V now exceeds I, it may be

better to wait rather than invest now. Maximizing F(V) with respect to T, we get

F
——d dgl“V) = —(OVe OT 4 pre=T =0,
which implies
1 el |
T = ——log |—|,0 B.
“““{p-é‘*[wV]’} (B)

By setting T* = 0, we see that one should invest immediately if V' > V* where

V= gz > 1. (B.9)

Finally, by substituting Expression (B.8) into Equation (B.7), we obtain the follow-
ing solution for F(V):
(o= O/ @OV TP/, V <V,

F(V) = (B.10)
V-1, V>V

The General Case by Dynamic Programming

We now consider the general case where o > 0. The problem is to determine
the point at which it is optimal to invest I in return for an asset worth V. The
investment rule will take the form of a critical value V* such that it is optimal to
invest once V > V*.

Because the investment opportunity, F(V'), yields no cash flows up to the time T
that the investment is undertaken, the only return from holding it is its capital
appreciation. Hence, in the continuation region (values of V for which it is not

optimal to invest) the Bellman equation is

pFdt = E[dF]. (B.11)

APPENDIX B. MATHEMATICAL RESULTS 161

Equation (B.11) demonstrates that over a time interval dt, the total expected re-
turn on the investment opportunity, pFdt, is equal to its expected rate of capital
appreciation.
We expand dF' using [t6’s lemma,
il
dF = F'(V)dV + iF"(V)(dV)?
Substituting Equation (B.5) for dV into this expression and noting that E[dB(t)] = 0
gives
1
E[dF) = (p— §)VF'(V)dt + 502V2F"(V)dt.

Hence the Bellman equation becomes the following differential equation (after di-

viding through by dt), this must be satisfied by F(V):
il
5a2V2F"(V) +(p—8VF(V)—pF =0 (B.12)

In addition, F(V) must satisfy the following boundary conditions:

F(0) = 0, (B.13)
F(v*) = V*—1, (B.14)
F(V* = 1. (B.15)

To find F(V), we must solve Equation (B.12) subject to the boundary conditions
(B.13)-(B.15). To satisfy the boundary condition (B.13), the solution must take the
form

F(V) = AV*. (B.16)
Substituting this expression into Equation (B.12) and dividing through by AV?, we
obtain the quadratic equation:

%a%(k — 1)+ (p—8k—p=0. (B.17)

This quadratic has two roots

1 p—26 p—6 11 2
- -2l +£>1
k 2 o? +\/[o? 2| T2~ o

APPENDIX B. MATHEMATICAL RESULTS 162

so the general solution to Equation (B.12) can be written as
F(V)= AV* 1 BV*,

where A and B are constants to be determined. In our problem, the boundary
condition (B.13) implies that B = 0, leaving the solution (B.16).

The remaining boundary conditions, (B.14) and (B.15), can be used to solve for
the two remaining unknowns - the constant A, and the critical value V* at which it
is optimal to invest. By substituting (B.16) into (B.14) and (B.15) and rearranging,
we find that

V= k—f—lf, (B.18)
V-1
A= (B.19)

The General Case by Contingent Claim Analysis

Let us now determine F'(V') using Contingent Claim Analysis. The contigent claim
analysis requires one important assumption: stochastic changes in V must be spanned
by existing assets in the economy.

Consider the following portfolio: Hold the option to invest, which is worth F' V),
and go short n = F'(V) units of the project (or equivalently, of the asset or portfolio
z that is perfectly correlated with V). The value of this portfolio ¢ = F — F'(V)V,
Note that this portfolio is dynamic; as V' changes, F'(V') may change from one short
interval of time to the next, so that the composition of the portfolio will be changed.
However, over each short interval of length dt, we hold n fixed.

The short position in this portfolio will require a payment of §V F” (V) dollars per
unit time period; otherwise no rational investor will enter into the long side of the
transaction. An investor holding the long position in the project will demand the
risk-adjusted return gV, which equals the capital gain (p — &)V plus the dividend
stream 6V. Since the short position includes F'(V) units of the project, it will
require paying out 6V F'(V). Taking this payment into account, the total return

APPENDIX B. MATHEMATICAL RESULTS 163

from holding the portfolio over the short time interval dt is
dF — F'(V)dV — §VF'(V)dt.
To obtain an expression for dF, use It6’s lemma:
dF — F'(V)dV + %F”(V)(dV)Q.
Hence the total return on the portfolio is
%F”(V)(dV)z _SVF(V)dt.

From Equation (B.5) for dV, we know that (dV)? = 0®V2dt so the return on the
portfolio becomes
%onzF”(V)dt — 6VF'(V)dt.
Note that this return is risk-free. Hence to avoid arbitrage possibilities, it must

equal r¢dt = r[F — F'(V)V]dt:
%anQF”(V)dt _SVF(V)dt = r[F — F'(V)V]dt.

Dividing through by dt and rearranging gives the following differential equation that
F(V) must satisfy:

%U2V2F"(V) —(r—=98)VF(V)—rF =0. (B.20)

Observe that this equation is almost identical to Equation (B.12) obtained using
dynamic programming. The only difference is that the risk-free interest rate r
replaces the discount rate p. The same boundary conditions (B.13)-(B.15) will also
apply here. Thus the solution for F'(V') again has the form

F(V) = AV¥,

except that now r replaces p in the quadratic equation for the exponent k. Therefore

1 7-—6 r—6 11% or
e man

The critical value V* and the constant A are again given by equations (B.18) and

(B.19).

APPENDIX B. MATHEMATICAL RESULTS 164

B.3 Lassila’s JDP Model

Lassila [41] used Bellman equations to derive the JDP Model. This section provides

an overview of his work.

The price process
The price process P(t) is determined by assuming that

1. The price process P(t) is given by

P(t) = kSL(Sl — /(D,5),

where D(t) is the connection’s demand, S(t) is the connection’s supply, and k

is a positive scaling constant.

2. The demand process D(t) follows a geometric Brownian motion with

dD(t) = vpD(t)dt + opD(t)dBp(t).

3. The supply process S(t) follows a combined process of a geometric Brownian

motion and a discrete Poisson process with

dS(t) = wgS(t)dt + osS(t)dBs(t) + ¢S(£)dN (), (B.22)
dBs(t)dBp(t) = pdt. (B.23)

APPENDIX B. MATHEMATICAL RESULTS 165

Applying It6’s lemma,

_ o5 of 0 Of
P = 3p 1 8s [apz(DY+ 23593 asz]
k —kD 1[. —k 2kD
= -ng o2 ——dS+ = [5 dDdS+—(dS)]

k kD k

odD — S — 5;dDdS + ——(dS)

= < (apD(t)dt + opD(1)dBp(t)) - i " (asS(t)dt + osS(t)dBs(t) + $S()AN ()
—% (apD($)dt + opD(t)dBp(t) x (asS(H)dt + asS()dBs(t) + $S(t)dN(2)

+E’2 (asS(8)dt + 0S(t)dBs(t) + $S(£)dN(2))*
kD

= = [(ap — as + 0§ — popos)dt + opdBp(t) — 0sdBg(t) — ¢dN(t))

_ (ap—as + 0% — popos)P(t)dt + opP(t)dBp(t) — 0sP(t)dBs(t) — $P(£)dN(t).

The expression for dP can be re-written as

dP(t) = vpP(t)dt + opP(t)dBp(t) — ¢P(t)dN(t), (B.24)
where
vVp = U(Op —Ots+0'§v — pPOpogs,
o’ = 0% —2p0pos+ap,

O'DBD(t) - UsBs(t)
V0% — 2popogs + 0%

By the Lévy theorem, Bp is also a Brownian motion.

Bp(t) —

The present value of income

The present value of income Vr is the value of an investment at time T, and is given

by
Vr=E [/ h P(t)e_’”(t_T)dt] : (B.25)

T+
This model assumes that there is a delay, T, between construction and operation and

that the carrier is risk-neutral. The expected instantaneous growth rate of Equation

APPENDIX B. MATHEMATICAL RESULTS 166

(B.24) is
BlAP(t)] = (v — 6N P(t)ds,

where A is the Poisson arrival rate. This equation has a solution
E[P(t)] = P(0)e"t,

where v/ = v — ¢X. Substituting this solution into the expression for the present
value of income we get

Vp = E[P(t)e_r(t_T)dt]

T+1
— E ,;/ P(t + T+ T)e—r(t+T+‘r—T)dt:|
0

= / EPt+T+7)]e T dt
0

= / - P(T)e” &+t gy
0

- P(T)e—(r—u)T / e(u —r)tdt
0
-1
= P(T)e r—v)T__—_
(T)e vVi—r

P
e~ PO (B.26)
r—v

Remarks: The result requires that v/ < r. Otherwise the integral is unbounded.

Observe that Vr follows the same process as the spot price P(t) and so

dv (t) = vV (t)dt + oV (t)dB(t) — ¢V (£)dN(t).

Real Option Analysis
The value of the investment opportunity F(V) is
F(V)=maxE[(V(T) — X)e™™].

The Bellman Equation is
rFdt = E[dF(V)].

APPENDIX B. MATHEMATICAL RESULTS 167

The dF(V) term can be expanded using It6’s lemma

OF(V) ., 18*F(V)

dF(V) = =5y 2 ave

———L(dV). (B.27)
Expanding the (dV)? term, we get

@V)?2 = pPV3(dt)? + 2u0V3dtdB(t) — 2¢uV>dtdN (t) + oV*(dB)
—2¢0V2dB(t)dN(t) + ¢*VZ(dN(t))%.
= o?Vidt.

