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Abstract

Even while numerical simulation methods dominate reservoir modeling, the
Buckley-Leverett equation provides important insight into the physical pro-
cesses behind enhanced oil recovery. The interest in a stochastic Buckley-
Leverett equation, the subject of this thesis, arises because uncertainty is at
the heart of petroleum engineering. Stochastic differential equations, where
one modifies a deterministic equation with a stochastic perturbation or where
there are stochastic initial conditions, offers one possible way of accounting
for this uncertainty. The benefit of examining a stochastic differential equa-
tion is that mathematically rigorous results can be obtained concerning the
behavior of the solution.

However, the Buckley-Leverett equation belongs to a class of partial differen-
tial equations called first order conservation equations. These equations are
notoriously difficult to solve because they are non-linear and the solutions
frequently involve discontinuities. The fact that the equation is being consid-
ered within a stochastic setting adds a further level of complexity. A problem
that is already particularly difficult to solve is made even more difficult by
introducing a non-deterministic term.

The results of this thesis were obtained by making the fractional flow curve
the focus of attention, rather than the relative permeability curves. Reser-
voir conditions enter the Buckley-Leverett model through the fractional flow
function. In order to derive closed form solutions, an analytical expression
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for fractional flow is required. In this thesis, emphasis in placed on model-
ing fractional flow in such a way that most experimental curves can readily
be approximated in a straightforward manner, while keeping the problem
tractable. Taking this approach, a range of distributional results are obtained
concerning the shock front saturation and position over time, breakthrough
time, and even recovery efficiency.
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Preface

One of the most distinguished contributers to reservoir engineering, Laurie
Dake [44], has made a call: for the revival of fractional flow of water which
seems to have ‘gone missing’ since the advent of simulation and, it is argued,
is the key to understanding any form of displacement process.1 This thesis
firmly belongs to the “Dakian” school of thought. From the first line until
the last page, the emphasis will be on closed form, analytical solutions. The
reader will appreciate that solutions of this kind are significantly more dif-
ficult to obtain than numerical ones. This approach is taken in the belief
that increased insight is thereby gained into the physical processes behind
the model.

1Dake [43] page 311.
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Nomenclature

S saturation (without subscripts it refers to the displacing fluid), fraction of pore volume
SL displacing saturation at end of core/reservoir
Sc connate displacing fluid saturation, fraction of pore volume
S̄ average saturation, fraction of pore volume
S∗ shock front saturation, fraction of pore volume
k permeability, darcy
kr relative permeability, fraction
f fractional flow (without subscripts it refers to the displacing fluid), fraction
φ porosity, fraction
µ viscosity, cp
ρ density, kg/m3

p pressure, Pa
P oil production, pore volumes
qtotal total flow rate (oil + water), m3/day
qi water injection rate, m3/day
Qi cumulative injected water volume, m3/day
Qdim dimensionless cumulative injected water, in pore volumes

Subscriptes may be added to specify a number of quantities.

1, 2 fluid 1 or 2
d, nd displacing or non-displacing fluid
w, nw wetting or non-wetting fluid
w, o, g water, oil or gas (it is clear by context whether water or wetting fluid is intended)

x



c connate or critical (depending on the phase)
ir irreducible
dim dimensionless

Note on Subscripts and Connate Saturation

It would simplify matters greatly if the entire thesis could be written in terms
of a single set of subscripts, but this is impractical. Generally, fluid 1 versus
fluid 2 is used to present the flow equations, wetting fluid versus non-wetting
is used when discussing relative permeability, and displacing fluid versus
non-displacing is used for Buckley-Leverett. Other subscripts are used to
be consistent with original sources, or when formulas only apply to specific
phases. Throughout the examination of Buckley-Leverett, the initial satura-
tion corresponds to the connate saturation.
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PART I - Background



Chapter 1

Introduction

“In its operational sense the principle of uncertainty, which is
usually considered as a limit to the realm of microscopic physics,
constitutes the very essence of applied reservoir engineering as a
science.” (Morris Muskat)

This chapter will provide an overview of the thesis. The motiva-

tion for developing a stochastic formulation of the Buckley-Leverett

equation will be examined. Before making an original contribution

to the field, it is necessary to first review the work of others, and

this will be done. By the end of the chapter, it will be clear what

other people have contributed, and the new area of research will

be specified.

This thesis is concerned with the Buckley- Leverett equation in a stochastic
setting. The Buckley Leverett equation belongs to a class of partial differ-
ential equations called first order conservation equations. These equations
are difficult to solve because they are non-linear and the solutions frequently
involve discontinuities. The fact that the equation is being considered within
a stochastic setting adds a further level of complexity.

1



There are at least two solid reasons for focusing on the Buckley Leverett
equation within a stochastic setting. Firstly, such a formulation is relevant
to petroleum engineering. Secondly, the problem belongs to a wider class
of problems that are of more general interest. Let us consider each of these
points in turn.

Touching on the first point, the equation is certainly still relevant. Under-
standing the solution of the Buckley-Leverett equation provides a wealth of
insight into the physical processes behind enhanced oil recovery, even while
numerical simulation methods dominate reservoir modeling. The Buckley-
Leverett equation represents the simplest statement of material balance for
water-drive.1 Water-drive was one of the first methods of enhanced oil re-
covery, and in places like the North Sea, water-drive has been central to the
recovery process. The Buckley-Leverett equation helps us to understand this
mechanism. Furthermore, the model has also proven to be quite accurate,
despite its simplicity.

One might question the use of analytical models when numerical simula-
tion dominates reservoir engineering. Analytical models provide information
about the structure of solutions. These methods are still, in the words of
Bedrikovetsky [14], important in the initial stages when decisions are being
taken on the technology and in optimization studies when the geological and
physical studies are inadequate.2 In order to obtain analytical solution, it
may be necessary to impose strong assumptions. In comparison, numerical
models have the advantage that they are more general, and are able to cover
situations and details not possible with analytical methods. However, that is
not to suggest numerical simulation is perfect. To quote Carlson [27], Simu-
lator technology is not nearly as mature as most petroleum engineers would
believe.3

1as stated in the foreword to Dake [44].
2page xix.
3page 38.
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In terms of relevance, a number of recent publications, including Lie and
Juanes [108], Terez and Firoozabadi [157], Guzmán and Fayers [69], and
Kaasschieter [86], demonstates that there is still a great deal of interest in
the Buckley-Leverett equation in various modified forms. One should not
have the idea that the study of two-phase flow in porous media is confined
to petroleum engineering. It is also important for the study of soil physics
and groundwater hydrology (see Bear [13]). However, in this thesis, the ap-
plication to reservoir engineering is the focus.

But why should we be interested in a stochastic Buckley Leverett equation?
The short answer is, uncertainty is at the heart of petroleum engineering.
Flow in porous media, as it applies to areas such as the modeling of ground-
water flow or petroleum reservoirs, occurs under conditions of uncertainty.
To start with, there are many different scales of rock behavior that must
be represented, ranging from core plugs through to large scale faults. The
core sample that adequately represents a particularly porous and well inter-
connected area will be inadequate at representing that part of the reservoir
occupied by shale. Not only are there a number of different scales operating
within a reservoir, but at each of these scales different physical processes
may be prominent. The microscopic level is dominated by capillary forces.
At larger scales viscous and gravity forces tend to dominate. While some
of the unknown factors can be partially offset by taking many samples and
by integrating a range of geological information into the model, it will still
only result in a representative picture. Significant uncertainty will always be
present.

Stochastic differential equations, where a deterministic equation is modified
with a stochastic perturbation, or where stochastic initial conditions are as-
sumed, offers one possible way of accounting for this uncertainty. The great
benefit of examining a stochastic differential equation is that mathematically
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rigorous results can be obtained concerning issues such as the physical char-
acteristics of shock waves and the asymptotic behavior of solutions. Such
results do not have to be taken in isolation, but can be used to calibrate and
validate numerical models of the system.

The second major reason for studying our stochastic version of the Buck-
ley Leverett equation is that it provides a tractable but physically relevant
problem within an otherwise very difficult class of problems. Over the last
thirty years there have been enormous developments in stochastic differential
equations. However, these uses have mostly involved second order equations
with relatively well behaved solutions. First order conservation equations, in
comparison, often have discontinuous solutions and stochastic methods are
more difficult to apply to these equations.

In the next few chapers, we will consider the following subjects:

• The Mathematical Formulation of Multiphase Flow.

• Riemann problems and the solution of the Buckley Leverett equation.

• Relative permeability.

This will lay the foundations for posing and solving a stochastic version of
the the Buckley-Leverett equation. We will now examine how each of these
subjects has evolved.

1.1 The Model

What could be called a standard macroscopic description of multiphase flow
can be found in any number of text books: Amyx et al. [8], Collins [34],
Bear [13], Peaceman [137], Marle [112], Lake [96], Dake [44] [43], Fanchi [56],
Ahmed [2] and Craig [39]. The sense in which there is a standard description
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comes down to each text taking a common approach with regards to three
shared key ingredients. First, the porous medium is treated as a continuum.
Second, mass conservation equations are developed. Third, the multiphase
extension of Darcy’s Equation is employed, which requires relative perme-
ability curves.

Each of the inputs, that is the continuum approach, the multiphase exten-
sion of Darcy’s equation and relative permeability curves, raises separate
questions. Is it appropriate to approximate the medium as a continuum?
Is Darcy’s equation suitable for describing multiphase flow? Are the rela-
tive permeability curves suitable and accurate descriptors of fluid behavior?
Despite the limitation, this approach is ubiquitous within the literature con-
cerning multi-phase flow through porous media.

1.2 The Continuum Approach

The effort to develop governing laws for the flow of fluid through porous
media, on a par with those typical of other physical sciences, commenced
with Darcy. In the approach of Darcy and those that follow, the concept
of a continuum is implied simply by introducing the term porous medium,
and by considering flow of fluids through a porous medium.4 The contin-
uum approach focuses on macroscopic behavior that arises from regarding
the medium as a statistical average of properties. To quote from Wyckoff
and Botset, the problem should be attacked essentially from a statistical an-
gle which involves the study of large aggregates of pores.5 This is done out of
necessity since it is evidently impossible to describe perfectly the infinitely
complex internal geometry of the solid or completely describe the motion of
the fluid across the pore surface. Nearly all the theories relating to porous me-

4Bear [13] page 13.
5[174] page 326.
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dia result in macroscopic laws that apply to volumes that are large compared
to the pores. To describe macroscopic behavior this is usually an acceptable
approach, and this kind of treatment is common to all macroscopic physical
theories, electric charge being a good example. Indeed, the analogy between
fluid flow in porous media and the study of thermal and electrical conduction
in metals was recognised early by Richards [142].6

In the case of electric charge, there is uniformity due to the enormous number
of charged particles in even a cubic centimeter of charged matter, this being
in the order of Avagadro’s number. In the same volume of porous media there
will generally be a relatively small number of pore spaces. Furthermore, these
pore spaces are unlikely to be uniform. It is therefore harder to derive an
accurate theory that will be true in all situations. While we might achieve
an accurate result in a large sample of uniform porous media, it is likely that
the description will be poor for a non-homogeneous small sample of material.

Permeability

1

Radiusr2r1 r3

macro
defined

Figure 1.2.1: Macroscopic Quantities
6page 319. Richards credits Buckingham [22] and Gardner et al. [63] as early pioneers

in the application of potential theory to liquid flow through porous material.
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Consider the effort of finding permeability for a rock sample. We isolate a
point we wish to consider with a ball of fixed radius r. Around this point the
permeability is measured. The situation is illustrated in the Figure 1.2.1.7

Below r1 the volume element is too small for an average to have meaning and
permeability varies in an irregular fashion. It will be 0 if the point considered
is within the solid and large otherwise. Between r1 and r2 permeability has
local characteristics. Above r2 any local behavior is lost as the sample takes
on the characteristics of the block. Above r3 the sample can be said to have
macroscopic behavior. To quote from Dullien [53] the sample is said to be
macroscopic whenever the macroscopic pore structure parameter (e.g., k or
φ) studied is not fluctuating any more when including more material around
the initial sampling point, but its variation can be represented by a smooth
line. When this smooth line runs parallel to the abscissa, the medium is said
to be macroscopically, or statistically averaged.8 This simple example shows
that the macroscopic properties are more closely tied to the size and nature
of the porous material than are the physical theories that govern examples
such as electrostatics or the kinetic theory of gases, even though the general
approach is similar.

