
PUBLISHED VERSION 

 

Zhang, Wenqi; Lohe, Max A.; Monro, Tanya Mary; Afshar Vahid, Shahraam.  

Nonlinear polarization bistability in optical nanowires, Optics Letters, 2011; 36(4):558-590. 

 

 

© 2011 Optical Society of America 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://hdl.handle.net/2440/63587 

 

 

PERMISSIONS 
 
http://www.opticsinfobase.org/submit/review/copyright_permissions.cfm#posting 
 
This paper was published in Optics Letters and is made available as an electronic reprint with 
the permission of OSA. The paper can be found at the following URL on the OSA website 
http://www.opticsinfobase.org/abstract.cfm?URI=ol-36-4-588 
 
Systematic or multiple reproduction or distribution to multiple locations via electronic or other 
means is prohibited and is subject to penalties under law. OSA grants to the Author(s) (or their 
employers, in the case of works made for hire) the following rights: 
 
(b)The right to post and update his or her Work on any internet site (other than the Author(s’) 
personal web home page) provided that the following conditions are met: (i) access to the 
server does not depend on payment for access, subscription or membership fees; and (ii) any 
such posting made or updated after acceptance of the Work for publication includes and 
prominently displays the correct bibliographic data and an OSA copyright notice (e.g. "© 2009 
The Optical Society"). 
 

 

17th December 2010 

 

 

 

date ‘rights url’ accessed / permission obtained: (overwrite text) 

http://hdl.handle.net/2440/63587
http://www.opticsinfobase.org/submit/review/copyright_permissions.cfm#posting
http://www.opticsinfobase.org/abstract.cfm?URI=ol-36-4-588


Nonlinear polarization bistability in optical nanowires
Wen Qi Zhang, M. A. Lohe, Tanya M. Monro, and Shahraam Afshar V.*

Institute for Photonics & Advanced Sensing (IPAS), The University of Adelaide, 5005, Australia
*Corresponding author: shahraam.afshar@adelaide.edu.au

Received December 6, 2010; accepted January 7, 2011;
posted January 21, 2011 (Doc. ID 139229); published February 15, 2011

Using the full vectorial nonlinear Schrödinger equations that describe nonlinear processes in isotropic optical
nanowires, we show that there exist structural anisotropic nonlinearities that lead to unstable polarization states
that exhibit periodic bistable behavior. We analyze and solve the nonlinear equations for continuous waves by
means of a Lagrangian formulation and show that the system has bistable states and also kink solitons that are limit-
ing forms of the bistable states. © 2011 Optical Society of America
OCIS codes: 190.4370, 190.4360, 190.3270, 130.4310, 060.5530, 190.1450.

The nonlinear interactions of the two fundamental polar-
ization modes of a waveguide lead to a host of nonlinear
effects that have been studied extensively over the past 30
years (see [1], Chapter 6). Most previous work has used
the weak guidance approximation according to which
the modes of the waveguide are linearly polarized in
the transverse plane, and are mutually orthogonal. It is
usually assumed that the effective Kerr nonlinear coeffi-
cients of the two polarizations are equal for isotropic
materials with Kerr nonlinearities. The weak guidance
approximation does not, however, provide an accurate
description for modal behavior, including nonlinear be-
havior, in waveguides with subwavelength dimensions
and high index contrast, such as optical nanowires. In
these waveguides there exists a large component of the
electric field along the direction of propagation, which
changes the orthogonality relation between the modes
andcontributes tononlinear processes [2,3]. Full vectorial
nonlinear Schrödinger (VNLS) equations have recently
been developed that generalize the NLS equation for Kerr
nonlinearity in all optical waveguides, including optical
nanowires [2,4,5].
Here, we analyze an aspect of the nonlinear interac-

tions of the two polarizations of a mode in optical nano-
wires that occurs within the VNLS model, which has not
been previously explored. We reveal the existence of
anisotropic nonlinear behavior with respect to the two
polarizations of a mode that is structural in origin. This
anisotropy originates from the structure of the wave-
guide in the subwavelength regime, not from the aniso-
tropy of the waveguide materials and so differs from that
reported in [5]. Furthermore, this anisotropy leads to per-
iodic bistable polarization states (defined below), proper-
ties of which we describe here.
For waveguides with isotropic materials such as glass,

the nonlinear interactions of the two polarizations are
usually described by the coupled NLS equations [1]:

∂Aj
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X∞
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¼ iðγjjAjj2 þ γcjAkj2ÞAj
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2
k expð−2izΔβjkÞ; ð1Þ

where j, k ¼ 1, 2ðj ≠ kÞ are the two polarization modes,
A1, A2 are the amplitudes of the corresponding fields,
βjn are the nth order propagation constants, Δβjk ¼
−Δβkj is the linear birefringence, γj , γc, and γ0c are the

effective nonlinear coefficients representing self phase
modulation, cross phase modulation, and coherent cou-
pling of the two polarization modes, respectively. The
weak guidance approximation assumes that the effective
mode areas of the two polarization modes are equal [1],
leading to

γ1 ¼ γ2 ¼ 3γc=2 ¼ 3γ0c: ð2Þ
Weak guidance, and its related approximations, are no

longer appropriate when considering light propagation in
optical nanowires. The VNLS model shows that the pro-
pagating modes of a waveguide can have large z compo-
nents (along the direction of propagation) [2]. We may
derive a generalized form of Eq. (1) in the VNLS model
by defining effective nonlinear vectorial coefficients γ1,
γ2, γc, γ0c which (in the notation of [2]) have the form

γj ¼
2πε0
3μ0λ

Z
n2ðx; yÞn2ðx; yÞ½2jêjj4 þ jê2j j2�dA;

γc ¼
4πε0
3μ0λ

Z
n2ðx; yÞn2ðx; yÞ½jê1j2 þ jê2j2�dA;

γ0c ¼
2πε0
3μ0λ

Z
n2ðx; yÞn2ðx; yÞ½ê21 þ ê22�dA: ð3Þ

Here êj ¼ ej=
ffiffiffiffiffiffi
Nj

p ðj ¼ 1; 2Þ are the electric fields normal-
ized by Nj ¼

R jej × h�j · ẑjdA, and nðx; yÞ, n2ðx; yÞ are the
refractive and nonlinear refractive index distributions,
respectively. In deriving Eq. (1) within the VNLS model
we assume that terms containing ê1 · ê2, although no
longer zero, are nevertheless negligible by comparison
with the other terms on the right-hand side of Eq. (1)
(see Eq. (32) in [2]). We have recently confirmed experi-
mentally [3] that the expression for γj in Eq. (3) is accu-
rate for optical nanowires.

Figure 1 shows the γ coefficients calculated using
Eq. (3), for elliptical waveguides surrounded by air, with
chalcogenide glass (n ¼ 2:8, n2 ¼ 1:1 × 10−17 m2=W at
λ ¼ 1:55 μm) as the host material. Evidently the equalities
(2) do not generally hold for these γ values. Figure 1 also
shows that γ1, γ2 are asymmetric with respect to the di-
agonal line where the fiber is circular. This indicates that
elliptical shapes have higher γ values than circular
shapes, and that in elliptical waveguides the γ values
of the modes polarized along the major/minor axes are
different, similar to the γ values in waveguides with
anisotropic materials. As a consequence, the nonlinear
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behavior in birefringent waveguides includes anisotropic
properties, which we refer to as structurally induced
anisotropic nonlinearity.
We now solve Eq. (1) in the static case for general

values of the γ coefficients, where Eq. (2) are not neces-
sarily satisfied, in particular for γ1 þ γ2 ≠ 2ðγc þ γ0cÞ. We
substitute Aj ¼

ffiffiffiffiffi
Pj

p
eiϕj for j ¼ 1; 2 into Eq. (1), where

Pj is the power of the field Aj with phase ϕj. For contin-
uous waves we find that P1 þ P2 ¼ P0 is constant in z.
Define the following dimensionless variables:

v ¼ P1

P0
; θ ¼ 2Δϕ; τ ¼ 2γ0cP0z;

a ¼ −
Δβ12
γ0cP0

−
γc − γ2
γ0c

; b ¼ γ1 þ γ2 − 2γc
2γ0c

; ð4Þ

where Δϕ ¼ ϕ1 − ϕ2 þ zΔβ12 is the phase difference be-
tween the two fields. Evidently b depends only on the
nanowire parameters, whereas a also depends on the to-
tal power P0. From Eq. (1) we obtain