Using primes to denote derivatives, the dF (V) term becomes
dF(V) = F'(V)[vVdt + cVdB(t) — ¢VdN (1)] + %F”(V)UZVQ(dB)? (B.28)

Consider the expected value of the jump term,

p -2 van(n] — 257 Levatum) — 259V olwo sum)
. _F(V) F((—)
= -V PV [3dt
RN - FV)
oV
_ MF((1 = $)V) = F(V)]dt. (B.29)

Using Equations (B.28) and (B.29), and observing that E[dW] = 0, the Bellman

equation becomes
-12-02V2F”(V) FUVEV) = (A4 1) E(V) + AF((1 = $)V) =0, (B.30)

In addition, F(V) must satisfy the following boundary conditions

F(0) = 0, (B.31)
F(vY = V-1, (B.32)
F(V* = 1. (B.33)

To satisfy the boundary condition (B.31), the solution must take the form

F(V) = AVk.

APPENDIX B. MATHEMATICAL RESULTS 168

Substituting this expressiofl into the Bellman cquation and dividing through by AV A
yields

1

5ozk(lc —D+vk—(A+r)+21-¢)F=0. (B.34)

Boundary condition (B.31) implies that k£ has to be positive. The solution to Equa-

tion (B.34) must be obtained numerically. If there are no jumps we set A := 0

k—l 1/+ v 12+2r
2 g2 g2 2 o2’

The remaining boundary conditions (B.32) and (B.33) can be used to solve the

and

remaing unknowns - the constant A, and the critical value V* at which it is optimal

to invest.
. k
Vvt = P 1I,
V-1

The option should be exercised when V' > V*.

B.4 Results for Chapter 3

A martingale approach was used to derive the fixed-cost models in Chapter 3. The-
orems B.1 and B.2 were used to derive the fixed-cost GBM model. Theorems B.3
and B.4 were used to derive the fixed-cost JDP model.

Theorem B.1. The geometric Brownian motion defined by
dY =vYdt + oYdB(t),

has an exact solution

o

Y (t) = Ypexp { (u ;) t+aB(t)} :

APPENDIX B. MATHEMATICAL RESULTS 169

Proof. Define X (Y,t) =logY (t), then by It6’s lemma,
0X 0X 02X

e 2
X = _8t dt + o7 S dY + 57 (dY)
- YdY + 2(7)o"V dt

1 o?

o2
= (V - ?) dt + odB(t).
Thus
d(logY) = (l/ - —2—) dt + odB(t).
Integrating leads to
2 i
log Y]f) = (v —) T] + aB(7)];
logY(t) —logYy, = (v

log(Y (£)/Ys) = (

rearranging we get

2

Y(t) = Y(0)exp [(V - %) t+ aB(t)] .

Theorem B.2. The process {exp(koB(t) — tk*0t) : t < 0} is a martingale.
Proof. Let X (t) = exp(cB(t) — 30°t).
Y() —Y(0) — /0 "X(s) [adB(5 —a2ds] / X (s)o%ds
= /Ot X (s)odB(s).

This expression is a martingale because E| fot X(s)odB(s)] =0. O

APPENDIX B. MATHEMATICAL RESULTS 170

Theorem B.3. The jump-diffusion process defined by
dY (t) = vY (t)dt + oY (¢t)dB(t) — #Y (t)dN(t)
has an ezact solution Y (t) = Xt where

X = (1/ - %2) t+oB(t)+ In(l — ¢)N(2).

Proof. By Ito’s lemma,

t t
Y(#)-Y(0) = /0 eXdX, + l/0 e*~o’ds + Z {eXr — X — eX-AX,}

+ 2 + 0<s<t

i 1 t
= / eX-dX, + —/ eX—-o?ds
0+ 2 Jo+

Z {eXot# — X — eXe- P} I(AX, #0)

0<s<t

t 1 t
= / eX-dX, + —-/ eXo-oldt
0+ 2 Joy

+) eXfe* — 1 - plI(AX, # 0)

0<s<t

i
1

Taking derivatives
dY (t) = e*-dX, + %ext—a2dt +eXt[er — 1 — p|I(AX, # 0),
where AX; = pdN(t) = In(1 — ¢)AN(t). Observing that dN () = I(AX; # 0),
- 52
dY(t) = Y(t=) |dX,+ o-dt + (e(=9 _1 —In(1 — ¢))dN(t)J

2

— v) |ax, + %dt F((1—¢)—1—In(1— qs))dN(t)J

- 2
= Y(t—) [dX; + %dt +(—¢—In(1l— ¢))dN(t)] : (B.35)
To complete the proof, we let

X, = (u . ";) t+oB(t) + In(1 — $)N(2), (B.36)

APPENDIX B. MATHEMATICAL RESULTS 171

and show that
dY (t) = vY ()dt + oY (t)dB(t) — ¢Y ()dN (1)
is satisfied. Substituting (B.36) into (B.35),
dY () = Y(t-) Ku - 523) dt + odB(¢) + In(1 — ¢)dN(t)

+%2dt +(—¢—In(1 - qS))dN(t)]
= Y(t-)[vdt+ odB(t) — ¢dN(t)] .

O

Theorem B.4. If g(k) = %k(k — 1) + vk + M(1 — ¢)* — 1), then the process
exp{kX; — g(k)t} is a martingale.

Proof. Let Z(t) = explkX — g(){].
2(t) - 2(0) = /0 i Z(s—)kdX, — g(k)ds] + 5 /0 : Z(s—)k?o’ds
+ [Z(6-)(eHi9 — 1~ kin1 — 9JaN(s)
_ /0 : Z(s—) [k <u _ ";) ds + kodB(s) + kln(1 + ¢)dN(s) — g(k)ds]
=y Zo-Wiotds + [(-1 - 9 —1 -~ Kln(1 - 9N (9
_ /0 : Z(s—) (ku + gk(k _1)- g(k)) ds
7 /0 t Z(s—)kodB(s) + + /0 t Z(s=)|(1 — $)F — dN(s)
_ /0 i Z(s-) (ku + %Zk(k) A=) —1] - g(k)) ds
v [2sodnis) + [261 - 9~ UiaN(s) ~ xis)

This expression is a martingale when g(k) = kv+ %k(k— 1)+ (1 —¢)*—1] because
E[f!, Z(s—)kodB(s)] = 0 and E[[, Z(s—)[(1 — ¢)* — 1][dN(s) — Ads]] =0. O

APPENDIX B. MATHEMATICAL RESULTS 172

B.5 Results for Chapter 6

A Partial Differential Equation (PDE) approach was used to derive the logistic

model in Chapter 6. The following results were used in this derivation.

Derivatives

The following lemmas provide derivatives for functions involving the Kummer func-
tion. Applying Lemmas B.5-B.7, we note that the 1 functions defined in Section 6.3

have the following derivatives:

Or(2) = az* 'M (a—i— 1,6 2171;)

ox %
() = (a+1 _b)xa_bM a+2—b;2_b’2n—m ’
or o
8¢3 (:L‘) _ alxa‘l_lM a; + 1 bl 27’_"5
or et)
a’()b4(1') o a—1 27].’ﬂ
81- = a,(l +a b).’E U a—+ 1,b: 0_2 1
ds(z) _ 2ma i
W = 0-2 EM a + 1) b) 0_2 i

oz o?

b
Hslz) _ 2—"(1—1))(2;7—"”) M(a+1—b,1—b,2:—x),

3%5””) _ i_’27<2;7_2””>_M(1—a,2—b,—2;’f>,
5
W@Lﬁ”) _ g(?_f) 1M(b~0,b,-2:—;),

Lemma B.5.
02°M (a, b, z)

5 =az* 'M(a+1,b,x).

APPENDIX B. MATHEMATICAL RESULTS 173
Proof (1). Using Equation 13.4.10 from Abramowitz and Stegan [1,
*M(a,b
Q:I:_E(z,_,w_) = ar*'M(a,b,z) + z*M'(a,b, x)
= z°'aM(a+1,b,2).
|
Proof (2). From first principles,
9z°M(a,b,x) 03 o %%)L:m‘:%
ox - oz
oS (1 " zotn— 1
SN LK
n=0
_ a—1 (a’ i 1)" x_n
- HZZO ®)n 7l
= az* 'M(a+1,b,2).
|
Lemma B.6.
Oz °*M(—a,b,—
T (a, o0, -'17) _ —ax_“_lM(—cH— 1,b, _x)
oz
Proof. Using Equation 13.4.10 from [1],
0r—M(—a,b,— ue
Z (('):z:a 2) az " *M(—a,b,—z) + z°M'(—a,b, —z)(—1)
= —az " 'M(—a+1,b,—2).
[

Lemma B.7.

0x°M(a, b, kx)
ox

=az® M (a+1,b,kz) Vk > 0.

APPENDIX B. MATHEMATICAL RESULTS 174

Proof. Using T.emma B.5,
0z°M (a,b,kx) k~(kz)*M (a,b, kx) Okz

Oz Okzx Oz
= k™ %(kz)*'M (a+1,b,kz) k

= k*"a(kz)*'M (a+ 1,b, kz)
= az®'M(a+1,bkx).

J
Lemma B.8.
b—1
gz Aa{f:a’b’ 2 _ (b—1)z"2M (a,b - 1,x).
Proof (1). Using Equation 13.4.13 from [1],
b—lM
il 3:5707 bo) _ (b—1)z"2M(a,b,z) + z°M'(a, b, z)
= (b— 1)z M(a,b—-1,x).
O
Proof (2). From first principles,
8z> 'M(a,b,z) 03 o g(%)%mb—%g
Ox N ox
B & (a)n B ghtn—2
= ; (b)n(b L+n)=—;
S n
— b—1 zb—2 (a’)n IL’_
() HZ% (b— 1), n!
= (b—1)z">M(a,b—1,2).
O

Lemma B.9.

0z°U(a, b, x)

— _ a—1
e =a(l+a—bz*"'U(a+1,b,x).