Alternatives to the continuum assumption do exist. Theories have been de-
vised that attempt to relate the macroscopic properties of porous materials
to the statistical properties of the microscopic structure. Burdine et al. [25]
attempted to relate the pore size distribution to the macroscopic properties
of the material, while Krumbien et al. [94] endeavored to relate the grain size
distribution of unconsolidated materials to macroscopic properties. A differ-
ent approach is to start with the elementary laws of viscous flow in a pore then
using statistical methods derive macroscopic laws (Matheron [113]). Similar
attempts to derive the macroscopic constitutive equations from the micro-
scopic equations through averaging techniques were made by Hassanizadeh

7After Whitaker [170].
8page 86.
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and Gray [70], and Bachmat and Bear [11]. Yet another approach is to em-
ploy statistical mechanics (Sposito [152]). All these approaches have been
restricted to simple flow systems. Despite these efforts, the continuum ap-
proach is far and away the most universal, and the most general in scope.

1.3 State and Field Equations

Darcy’s law was developed through experimentation. It describes saturated,
single phase, seeping flow through a uniform porous column. It is is expressed
by the formula:

u = KA
h1 − h2

L
(1.3.1)

where u is rate at which water flows down a vertical sand pack of uniform
cross-sectional area A, length is given by L, and where K is the constant
of permeability (this material will be covered in Chapter Two). Regarding
permeability as a constant rock property, regardless of the nature of the fluid,
is a strong assumption. After all, there are a number of forces that might
reasonably be expected to influence the flow regime, including gravity, cap-
illary and viscous forces - the last two of which vary with flow rate.

To describe multiphase flow, a large number of equations are required. In the
seminal paper by Muskat and Meres [121], they are denoted as a) statements
for viscosity and solubility, b) the “laws of flow” for the two phases, c) an
empirical relation for the permeabilities of the two phases (as functions of
saturation), and d) continuity equations for the two phases. Somehow this
complex system of equation must be solved. To achieve this analytically,
simplifying assumptions are invariably required.

Multiphase Extension of Darcy’s Law

If two immiscible fluids flow simultaneously through a porous medium then
each fluid has its own permeability which depends on the saturation of each
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fluid. This was studied by Wyckoff and Botset [174], who gave the first ex-
perimental relative permeability curves for the case of gas-liquid mixtures
through unconsolidated sands. Since then, a number of studies have sup-
ported the assumption that, within limits, relative permeability is indepen-
dent of viscosity and fluid flow rate, so that saturation can be used as the
independent variable.

A giant step forward in petroleum engineering occured with the publication of
Flow Through Porous Media by Muskat and Meres [121]. Using the results of
Wyckoff and Botset, published in the preceding article of the journal Physics,
the authors proposed a straightforward extension of Darcy’s Law by assigning
individual flow equations to each fluid,9

v̄g = −kg
µg
5 p (1.3.2)

v̄l = −kl
µl
5 p (1.3.3)

where v̄g and v̄l are the macroscopic velocities of each phases, kg and kl are
the permeabilities and µg and µl are the viscosities of the gas and liquid
respectively. As the authors point out, the effective permeability of a porous
medium cannot be constant when the flow of fluid mixtures is involved.10

This was alluded to by Richards [142] in 1931, who pointed out that in
an unsaturated porous medium (water and air being the gas and liquid)
capillary forces would dominate and the moisture content would determine
conductivity.11 The permeabilities in Muskat and Meres [121] are based on an
empirical relationship for the gas and liquid phases as proposed by Wyckoff
and Botset [174], and are functions of saturation divided by porosity (which
is given the symbol ρ), so that

9Muskat and Meres [121] page 349.
10page 326.
11page 323.
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kg = koFg(ρ) (1.3.4)

kl = koFl(ρ) (1.3.5)

After applying equations of continuity (conservation) for the gas and liquid,
Muskat and Meres obtain two fundamental equations which will govern the
flow of heterogeneous fluids through porous media12:

c

µg
5 · {pFg(ρ)5 p}+

s

µl
5 · {pFl(ρ)5 p} =

f

k0

∂

∂t
p{sρ+ c(1− ρ)}

(1.3.6)

5 · {Fl(ρ)5 p} =
fµl
k0

∂p

∂t
(1.3.7)

where c is the constant of proportionality for the law describing the density
γ of the gas (γ = cp), s is the constant of proportionality for the dissolved
gas (S = sp) and f is the porosity. These fundamental equations are quite
general, with gas density variable and a portion of the gas dissolved in the
liquid. As the authors are the first to point out, the non-linear and complex
character of these equations makes it impossible to treat or solve them gen-
erally.13 Muskat and Meres consider linear, radial and spherical flow for the
steady state case, that is the right side is set to zero. For a full treatment of
the derivation of these equation one should consult the originally paper, or
better still Muskat [120].

1.4 Relative Permeability

There is a large body of literature on relative permeability. Wyckoff and
Botset, the first researchers to publish relative permeability curves, include
results for four different unconsolidated sands, so that the permeability is dif-
ferent in each case. Leverett [105] conducted a laboratory investigation into

12page 349.
13page 349
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a number of factors affecting relative permeability curves. Tests involving
changes in viscosity, interfacial tension, liquid density and permeability were
undertaken in a number of experiments. Leverett reports that relative per-
meability is largely independent of the viscosity, but is affected by pore size
distribution, and to the displacement pressure, pressure gradient and water
saturation.14 Since the publication of Leverett [105], there has been seventy
years of continuous research into the factors that influence the form and ac-
curacy of relative permeability curves.

Relative permeability is probably the single most important concept in petrol-
eum engineering. There are two broad areas of interest: methods of measure-
ment and factors that alter the curves. Experimental measurement of rela-
tive permeability is broken up into steady state and unsteady-state methods,
however there are also methods that utilize capillary pressure and calcula-
tions made on the basis of field data. A complete overview of these methods
is given in Honarpour et al. [80]. The second area of interest concerns the
many various factors that effect the behavior of relative permeability. We
will consider relative permeability fully in Chapter Four, which will includ-
ing a review of the major contributions to the subject. In Chapter Four,
the emphasis is less on the exceedingly difficult task of accounting for every
factor that can influence relative permeability, and rather more centered on
the virtual hopelessness of such an effort. This will lead us to consider a
stochastic approach.

1.5 Buckley-Leverett and Welge

Buckley and Leverett [23] examined the waterflooding of a reservoir. In
doing this, they considered the simultaneous flow of two fluids that were
immiscible, incompressible and possessed constant viscosities. Furthermore,

14page 169.
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they assumed capillary forces were negligible, so that a simplified fractional
flow expression could be used. The authors examined the rate of advance of
a plane of constant saturation, and in so doing developed the equation that
bears their name. In one-dimension:

∂S

∂t

∣∣∣∣
x

+
qtotal
φA

∂f

∂x

∣∣∣∣
t

= 0 (1.5.1)

where t is time, x is distance along the flow path, S is the saturation of the
displacing fluid, qtotal is the total rate of flow through a uniform section, φ is
porosity, A is cross-sectional area and f is the fractional flow (or in the words
of the authors, fraction of flowing stream comprising displacing fluid15). If
capillary forces are assumed to be negligible, the expression for fractional
flow takes the form:

f =
1

1 + kndµd
kdµnd

(1.5.2)

where krnd, krd, µnd, and µd are the relative permeabilities and viscosities
for the non-displacing and displacing fluids respectively. As was the case for
Musket and Meres, krnd and krd are determined from relative permeabililty
experiments.

Initial conditions are required to make the problem complete. This takes the
form of a fixed saturation to the left of the origin (flow entering the reservoir)
and saturation to the right of the origin, representing the initial state of the
reservoir. While equations (1.3.6) and (1.3.7) could only be solved for the
steady state case (using numerical methods), Buckley and Leverett were able
to provide a complete solution to the model they proposed.

15Buckley and Leverett [23] pages 109-110. The equation above differs only marginally
from the form in the original paper.
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Buckley and Leverett calculated the saturation profile for a waterflood model.
In their results, the physically impossible triple valued solution is replaced
with a discontinuity. The position of the discontinuity is determined by ma-
terial balance. The same result can be obtained using the Rankine-Hugoniot
condition for a jump discontinuity. This is no surprise, given the Buckley-
Leverett equation is a Riemann problem. The derivation of the Buckley-
Leverett equation will be covered in Chapter Two, and solution will be ex-
amined in Chapter Three.

Welge [169] generalized the results of Buckley and Leverett. The author
calculated the average water saturation behind the shock front, which could
be used to calculate water saturation at the moment of breakthrough and
beyond. This permits the calculation of oil recovery. Welge observed that
the correct shock front saturation could be determined by drawing a tangent
line from the initial saturation to the fractional flow curve, providing a simple
graphical method for solving the system. This will be covered in Chapter
Three. Oil recovery is covered in Chapter Seven.

1.6 Riemann Problems

The mathematical modeling of multiphase flow in porous media is still an
open issue due to the complexity of the system being studies. Anyone who has
examined these problems will be acutely aware of the mathematical difficul-
ties in obtaining solutions for all but the most elementary cases. By making
a number of the simplifying assumptions meaningful results can be obtained.
In the case of the Buckley-Leverett equation, it is taken that the medium is a
continuum, that Darcy’s equation can be extended to cover multiphase flow,
that the essential fluid properties can be captured by relative permeability
curves, and finally it is assumed not merely that capilliarity effects are small,
but they are sufficiently small that it is possible to drop capilliarity effects
entirely from the formulation. We leave behind the complex physical world
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and focus on a simplified mathematical abstraction. By choosing constant
initial condition, the system is reduced to a Riemann Problem. In its simplest
form, solve for u ≡ u(x, t):

ut + f(u)x = 0 (1.6.1)

and

u(x, 0) =

{
ul if x < 0

ur if x > 0
(1.6.2)

Riemann problems and first order conservation equations are not mentioned
specifically in Buckley and Leverett [23]. The authors calculated the shock
front saturation using simple material balance. However, the solutions, which
may involve shocks or rarefaction waves, are better understood by studying
them in terms of first order conservation equations. This subject will be
covered in Chapter Three.

The subject of Riemann problems in particular and first order conservation
equations in general is far too large to cover in detail here, and our needs are
quite small. Courant and Friedrichs [36] provided an exposition of material
within the context of gas dynamics gathered from the physics and engineering
literature since 1800. A rigorous theory developed from 1950, through pa-
pers by Hopf [81], Lax [101] [102] and Oleinik [128]. These references include
important contributions concerning entropy conditions, which are relevant to
this thesis. These ideas were given a general presentation in Lax [103]. The
mathematical theory of first order conservation equations is explored in many
standard books on partial differential equations such as John [83], Thomas
[160] and Evans [55]. The material is given a self contained treatment by
Leveque [104]. The second half of [104] focusses on numerical methods for
solving first order conservation equations. The theory of nonlinear first or-
der conservation equations is examined Whitham [171]. The mathematical
theory of hyperbolic systems is comprehensively treated by Dafermos [41]
and Smoller [151]. The book by Holden and Risebro [77] is one of the more
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recent contribution to the subject, providing a systematic and self-contained
presentation of the theory of hyperbolic first order conservation equations.
These are the main sources that were consulted when writing on this subject.