_v≡
dv
dτ ¼ vð1 − vÞ sin θ; ð5Þ

_θ ≡ dθ
dτ ¼ −aþ 2bvþ ð1 − 2vÞ cos θ: ð6Þ

We choose initial values θ0 ¼ θð0Þ, v0 ¼ vð0Þ with
0 < v0 < 1, where we regard τ as a “time” variable, then
it can be shown from Eq. (5) that 0 < vðτÞ < 1 for all
τ > 0, i.e. v always remains within the physical region.
We solve Eqs. (5) and (6), in terms of periodic elliptic
functions by observing that Γ ¼ −avþ bv2 þ vð1 −
vÞ cos θ is a constant of the motion, enabling us to write
_v2 ¼ QðvÞ where Q is the fourth degree polynomial
QðvÞ ¼ v2ð1 − vÞ2 − ðΓþ av − bv2Þ2. The minimum and
maximum values of v, denoted vmin, vmax respectively, oc-
cur when _v ¼ 0, i.e. at zeroes of Q. Since Qð0Þ, Qð1Þ < 0
and Qðv0Þ ¼ v20ð1 − v0Þ2 sin2 θ0⩾0 we deduce that Q gen-
erally has at least two real zeroes in the interval ð0; 1Þ. We
integrate _v ¼ ffiffiffiffiffiffiffiffiffiffi

QðvÞp
over the half-period in which v

increases, in order to find τ as a function of v, and also
the period T :

Z
v

vmin

duffiffiffiffiffiffiffiffiffiffiffi
QðuÞp ¼ τ − τ0; T ¼ 2

Z
vmax

vmin

duffiffiffiffiffiffiffiffiffiffiffi
QðuÞp ; ð7Þ

where vmin ¼ vðτ0Þ. These integrals may be evaluated in
terms of elliptic integrals of the first kind, see for exam-
ple [6] (Sections 3.145, 3.147). In particular, T is expres-
sible in terms of the complete elliptic integral K , and so
can be written as an explicit function of a, b, v0, θ0, i.e. as
a function of the waveguide parameters and the initial
power and phase of the input fields. The precise formulas
depend on the relative location of the roots of Q.

We are interested in solutions which begin near the un-
stable steady states of Eqs. (5) and (6) because these lead
to bistable solutions, where “bistable” refers to configura-
tions which take values in adjacent unstable steady
states. There are four classes of steady state solutions:

cos θ ¼ 1; v ¼ a − 1
2ðb − 1Þ ; ðb ≠ 1Þ; ð8Þ

cos θ ¼ −1; v ¼ aþ 1
2ðbþ 1Þ ; ðb ≠ −1Þ; ð9Þ

cos θ ¼ a; v ¼ 0; ðjaj⩽1Þ; ð10Þ

cos θ ¼ −aþ 2b; v ¼ 1; ðja − 2bj⩽1Þ: ð11Þ
Of these, (10) and (11) lie on the boundary of the physical
region 0 < v < 1, and (8) and (9) lie within the physical
region for restricted values of a, b. We determine the sta-
bility of these steady states, and hence identify bistable
states, by means of a Lagrangian formulation of Eqs. (5)
and (6). By differentiating Eq. (6) and substituting for _v
and v in terms of θ, we obtain a second-order equation for
θ that is precisely the equation of motion derived from
the Lagrangian

L ¼ T − V ¼ 1
2MðθÞ _θ2 − VðθÞ; ð12Þ

where the “mass” M and potential V are given by

MðθÞ ¼ 2
jb − cos θj ; VðθÞ ¼ −jb − cos θj − ða − bÞ2

jb − cos θj :

ð13Þ

The conserved energy T þ V is related to the conserved
quantity Γ. Stability of each steady state solution, for
which V 0 ¼ 0, is determined by the sign of V 00 at that so-
lution, corresponding to either a local maximum or mini-
mum of V . The shape of the potential, which depends on
a, b but is always periodic, provides qualitative informa-
tion on the properties of θðτÞ, for example small periodic
oscillations occur when θ is near a local minimum, and
bistable solutions and associated kink solitons appear
when θ takes values near local maxima of V . θ can be