APPENDIX B. MATHEMATICAL RESULTS 175

Proof. Using Equation 13.4.23 from [1],

&CUé—ax’M)— az®"'U(a,b,z) + z*U'(a, b, z)
= a(l4+a-b2""U(a+1,b,z).
O
Lemma B.10.
3””—[](;9;”’—’“”) — a(l+a—b)z*U(a+1,b,kz) Vk > 0.
Proof. Using Lemma B.5,
0z*U(a,b,kx) k~*(kx)*U(a,b, kx) Okx
Oz B Okzx Oz
= k%1 +a—b)(kz)* 'U(a + 1,b,kx)k
= k™a(1 +a—b)(kz)* 'U(a+1,b,kx)
= a(l4+a-bz"U(a+1,b k).
O

Lemma B.11. If
m’n

(@)n
Y(a,b,2) Z(b)n(a—knn"

then
0z°Y (a, b, x)

_ po—1
p =z M(a,b, z).

Proof. From first principles,

(@)n _gzotn

0z°Y (a, b, x) 93 o ®) (atn)nl
O0x Ox

Sl

— (bn (a+n)n'

_ alz a’)n

= z% 1M(a, b,a:).

a+n—1

APPENDIX B. MATHEMATICAL RESULTS 176

O
Lemma B.12.
3“‘_GY(8_$ 40.k2) _ et p(—a, b, k).
Proof. From first principles,
d=Y (—a,bkz) _ O Loo(W) G o
Oz 6:1: e
- YrlRe-af g
_ —a—lZ(On k':')
= g 1M(—a,b, kz).
O

Lemma B.13. If

B(z) = Hh(@)z"Y (b—a, b, _j;'m) — i (2)z' Y (1 —a,2-b, im) ,

then

¥(@) = (e (-0) ~ i@y (1-a2-5).

APPENDIX B. MATHEMATICAL RESULTS 177

Proof.

b 2nz —2nz
/ e _ _p 2 _ ——e
R)
0 2nz —2nz
'—“a—w {iL'M (a,b,?)Y(I—a,Z—b, 0_2)}
_ O [prep (11 a-b2-5 22)ty b—ab”gn“"’
8z o?
—i {x“M (a b, %ﬂ-) 'Y (1 —a,2—b, 277.'1:)}
oz o2 o2

= (1+a-b)z"" bM(2+a—b2 b, 2nx>xb'aY(b—a,b,_—2;’£)
o

92 -2
plite—bpr (1+a—b,2—b,i2$) M (b—a,b,_ ;’Im)
o o

2 —2
az® M (a +1,b, l;) 'Y (1 —a,2—b, —ZE)
o o

—x*M (a,b, 277—;;) "M (1 —a,2—b, —_2;)_:(:) .
o o

Applying the Kummer transformation (Equation 13.1.27 from [1]),

2 e
— (1+a—ba*M <2+a—b,2—b,g) by (b—a b, 2"””)

2 2nx
gte b M (1 +a—>5b,2—-b, sz) P %exp (——?) M (a, b, &’;)
o o o
a-1 20T\ i-a —2n
ar®'M{a+1,b,— |z %Y 1-a,2—b—5—
o o
2 2
—x*M (a, b, sz) ' "% exp (—L:;) M (1 +a—b2-0b, &’;)
o o o

2 s
— (1+a-baz**M <2+a—b,2—b,£2£) by (b—a b, 2’75”)

2 —2
—az® M (a +1,b, izm-) 'Y (1 —a,2-b, —ZE)
o

= y(z)a’Y (b —a,b, —2n m) — oy ()Y (1 —a,2—b, —2nx) '

o2

APPENDIX B. MATHEMATICAL RESULTS 178

Wronskians

Combining Lemma B.14 with (6.2), (6.3) and (6.4) enables us to find the Wronskians
of key 1 functions.

Lemma B.14.
W (z%u(z), z%v(z)) = 22°W (u(z), v(z)).

Proof.
W(zu(z),z"v(z)) = z°u(z)(ax’'v(z) + 2°'(z)) — 2°v(z)(az® ‘u(z) + 2%/ (z))

= =" (u(z)v'(z) — v'(z)v(z))

= W (u(z),v(x)).

O

Lemma B.15.

W (th1,12) = (1 — b)z®*Pexp (2:—::) .

Proof. Using Lemma B.14,

W(i,th) = a™W (M (a, b, -2—?) 1M (a +1~5,2—b, 2"%"))
& o

oz Oz M (a +1-5b,2~-b 2—7’22)
— 2a 1 o
= =M (a, b, >) g
OM i b, 2r':c
-z M (a+1—b,2—b, 2z (a ;’r)
o? ox

2(2)" (o) 8(%)' "M (a+1-b2b2%) o2
==) s Uy

o? 62—;’23 oz
2n L 2nz\ OM (a b, 2—"23) P pcd
_m2a [2 1-b _ _p 2 Y (e o
x (02) T °M (a+1 b,2 —b, - 82—;123 B

o [27 b 2nz 2nzx
- = (3) () (%))

APPENDIX B. MATHEMATICAL RESULTS 179
Using (6.2),
E 2nx
W (1,12) = (1 — b)z** P exp (%) .
(|
Lemma B.16.
() 2a—b 27’:5 27’ A
W(wl; 1:04) (a) 7L €xp 72 ;
Proof. Using Lemma B.14,
W(¢1,1/)4) a ‘,L,ZaW (M (aa b) 27’_21;) ?U <a’7ba 21’1_25[:))
o o
_ g2opg (g 21 oU (a, b, 22)
"7 o2 Ox
_x2a,U a, b 2’!}.’1} oM (a' b’ 20'21)
ox
T e, O (b,) 52
N " o2 o Oz
2% oz OM (a,b, 22) 62
—zU (a,b, = 327:’; B
_ 20 20 2nx
- 2w (u (3F) » (5))
Using (6.3),
F(b) 2a—b 27793 277 e
W(’l/)l, 1/)4) (a) —T exp —0_2— ﬁ
O
Lemma B.17.

W (tpa,1b4) = —F—(rl‘(i—;i)—bsmza“b exp (iif) ;

APPENDIX B. MATHEMATICAL RESULTS 180

Proof. Using Lemma B.14;

Wiy, tha) = zBW (M (a, b, 2’7_;’> oM (a +1-b,2-b, QLf))
g

o

2 OM (a, b, 25
= ' °M (a+1—-b2—0b, il (a, o)
o? oz
_2oprlap 2nz\ Ox'°M (a+1—5,2— b, 22)
7 g2 oz
on\ """ 2nz\ OM (a,b 2—7’22) oz
o 2a 27 1-b _ _)Y o o
= gz (02> x M(a+1 b,2 — b, o 82—;’2£ B
(N7 [2 O(2) M (a1 b2,) o2
= =& b o P E
27\ ° 2 2
() ()
Using (6.4),
['(2—-b) o 2nx
W = a i/ 2
('(/)2’1/)4) 1-\(1+ b) P 2
[
Convergence and Divergence
Lemma B.18. The series z°M(a,b,) is convergent for every x < oco.
Proof. Using the ratio test (Theorem A.3),
(z,l)n—}—l (@)ny1 getnil
1 o? (B)ns1 (nt+1)!
s (&) @i
o2 b)n (n)!
2nra+n 1
= i
nioo | 0% b +nn+1
= 0,
Since L < 1 the series converges. O

Lemma B.19. The series z°Y (a,b, x) is convergent for every x < co.

APPENDIX B. MATHEMATICAL RESULTS 181

Proof. Using the ratio test (Theorem A.3),

(%'21)"“'1 (@)1 getmil

J— d (b)ll 41 (a+ 1-‘-“](\‘14"[)‘
L — 7}1_)1{.10 (2_7]_)"' LE!.E. gatn
2] (B)n (atn)(n)!

. 2nzca+n a+n 1
= lim
nooo| 02 b+nat+n+liln+1
=: ();

Since L < 1 the series converges. O

Lemma B.20.

po i@ (2_n)““’ I(b)

z—00 g20-b exp (22) o? (a)

Proof. Using (6.5),
¢1 (.’B)) z* M (a b 21z

= 1 02)
9;1_1_,120 r2e— —b exp (_IE) m_l_)l’{.lo r2a-b exp (%’122)
78 a—b

IO (222)* exp (22)[1+o(|)]

= a;lggo r2a—b exp (s)

O
Lemma B.21.
z—'oo T29-b exp (ﬂ) o? F(l +a— b)
Proof. Using (6.5),
lim () = lim 2T M(1 +a—b,2—b,2)
z—00 120=b exp (23122 = £29-b exp (&E)
et () ew (3) [0 (15|
== r20—b exp ('-_30_'1;_5)

- (3—2) a r(li(i;i)b)'

APPENDIX B. MATHEMATICAL RESULTS 182

Lemma B.22.
. 2n\
ot Hal) = (a—) -
Proof. Using (6.6),

2
lim ¢y(z) = lim 2° (%ﬂf)

T—00

2n\ ™
- (@)

3 :
1+o(:E

o2

)

Appendix C

Java Classes

The Java programming language was used to implement the fixed cost models in
Chapter 3 and the decreasing cost models and error models in Chapter 4. It was
also used to support the increasing capacity models in Chapters 5 and 6. The
object-orientated capabilities of Java were used to define three abstract classes:
RandomVariates, StochasticProcess and Perpetual. These were subsequently

used to define
e one random variate: a normal variate,

e three stochastic processes:a geometric Brownian motion (GBM), a jump-diffusion

process (JDP), and a logistic process (LP),
e two fixed-cost models: a GBM model and a JDP model.

In computer science, this concept is referred to as polymorphism. The polymorphic
approach offers several advantages. The main advantage is that software is written
for an abstract class does not need to duplicated for each separate case. This saves
time and space and also eliminates the the need for re-testing.

In this thesis, the polymorphic approach enabled us to define

e one decreasing cost model,

183

APPENDIX C. JAVA CLASSES 184

e one cost error model, and
e one traffic error model,

which can be used by GBM and JDP models. We could have defined one class for
the jump-diffusion model and then turned off the jumps (i.e. set ¢ = 0) to obtain
a geometric Brownian motion model. However, the current approach enables us to
define additional GBM functions which exploit (2.2) and (2.5). We can also use the
results from the simpler GBM code to validate those from the more complex JDP
code. A further advantage is that the code will also support additional fixed-cost

models which may be defined in the future.