1.7 Stochastic Buckley-Leverett

There are only a few papers that consider the Buckley Leverett equation in
a stochastic setting, of which two in particular stand out. Holden and Rise-
bro [75] examine the scalar Buckley-Leverett equation with a stochastic flux
function or stochastic initial data. The flux function is measured at certain
points u1, u2, ... , uN , with piecewise linear interpolation between points. The
condition on the flux function f(s, x) is that it is piecewise constant in x and
piecewise linear in s. The benefit of this formulation is the solution to the
problem is simple, according to the authors. The flux function at each ui is
assumed to belong to a uniform distribution. By examining the slope of the
linear interpolation between points, the expectation under certain assump-
tions on f is calculated. The first assumption ensures f is always convex,
while the second assumptions allows some realizations to be non-convex. The
authors also examine the case in which the relative permeability is given by
a power law, so that the flux function has the form:

f(u) =
ua

ua + (1− u)a
(1.7.1)

Since the parameter a is obtained by curve fitting, it is natural to regard a

as equiped with a certain uncertainty, i.e., to model a as a stochastic param-
eter.16 The parameter a is assumed to be uniformly distributed. Finally, the
case in which f is a known continuous function and the intial data is random
is also examined.

16Holden and Risebro [75] page 1482.
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Lars Holden [78] considers the Buckley-Leverett equation with a spatially
stochastic flux function. As for Holden and Risebro [75], the condition on
the flux function f(s, x) is that it is piecewise constant in x and piecewise
linear in s. This form of flux function is covered by Holden, Holden and
Høegh-Krohn [74], and exploits the observation by Dafermos [41] that with
f piecewise linear and the initial value piecewise constant, then the solution
is piecewise constant.17 Despite the strong assumptions on f , a more general
flux function can be approximated with a function of this form.18 L. Holden
assumes that on each x interval f(s, x) is a stochastic function of s and
independent and identically distributed for each x interval. The aim of this
work is to derive a convergence result based up the spatial average of f(s, x),
which is denoted f̄(s). The definition of the spatial average of f(s, x) is
rather specific:19

(1) Define g1(y, x) as the inverse of s by g1(f(s, x), x) = s.
(2) Define g2(y) as the spatial average of g1(y, x) by
g2(y) = 1

x̄

∫ x̄
0
g1(y, x)dx

(3) Define f̄(s) as the inverse of g2(y) by f̄(g2(y)) = y

Using these definitions, the author shows that for the Buckley-Leverett equa-
tion in one dimension with Riemann initial data and spatially stochastic flux
function (that is f(s, x) varies randomly with position), the solution is equiv-
alent to the solution of:

s(x, t)t + f̄(s(x, t))x = 0 (1.7.2)

This mathematically confirms the result demonstrated by Tjølsen and Damsleth
[163] who used intensive reservoir simulation to show that a spatially vary-
ing relative permeability can be replaced by the average relative permeability

17Holden Holden and Høegh-Krohn [74] page 481.
18L. Holden [78] page 1450.
19Ibid. page 1447.
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without changing the reservoir performance considerably.20

When it comes to first order conservation equations in general, few known
closed form solutions exist. Burgers’ equations is a notable exception to this
rule since the Hopf-Cole [81] [33] substitution allows Burgers’ equation to be
transformed into the heat equation. For this reason there is a reasonably com-
plete understanding of the solution. Burgers’ equation is appreciably simpler
than the Buckley-Leverett equation since the flux term is 1/2u2. The invis-
cid form of Burgers’ equation (the right side term εuxx set to zero) has been
examined with Brownian motion initial data by Sinai [149] with numerical
results provided in the companion paper by She et al. [146]. Wehr and Xin
[166] examine Burgers’ equation with initial data of the form u(x, 0) = us+Vx,
where Vx is white noise. They obtain a result on the distribution of the shock
front, which is known to propagate at the same speed as the unperturbed
front. Wehr and Xin [167] also examine the inviscid Burgers’ equation for
the case of a spatially random flux function. Stochastic scalar first order
conservation equations are examined by King [89], and King and Scher [90],
where the function (ds/dt).dx is interpreted as a probability density since the
integral from 0 to infinity is 1 and ds/dt > 0. Holden and Risebro [76] study
the scalar first order conservation equation with a noisy nonlinear source,
ut + f(u)x = h(u, x, t) + g(u)W (t), where W (t) is white noise. This paper
employ a splitting up method to reduce the stochastic differential equation
to two simpler problems, following the method of Bensoussan et al 1990 [16].
In the numerical examples, they examine the Buckley-Leverett equation with
a random source.

20Ibid. page 1444.
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1.8 What’s New?

It is certainly the case that a general form of the flux function does not exists
for the Buckley-Leverett equation. The flux function, which is usually refered
to as the fractional flow function for this problem, is determined experimen-
tally. That is what makes the problem interesting, and leads to considering
the problem from a stochastic perspective. Even without a general form, it
is possible to approximate the flux function using piecewise stochastic func-
tion. This has been done for example in [75] and [78] and these authors have
obtained a number of impressive general mathematical results.

The aim of this thesis is more modest. Although there is not a general form
for the flux function that can be used in all cases, fortunately in many (and
perhaps even most) cases, the logarithm of the ratio of relative permeabilites
have a functional relationship. In this case the flux function may be given
the form:

f(s) =
1

1 + µw
µo
eg(s)+ε

(1.8.1)

where eg(s) models the ratio of the relative permeability curves and is deter-
mined by regression. The error term ε arises from the regression analysis.
The log-linear case appears frequently in the literature, and covers a wide
range of situations. While this cannot not cover all situations, on the posi-
tive side, the problem becomes managable. The function g(s) is not limited
to the linear case, and can be generalized. For most examples, the linear
case provides an acceptable approximation. We are dealing with probability
models, and approximating functions to the nth degree of accuracy is not
usually warranted.

The aim of of this thesis it to obtain distribution and expected values of a
number of quantities of interest, using a stochastic version of (1.8.1). The
Buckley-Leverett equation is not just about the shock front saturation. The
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spead of the saturation profile, the time to breakthrough and recovery effi-
ciency are also fall out of the solution in what might be called an embarrass-
ment of riches. These quantities will naturally have distributions too.

1.9 Conclusion

The motivation for developing a stochastic formulation of the Buckley Lev-
erett equation should by now be clear. From a modeling level, the reservoir
conditions enter the system through the fractional flow expression, which
is determined by the relative permeability curves. These curves are exper-
imentally determined and there are many factors that contribute to errors
and uncertainty in accurately reflecting reality. This uncertainty, as Muskat
points out, constitutes the very essence of applied reservoir engineering as a
science. It is an issue that will receive considerable attention in the coming
chapters.

From the time of Darcy, researchers have struggled to balance what might
seem straightforward principles of hydrodynamics with the infinitely com-
plex, multiply connected media through which the flow takes place. In every
case, assumption are made so as to obtain results that would be impossible
otherwise. The assumptions that underpin Buckley-Leverett theory are quite
strong, but the model has stood up well over the last seventy years. This is
why, even today, the equation attracts academic interest.
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Chapter 2

The Mathematical Formulation of

Multiphase Flow

Stigler’s Law of Eponomy: “No scientific discovery is named af-
ter its original discoverer.” (attributed to Robert K. Merton by
Stephen Stigler)

In this chapter, we will present the standard model of multiphase

flow. We will start with Darcy’s law, and from there we will

progress to the case of multiphase flow. Taking the assumption

of Buckley and Leverett into account, the multiphase equations

will be modified to obtain the Buckley-Leverett equation.

2.1 Darcy’s Law

Since derivations of multiphase flow rely on an extension of Darcy’s equation,
it is with Henry Darcy that we will begin. Henry Darcy was employed as
a government engineer in the French city of Dijon. In 1856 he conducted a
series of experiments on vertical homogeneous sand filters using an apparatus
constructed along the lines of the set up described in the following diagram,
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which is Plate 24, Figure 3 of Darcy [46].1 Darcy observed that the rate of
flow Q is directly proportional to a) the constant area A and b) the difference
in piezometric head ∆h = h1 − h2, and inversely proportional to the length
of the filter L. The result is Darcy’s formula.

L

h

h

h

1

2

Q

Figure 2.1.1: Darcy’s Apparatus

Q =
KA{h1 − h2}

L
(2.1.1)

where K is a constant of proportionality called hydraulic conductivity and
the lengths h1 and h2 are measured with respect to an arbitrary datum level.
The term (h1 − h2)/L is called the hydraulic gradient.

Darcy’s law was derived under the conditions of homogeneous incompressible
flow and was limited to the one-dimensional case. All Darcy’s experiments
were carried out with water and the cylinder was maintained in the vertical
position. Experimentation with different fluids leads to a more general re-
sult. Taking into account fluid viscosity, K can be replaced by k/µ, where µ
is the viscosity of the fluid.

1This simplified diagram owes more to Chapman [30] page 126 than Darcy’s original
paper.
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It is important to note2 that flow is from higher piezometric head to lower
not from higher pressure to lower. Only for horizontal flow can we write

Q = −kA
µ

(pb − pa)
L

(2.1.2)

This says that the total discharge Q is equal to the product of the area,
permeability and the pressure difference, divided by the product of viscosity
and length. The SI units of Q are m3/s, k is in m2, pressure is measured in
Pa and the unit of µ are Pascal seconds (Pa · s) equal to 1 kg/(ms). The
negative sign is required to account for flow being from high to low pressure.
Extending to three dimension is as simple as replacing the derivative of p
with the gradient. Upon dividing both sides by area, we obtain:

u = −k
µ
∇p (2.1.3)

where u is the vector flow rate per unit area. If we now include body forces
B (in particular gravity), then assuming the porous media is isotropic and
the permeability is uniform:

u = −k
µ

(∇p−B) (2.1.4)

It is possible to write u is terms of a velocity potential. Suppose that B has
a potential Ψ, so that B = −∇Ψ. If we define the function

Φ =
k

µ
(p+ Ψ) (2.1.5)

then equation (2.1.4) can be written

u = −∇Φ (2.1.6)
2Bear [13] page 120
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In this form, the analogy between fluid flow in porous media the study of
thermal and electrical conduction, recognised by Richards [142], is obvious.

It would seem reasonable to take the viscosity µ as a known, quantifiable
constant, certainly in the experimental case of a fluid such as water pass-
ing through a sand filter. After all, viscosity is a property of the fluid and
since the fluid is homogeneous there is no variability. However, even deter-
mining viscosity is not without problems in a real reservoir, since viscosity
depends upon pressure and temperature. This problem can be circumvented
by assuming that flow is isothermal and pressure drops small, as is done by
Buckley and Leverett. Furthermore, when it comes to describing the solid
we are far from being in an ideal situation. Even in the most homogeneous of
sandstones there is considerable variability. It is therefore normal to question
whether it is appropriate to capture the innate, fluid transporting property
of a porous solid in the single constant k.

The elegant simplicity of the approach taken by Darcy is that he bypassed the
impossibly complex microscopic description of flow through porous media by
focusing on the macroscopic level. The media is treated as a continuum and
the term k is a statistically averaged property taken over a large number of
pores. Finding the macroscopic equivalent of the microscopic behavior turns
into an experimental problem. [120] [13] [112] [97] [96] [44]

2.2 Two Fluids

Suppose we have a block of porous material and at one end we inject two
fluids, 1 and 2. This was studied by Wyckoff and Botset [174], who gave
the first experimental relative permeability curves for the case of gas-liquid
mixtures through unconsolidated sands. Muskat and Meres [121] used the
work of Wyckoff and Botset to propose a straightforward extension of Darcy’s
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Law by assigning individual flow equations to each fluid. We will use a more
modern notations consistent with the rest of the thesis, although we are in no
doubt concerning the origin of this approach in [121]. The two flow equations
may be written,

u1 = −k1

µ1

(∇p1 − ρ1g) (2.2.1)

u2 = −k2

µ2

(∇p2 − ρ2g) (2.2.2)

where u1 and u2 are the filtration velocities of fluid 1 and 2 respectively.
The filtration velocity is related to the velocity a tracer would experience
moving through the formation by taking account of the effect of saturation
and porosity. They are the flow rates per unit of surface area at right angles
to the flow direction,3 so they are less than the actual velocity of each fluid.
If v1 and v2 are the true average velocities,

u1 = φS1v1 (2.2.3)

u2 = φS2v2 (2.2.4)

where S1 and S2 are the saturations of each fluid and φ is the porosity. The
driving force is a combination of the fluid pressure gradient and the gravita-
tional gradient. The terms k1 and k2 are called the effective permeabilities
and depend upon the true permeability and the saturation of the two fluids.
Effective permeabilities are difficult to calculate and it is more common to
consider the relative permeabilities, given by

kr1 =
k1

k
(2.2.5)

kr2 =
k2

k
(2.2.6)

The extension of Darcy’s law to cover the multiphase case is acceptable pro-
vided the effective permeabilities at a given saturation are independent of

3Marle [112] page 31.
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pressure gradients.4 Apart from Muskat and his fellow-workers, this ap-
proach has been validated by a wide range of experimental evidence over the
years, including the pioneering work of Hassler et al. [71], Botset [18], and
Terwilliger and Yuster [159].