Fig. 1. (Color online) Contour plots of γ1, γ2, 3γc=2, 3γ0c in units
of ðW · mÞ−1 as functions of the major/minor diameters for ellip-
tical waveguides.
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periodic, or an increasing or decreasing function of τ,
although the corresponding power v is periodic.
We focus now on the first class of steady state solu-

tions (8), which was not found in previous studies [1]
(Chapter 6) for which Eq. (2) holds, leading to b ¼ 1.
We are interested in the case b > 1, which holds for a
range of γ values calculated using Eq. (3). We require 1 <
a < 2b − 1 in order that the steady state solutions (8)
satisfy 0 < v < 1. Since V 00 ¼ ða − 1Þða − 2bþ 1Þ=ðb − 1Þ2
is then negative these solutions are unstable. Small per-
turbations push the fields away from these steady states;
however, the fields do not become chaotic, rather both
the power v and cosΔϕ are periodic functions of τ.
The period becomes arbitrarily large as the initial values
v0, θ0 approach the unstable steady state, and cosΔϕ in
particular shows bistability with abrupt transitions be-
tween the values �1 (an example is shown in the inset
in Fig. 2). For some values of a, b this behavior is very
sensitive to the proximity of v0, θ0 to the steady state,
for example if a ¼ b the system behaves like a nonlinear
pendulum, as is evident from the potential V in Eq. (13).
For other values, such as a ¼ 1 or a ¼ 2b − 1, for which
V 0, V 00, V 000 are all zero at the steady state, bistability is less
sensitive to the values of v0, θ0.
In addition to periodic solutions, Eqs. (5) and (6) also

have soliton solutions. These static kink solitons may be
regarded as limits of the periodic bistable solutions, but
with infinite period, and are found by solving the differ-
ential equation for θ with the boundary condition cos θ →

1 as jτj → ∞. An explicit exact solution is

cos θ ¼ 1þ 2κ
1 − ðκ þ 1Þcosh2 ffiffiffiκp ðτ − cÞ ; ð14Þ

where κ ¼ ða − 1Þð−aþ 2b − 1Þ=2ðb − 1Þ and c is any con-
stant. We have κ > 0 for the values of a, b under consid-
eration, namely, 1 < a < 2b − 1; however, at b ¼ 1 the
solutions (14) do not exist. Given θ from Eq. (14), the
power v is obtained from Eq. (6), and (5) is then also
satisfied. The soliton (14) can propagate in time as a
pulse over the length of the waveguide according to the
evolution Eq. (1) and maintains its identity as a soliton
provided that the boundary conditions remain intact.

As an example of bistable solutions, consider an ellip-
tical waveguide made of chalcogenide glass with major/
minor diameters equal to 640 and 620 nm, with γ values
calculated from Eq. (3) giving b ¼ 2:4. Consider initial
values for the system that correspond to an unstable stea-
dy state, by setting P1ð0Þ ¼ p1 þΔP, P2ð0Þ ¼ p2 where
p1 ¼ 150:5W, p2 ¼ 793:3W and ΔP (in units of watts)
is a perturbation on p1, together with θ0 ¼ 0. We plot
the period T as a function of ΔP in Fig. 2. At ΔP ¼ 0
we have a ¼ 1:3 (hence 1 < a < 2b − 1 is satisfied) and
v0 ¼ p1=ðp1 þ p2Þ ¼ ða − 1Þ=2ðb − 1Þ corresponds to the
unstable steady state solution (8), for which T is infinite.
The insets in Fig. 2 show P1, P2, and cosΔϕ as functions
of z, where the periodicity of the power functions and the
bistability of cosΔϕ are evident. The polarization vector
flips through an angle ≈20° over each period.

In conclusion, we have shown that within a full vector-
ial model of nonlinear processes in optical nanowires, we
obtain γ coefficients that do not necessarily satisfy the
relations (2). This results in structurally induced aniso-
tropic nonlinearities for isotropic material-based linearly
birefringent waveguides. The model allows continuous
wave solutions of three types: steady state solutions, per-
iodic (including bistable) solutions, and kink soliton so-
lutions. The bistable states and the soliton solutions (14)
exist only for the extended range of γ coefficients. Prop-
erties of the bistable states can in principle be utilized to
construct photonic devices such as optical logical gates.
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Federation Fellowship, and M. Lohe acknowledges the
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Fig. 2. (Color online) The period T as a function of ΔP. The
insets show the periodic variation of the two polarization
powers P1, P2, and cosΔϕ, as the pulse (for ΔP ¼ 100W)
propagates along the fiber.
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