C.1 Utility Classes

The utility classes provide utility functions for the other programs. The Data class
performs basic statistical analysis. The CumulativeNormalDistribution class
calculates the cumulative normal distribution using the polynomial approximation
given in Theorem A.10. The RandomVariates class is an abstract class for gen-
erating random variates. The NormalVariates class generates a normal variate

using the polar method given in Algorithm A.11.

Data.java

public class Data
{
public Data() {
points = new double[10000];
numPoints = 0;

sigmal = sigma2 = O;

APPENDIX C. JAVA CLASSES 185

public Data(int maxNumPoints) {
points = new double[maxNumPoints];
numPoints = 0;

sigmal = sigma2 = 0;

public void addPoint(double point){
points [numPoints++] = point;
sigmal += point;

sigma2 += point * point;

public void deleteAllPoints() {
numPoints = 0;

sigmal = sigma2 = 0;

public double mean(){
if (numPoints < 1) return O;
else return sigmal/numPoints;
}
public double variance(){
if (numPoints < 2) return 0;
else
return (numPoints/(numPoints-1.0))

(sigma2/numPoints -(sigmal/numPoints)(sigmal/numPoints));

APPENDIX C. JAVA CLASSES 186

private double[] points;
private int numPoints;
private double sigmal, sigma2;

private boolean ready;

CumulativeNormalDistribution.java

public class CumulativeNormalDistribution
{
CumulativeNormalDistribution() {}
public double value(double x) {
double ax = Math.abs(x);
double zx = Math.exp(- ax * ax /2.0)/sqrt_2_pi;
double t = 1.0/(1.0 + p*ax);
double t2 = t * t;
double px = 1.0 - zx * t * (bl + b2%t + b3*t2 + bd*t2*xt +
b5*t2*%t2) ;
if (x < 0.0)
px = 1.0 - px;
return (double) (px);

private static final double sqrt_2_pi = 2.506628275;
private static final double p = .2316419;

private static final double bl .319381530;

private static final double b2 = -.356563782;

private static final double b3 = 1.781477937;

APPENDIX C. JAVA CLASSES

187

private static final double b4

private static final double b5

-1.821255978;

1.330274429;

RandomVariates.java

import java.util.Random;

public abstract class RandomVariates

{
public

RandomVariates() {

generator = new Random();

public
public
public
public

public

abstract void printLabel();
abstract double gen();
abstract double mean();

abstract double variance();

void setSeed(long seed){

generator.setSeed(seed) ;

protected Random generator;

NormalVariates.java

import java.io.*;

public class NormalVariates extends RandomVariates

{

APPENDIX C. JAVA CLASSES 188

public NormalVariates() {
super () ;
mu = 0;
sigma = 1;

ready = false;

public NormalVariates(double _mu, double _sigma) {
super() ;
mu = _mu;
sigma = _sigma;

ready = false;

public void printLabel(){

System.out.println("N("+ mu + "," + sigma + ")");

public double mean(){
return nmu;

}

public double variance(){

return sigma*sigma;

public double gen(){
if (ready) {
ready = false;

return mu + sigma * value;

APPENDIX C. JAVA CLASSES 189

else {
// use polar method - see Law & Kelton pg 490
double V1, V2, W, Y, X1, X2;
do{

Vi

2%generator.nextDouble()-1;

V2

2*generator.nextDouble () -1;
W = Math.pow(V1,2) + Math.pow(V2,2);
} while (W>1);
Y = Math.sqrt ((-2*Math.log(W))/W);
X1

V1ixY;

X2 = V2xY;

value = X2;

ready = true;

return mu + sigma * X1;

}

private double mu;
private double sigma;
private boolean ready;

private double value;

C.2 Stochastic Process Classes

The following classes simulate stochastic processes. The StochasticProcess class
is an abstract class for stochastic processes. The GeometricBrownianMotion,

JumpDiffusionProcess and LogisticProcess classes implement the geometric

APPENDIX C. JAVA CLASSES 190

Brownian motion, jump-diffusion process and logistic process respectively.

StochasticProcess.java

import java.text.*;
import java.io.*;
public abstract class StochasticProcess
i
public StochasticProcess() {
printStep = 1;
}
public abstract void setSeed(long seed);
public abstract void printLabel();
public abstract void reset();
public abstract void step();
public abstract double value();
protected abstract double trend(double elapsedTime);

protected abstract String dir();
public void setPrintStep(int _printStep) {

printStep = _printStep;

public boolean isTime(double time) {

return (Math.abs(t - time) < dt/2);

public double getTime() {

return t;

APPENDIX C. JAVA CLASSES 191

public void adjustValue(double offset) {

x += offset;

public void walk(){
reset();
for (double t = t0; t < T; t += dt) {
System.out.println(df.format(t) + ":"+ df.format(value()));
step();
}

System.out.println(df.format(T) + ":"+ df.format(value()));

public Data run(int N){
Data results = new Data(N);
for (int n = 0; n < N; n++) {
reset();

for (double t = 0; t < T; t += dt) {

step();
}
results.addPoint(value());
}

return results;

public String estimateStoppingTime(long seed, int N, double vstar){

String str = new String("");

APPENDIX C. JAVA CLASSES 192

boolean exercise;

int stepCount;

double v = x0, g, f;

double tstar = -1, count = 0, totTstar = 0, totVT = 0;

double countl = 0, totTstarl = 0, +totVTl1l = O;

Data ed = new Data(N);

Data pd = new Data(N);

Data edl

new Data(N);

Data pdl = new Data(N);

if ((vstar < 0) || ((Double.isInfinite(vstar)))) {
if (N < 2){
str = str.concat(new String (df.format(tstar) + " "));
it
else {
str = str.concat(new String (df.format(0) + " "));
str = str.concat(new String (df.format(0)+ " "));
str = str.concat(new String (df.format(0)+ " "));
str = str.concat(new String (df.format(0)+ " "));
str = str.concat(new String (df.format(-2)+ " "));
str = str.concat(new String (df.format(0)+ " "));
}

return str;

try {
if (seed > 0) setSeed(seed);

for (int n = 0; n < N; n++) {

APPENDIX C. JAVA CLASSES 193

tstar = -1;

reset();

exercise = false;

stepCount = 0;

for (double t = t0; t < T; t += dt) {

step();

v = value();

if (v >= vstar) {
if (lexercise) {
tstar = t;
exercise = true;

}

if (Math.abs (t-(T/10.0)) < 0.5*dt){
if (tstar >= 0) {
totTstarl += tstar;
edl.addPoint (tstar);
pd1l.addPoint (1);
countl++;
}
else {
pdl.addPoint (0);
B
totVTl += v;

APPENDIX C. JAVA CLASSES

194

if (tstar >= 0) {

totTstar += tstar;

ed.addPoint (tstar);

pd.addPoint (1) ;

count++;

}

else {

pd.addPoint (0) ;

}
totVT

+= v;

if (N < 2){

if (tstar < 0) {

str =

str.concat(new String

} else {

str =

else {

str

str

str

str

str

str

= sgtr.

= str.

= str.

= str.

= str.

= str.

str.concat(new String

concat(new String (df.
concat(new String (df.

concat(new String (df.

concat(new String (df

concat(new String (df.

concat(new String (df.

(df . format(tstar) + " "));

(df .format (tstar)+ " "));

format(count/N) + " "));

format (totTstar/count)+ " "));

format(pd.mean())+ " "));

.format(pd.variance())+ " "));

format(ed.mean())+ " "));

format(ed.variance())+ " "));

APPENDIX C. JAVA CLASSES 195

str = str.concat(new String (df.format(countl/N) + " "));
str = str.concat(new String (df.format(totTstarl/counti)+ " "));

str = str.concat(new String (df.format(pdl.mean())+ " "));

str = str.concat(new String (df.format(pdl.variance())+ " "));
str = str.concat(new String (df.format(edl.mean())+ " "));

str = str.concat(new String (df.format(edl.variance())+ " "));
}

} catch (Exception e) {
System.out.println(e.toString());
}

return str;

public void samplePath(String filename){
String filenames[] = new String[i];
filenames[0] = filename;

samplePaths (filenames) ;

public void samplePaths(){
String filenames[] = new String[3];
for (int i = 0; i < 3; i+H){
filenames[i] = "path" + String.valueOf(i+1) + ".out";
}

samplePaths(filenames) ;

protected void samplePaths(String filenames[]){

int stepCount;

APPENDIX C. JAVA CLASSES

196

int dim = filenames.length;
File[] pF = new File[dim];
for (int i = 0; i < dim; i++) {

System.out.println(filenames[i]);

pF[i] = new File("C://"+dir() + filenames[i]);

}

File tF = new File("C://"+dir() + "trend.out");

FileWriter[] pOut = new FileWriter[dim];

FileWriter tOut;

try {

for (int i = 0; i < dim; i++) {
pOut[i] = new FileWriter(pF[i]);

}

tOut = new FileWriter(tF);

for (int i = 0; i < dim; i++) {

reset(Q);

stepCount = 0;

for (double t = t0; ; t +=dt) {

if ((stepCount % printStep) == 0) {
pOut[i] .write(df.format(t) + " "

+ df.format(value()) + "\n");

if (1 ==0) {

tOut.write(df.format(t) + " "

+ df .format (trend(t-t0)) + "\n");

APPENDIX C. JAVA CLASSES 197

if (Math.abs(t-T) < dt/2) break;
step();
stepCount++;
}

}

for (int i = 0; i < dim; i++) {
pOut[i] .close();

}

tOut.close();

} catch (Exception e) {

System.out.println(e.toString());
}

protected DecimalFormat df = new DecimalFormat ("##.####") ;
protected double x;

protected double x0;

protected double t;

protected double tO0;

protected double dt;

protected double T;

protected int printStep;

GeometricBrownianMotion.java

import java.util.Random;
import java.text.*;

import java.io.x*;