There are many parameters upon which the relative permeabilities might be
expected to depend - the fluid densities, viscosities, interfacial tension, wet-
ting angle, pore characteristics and flow rate for example. We will consider
this in greater detail in Chapter Four. Experimentally, the most significant
variable is the saturation and to good accuracy we can assume that the rela-
tive permeabilities are functions of this variable. Figure 2.2.1 gives a typical
example of relative permeability curves.

1

k

k

r2

r1

S1c 1- S
2c

1
saturation

relative
permeability

Figure 2.2.1: Typical Relative Permeability Curves

Note the saturation limits. The connate saturation S1c for fluid 1 (assuming
fluid 1 is wetting5) is the minimum saturation under reservoir conditions, as
compared to the irreducible saturation which is the minimum under labora-

4Dullien [53] page 255.
5The angle between the tangent to the two fluids and the pore surface is less than 90

deg for the wetting fluid and greater than 90 deg for the non-wetting fluid ie., the wetting
fluid has a stronger propensity to cover the surface of the pore space. See Chapter Four.
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tory conditions. The maximum saturation is 1−S2c, where S2c is the critical
saturation of fluid 2 (the minimum saturation fluid 2 will attain). Below S1c

there will be no change in the saturation of fluid 1, despite a large change
in pressure. Similarly for fluid 2, whatever the change in pressure, S2c will
always remain. This means the simultaneous flow of the two fluids will only
take place if the saturation of fluid 1 is greater than S1c and less than 1−S2c.

Muskat and Meres obtained two fundamental equations that govern the flow
of heterogeneous fluids through porous media, already introduced as (1.3.6)
and (1.3.7). In deriving these equations, they included the capacity of the
gas to dissolve in the liquid, and density was also variable. As the authors are
the first to point out, the non-linear and complex character of these equations
makes it impossible to treat or solve them generally.6

2.3 One Dimensional Displacement

In three dimensional two phase flow, there are 15 dependent variables, which
would required 15 equations to obtain a complete solutions.7 If we consider
two inviscid, incompressible fluids with constant viscosities, many of the
mathematical difficulties vanish. By neglecting capillary forces, relatively
simply analytical solutions are even possible. This was first presented by
Buckley and Leverett in 1942 [23], who modeled a plane of water (fluid 1)
displacing oil (fluid 2). In this section we will follow the elegant presentation
of Bear [13], also shown in Marle [112] with minor variations.

We already have equations to describe flow velocity. In one-dimension (which
is all we require), using relative permeability the filtration velocities become:

6Muskat and Meres [121] page 349.
7Bear [13] page 466.
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u1 = −kkr1
µ1

(
∂p1

∂x
− ρ1g cosα) (2.3.1)

u2 = −kkr2
µ2

(
∂p2

∂x
− ρ2g cosα) (2.3.2)

The angle α is measured counterclockwise from the vertical downward di-
rection to the positive x-direction. The displacement of oil by water will be
reflected in the change in saturation of the two fluids. Since the porous space
is occupied by either oil or water we naturally must have:

S1 + S2 = 1 (2.3.3)

We will assume that capillary pressure is only a function of saturation, so
that

p2 − p1 = pc(S1) (2.3.4)

Following Buckley and Leverett, the density and viscosity of each fluid is
assumed to be constant.

2.3.1 Conservation Equations

We wish to derive an equation that expresses the conservation of mass of a
fluid with density ρ flowing through a volume element dx with porosity φ and
cross section A. The situation can be visualized in the following diagram.
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The difference between the mass flow rate in and the mass flow rate out is
equal the rate of increase of mass in the volume element. This is expressed
as:

Au1ρ1|x − Au1ρ1|x+dx = φAdx
∂

∂t
(ρ1S1) (2.3.5)

or
u1ρ1|x −

[
u1ρ1|x +

∂

∂x
(u1ρ1)dx

]
= φdx

∂

∂t
(ρ1S1) (2.3.6)

which gives,
∂

∂x
(u1ρ1) = −φ ∂

∂t
(ρ1S1) (2.3.7)

Assuming incompressible displacement, so that the density of each fluid is
constant, we can write:

∂u1

∂x
+ φ

∂S1

∂t
= 0 (2.3.8)

and since we could just as well have tracked a volume element of the displaced
fluid,

∂u2

∂x
+ φ

∂S2

∂t
= 0 (2.3.9)

2.3.2 Reducing the differential system to a single PDE

We will now reduce the system to a single partial differential equation. To-
gether with suitable boundary condition, the partial differential equation
(PDE) will capture the essential properties of one-dimensional displacement.
We commence by taking a new variable

u = u1 + u2 (2.3.10)

the sum of the filtration velocities. We will assume that u is never zero, which
will allow us to define the fraction of flowing stream8 or more commonly the
fractional flow of each fluid by,

f1 =
u1

u
(2.3.11)

8Buckley and Leverett [23] pages 109-110.
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f2 = 1− f1 =
u2

u
(2.3.12)

These expressions give the portion of each fluid velocity as a fraction of the
total. Equations (2.3.1) and (2.3.2) become,

∂p1

∂x
= ρg cosα− µ1f1u

kkr1
(2.3.13)

∂p2

∂x
= ρg cosα− µ2(1− f1)u

kkr2
(2.3.14)

Using these last two equations together with the partial derivative of (2.3.4),
we obtain

f1(S1) =

µ1

kr1(S1)
+ k(ρ1−ρ2)g cosα

u
µ1

kr1(S1)
+ µ2

kr2(S1)

+
k

u

1
µ1

kr1(S1)
+ µ2

µ2

∂pc(S1)

∂x
(2.3.15)

so that f1(S1) can be expressed as

f1(S1) = B(S1) + C(S1)
∂S1

∂x
(2.3.16)

where

B(S1) =

µ1

kr1(S1)
+ k(ρ1−ρ2)g cosα

u
µ1

kr1(S1)
+ µ2

kr2

(2.3.17)

and
C(S1) =

k

u

1
µ1

kr1(S1)
+ µ2

µ2

∂pc(S1)

∂S1

(2.3.18)

The functional dependence on S1 ≡ S1(x, t), the saturation of fluid 1, is
indicated, while all other terms in (2.3.15) to (2.3.18) are constants. Both
B(S1) and C(S1) are function of S1 only. Returning to (2.3.8), by replacing
u1 with f1(S1)u we obtain,

∂S1

∂t
+
u

φ

∂f1(S1)

∂x
+
f1(S1)

φ

∂u

∂x
= 0 (2.3.19)

However, adding (2.3.8) and (2.3.9),

φ
∂S

∂t
+
∂u

∂x
= 0 (2.3.20)

and since S = S1 + S2 = 1 this implies,

∂u

∂x
= 0 (2.3.21)
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This is a consequence of the assumption of incompressibility: u can be a
function of time, but not a function of position. Substituting (2.3.16) into
(3.4.8) and using (2.3.21),

∂S1

∂t
+
u

φ

[
dB(S1)

dS1

∂S1

∂x
+

∂

∂x

(
C(S1)

∂S1

∂x

)]
= 0 (2.3.22)

This equation9 is a function of S1 only, and its partial derivatives.

2.4 The Buckley-Leverett Equation

We have reduced the system to the partial differential equation (2.3.22), and
for given boundary conditions it should be possible to solve this and com-
pletely describe saturation for all x and t. Unfortunately, the equation is
difficult to solve. The problem can be greatly simplified by neglecting the
term representing the effect of capillary forces, which was the approach taken
by Buckley and Leverett.

Since equation (2.3.18) includes pc, the term involving C represents the action
of capillary forces. If we assume that capillary forces are negligible then the
system reduces to the Buckley Leverett equation:

∂S1

∂t
+
u

φ

df1(S1)

dS1

∂S1

∂x
= 0 (2.4.1)

where

f1(S1) =

µ1

kr1(S1)
+ k(ρ1−ρ2)g cosα

u
µ1

kr1(S1)
+ µ2

kr2(S1)

(2.4.2)

If we consider only horizontal flow, then the gravity term can be neglected
too, and the expression for fractional flow may be written,

f1(S1) =
1

1 + µ1

µ2

kr2(S1)
kr1(S1)

(2.4.3)

9Equation (14.15) of Marle [112] and (9.3.40) of Bear [13].
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If we use the fluid injection rate, rather than the total filtration velocity,
equation (2.4.1) is simply,

∂S1

∂t
+

qi
φA

df1(S1)

dS1

∂S1

∂x
= 0 (2.4.4)

Dimensionless Buckley-Leverett

Simplifying still further, the Buckley-Leverett equation can be expressed in
dimensionless form,10 which may be useful when exploring numerical meth-
ods to derive a solution.

∂S1

∂tdim
+
df1(S1)

dS1

∂S1

∂xdim
= 0 (2.4.5)

S1(xdim, 0) = Sr

S1(0, tdim) = Sl (2.4.6)

The variables xdim and tdim will have valued between 0 and 1 and are given
by:

xdim =
x

L
(2.4.7)

where L is the total length of the one-dimensional porous element and

tdim =

∫ t

0

udt

φL
(2.4.8)

By making these substitutions, the number of parameters is reduced from
four to two.

2.5 Conclusion

In this chapter, the standard model of multiphase flow was derived, starting
with Darcy’s law and from there progressing to the case of multiphase flow
via the extension of Darcy’s law proposed by Muskat and Meres. Buckley

10Dake [44]
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and Leverett considered the simultaneous flow of two fluids that were im-
miscible, incompressible and possessed constant viscosities, while assuming
negligible capillary forces. The equation that results from this approach will
be examined in the next chapter.
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Chapter 3

Riemann Problems and the

Solution of the Buckley-Leverett

Equation

On two occasions I have been asked, ‘Pray, Mr. Babbage, if you
put into the machine wrong figures, will the right answers come
out?’ I am not able rightly to apprehend the kind of confusion of
ideas that could provoke such a question. (Charles Babbage)

In this chapter the mathematics for solving first order conserva-

tion equations will be introduced. We will consider some simple

examples to explain the concepts of characteristics, weak solutions,

and the Rankine-Hugoniot and other and entropy conditions. The

Buckley-Leverett equation is not an isolated problem, rather it is

a Riemann problem which can be solved, and interpreted, within

the context of first order conservation equations.
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3.1 Introduction

Now that we have derived a formula that describes two-phase immiscible flow,
we turn to finding the solution. The Buckley–Leverett Equation belongs to
the class of partial diffferential equations know as first order conservation
equations. Conservation equations commonly arise in situations where the
conservation laws of physics are modeled, such as conservation of mass, mo-
mentum or energy.

For the one-dimensional case, consider some material over an interval [a, b]

of the independent variable x. If this material is to be conserved, then the
rate of change of the material must equal the flux of the material over the
boundary. If we do not consider the possibility that the material is either
created or destroyed in the region, we have

d

dt

∫ b

a

u(x, t)dx = Fa − Fb (3.1.1)

where u ≡ u(x, t) is a conserved quantity such as mass, momentum or energy,
and F ≡ F (u(x, t)) is the rate of flow or flux. If the flux is greater at boundary
xa than at xb then material will build up in the interval and the rate of change
of material u will be positive. Assuming differentiation and integration can
be interchanged, ∫ b

a

(ut + Fx) dx = 0 (3.1.2)

Since the interval is arbitrary, we have

ut + Fx = 0 (3.1.3)

More generally a first order conservation equation, as defined for example in
Smoller [151],1 is a quasi-linear system of the form

ut + Fx = 0 (3.1.4)
1page 239.
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where u = (u1, u2, ..., un) ∈ Rn, n ≥ 1, and (x, t) ∈ R×R+. It is usually as-
sumed that in some open subset Ω ⊂ Rn, the vector valued function F is C2,
the set of twice-differentiable functions with continuous second derivatives.

A partial differential equation (PDE) of this form, together with piecewise
initial constant data having a single discontinuity, is called a Riemann Prob-
lem. For example,

ut + F (u)x = 0 (3.1.5)

and

u(x, 0) =

{
ul if x < 0

ur if x > 0
(3.1.6)

In the case of the Buckley-Leverett Equation, the flux function F (u) is a
non-linear (and non-convex) function of u. Such PDEs are generally difficult
to solve exactly and numerical methods are often required to find the approx-
imate solution. In particular, shock formation is associated with non-linear
first order conservation equations and this heavily influences the techniques
that can be used to find the solution. Although there are significant dif-
ficulties in determining exact solutions, a great deal is known about the
mathematical structure of the equations, and this can be used to shape the
methods employed. It should be noted that these ideas are common knowl-
edge within the study of first order conservation equations and we are not
including anything new. The material is covered in a number of text books
such as Smoller [151], Dafermos [42], Holden and Risebro [77], Evans [55],
Leveque [104], Whitham [171], Taylor [156], Lax [103] and Thomas [160].
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3.2 Several Examples

Before examining the Buckley-Leverett Equation, we will begin by studying
a simple equation of the form:

ut(x, t) + cux(x, t) = 0 (3.2.1)

where c ≥ 0 is a constant. This can be written as the directional derivative
(c, 1) ·5u = 0. Thus, in the direction [c, 1] (or along x−ct = x0) the function
u(x, t) is constant. The restriction of u to these lines, called characteristic
lines, is given by u(ct + x0, t). If u(x, t) is a solution of (3.2.1), then it will
be constant for all t since,

d

dt
u(ct+ x0, t) = cux(ct+ x0, t) + ut(ct+ x0, t) = 0 (3.2.2)

Therefore, u(ct+ x0, t) = u(x0, 0), so that

u(x, t) = u(x− ct, 0) (3.2.3)

=

{
ul if x

t
< c

ur if x
t
> c

(3.2.4)

Since u is constant for all (x, t) on some set C, the set of characteristics, the
value of u along characteristics is determined by the initial values on C.

Consider the problem
ut + c(u)ux = 0 (3.2.5)

u(x, 0) = f(x) (3.2.6)

so that, in terms of (3.1.5), c(u) = F ′(u). The expression ut + c(u)ux is the
total derivative of u along curves which have slope dx

dt
= c(u(x, t)) because,

du

dt
=
∂u

∂t
+
dx

dt

∂u

∂x
(3.2.7)
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Figure 3.2.1: Multi-valued Solution

We construct the set of characteristics C, which will be straight lines with
slopes given by dx

dt
= c(u). The value of u along one such curve will be

u = f(x0) and the slope of a characteristic will be c(f(x0)), for some x0. The
equation of a typical characteristic is then:

x = c(f(x0))t+ x0 (3.2.8)

We can construct a whole set of such curves and on each of these, and for
some x0, we have u(x, t) = f(x0).

The question arises, can the characteristics overlap? Since the characteristics
have different slopes this could occur. This is shown in Figure 3.2.1, which
plots the characteristic curves (lines in this case) of time versus distance. On
each line u takes constant values. Evidently, at a point where the character-
istics overlap u is multi-valued (the fact that this is physically impossible if u
is fluid saturation will be dealt with later). This behavior can be described in
terms of breaking waves. To visualize this situation, consider Figure 3.2.2,2

which shows a possible plot of u against x at three different fixed points in
time. We see that u(x, t) move to the right with increasing time. At the
moment corresponding to overlapping characteristics, u breaks and then has
multiple values for a fixed x and t. Burgers’ equation provides a specific

2After Figure 2.1 of Whitham [171]
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u

x

t t t0 1 2

Figure 3.2.2: Breaking Waves

example of this type of behavior.

Burgers’ Equation

Suppose that F (u) = 1
2
u2 so that we have Burgers’ equation:

ut + (
1

2
u2)x = 0 (3.2.9)

This is probably the most famous first order conservation equation. Notice
that the flux function can also be written u.ux. Breaking will occur when the
initial conditions has a discontinuous step with the value of c(u) = u behind
the discontinuity greater than the value ahead. Take the case

u(x, 0) = f(x) =

{
ul if x < 0

ur if x > 0

and

c(f(x0)) =

{
cl if x0 < 0

cr if x0 > 0

If cl > cr breaking occurs immediately, as shown in Figure 3.2.3.

If the initial step function has cl < cr then there is a straightforward contin-
uous solution. Let the characteristics that pass through the origin take all
the values between cl and cr. This corresponds to a set of lines that fan out
from the origin, shown in Figure 3.2.4. When breaking arises the solution is
no longer physically acceptable. However, these solutions can be modified by
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Figure 3.2.3: Immediate Breaking

including discontinuities, and changing the definition of what it means for a
solution to be acceptable. This gives rise to the concept of a weak solution,
which will be covered in the next section.

Figure 3.2.4: Wave Fan

3.3 Weak Solutions

It should be clear from the previous discussion and examples that equation
(3.1.3) does not always have a smooth solution for all time t > 0. The
classical idea of a solution requires that the partial derivatives of that solution
are continuous. However, consider the following simple first order partial
differential equation,

ut + cux = 0 (3.3.1)
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where c is a constant. This equation is satisfied by u(x, t) = f(x− ct). This
solution is still valid even if f is not differentiable. The concept of a weak
solution is motivated by the need to relax the requirement of differentiablity
and even continuity for a solution.

We shall start with the initial value problem for a one dimensional scalar
first order conservation equation:

ut + F (u)x = 0 x ∈ R, t ≥ 0 (3.3.2)

u(x, 0) = u0(x) x ∈ R (3.3.3)

Define the class of test functions as those φ ∈ C1
0(R2). Here C1

0 is the
space of functions that are continuously differentiable with compact support
in R × [0,∞]. This means φ = 0 outside a finite rectangle [a, b] × [0, τ ].
Multiply (3.3.2) by φ and integrate:

0 =

∫ ∞
0

∫ ∞
−∞

(ut + F (u)x)φdxdt (3.3.4)

=

∫ b

a

[uφ]τ0 −
∫ τ

0

uφtdx+

∫ τ

0

[F (u)φ]ba −
∫ b

a

F (u)φxdt (integration by parts)

(3.3.5)

On the boundary, φ(x, τ) = φ(a, t) = φ(b, t) = 0, however, φ(x, t) is not
necessarily zero. Using these boundary condition, we obtain the desired
result,

0 =

∫ ∞
0

∫ ∞
−∞

(uφt + F (u)φx)dxdt+

∫ ∞
−∞

u0φ0dx (3.3.6)

Definition

A weak solution of (3.3.2) and (3.3.3) is a piecewise continuous function
u(x, t) such that (3.3.6) holds for each test function φ.

The basic idea is explained neatly in Leveque3: “take the PDE, multiply by
a smooth ‘test function’, integrate one or more times over some domain, and

3[104] page 27.
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then use integration by parts to move derivatives off the function u and onto
the smooth test function. The result is an equation involving fewer deriva-
tives on u, and hence requiring less smoothness.” However, there will now
be a greater number of solutions. Selection of an appropriate solution can be
justified as the limit of an equations with some dissipation as that dissipation
goes to zero. This will be covered in Section 3.5.

Burgers’ Equation Revisited

With the benefit of test functions and weak solutions, we take another look
at Burgers’ Equation (3.2.9). There are two cases to consider.

Case One, (ul > ur)

u(x, 0) =

{
1 if x ≤ 0

0 if x > 0
(3.3.7)

This has a weak solution shown in Figure 3.3.1 and given by

u(x, t) =

{
1 if x ≤ t/2

0 if x > t/2
(3.3.8)

Figure 3.3.1: Case One

Using the definition of weak solutions,
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∫ ∞
0

∫ ∞
−∞

(uφt + F (u)φx)dxdt+

∫ ∞
−∞

u0φ0dx

=

∫ ∞
0

∫ ∞
−∞

uφt +
u2

2
φxdxdt+

∫ ∞
−∞

u0φ0dx

=

∫ τ

0

∫ t/2

a

φt +
1

2
φxdxdt+

∫ 0

a

u0φ0dx

=

∫ 0

a

∫ τ

0

φtdtdx+

∫ τ/2

0

∫ τ

2x

φtdtdx+
1

2

∫ τ

0

∫ t/2

a

φxdxdt+

∫ 0

a

u0φ0dx

Noting that φ(x, τ) = φ(a, τ) = 0, canceling terms and setting y = 2x,

= −1

2

∫ τ

0

φ(y/2, y)dy +
1

2

∫ τ

0

φ(t/2, 2)dt

= 0

Case Two, (ul < ur)

u(x, 0) =

{
0 if x ≤ 0

1 if x > 0
(3.3.9)

This has a weak solution shown in Figure 3.3.2 and given by,

u(x, t) =

{
0 if x ≤ t/2

1 if x > t/2
(3.3.10)

This can be shown using an almost identical argument to the previous case.
However, this is not the only weak solution. Another valid solution shown in
Figure 3.3.3 is,

u(x, t) =


0 if x < 0

x/t if 0 ≤ x ≤ t

1 if x > t

(3.3.11)
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Figure 3.3.2: Case Two

Figure 3.3.3: Another valid solution - wave fan

By weakening the definition of a solution, we have introduced the issue of
non-uniqueness. Which of the previous two solutions is the correct one?
Weak solutions can take pathological forms which are of no interest to us at
all. We are interested in smooth solutions except at a finite number of jump
discontinuities. This consideration will ensure that when there is a shock
front it is required to be of a particular form in order to be acceptable.

3.4 Rankine-Hugoniot

The Rankin-Hugoniot condition expresses the conservation of the quantity
u across a discontinuity. This will be particularly relevant to the Buckley-
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Leverett equation, since the solution involves a discontinuity. This condition
plays an important role in the study of first order conservation equations
and it is covered in virtually any book on the subject. Proofs can be found
in Evans [55], Smoller [151], Holden and Risebro [77], Thomas [160] and
Leveque [104]. Of these, the last reference is the most elementary.

Theorem 3.4.1. Rankine-Hugoniot. Suppose there is an open region A ⊂
R× (0,∞) that is divided into Al and Ar by a smooth curve C of the form
xC(t). In A, u is a weak solution to the initial value problem

ut + F (u)x = 0 (3.4.1)

u(x, 0) = u0(x) (3.4.2)

Suppose also that u and its first derivatives are uniformly continuous in Al

and Ar. Then,

σ =
[[F (u)]]

[[u]]
(3.4.3)

where σ = dxC
dt

, [[u]] = ul − ur the jump in u across C and [[F ]] = Fl − Fr.