APPENDIX C. JAVA CLASSES

198

public class GeometricBrownianMotion extends BrownianMotion
{
public GeometricBrownianMotion(double _x0, double _mu,
double _sigma, double _tO, double _dt, double _T) {
super(_x0, _mu,_sigma,_t0,_dt,_T);
}
public GeometricBrownianMotion(double _mu, double _sigma,
double _dt, double _T) {

super (_mu,_sigma,_dt,_T);

public void printLabel(){

System.out.println("Geometric Brownian Motion");

public void reset(){
t= t0;

x = x0;

public void step(){
t += dt;
if (exact){
x *= Math.exp((mu - 0.5 *sigma* sigma)*dt +
sigma*Math.sqrt(dt)*nvs.gen());
}
else{

x *= (1 + muxdt + sigma*Math.sqrt(dt)*nvs.gen());

APPENDIX C. JAVA CLASSES

199

protected double trend(double elapsedTime) {

return x0 *Math.pow(i+ mu *dt,elapsedTime/dt) ;

protected String dir() {

return new String("gbm_");

protected boolean exact = false;

JumpDiffusionProcess.java

import java.util.Random;

import java.io.*;

public class JumpDiffusionProcess extends StochasticProcess
i
public JumpDiffusionProcess(double _x0, double _mu,
double _sigma, double _lambda, double _p, double _etal,
double _eta2, double _t0, double _dt, double T {

super () ;
x0 = _x0;
mu = _Nu;

sigma = _sigma;
lambda = _lambda;

p=_P;

APPENDIX C. JAVA CLASSES

200

etal _etal;

eta2

_eta?2;

t0 = _t0;

dt = _dt;

T = _T;

nvs = new NormalVariates();
generator = new Random();

reset();

public JumpDiffusionProcess(double _mu, double _sigma,
double _lambda, double _p, double _etal, double _eta?2,
double _dt, double _T) {

super () ;
x0 = 0.0;
mu = _mu;

sigma = _sigma;

lambda = _lambda;
P = _p;

etal = _etal;

eta2 = _eta2;

t0 = 0.0;

dt = _dt;

T = _T;

nvs = new NormalVariates();
generator = new Random();

reset();

APPENDIX C. JAVA CLASSES 201

public void printLabel(){

System.out.println("Jump Diffusion Process");

public void reset(O{
x =x0;

}

public double value(){

return Xx;

public void stepO{
double jump = O;
double jump_correction = - lambda * (p * etal/(etal - 1) +
(1-p) * eta2/(eta2+1) - 1);
if (generator.nextDouble() <= (lambda * dt)) {

if (generator.nextDouble() <= p)

jump = -Math.log(generator.nextDouble())/etal;

else

jump = Math.log(generator.nextDouble())/eta2;

x *= Math.exp((mu - 0.5 *sigma* sigma + jump_correction)*dt

+ sigma*Math.sqrt(dt)*nvs.gen() + jump);

public void setSeed(long seed){
nvs.setSeed(seed) ;

generator.setSeed(seed) ;

APPENDIX C. JAVA CLASSES 202

protected double trend(double elapsedTime) {
double jump_correction = - lambda * (p * etal/(etal - 1) +
(1-p) * eta2/(eta2+1) - 1);
jump_correction = 0;

return xO*Math.pow(1+(mu+jump_correction)*dt,elapsedTime/dt) ;

protected String dir() {

return new String("jdp/");

protected NormalVariates nvs;
protected Random generator;
protected double mu;
protected double sigma;
protected double lambda;
protected double p;

protected double etal;

protected double eta2;

LogisticProcess.java
import java.util.Random;
import java.io.x;

public class LogisticProcess extends StochasticProcess

APPENDIX C. JAVA CLASSES

203

{

public LogisticProcess(double _x0, double _eta, double _xbar,

double _sigma,

double _T) {
super() ;
x0 = _x0;
eta = _eta;
Xbar = _xbar;

sigma = _sigma;

t0 = _t0;
dt = _dt;
T = _T;

double _t0, double _dt,

nvs = new NormalVariates();

reset();

public LogisticProcess(double _eta, double _xbar, double _sigma,

double _dt, double _T) {

super () ;
x0 = 0.0;
eta = _eta;

xbar = _xbar;

sigma = _sigma;

t0 = 0.0;
dt = _dt;
T = _T;

nvs = new NormalVariates();

reset();

APPENDIX C. JAVA CLASSES 204

public void printLabel(){

System.out.println("Logistic Process");

public void reset(){
t = t0;
x =x0;
}
public double value(){
return x;
}
public void step(){
t += dt;

X = x + etax(xbar-x)*x*dt + sigma*x*Math.sqrt(dt)*nvs.gen();

public void setSeed(long seed){

nvs.setSeed(seed) ;

protected double trend(double elapsedTime) {

return xbar;

protected String dir() {

return new String("1lp_");

APPENDIX C. JAVA CLASSES 205

protected NormalVariates nvs;
protected double eta;
protected double xbar;

protected double sigma;

C.3 Finite-Time Model Class

The FiniteModel class implements the finite-time models in Sections 3.4 and 4.2.5.

FiniteModel.java

import java.text.*;
import java.util.Random;
import java.io.*;

public class FiniteModel {

public FiniteModel(double T, double s0, double k, double r,
double delta, double alpha, double sigma)
{

this.t0 = 0;

this. T = T;

this.s0 = s0;

this.k = k;

this.r = r;

this.delta

delta;

this.alpha alpha;

this.sigma = sigma;

APPENDIX C. JAVA CLASSES 206

public double value(int N){
double dt = T/N;

double u = Math.exp(sigma*Math.sqrt(dt));
double d = Math.exp(-sigma*Math.sqrt(dt));
double a = Math.exp((r-delta)*dt);

double R = Math.exp(r*dt);

double pi = (a-d)/(u-d);
double [1[] S = new double[N+1] [N+1];

double [][] E = new double[N+1] [N+1];

double []J[] V = new double[N+1] [N+1];
double w;

int [] st = new int[N+1];

for (int j =0; j <= N; j++){

st[j]l = N;

}

for(int n =N; n >= 0; n—){

double cost = k * Math.exp(-alpha*n*T/N);
for (int j = 0; j <= n; j++) {

S[n][j]l = sO*Math.pow(u, j)*Math.pow(d,n-j);

if (call) {
E[n] [j]
}

else {
E[n] [j]
}

if (n == N) {
Vinl[j]l = E[n][j];

Math.max(S[n] [j] - cost,0);

Math.max(cost - S[n][j],0);

APPENDIX C. JAVA CLASSES 207

}
else {
if (european) {
Vinl[j]1 = (pixV[n+1][j+1] + (1-pi)*VIn+1]1[j1)/R;
}
else {
V[nl[j1 = Math.max((pi*V[n+1] [j+1] +
(1-pi)*VIn+11[j1)/R,E[n] [31);
}
}
+
5

return V[0][0];

b

protected double s0;

protected double k;

protected double delta;

protected double r;

protected double alpha;

protected double sigma;

protected double t0;

protected double T;

protected boolean european = false;

protected boolean call = true;

APPENDIX C. JAVA CLASSES 208

C.4 Fixed-Cost Model Classes

The following classes implement the fixed-cost models in Chapter 3. The Per-
petual class is an abstract class for fixed-cost models. The PerpetualGBM and
PerpetualJDP classes implement the GBM model and JDP model respectively.

Perpetual.java

import java.text.x*;
import java.io.*;
import java.util.x*;
public abstract class Perpetual
{
public Perpetual() {
calculated = bisection = false;
setDefaults();
pathNo = 0;
t0 = 0;

dt = 0.01;

T=100;

public Perpetual(String inputFile) {
calculated = bisection = false;
setDefaults();
readInputs(inputFile);
setOtherParameters();
pathNo = 0;
t0 = 0;
dt

0.01;

APPENDIX C. JAVA CLASSES 209

T=100;

public Perpetual(Perpetual model) {
calculated = bisection = false;
setDefaults();
r = model.r;
nu = model.nu;
sigma = model.sigma;
I = model.I;
vO = model.vO0;
pathNo = O;
t0 = 0;

dt 0.01;

T=100;

public abstract Perpetual copy O ;

protected void printLabel(){

System.out.println(label);

protected abstract void setDefaults();

public abstract double root (double nu, double 1);

protected void setOtherParameters(){}

APPENDIX C. JAVA CLASSES 210

protected abstract void clearInputs();

public void setParameter(String param, double value){
if (param.equals("r")) {
r = value;
}else if (param.equals("nu")){
nu = value;
}else if (param.equals("delta")){
nu = r-value;
Yelse {
System.out.println("System Error has occurred");

System.exit(1);

public double getParameter(String param){
if (param.equals("r")) {
return r;
}else if (param.equals("nu")){
return nu;
Yelse {
System.out.println("System Error has occurred");

return Double.NaN;

protected abstract boolean insufficientInput();

protected abstract void calculateValues();

APPENDIX C. JAVA CLASSES 211

public abstract double value();

public abstract double trigger();

protected abstract String values();

protected abstract void sensAnalysis(String param, double start,

double end, double step, String filename) ;

public abstract String simulate(long seed, int N);
protected boolean investImmediately() {return false;}
protected boolean stochastic() {return false;}
protected double drift() {return 0;}
protected double mu() {return 0;}
protected double m(double x) {return 1;}
protected double PO){

if (beta <= 1.00001) return O;

else if (investImmediately()) return 1;

else if (stochastic()) {

double m = m(vstar);

double mu = mu();

return Math.exp(m*mu-m*Math.abs(mu)) ;

APPENDIX C. JAVA CLASSES 212

}
else if (drift() > 0) return 1;

else return 0O;

protected double P(double T){
if (beta <= 1.00001) return O0;
double m = m(vstar);
double mu = mu();
CumulativeNormalDistribution cnd =
new CumulativeNormalDistribution();
return cnd.value((-m+mu*T)/Math.sqrt(T))+