Proof :

Figure 3.4.1: Jump discontinuity, as described in the theorem.
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Let the test function φ have compact support in Al. From the definition of
a weak solutions (3.3.2),

0 =

∫ ∞
0

∫ ∞
−∞

(uφt + F (u)φx)dxdt (3.4.4)

where the second term is omitted because φ = 0 at t = 0. Using integration
by parts,

0 = −
∫ ∞

0

∫ ∞
−∞

(ut + F (u)x)φdxdt (3.4.5)

Since this is true for all test functions with compact support in Al and u is
smooth in Al, then in Al

ut + F (u)x = 0 (3.4.6)

This must also be true in Ar. Now take a test function with compact support
in A. We are aware that this test function might be non-vanishing along the
curve xC(t), and so we may only deduce that

0 =

∫ ∞
0

∫ ∞
−∞

(uφt+F (u)φx)dxdt =

∫ ∫
Al

(uφt+F (u)φx)dxdt+

∫ ∫
Ar

(uφt+F (u)φx)dxdt

(3.4.7)
In light of (3.4.6) and since u smooth in Al and Ar, we can we make use of
Green’s Theorem4 to obtain:

0 =

∫ ∫
Al

(uφt + F (u)φx)dxdt+

∫ ∫
Ar

(uφt + F (u)φx)dxdt (3.4.8)

=

∫
∂Al

φ(−udx+ F (u))dt+

∫
∂A2

φ(−udx+ F (u))dt (3.4.9)

The test function φ vanishes on the boundary of A, therefore we only need
concern ourself with integrating along C when we evaluate (3.4.9). Specify
u along the curve C by:

4Or alternatively the divergence theorem, following Smoller [151] page 248.
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ul = lim
(x,t)→C

u(x, t), (x, t) ∈ Al (3.4.10)

ur = lim
(x,t)→C

u(x, t), (x, t) ∈ Ar (3.4.11)

We may now write (3.4.9) as,

∫ b

a

φ[−uldx+ F (ul)dt] +

∫ a

b

φ[−urdx+ F (ur)dt] = 0 (3.4.12)

and by reversing the integrand of the second term (the line integrals in Al

and Ar pass along C in opposite directions),∫ b

a

φ[−(ul − ur)dx+ (F (ul)− F (ur)dt] = 0 (3.4.13)

We can replace dx with dxC
dt
dt, then∫ b

a

φ[−(ul − ur)
dxC
dt

+ (F (ul)− F (ur)]dt = 0 (3.4.14)

This is true for all test functions φ, therefore

−(ul − ur)
dxC
dt

+ F (ul)− F (ur) = 0 (3.4.15)

and the result follows. End of proof.

3.5 Entropy Conditions

The Rankine-Hugoniot must be satified by a weak solution across a discon-
tinuity. However, these may include weak solutions that are not physically
acceptable. We will need to consider additional conditions that pick out the
correct solution. These are usually referred to as entropy conditions. The
versions included in this section are based on the requirement that charac-
teristics must go into a shock as time advances, because when characteristics
come out of the shock the solution is unstable to perturbations. Either smear-
ing out the initial profile a little, or adding some viscosity to the system, will
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cause this to be replaced by a rarefaction wave of characteristics.5

Lax E-condition6

A discontinuity propagating with speed σ = [[F ]]
[[u]]

satisfies the entropy condi-
tion if F ′(ul) > σ > F ′(ur).

The following condition is due to Oleinik [128]. This version applies to all
discontinuities, and is true for both convex and nonconvex scalar functions F .

Oleinik E-condition

u(x,t) is the entropy solution if all discontinuities have the property that:

F (u)− F (ul)

u− ul
≥ σ ≥ F (u)− F (ur)

u− ur

for all u between ul and ur.

These conditions are found in Leveque [104] and Thomas [160] and in both
cases are stated without proof. The interested reader is referred to Smoller
[151] for a full treatement of this subject. The are a great many other entropy
conditions or functions. The underlying motivation and principles for these
conditions often is not straightforward. The reader may prefer to gain insight
into these ideas by instead consulting Holden and Risebro [77] section 2.1
where the viscous regulation condition is explained in a straightforward but
rigorous manner. In short, if the scalar first order conservation equation
ut + f(u)t = 0 is replaced by,

uεt + f(uε)t = εuεxx (3.5.1)

then as ε → 0 (that is the diffusion is small) we would expect the solution
to converge to the solution of the first order conservation equation. If u(x, t)

5Leveque [104] page 36.
6Lax [102].
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has a solution consisting of constant states on either side of a discontinuity,
then it satisfies a traveling wave entropy condition7 if it is the pointwise limit
almost everywhere of some uε(x, t) = U((x − st)/ε) as ε → 0. It turns out
that the traveling wave entropy condition is then equivalent to,

s|k − ul| < sign(k − ul)(f(k)− f(ul)) (3.5.2)

for all k strictly between ul and ur. This is given as equation (2.9) of Holden
and Risebro [77].

3.6 Solving Buckley-Leverett

Recall from (2.4.1) that the Buckley-Leverett equation and initial conditions
are given by:

∂S

∂t
+
u

φ

df

dS

∂S

∂x
= 0

S(x, 0) = Sr

S(0, t) = Sl

were S is the saturation of the displacing fluid. Consider this problem
in the context of what we know about first order conservation equations.
This is Riemann problem, so the method of characteristics together with the
Rankine-Hugoniot condition and an appropriate entropy condition should be
up to the task of determining the solution. We need to specify the fractional
flow term f of the displacing fluid. This is usually determined experimentally
and is found to have the form shown in Figure 3.6.1.

Evidently, the flux function is not convex. When the flux function is convex
or concave, the solution is either a shock or a rarefaction wave. When it is

7[77] page xx
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Max

Figure 3.6.1: Flux Function

not convex, the solution may involve both shocks and rarefaction waves.

Characteristics, which are lines of fixed saturation, are given by:

dx

dt
=
u

φ

∂f(S(x(t), t))

dS(x(t), t)
(3.6.1)

because, by the Buckley-Leverett equation,

∂S(x(t), t)

∂t
+
u

φ

df(S(x(t), t))

dx
= 0 (3.6.2)

∂S(x(t), t)

∂t
+
u

φ

∂f(S(x(t), t))

∂S(x(t), t))

∂S(x(t), t)

∂x
= 0 (3.6.3)

∂S(x(t), t)

∂t
+
dx

dt

∂S(x(t), t)

∂x
= 0 (3.6.4)

dS(x(t), t)

dt
= 0 (3.6.5)

That is, the saturation is constant along lines given by (3.6.1).

Suppose at some point (x0, t0) the water saturation is S(x(t), t) = S. Then
at time and position given by:

t = t0 + ∆t (3.6.6)

x = ∆t
u

φ

∂f(S(x(t), t))

∂S(x(t), t))

∣∣∣∣
S

+ x0 (3.6.7)
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the saturation will also be S. The velocity of a fixed plane of water with
saturation S is therefore,

v(S) =
u

φ

∂f(S(x(t), t))

∂S(x(t), t))

∣∣∣∣
S

(3.6.8)

Consequently, the saturation profile is determined by (3.6.8). The displace-
ment profile will be given by v(S) turned sideways. A typical example is
shown in Figure 3.6.2 at some fixed point in time. Quantitatively, the ve-
locity of saturation values close to Sr = Sc and Sl = SMax will be low, and
higher for middle saturations where f ′(S(x(t), t) is greatest.

However, the saturation profile given by Figure 3.6.2 is not a physically ac-
ceptable solution, because at some values of x three saturation values co-exist.
This can be fixed by discarding the assumption of the continuity of variables
and introducing a discontinuity that results in a weak solution, which was
the approach of Buckley and Leverett. Finding the correct location of the
shock to replace the triple valued solution is achieved through a conservation
argument. The saturation profile for the triple valued solution, found using
the method of characteristics, and the saturation value using a discontinuity,
must both satisfy the condition of material balance for the injected fluid.
The Rankine-Hugoniot condition ensures material conservation.

l

r

Figure 3.6.2: Uncorrected Profile
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3.7 Welge Tangent Method

If S+ is the saturation ahead of the shock and S− is the water saturation
behind the shock (the origin side), we can use Rankine-Hugoniot to find the
shock velocity.

σ =
u

φ

(
f(S+)− f(S−)

S+ − S−

)
(3.7.1)

This leads to a graphical interpretation, the Welge Tangent Method, for de-
termining the location of the shock front. If we are including a shock front

l

r

Figure 3.7.1: Material Balance

in the solution then there must be a point that will divide the continuous
region behind the front and the region where the shock begins. Denote this
by S∗. Using the method of characteristics, we have already determined that
the velocity of the saturation front, for the triple valued solution, is given by
u
φ
df
dS
. The velocity of the shock front is given by (3.7.1). If we equate these

two velocities at S∗ we obtain the equation:

df

dS

∣∣∣∣
S∗

=
f(Sr)− f(S∗)

Sr − S∗
(3.7.2)

where S+ has been replaced by Sr, which is the initial downstream saturation
before that waterflood takes place, and the term u

φ
has been cancelled from

both sides. The slope of a line passing through (S∗, f(S∗)) and also (Sr, 0)
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r l

Figure 3.7.2: Welge Tangent Method

is given by

m =
f(S∗)− f(Sr)

S∗ − Sr
(3.7.3)

which is the same as (3.7.2). Therefore, if we draw a tangent line from (Sr, 0)

(the initial saturation value in the reservoir) to the curve f(S), then the point
of tangency gives the shock front saturation value S∗. This is the saturation
at which the net difference in area between the mathematical and the phys-
ical solution is zero. This requires that the material balance is preserved,
along the lines of Figure 3.7.1.

That this discontinuity is also admissible can be understood by considering
Figure 3.7.2. If the shock was connected at some saturation less than S∗

we would have a physically impossible triple valued solution. If the shock
saturation was at some point above S∗ then (3.5.2), (or indeed the Oleinik
E-condition), is violated. This can be seen by drawing a line from Sl to a
point on f with a saturation greater than S∗. This line has a slope greater
than the slope of any arc between S∗ and Sl. The shock front saturation
given by Welge satisfies both Rankine-Hugoniot and the entropy condition,
and is therefore acceptable.

The solution can be visualized in terms of characteristics in x−t space, shown
in Figure 3.7.3. The saturation is Sl on the t-axis and decreases smoothly
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Figure 3.7.3: The characteristics of the solution.

in a rarefaction wave to the shock front saturation S∗, where the speed of
the discontinuity is given by the Rankine-Hugoniot condition. To the right
of the discontinuity, the initial right-side saturation of Sr (original reservoir
state) remains constant for all x until the arrival of the shock front, at which
point it abruptly changes.

Important Note

We will always assume that the initial saturation of the displacing fluid (the
right state) is the same as the connate saturation. The situation of the initial
saturation being equal to the connate saturation is how the problem is usu-
ally presented. If they are different the calculations can be readily modified.

3.8 Conclusion

The purpose of this chapter was to firmly place the Buckley-Leverett equation
within the context of first order conservation equations. The mathematics
for solving first order conservation equations was covered, in particular the
concepts of characteristics, weak solutions, and the Rankine-Hugoniot and
entropy conditions were examined. The Buckley-Leverett equation was then
solved in a deterministic setting for Riemann initial condition. The form of
the flux function was only examined in a cursory manner and needs to be
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considered in greater detail. More attention will be given to this deficiency
in the next chapter.
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Chapter 4

Relative Permeability

“The ease with which a phase can flow can therefore be visualised as depend-
ing on two factors: the size and number of pores which are occupied by the
phase and the probability that those pores are hydraulically interconnected” -
M. R. Wyllie1

Relative permeability, via the fractional flow equation, is the mech-

anism through which reservoir conditions enter the Buckley-Leverett

model. The purpose of this chapter is to justify a stochastic ap-

proach to relative permeability and fractional flow. In this chapter

we will:

• account for the many factors known to influence relative per-

meability, together with the inherent errors and uncertainty;

• discuss some of the more commonly used analytical expres-

sions used to describe relative permeability; and,

• by the end of the chapter, be in a position to propose a prob-

abilistic model.
1Petroleum Production Handbook [61] vol II Ch. 24, page 3
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4.1 Introduction

Since the concept of relative permeability was introduced by Wyckoff and
Botset [174], there has been an almost continuous investigation into the mea-
surement and properties of relative permeability. The number of publications
has even been described as excessive.2 We will not attempt to review every
paper written on this subject, since that would be a thesis in itself or a book
such as Honarpour et al. [80]. However, we need to have a comprehensive
understanding of the factors that influence relative permeability curves be-
fore a stochastic version of Buckley-Leverett is proposed.

We will cover the factors that affect relative permeability, and review the
significant papers that have contributed to our understanding of this sub-
ject. While these investigations have attempted to describe in minute detail
the many and varied factors in order to descibe flow behavior with great
accuracy, here the emphasis will be placed more on the variation and errors.
It is the inherent uncertainty in the system that provides the motivation for
considering a stochastic formulation.

Darcy’s law was developed for a porous medium fully saturated by a single,
homogeneous fluid. As has already been seen, Darcy’s law can be generalized
to handle the simultaneous flow of several fluid. This is done by introducing
the concept of effective permeability, and the closely related and more use-
ful concept of relative permeability. Relative permeability is the single most
important element of petroleum engineering. Within the Buckley-Leverett
model, properties of the fluids and the porous medium are captured by the
fractional flow equation. Since fractional flow is a function of relative perme-
ability, the ability of the model to capture reality is inseparably tied to the
choice and accuracy of the relative permeability curves.

2Marle [112] page 32
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4.2 Wettability

Before discussing relative permeability, it is necessary to first understand
wettability. Several different definitions of wettability exist. Dandekar [45]
includes seven versions of this concept. Wettability may be defined as the
relative adhesion of two fluids to a solid surface3. Whatever the differences,
all texts treat wettability as a fundamental concept which strongly influ-
ences relative permeability. According to Dandekar, of all the factors that
affect relative permeability, wettability is the most dominant.4 Quoting from
Honarpour et al. [80]: It is the main factor responsible for the microscopic
fluid distribution in porous media and it determines to a great extent the
amount of residual oil saturation and the ability of a particular phase to
flow.5

Contact Angle

The relative spreading of the two fluids on the rock surface can be quantified
using adhesion tension, AT , and Young’s equation.6 In Figure 4.2.1, σSO,
σSW and σWO are respectively the interfacial tension between the surface
and oil, between the surface and water and between the water and oil. In
terms of force balance,

AT = σSO − σSW (4.2.1)

so that

cosα =
σSO − σSW

σWO

(4.2.2)

3Tiab and Donaldson [161], page 360
4Dandekar [45], page 223.
5page 54.
6This material is drawn from Amyx[8], Tiab and Donaldson [161], Christiansen [32]

and Dandekar [45]. The figure appears in all texts.
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Figure 4.2.1: Contact Angle

Although σSO and σSW cannot be measured, σWO and the angle α are mea-
sureable. The adhesion tension is then given by,

AT = σWO cosα (4.2.3)

It follows that wettability can be measured by the angle α. If cosα is positive
the system is defined as water-wet, if cosα is negative the system is defined
as oil-wet, and if cosα is 0 it has intermediate wettability. This corresponds
to α < 90o, α > 90o and α = 90o.

4.3 Permeability: Absolute, Effective and

Relative

Darcy’s law applies to the case of a single-phase fluid moving through a
porous material when the fluid is at 100% saturation. In this case, the ca-
pacity of the material to transmit fluid is called the absolute permeability

and given the symbol k. The unit of measurement is the darcy. A porous
material with a permeability of 1 darcy allows flow of 1 centimetre per second
(cm/s) for a fluid under a pressure gradient of 1 atmosphere per centimetre
(atm/cm) and a viscosity of 1 centipoise (cP). In reservoir engineering, mill-
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idarcies are used, since flow rates through rocks are generally low. Absolute
permeability is a fundamental property of the rock, and in most cases it is
constant, for a range of the fluids.

Petroleum reservoirs are rarely so simple that Darcy’s laws is applicable.
The simultaneous flow of two or more fluids is the norm. This leads to the
concept of effective permeability and the more ubiquitous concept of relative
permeability.

When more than one fluid is flowing simultaneously, each fluid has its own
effective permeability. Effective permeability is a measure of the capac-
ity of the porous material to transmit one fluid in the presence of another.
Since the presence of a second fluid will tend to retard the flow of the first,
effective permeability must evidently depend on the saturation of each fluid.
Through experimentation, effective permeability has been found primarily to
be a function of rock geometry, wetting characteristics and the existing fluid
saturation. For every saturation value, the effective permeability will be dif-
ferent. When specifying kw and knw, the effective permeability of the wetting
and non-wetting fluid, it is therefore necessary to specify the saturations Sw
and Snw also. Effective permeability is stated as a numerical value given the
existing state, so that kw(80,20) would be the wetting fluid permeability when
saturation is made up of 80 per cent oil and 20 per cent water.

Relative permeability is a comparative expression of the relative capacity
of several fluids to flow simultaneously. It is most commonly given as the
ratio of effective and absolute permeability.7 Mathematically this is written,

krw =
kw
k

(4.3.1)

7Effective permeability is sometimes normalised using the non-wetting permeability
value at the irreducible wetting saturation, see Dake [44] page 123.
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Figure 4.3.1: Typical Relative Permeability Curves

krnw =
knw
k

(4.3.2)

The information is usually presented in graphical form for convenience, with
the wetting saturation as the independent variable, and the non-wetting sat-
uration given by 1− Sw (using the relationship Sw + Snw = 1). Figure 4.3.1,
drawn from Wyckoff and Botset [174], shows a typical relative permeability
curve for a gas water system.8

Basic Characteristics

Two-phase relative permeability curves are plotted as functions of the wet-
ting saturation. There are a number of characteristics common to these
curves that have been apparent almost from the time such curves where first
described. These characteristics are best understood by considering the fol-
lowing three saturation intervals, where Swc and Snwc are the connate wetting
saturation and critical non-wetting saturations respectively:

8An example for a water-oil system, which looks distinctly similar, can be found in
Ahmed [2] page 306.

60



0 ≤ S ≤ Swc: On this interval only the non-wetting phase is mobile, since the
wetting relative permeability curve is zero at or below the connate wetting
saturation Swc. The wetting phase occupies the small pore spaces that do
not contribute to flow, even if a large pressure differential is applied. At the
same time, the non-wetting phase occupies the large, interconnected pore
space and is free to flow almost unhindered. Hence, an increase in the wet-
ting saturation has a small effect on the non-wetting permeability.

Swc ≤ S ≤ 1 − Snwc: As the saturation increases beyond the connate satu-
ration, the wetting fluid begins to flow more freely, while the flow capacity
of the non-wetting phase decreases. Above the point where the two curves
intersect, the combined permeability of the two phases is less than unity,
as is clearly evident from Figure 4.3.1. There are a number of reasons for
this. The two fluids compete for flow channels, and interfere along shared
paths. Large globules can also be isolated and block flow paths where capil-
lary forces are too great or the pressure differential is insufficient to force a
path.

1 − Snwc ≤ S ≤ 1: On this interval the non-wetting phase is immobile.
Increasing the saturation of the non-wetting fluid significantly reduces the
wetting fluid permeability. The non-wetting phase occupies the larger pore
space, therefore an increase in the volume of the non-wetting fluid principally
reduces the better flow channels.

It should be noted that saturations outside the interval between the connate
wetting saturation and 1 − Snwc only exist in the laboratory. The relative
permeability curves are often only plotted between Swc and 1 − Snwc, since
saturation values outside these are not found under reservoir conditions.
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4.4 Laboratory Measurements

Relative permeabilities are determined experimentally. As discussed com-
prehensively in Amyx [8],9 the data can be obtained by (1) measurement in
the laboratory by a steady-state fluid flow process (2) measurement in the
laboratory by an unsteady state process (3) through capillary-pressure data
or (4) calculations from field-performance data. In almost all cases, relative
permeabilities are determined through laboratory displacement tests,10 using
(1) or (2). Only the two laboratory displacement methods will be discussed
here.

4.4.1 Steady-state experiments

There are a number of steady state procedures for measuring relative per-
meability. The methods are listed in Honarpour et al. [80] as: Penn-State,
Single-Sample Dynamic, Stationary Fluid, Hassler, Hafford and Dispersed
Feed11. The differences relate to how the end effects caused by capillary
forces are handled in each method. All these methods follow the same basic
format which is fundamentally the technique first reported by Leverett [105]
in 1939.

In the steady state method, a small core sample is mounted in some kind of
sleeve and a fixed volumetric ratio of fluids is forced through the sample. This
continues until both the pressure differential across the sample and/or the
in-flow and out-flow volumetric ratio achieve equilibrium.12 The saturations
are then determined. The relative permeabilities for each fluid at the specific
saturation can be calculated by applying Darcy’s Law: at a given wetting

9page 184.
10Dandekar [45] page 187.
11page 1-6.
12Dullien [53] page 269.
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saturation the effective wetting permeability is,

kw =
qwµwL

A4pw
(4.4.1)

with the non-wetting effective permeability similarly defined. To determine
the relative permeabilities, the effective permeability at irreducible wetting
saturation is calculated and used as a normalising term.

Since the steady state procedure only determines the wetting and non-wetting
permeabilities at a single, fixed saturation, the steps must be repeated a num-
ber of times to generate data across the full spectrum of saturation values.
This whole process is time consuming due to the large number of measure-
ments and the long period required for steady state to be achieved. From the
smooth, continuous relative permeability curves, one has the impression that
the process is smooth and continuous across the entire saturation domain.
This is clearly not the case, and some type of curve fitting is invariably
employed. While the process appears straightforward, obtaining accurate
and repeatable measurements is a far from trivial task and many sources of
variation and error can influence the results. [45] [80] [53] [161]

4.4.2 Unsteady-state experiments

The mathematics for unsteady state methods is more complicated than it is
for the steady state case. On the positive side, unsteady state methods are
less time consuming. The process commences with the core at the irreducible
non-displacing phase saturation. The effective permeability for both phases
are calculated at the irreducible displacing saturation, as per the steady state
method. From this point, the core is progressively flooded with the displac-
ing fluid at a constant flow rate. The changes in pressure and volume firstly
of the displaced fluid, and then the displacing fluid after breakthrough, are
measured. From this data, the relative permeabilities can be calculated. The
various experimental steps for unsteady state methods are given in Dandekar
[45] section 9.4.8.
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The method for interpreting the unsteady state results was developed by
Johnson, Bossler and Naumann [84], and is widely referred to as the JBN
method. The analysis employed to calculate the relative permeability curves
relies upon Buckley-Leverett displacement theory. In particular, it uses the
extension of Welge [169] that allows for the calculation of average wetting
saturation.13 For a specific production, injection and pressure drop, the
wetting saturation at the production end of a core of length L is given by

SwL = S̄w −Qi
dS̄w
dQi

(4.4.2)

where S̄w is the average water saturation andQi are the injected pore volumes
of wetting fluid. The relative permeabilites (at the production end) are given
by:14

kro = fo
d[ 1
QiIr

]

d[ 1
Qi

]
(4.4.3)

krw = ko
µw(1− fo)

µofo
(4.4.4)

The term Ir, which comes from Rapoport and Leas [141], is a dimensionless
function of cumulative fluid injection called the relative injectivity :

“From a physical viewpoint, the relative injectivity may be defined
as the ratio of the intake capacity at any given flood stage to
the intake capacity of the system at the very initiation of the
flood (at which moment practically only oil is flowing through
the system).”15

Although there are a number of alternative methods, JBN is probably the
most common inversion method for determining relative permeabilites.16

13See Chapter Seven.
14Equations 8a and 9 of [84].
15Rapoport and Leas [141]
16Dandekar [45] page 215.
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4.5 Other Factors Influencing Relative Perme-

ability Measurements - of which there are

many.

Relative permeability curves are plotted as a function of fluid saturation only.
However, there is copious and detailed published evidence that a number of
other parameters effect relative permeability apart from saturation. Leverett
[105] notably identified some of these factors in his early study of a two-fluid
oil-water system. These factors are given different emphasis by the authors
that have reviewed the subject and the list varies slightly from one source to
the next.17 The following may be considered a comprehensive summary, and
each will be covered in turn:

• Pore Geometry and Structure

• Wettability

• Core Recovery, Preservation and Restoration

• Testing Conditions

• Testing Fluids

• History

• Interfacial Tension

• Viscosity

• Initial Saturations

• Overburden Pressure

• Temperature
17See Honarpour et al. [80], Dandekar [45] or Tiab and Donaldson [161] for example.