Math.exp (2*m*mu)*cnd.value ((-m-mu*T) /Math.sqrt(T));

public double expStopTime(){
double m = m(vstar);
double mu = mu();
if (beta <= 1.00001) return -2;
if (investImmediately()) return 0;
else if (mu <= 0) return Double.POSITIVE_INFINITY;

else return m/mu;

public double avgStopTime(double x){
double m = m(x);
double mu = mu();

if ((beta <= 1.00001) | (x <= 0)) return -2;

APPENDIX C. JAVA CLASSES 213

if (investImmediately()) return O0;
else if (mu <= Q) return Double.POSITIVE_INFINITY;

else return m/mu;

/** This function uses Simpson’s rule */
protected double expStopTime(double T){
if (beta <= 1.00001) return O;
int N = 5000;
double I = 0;

double h = (T-0.0)/(2xN);

for(int i = 0; i <= 2*N; i++) {
if (4 ==0) | (1 ==(2xM)) {
I += P(i*h);
}
else if ((i % 2) == 0) {
I += 2xP(ixh);
}
else {
I += 4xP(i*h);

I *= h/3.0;
return (T*P(T) - I)/P(D);

public String stoppingTimes(){

String str = new String("");

APPENDIX C. JAVA CLASSES 214

calculateValues();

str = str.concat(new String (df.format(T)+ " "));
str = str.concat(new String (df.format(P()+ " "));
str = str.concat(new String (df.format(P(T))+ " "));

double tmp = expStopTime();
if (tmp == Double.POSITIVE_INFINITY) tmp = -1 ;

str = str.concat(new String (df.format(tmp)+ " "));

str = str.concat(new String (df.format(expStopTime(T))+ " "));

return str;

}

protected void readInputs(String inputFile){
clearInputs();
try {
BufferedReader in =
new BufferedReader(new FileReader (inputFile));
while (in.ready()) {
StringTokenizer st =
new StringTokenizer(in.readLine(),"= ");

if (st.hasMoreTokens()) {

String param = st.nextToken().toLowerCase();

double value = Double.parseDouble(st.nextToken());

setParameter(param,value) ;

}

if (insufficientInput()) {

System.out.println("Error: Insufficient Input");

APPENDIX C. JAVA CLASSES 215

System.exit(1);

} catch (Exception e) {
System.out.println(e.toString());
}

// input parameters
protected double r;
protected double nu;
protected double sigma;
protected double I;
protected double vO;
protected double tO;
protected double T;
protected double dt;
protected double phi;

protected double lambda;

// output parameters

protected int pathNo;

protected double beta;

protected double vstar;

protected double fv;

protected DecimalFormat df = new DecimalFormat ("##.######") ;

protected boolean calculated;

APPENDIX C. JAVA CLASSES 216

protected boolean bisection;
protected String label;

protected String directory;

PerpetualGBM.java

import java.text.x;
import java.io.x;
import java.util.*;
public class PerpetualGBM extends Perpetual
{
public PerpetualGBM(double _r, double _nu, double _sigma,
double _I, double _v0) {

super () ;
r = _r;
nu = _nu;

sigma = _sigma;
I=_I;

v0 = _vO0;

public PerpetualGBM(String inputFile) {

super (inputFile);

public PerpetualGBM(PerpetualGBM model) {

super () ;

APPENDIX C. JAVA CLASSES 217

public Perpetual copy(){
Perpetual p = new PerpetualGBM(r,nu,sigma,I,v0);

return p;

protected void setDefaults(){
pathNo = 0;
label = new String("Perpetual GBM");

directory = new String("pgbm/");

protected void calculateValues() {
if (!calculated){
if ((sigma '= 0)](nu!=0)){
beta = root(nu,r);
vstar = VStar();
if (!Double.isInfinite(vstar)){
a=A4a0;
fv = F(v0);
if (beta <= 1) fv = 0;
} else {
vstar = Double.MAX_VALUE;

a = 0;
fv = 0;
}
} else {
vstar = I;

APPENDIX C. JAVA CLASSES 218

}

p = PO;
calculated = true;
}

protected void clearInputs() {

r = nu = sigma = I = vO = Double.NaN;

protected boolean insufficientInput() {
double total = r + nu + sigma + I + vO;

return ((new Double(total)).isNaN{());

public double root(double nu, double r){
if (sigma == 0) return r/(au);
return 0.5 - (nu)/(sigma*sigma) +
Math.sqrt((0.5 - (nu)/(sigma*sigma))*
(0.5 - (nu)/(sigma*sigma))
+ 2*r/(sigma*sigma));

protected double VStar(){

return (beta * I)/(beta -1);

protected double A() {

return (vstar - I)/(Math.pow(vstar,beta));

APPENDIX C. JAVA CLASSES 219

protected double F(double v){

return a * Math.pow(v,beta);

protected boolean investImmediately() {

return (v0 >= vstar);

protected boolean stochastic() {

return (sigma != 0);

protected double drift() {

return nu - 0.b*sigma*sigma;

protected double mu() {

return (nu)/sigma - 0.5*sigma;

protected double m(double x) {

return Math.log(x/v0)/sigma;

public double value(){
calculateValues();

return fv;

APPENDIX C. JAVA CLASSES 220

public double trigger(){
calculateValues();

return vstar;

public String values(){

String str = new String("");

calculateValues();

str = str.concat(new String (df.format(beta) + " "));
str = str.concat(new String (df.format(a) + " "));

str = str.concat(new String (df.format(v0) + " "));
str = str.concat(new String (df.format(vstar) + " "));
str = str.concat(new String (df.format(fv)+ " "));

str = str.concat(new String (df.format(T)+ " "));
str = str.concat(new String (df.format(p)+ " "));
str = str.concat(new String (df.format(P(T))+ " "));
double tmp = expStopTime();
if (tmp == Double.POSITIVE_INFINITY) tmp = -1 ;
str = str.concat(new String (df.format(tmp)+ " "));
str = str.concat(new String (

df .format (expStopTime(T))+ " "));

return str;

public double getParameter(String param){
if (param.equals("sigma")){

return sigma;

APPENDIX C. JAVA CLASSES

221

}else if (param.equals("i")){
return I;

}else if (param.equals("v0")){
return vO;

Yelse {

return super.getParameter (param) ;

public void setParameter(String param, double value){
if (param.equals("sigma")){
sigma = value;
}else if (param.equals("i")){
I = value;
}else if (param.equals("v0")){
v0 = value;
}else if (param.equals("delta")){
nu = r-value;
Yelse {

super . setParameter (param,value) ;

protected void sensAnalysis(String param, double start,

double end, double step, String filename){

double origBeta, origVstar, origA, origV0, origFv, origP;

calculateValues();

origBeta = beta;

APPENDIX C. JAVA CLASSES 222

origVstar = vstar;

origh = a;
origV0 = vO;
origFv = fv;
origP = p;

File vF = new File(filename);

FileWriter vQOut;

try {
vOut = new FileWriter(vF);
double x = start, min = 1;
for (double val = start; val <= end; val += step) {
setParameter (param,val);
setOtherParameters();
calculated = false;
calculateValues();
vOut.write(df.format(val) + " "
+ values() + "\n");
}
System.out.println("min is " + min + " at " + x);
vOut.close();
} catch (Exception e) {
System.out.println(e.toString());
}

beta = origBeta;
vstar = origVstar;
a = origA;

vO = origVo;

APPENDIX C. JAVA CLASSES 223

fv = origFv;

p = origP;

protected void stoppingTimes(String param, double start,

double end, double step, String filename){

File vF = new File(filename);

FileWriter vOut;

try {

vOut = new FileWriter(vF);

double x = start, min = 1;

for (double val = start; val <= end; val += step) {
setParameter (param,val) ;
calculated = false;
vOut.write(df.format(val) + " "

+ stoppingTimes() + "\n");

}

System.out.println("min is " + min + " at " + x);
vOut.close();

} catch (Exception e) {

System.out.println(e.toString());
}

protected void estimateStoppingTimes(String param,

APPENDIX C. JAVA CLASSES 224

double start, double end, double step, String filename,
long seed, int N){

String str = new String("");

for (double val = start; val <= end; val += step){
setParameter (param,val) ;

calculated = false;

str = str.concat(new String (df.format(val) + " "));
str = str.concat(new String (simulate(seed,N) + "\n"));
}
File fF = new File(filename);

FileWriter fOut;

try {
fOut = new FileWriter(fF);
fOut.write(str);

fOut.close();

} catch (Exception e) {
System.out.println(e.toString());

public String simulate(long seed, int N){

APPENDIX C. JAVA CLASSES

225

String str = new String("");

boolean exerci

int stepCount;

se;

double v = vO, g, f;

double tstar = -1, count = 0, totTstar = 0, totVI = O;

Data ed

Data pd

new Data();

new Data();

gbm = new GeometricBrownianMotion(v0O, nu, sigma,tO, dt, T);

calculateValues(Q);

if ((vstar < 0) || ((Double.isInfinite(vstar)))) {

System.out.println(vstar);

System.out.println(beta==1);

if (N < 2){

str = str.concat(new

}

else {
str =
str =
str =
str =
str =
str =

}

str.

str.

str

str.

str.

str.

concat (new

concat (new

.concat{(new

concat (new
concat (new

concat (new

return str;

}
try {

String

String
String
String
String
String

String

if (seed > 0) gbm.setSeed(seed);

for (int n = 0; n < N; n++) {

(df.

(af
(daf
(af

(af.

(df
(df

format(tstar) + " "));

.format(0) + " "));
.format (0)+ " ™));

.format(0O)+ " "));

format (0)+ " "));

.format(-2)+ " "));

.format(0O)+ " "));

APPENDIX C. JAVA CLASSES 226

tstar = -1;
gbm.reset () ;
exercise = false;
stepCount = 0;
for (double t = t0; t < T; t += dt) {
gbm.step();
v = gbm.value();
if (v >= vstar) {
if (lexercise) {
tstar = t;
exercise = true;
Iy
i
Ik
if (tstar >= 0) {
totTstar += tstar;
ed.addPoint (tstar);
pd.addPoint (1) ;
count++;
}
else {
pd.addPoint (0);

}

totVT += v;
}
if (N < 2)9{

if (tstar < 0) {

APPENDIX C. JAVA CLASSES 227

str = str.concat(new String (df.format(tstar) + " "));
} else {
str = str.concat(new String (df.format(tstar)+ " "));
}

}

else {

str = str.concat(new String (df.format(count/N) + " "));

str = str.concat(new String (df.format(totTstar/count)+ " "));

str = str.concat(new String (df.format(pd.mean())+ " "));

str = str.concat(new String (df.format(pd.variance())+ " "));
str = str.concat(new String (df.format(ed.mean())+ " "));

str = str.concat(new String (df.format(ed.variance())+ " "));
}

} catch (Exception e) {
System.out.println(e.toString());
}

return str;

// output parameters
protected GeometricBrownianMotion gbm;
protected double a;

protected double p;

APPENDIX C. JAVA CLASSES 228

PerpetualJDP.java

import java.text.;

import java.io.*;

import java.util.x;

public class PerpetualJDP extends Perpetual

{

public PerpetualJDP(double _alpha, double _sigma, double _phi,
double _lambda, double _r, double _I, double _v0) {
super () ;
nu = _alpha;
sigma = _sigma;
phi = _phi;
lambda = _lambda;

r = _r;
I =_1;
v0 = _vO0;

public PerpetualJDP(String inputFile) {

super (inputFile) ;

public Perpetual copy(){
Perpetual p = new PerpetualJDP(nu,sigma,phi,lambda,r,I,v0);

return p;

APPENDIX C. JAVA CLASSES

229

protected void setDefaults(){
bisection = true;
label = new String("Lassila Five");

directory = new String("1f/");

protected void calculateValues() {
if (!calculated){

beta = root(nu,r);

vstar = VStar();

if (!Double.isInfinite(vstar)) {

a=AQ0;
fv = FVQO);
} else {
vstar = O;
a = 0;
fv = 0;
}
calculated = true;
}

protected void clearInputs() {

nu = sigma = phi = lambda = r =1

protected boolean insufficientInput() {

double total = sigma + nu + phi + lambda + r + I + vO;

vO = Double.NaN;

APPENDIX C. JAVA CLASSES 230

return ((new Dbuble(total)).isNaN());

protected double rootFunction(double beta, double nu, double r){
return 0.5 * sigma * sigma * beta * (beta -1.0) + nu* beta

- (r + lambda) + lambda * Math.pow((1 - phi),beta);

protected double rootFunctionl(double beta, double nu, double r){
return sigma * sigma * beta + (nu-0.5 * sigma * sigma)

+Math.log(1-phi) * lambda * Math.pow((1 - phi),beta);

public double root(double nu, double r){
double k = 100;
for (int i = 0; i < 10; i++){
k = k - rootFunction(k,nu,r)/rootFunctioni(k,nu,r);
}

return k;

protected double VStar(){

return (beta * I)/(beta -1);

protected double A() {

return (vstar - I)/(Math.pow(vstar,beta));

APPENDIX C. JAVA CLASSES 231

protected double FV(){
if (beta < 1) return O;

return a * Math.pow(v0,beta);

public double value(){
calculateValues();

return fv;

public double trigger(){
calculateValues();

return vstar,

public String values(){

String str = new String("");

calculateValues();

str = str.concat(new String (df.format(beta) + " "));
str = str.concat(new String (df.format(vstar) + " "));
str = str.concat(new String (df.format(fv)+ " "));

return str;

public void setParameter(String param, double val){
if (param.equals("nu")) {
nu = val;
}else if (param.equals("sigma")){

sigma = val;

APPENDIX C. JAVA CLASSES 232

Yelse if (param.equals("phi")){
phi = val;

}else if (param.equals("lambda")){
lambda = val;

}else if (param.equals("r")){
r = val;

}else if (param.equals("i")){
I = val;

lelse if (param.equals("v0")){
v0 = val;

}else if (param.equals("delta")){
nu = r-val;

Yelse {

super . setParameter (param,val) ;

protected void sensAnalysis(String param, double start,

double end, double step, String filename)q{

double origBeta, origVstar, origA, origFv;

calculateValues();
origBeta = beta;
origVstar = vstar;
origh = a;

origFv = fv;

APPENDIX C. JAVA CLASSES 233

File vF = new File(filename);

FileWriter v0ut;

try {

vOut = new FileWriter(vF);

for (double val = start; val <= end; val += step) {
setParameter (param,val) ;
beta = root(nu,r);
if (beta != 1) {

vstar = VStar();

a=A4a0;
fv = FV(Q);
} else {

vstar = Double.MAX_VALUE;

if (vstar <= v0) fv = 0;
vOut .write(df.format(val) + " "

+ values() + "\n");

vOut.close();

} catch (Exception e) {
System.out.println(e.toString());
}

beta = origBeta;

APPENDIX C. JAVA CLASSES 234

vstar = origVstar;
a = origh;

fv = origFv;

protected void estimateStoppingTimes(String param,
double start, double end, double step, String filename,
long seed, int N){

String str = new String("");

for (double val = start; val <= end; val += step){
setParameter (param,val) ;

calculated = false;

str = str.concat(new String (df.format(val) + " "));
str = str.concat(new String (simulate(seed,N) + "\n"));
}
File fF = new File(filename);

FileWriter fOut;

try {
fOut = new FileWriter(fF);
fOut.write(str);

fOut.close();

} catch (Exception e) {

APPENDIX C. JAVA CLASSES 235

System.out.println(e.toString());

public String simulate(long seed, int N){
String str = new String("");
boolean exercise;
int stepCount;
double v = v0, g, f;
double tstar = -1, count = 0, totTstar = 0, totVI = 0;

double countl = 0, totTstarl = 0, totVIl = 0;

Data ed = new Data();

Data pd = new Data();

Data edl

new Data();

Data pdl = new Data();

JumpDiffusionProcess jd =

new JumpDiffusionProcess(v0, nu-lambda*phi, sigma, lambda,
0.0, 5000, (1-phi)/phi,t0, dt, T);

calculateValues();

if ((vstar < 0) || ((Double.isInfinite(vstar)))) {
System.out.println(vstar);
System.out.println(beta==1);
if (N < 2{
str = str.concat(new String (df.format(tstar) + " "));

}

APPENDIX C. JAVA CLASSES

236

else {.

str =
str =
str =
str =
str =
str =

i

str.
str.
str.
str.
str.

str.

concat(new String (df.
concat(new String (df.

concat(new String (df.

concat (new
concat (new

concat (new

return str;

try {

String
String

String

if (seed > 0) jd.setSeed(seed);

for (int n = 0; n < N; n++) {

tstar = -1;

jd.reset()

exercise =

stepCount = 0;

?

false;

for (double t

jd.stepQ;

(df

(df.

format(0) + " "));
format (0)+ " "));

format(0)+ " "));

.format (0)+ " "));
(df.

format(-2)+ " "));
format (0)+ " "));

=1t0; t <T; t +=dt) {

v = jd.value();

if (v >= vstar) {

if (lexercise) {

tstar = t;

exercise = true;

}

APPENDIX C. JAVA CLASSES 237

if (Math.abs (£t-(T/10.0)) < 0.5*dt){

if (tstar >= 0) {
totTstarl += tstar;
edl.addPoint (tstar) ;
pdi.addPoint (1) ;
counti++;
Ii
else {
pdl.addPoint(0);
}
totVT1l += v;

if (tstar >= 0) {
totTstar += tstar;
ed.addPoint (tstar) ;
pd.addPoint (1) ;
count++;

}

else {
pd.addPoint (0);

}

totVT += v;
}
if (N < 2){

if (tstar < 0) {

APPENDIX C. JAVA CLASSES

238

str = str.concat(new String (df.format(tstar) + " "));

} else {

str = str.concat(new String (df.format(tstar)+ " "));

}
I
else {
str = str.concat(new String (df.format(count/N) + " "));
str = str.concat(new String (df.format(totTstar/count)+ " "));
str = str.concat(new String (df.format(pd.mean())+ " "));
str = str.concat(new String (df.format(pd.variance())+ " "));
str = str.concat(new String (df.format(ed.mean())+ " "));
str = str.concat(new String (df.format(ed.variance())+ " "));
str = str.concat(new String (df.format(counti/N) + " "));
str = str.concat(new String (df.format(totTstari/counti)+ " "));
str = str.concat(new String (df.format(pdl.mean())+ " "));
str = str.concat(new String (df.format(pdl.variance())+ " "));
str = str.concat(new String (df.format(edl.mean())+ " "));
str = str.concat(new String (df.format(edl.variance())+ " "));
}

} catch (Exception e) {

System.out.println(e.toString());

}

return str;

APPENDIX C. JAVA CLASSES 239

// output parameters

protected double a;

C.5 Decreasing Cost and Error Model Classes

The following classes implement the decreasing cost and error models in Chapters 4.
The CostModel, CostErrorModel and TrafficErrorModel classes implement

the decreasing cost model, cost error model and traffic error model respectively.

CostModel.java

import java.text.*;

import java.io.*;

import java.util.x;

public class CostModel
{

public CostModel(Perpetual _model) {
model = _model;
model .calculated = false;
rate = model.r;

drift = model.nu;

protected String values(double alpha){

String retStr = new String("");

APPENDIX C. JAVA CLASSES 240

model.r = rate + alpha;

model.nu = drift + alpha;
model.calculated = false;
retStr = model.values();

return retStr;

protected void values(double start, double end,
double step, String filename){
File vF = new File(filename);

FileWriter vOut;

try {
vOut = new FileWriter (vF);
double x = start, min = 1;
for (double val = start; val <= end; val += step) {
double alpha = val;
model.r = rate + alpha;
model.nu = drift + alpha;
model.calculated = false;
vOut.write(df.format(val) + " "
+ model.values() + "\n");
}
System.out.println("min is " + min + " at " + x);
vOut.close();
} catch (Exception e) {
System.out.println(e.toString());
}

APPENDIX C. JAVA CLASSES 241

protected void stoppingTimes(double start, double end,
double step, String filename){
File vF = new File(filename);
FileWriter vOut;
try {
vOut = new FileWriter(vF);
double x = start, min = 1;
for (double val = start; val <= end; val += step) {
double alpha = val;
model.r = rate + alpha;
model.nu = drift + alpha;
model.calculated = false;
vOut.write(df .format(val) + " "
+ model.stoppingTimes() + "\n");
}
System.out.println("min is " + min + " at " + X);
vOut.close(Q);
} catch (Exception e) {
System.out.println(e.toString());
}

protected void estimateStoppingTimes(double start, double end,
double step, String filename, long seed, int N{
String str = new String("");
String mdstr = new String("");
for (double alpha = start; alpha <= end; alpha += step){

model.r = rate + alpha;

APPENDIX C. JAVA CLASSES 242

model.nu = drift + alpha;

model.calculated = false;

str = str.concat(new String (df.format(alpha) + " "));
mdstr = new String (model.simulate(seed,N) + "\n");
str = str.concat(mdstr);

System.out.print(model.r + " " + model.nu + mdstr);

File fF = new File(filename);
FileWriter fQut;

try {

fOut = new FileWriter(fF);
fOut.write(str);

fOut.close();

} catch (Exception e) {
System.out.println(e.toString());
}

// input parameters
protected double rate;

protected double drift;

protected Perpetual model;

protected DecimalFormat df = new DecimalFormat ("##.######") ;

APPENDIX C. JAVA CLASSES 243

CostErrorModel.java

import java.text.*;
import java.io.*;
import java.util.x*;
public class CostErrorModel
{
public CostErrorModel(Perpetual model) {

rate = model.r;

drift = model.nu;
sigma = model.sigma;
I = model.I;

real = model;
predicted = model.copy();
predicted.calculateValues();

System.out.println(predicted.v0);

protected String values(){
String retstr = new String("");

retstr = retstr.concat(df.format(alpha)+" ");

real.r = rate + alpha;

real.nu = drift + alpha;

real.calculated = false;
real.calculateValues();

retstr = retstr.concat(df.format(alphal)+" ");
predicted.r = rate + alphal;

predicted.nu = drift + alphal;

predicted.calculated = false;

APPENDIX C. JAVA CLASSES

244

predicted.calculateValues();

retstr

retstr

df .format (betal = predicted.beta) + " ");

retstr

predicted.root (drift+alphal,rate+alpha)) + " ");

retstr
retstr
retstr
vstarl
retstr
double
if (el
retstr
double
if (e2
retstr
retstr
retstr
retstr

return

el

e2

retstr.concat(df.format(real.beta) + " ");

retstr.concat(

retstr.concat (df.format (beta?2

retstr.concat (df .format(betal - 1 - beta2) + " ");

retstr.concat(df.format(real.fv) + " ");

retstr.concat (df . format (predicted.fv) + " ");

predicted.vstar;

retstr.concat(df.format(G(real.v0)) + " ");

= real.expStopTime();
Double.POSITIVE_INFINITY) el
retstr.concat(df.format(el) +
= predicted.expStopTime() ;
Double.POSITIVE_INFINITY) e2

retstr.concat(df.format(e2) +

retstr.concat (df.format(real.P()) + " ");

retstr.concat(df.format (predicted.P()) + " ");

retstr.concat ("\n");

retstr;

protected String relerr(double i){

String retstr = new String("");

double
double
retstr

retstr

disp = i*b0;

pre, cor, act;

||);

retstr.concat (df.format(disp)+" ");

retstr.concat(df.format (alphal)+" ");

APPENDIX C. JAVA CLASSES 245

real.r = rate + alpha;
real.nu = drift + alpha;
real.calculated = false;
real.calculateValues();
predicted.r = rate + alphal;
predicted.nu = drift + alphal;
predicted.calculated = false;

predicted.calculateValues();

retstr = retstr.concat(df.format(real.beta) + " ");

retstr = retstr.concat(

df .format(betal = predicted.beta) + " ");
retstr = retstr.concat(df.format(beta2 =

predicted.root(drift+alphal,rate+alpha)) + " ");

retstr = retstr.concat(df.format(betal - 1 - betal2) + " ");
retstr = retstr.concat(df.format(cor = real.fv) + " ");
retstr = retstr.concat(df.format(pre = predicted.fv) + " ");

vstarl = predicted.vstar;

retstr = retstr.concat(df.format(act = G(real.v0)) + " ");

retstr = retstr.concat(df.format((cor-pre)/cor) + " ");

retstr = retstr.concat(df.format((cor-act)/cor) + " ");

double el = real.expStopTime();

if (el == Double.POSITIVE_INFINITY) el = -1;

retstr = retstr.concat(df.format(el) + " ");

double e2 = predicted.expStopTime();

if (e2 == Double.POSITIVE_INFINITY) e2 = -1;

retstr = retstr.concat(df.format(e2) + " ");

retstr = retstr.concat(df.format(real.P()) + " ");
retstr = retstr.concat(df.format(predicted.P()) + " ");
retstr = retstr.concat("\n");

APPENDIX C. JAVA CLASSES 246

return retstr;

public double G(double v){
return vstarl * Math.pow(v/vstarl,betal)

- I * Math.pow(v/vstaril,beta2);

protected void varyGrowthParameter(int i, double start,
double end, double step){
String outdir = new String("C:/");
File fF = new File(outdir + "err.out");
FileWriter fOut;
if (i==0) return;
if (i > 0) fF = new File(outdir + "err_opt"
+ (new Integer(ix50)).toString() +".out");
if (i < 0) fF = new File(outdir + "err_pes"

+ (new Integer(-i*50)).toString() +".out");

String outstr = new String("");

for (double val = start; val <= end; val += step) {
alpha = val;
alphal = valx(1+0.5%1i);
if (i < 0) alphal = val/(1-0.5%i);

outstr = outstr.concat(values());

try {
fOut = new FileWriter(fF);

fOut.write(outstr);

APPENDIX C. JAVA CLASSES 247

£0ut.close();
} catch (Exception e) {

System.out.println(e.toString());
}

protected void varyRelativeError(double _alpha, double start,
double end, double step){
String outdir = new String("C:/");
File fF = new File(outdir + "rel_err.out");
FileWriter fOut;

alpha = _alpha;

String outstr = new String("");

for (double i start; i <= end; i += step) {
alphal = alpha*(1+0.5%i);
if (i < 0) alphal = alpha/(1-0.5%i);

outstr = outstr.concat(relerr(i));

try {

fOut = new FileWriter(fF);
fOut.write(outstr);

fOut.close();

} catch (Exception e) {
System.out.println(e.toString());
}

// input parameters

APPENDIX C. JAVA CLASSES

248

protected double
protected double
protected double
protected double
protected double
protected double

protected double

rate;
drift;
sigma;
vO;

I;
alpha;
alphal;

// output parameters

protected double
protected double

protected double

betal;
vstarl;

fvi;

protected double beta2;

protected double gv;

protected Perpetual predicted;
protected Perpetual real;

protected DecimalFormat df

TrafficErrorModel.java

import java.text.*;
import java.io.x;

import java.util.*;

public class TrafficErrorModel

i

public TrafficErrorModel (Perpetual model) {

rate = model.r;

drift

model .nu;

sigma = model.sigma;

new DecimalFormat ("##.####") ;

APPENDIX C. JAVA CLASSES

249

I = model.I;

real = model;

predicted = model.copy(;

predicted.calculateValues();

System.out.println(predicted.vO0);

protected String values(){

String retstr =

real.r

real.nu

rate;

drift + alpha;

real.calculated = false;

real.calculateValues();

predicted.r = rate;

predicted.nu =

new String("");

drift + alphal;

predicted.calculated = false;

predicted.calculateValues();

retstr

retstr

retstr

retstr.concat (df.format (real.beta) + " ");

retstr.concat (df . format (betal

retstr.concat (df . format (beta2

predicted.beta) + " ");

predicted.root(drift+a1pha1,rate+a1pha1—a1pha)) LD

retstr
retstr
retstr
retstr
retstr
vstarl

retstr

retstr.

retstr.

retstr

retstr.

retstr.

concat (df

concat (df

.concat (df

concat (df

concat (df

predicted.vstar;

retstr.

concat (df

.format(betal - 1 - beta2) + " ");

.format (real.vstar) + " ");
.format (predicted.vstar) + " ");
.format(real.fv) + " ");

.format (predicted.fv) + " ");

.format (G(real.v0)) + " ");

double el = real.expStopTime();

APPENDIX C. JAVA CLASSES 250

if (el == Double.POSITIVE_INFINITY) el = -1;
retstr = retstr.concat(df.format(el) + " ");
double e2 = predicted.expStopTime();

if (e2 == Double.POSITIVE_INFINITY) e2 = -1;
retstr = retstr.concat(df.format(e2) + " ");

double e3= real.avgStopTime(predicted.vstar);

if (e3 == Double.POSITIVE_INFINITY) e3 = -1;

retstr = retstr.concat(df.format(e3) + " ");

retstr = retstr.concat(df.format(real.P()) + " ");
retstr = retstr.concat(df.format(predicted.P()) + " ");
retstr = retstr.concat("\n");

return retstr;

protected String relerr(double i){
String retstr = new String("");
double disp = ix*50;

double pre, cor, act;

retstr = retstr.concat(df.format(disp)+" ");

retstr = retstr.concat(df.format(alphal)+" ");

real.r = rate + alpha;

real.nu = drift + alpha;
real.calculated = false;
real.calculateValues();
predicted.r = rate + alphal;
predicted.nu = drift + alphal;
predicted.calculated = false;
predicted.calculateValues();

retstr = retstr.concat(df.format(real.beta) + " ");

APPENDIX C. JAVA CLASSES