65



• Clay and Fines Content

• Displacement Rate

Pore Geometry and Structure

Pore size distribution is mentioned by Leverett [105] as a factor affecting
relative permeability.18 Morgan and Gordon [116] specifically consider the
influence of pore geometry on water-oil relative permeability and note that if
this factor is ignored laboratory measurements for predicting fluid flow may
be misleading.19 Grain size, shape, sorting and packing are listed as prop-
erties that affect pore geometry and therefore relative permeability.20 The
shape of the curves is also influenced by rock type, homogeneity and het-
erogeneity. Rocks with large pore spaces tend to have low irreducible water
saturations and relatively large flow channels. Similarly, rocks with small
pore spaces and large surface areas have larger irreducible water saturations
and restricted flow channels. The level of cementation and the various effects
of mineralization and post-depositional alteration are noted by Morgan and
Gordon [116] as factors that can significantly influence flow properties.

The interconnectivity of pores is noted by Muskat and Meres [121], Botset
[18], [58], Dodd and Kiel [48], and Wyllie [175] as effecting relative perme-
ability. It is shown in Bulnes and Fitting [24] and Stone [153] that the flow
behavior is similar in uniform porosity carbonates and consolidated sand-
stone, but as the heterogeneity increases so do the differences in the flow
properties. The effects of stratification is discussed in Corey and Rathjens
[35], where the directional effects of flow, whether perpendicular or parallel
to bedding, are clearly observable. The influence of rock type, homogeneity,
heterogeneity and cementation are considered in Arps and Roberts [10]. The
influence of cementation is further considered in Naar et al. [123] and Nind

18page 169
19Morgan and Gordon [116] page 1199.
20Ibid. page 1200.
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Figure 4.5.1: Wettability variation, Geffen et al. [130] page 105.

[124]. Authors including Huppler [82], Gorring [66], Leverett and Lewis [106],
Wyckoff and Botset [174], Pathak et al. [134] and Land and Baptist [99] have
all examined the behavior of relative permeability for gas-oil and oil-water
systems for different rock formations and drawn a number of conclusions that
reinforce the view that rock properties have a significant influence on relative
permeability.

Wettability

Figure (4.5.1) is taken from Geffen et al. [130] and illustrates the change
in relative permeability on a single core under three different wettability
regimes: 1) untreated 2) treated with a chemical agent to leave the surface
preferentially oil wet and initially saturated with brine 3) treated with a
chemical agent to leave the surface preferentially oil wet and initially satu-
rated with oil.

A comprehensive study of the effect of wettability on relative permeability
was undertaken by Anderson [9]. Results consistent with Geffen et al. [130]
are reported in Donaldson and Thomas [49], Owens and Archer [131] and
Morrow et al. [117].
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Classification of Wettability

The idea that reservoirs are either water-wet or oil-wet is simplistic. At first
it was believed all reservoirs were water-wet since water was assumed to be
the original fluid. Gradually, more reservoirs were classified as oil-wet. It is
now known reservoirs run from water-wet to oil-wet, with many cases lying
between the two extremes. This is verified by Cuiec [40], where the wetta-
bility of a 20 reservoirs is examined.

Wettability is an average characteristic of a rock-fluid system21. There can
be considerable variation within a reservoir and new terms have arisen to de-
scribe this heterogeneous behavior. Fractional wettability is used in Tiab and
Donaldson when scattered areas throughout the rock are strongly wet by oil22

while the remainder is water-wet. According to Dandekar this occurs when
the many minerals that make up rock have different chemical properites.23

The term dalmation wetting is used by Brown and Fatt [21] to describe this
phenomenon.

Schmidt [145] showed that fine pores could be water-wet, while the larger
pores are oil-wet, a situation referred to as mixed wettability. If the oil is lo-
cated in continuous paths, displacement can occur at very low oil saturation.
This case is described in detail by Tiab:

The water film between the rock and the oil in the pore is stabilized
by a double layer of electrostatic forces. As the thickness of the
film is diminished by the invading oil, the electrostatic force bal-
ance is destroyed and the film ruptures, allowing the polar organic
compounds to displace the remaining water and react directly with
the rock surface.24

21Tiab and Donaldson [161] page 361.
22ibid. page 360.
23Dandekar [45] page 123.
24Tiab and Donaldson [161], page 361.
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Quite so! The complexity involved in mixed-wettability is clearly evident.
This raises the question of how accurately we can hope to model this system,
and supports the case for considering the system within a stochastic setting.

Measuring Wettability

Since wettability has a strong influence on the characterization of a reser-
voir, obtaining accurate measurements is important. Methods of quantifying
wettability can be classified as 1) the direct analysis of contact angles or 2)
indirect methods. The indirect methods make use of imbibition (Amott [7]),
capillary pressure curves (USBM25), imbibition and capillary data (Amott-
USBM) or imbibition rate [110]. Full treatments of wettability evaluation
are given in Tiab and Donaldson [161], Honarpour et al. [80] and Dandekar
[45]. A large amount of work has been carried out on this subject since the
1930’s, with considerable research ongoing. However, there is no satisfactory
method to determine in situ wettability, so that laboratory evaluation should
be related to reservoir conditions using a great deal of caution.26

Core Recovery and Preservation, Restoration, and Testing Fluids

Laboratory measurement of relative permeability, particularly the effects of
fluids and handling on results, are examined in Geffen et al. [130], Richard-
son et al. [129] and [144], Caudle et al. [29], Morgan and Gordon [116] and
Mugen [119]. Since wettability is primarily determined by fluid characteris-
tics and lithology,27 core recovery, preservation, restoration, and testing fluids
principally effect relative permeabililty through the alteration of wettability.
Figure 4.5.2 shows experimental differences is preserved versus fresh cores,
with different testing fluids.

25The is known as the United States Bureau of Mines method, although it was developed
by Donaldson et al. [50].

26Honarpour [80] page 58.
27Dandekar [45] page 133.
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Core Recovery and Preservation

One of the factors that can influence rock wettability is core recovery and
preservation. The reduction in pressure and temperature from reservoir con-
ditions may cause components of crude oil to precipitate as a waxy solid,
altering the surface characteristics of the core.28 Native cores under reservoir
condition are evidently preferable, and techniques that employ a pressure
core barrel can help to ensure changes are minimised. However, as Dandekar
[45] notes, the majority of available data on wettability of the oil-water-rock
system are for atmospheric pressure and room conditions.29 Exposure to air
can pose problems as oxidation is known to alter wettability.30 Contamina-
tion from drilling fluids can also change wettability characteristics, sometimes
dramatically.31

Core Restoration

Cores in a naturally preserved state are not always available. For example,
cleaning may be required to determine other parameters such as porosity
and permeability before conducting further tests. The most common prac-
tice is cleaning with toluene in a Soxhlet extractor, followed by ethanol to
remove the toluene.32 This will invariably alter the wettability by removing
the original coating on the grain surface. Several methods are available for
restoring cores to their natural state, one of which is found in McGhee et
al.[114]. However, there is no way of being completely sure the cores have
been properly returned to their native state. As Honarpour et al. succinctly
explain, it may be the case that restored state cores are not.33

28Paulya [136] page 71.
29Dandekar [45] page 126.
30Amott [7].
31Kyte et al. [95].
32Tiab and Donaldson [161] page 397.
33Honarpour et al. [80] page 69.
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Figure 4.5.2: Fresh and preserved cores, Mugen [119] page 401.

Testing Fluids

The evaluation of wettability and relative permeability is naturally influ-
enced by the fluid used. It is not a simple matter of using reservoir oil or
brine, since they are not always available. A wide range of fluids can be
used including air, nitrogen, synthetic oils, reservoir oils (in various modified
states), formation or reconstituted brine, and pure water.34 Apart from the
issue of not perfectly matching the fluids to reservoir condition, core surfaces
may be altered by compounds within the fluids. For example, carbonates
are sensitive to sulfur and oxygen, while asphaltenes can react with the acid
type surfaces of sandstones containing silica.35

Hysteresis

Relative permeability is influenced by how the test is performed, whether
the wetting phase is increasing (imbibition) or decreasing (drainage) in the
displacement experiment. The displacement of oil by water, if water is the

34Dandekar [45] page 196.
35Honarpour et al. [80] page 70.
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wetting phase, is an imbibition process. If gas is injected to displace oil the
process is drainage. The alteration of relative permeability through hysteresis
is documented in Land [98] and [99], Geffen et al. [130], Richardson et al.
[129] and [144], Levine [107], Josendale et al. [85] and Terwilliger et al.
[158]. While the wetting fluid relative permeability is largely unchanged,
the non-wetting fluid is noticeably less during imbibition than drainage.36

To minimize the inluence of hysteresis, the process corresponding to the
reservoir condition must be duplicated in testing.

Interfacial Tension

In describe the properties of multiphase systems, we need to consider the
effect of forces at the interface of immiscible fluids. Interfacial tension is the
force per unit length that exists between two immiscible fluids.37 Surface
tension is the equivalent force at a liquid and gas boundary.

Figure 4.5.3: Changing interfacial tension, Leverett [105] page 162.

Figure 4.5, taken from Leverett [105], is the outcome of measuring the relative
permeability of two liquid pairs of widely different interfacial tension.38 Over
the less extreme range 27 to 72 dyne/cm, Wyckoff [174] recorded a small
but notable change in relative permeability as a result of altering interfacial

36Marle [112] page 28.
37Bradley [19] 22-I.
38Leverett [105] page 162.
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tension. Over the range 27 to 72 dyne/cm Muskat [120] asserted the effect on
relative permeability was negligible. Pirson [138] claims that only imbibition
relative permeability is sensitive to interfacial tension.

Viscosity

A number of authors have found relative permeability to be essentially inde-
pendent of fluid viscosity. These include Leverett [105], Leverett and Lewis
[106], Wyckoff and Botset [174], Richardson [143], Johnson et al. [84], Levine
[107], Lorenz et al. [109], and Parish et al. [65]. While a small degree of
variation was in some cases observed, nowhere was it deemed significant.

When the viscosity ratio is varied, the picture is not clear. Several authors
including Yuster [177], and Odeh [125] have reported that relative permeabil-
ity is effected by changing the viscosity ratio. However, Baker [12] rebutted
these findings. Morse [118] supported the influence of viscosity ratio on rel-
ative permeability. Downie and Crane [51] give qualified affirmation. At the
end of the article by Downie and Crane, there is a healthy discussion and
response with Odeh on the interpretation of results. Pirson [138] states the
effect of viscosity ratio is a second order influence. Figure 2.4.1 of Willhite
[135] indicates the viscosity ratio has a noticeable effect on relative perme-
ability.

The influence on relative permeability of changing viscosity (including alter-
ing the viscosity ratio) is not firmly established. There is a degree of variation
amongst the reported results. This has led Honarpour et al. to conclude it
seems best to conduct laboratory relative permeability experiments with fluids
which do not differ greatly in viscosity from the reserve fluids.39

39Honarpour [80] page 88.
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Initial Saturations

Initial water saturation is know to alter the shape and location of the relative
permeability curves. Henderson et al. [72] recorded a lateral shift in the
curves towards increasing oil saturation. Caudle et al. [29] also verified
that the initial water saturation altered relative permeability. Craig [39]
proposed that the relative permeability of water-wet rocks was sensitive to
initial water saturation but the effect on oil-wet rocks was negligible up to
initial saturation of 20%.

Overburden Pressure

Laboratory measurements of relative permeability are frequently taken at
atmospheric conditions.40 The permeability and porosity of reservoir rocks
is reduced by the application of sufficient overburden pressure. This effect,
as it applies to sandstones, was examined in Fatt and Davis [59], in which
permeability was reduced by 50% using pressure of 10,000 psi. The effect
of overburden pressure on relative permeability was studied by Fatt [57] for
the case of a gas-oil system. At pressures likely to be found in reservoirs
(3000 psi), Fatt observed that the difference between laboratory and reservoir
conditions is not enough to affect the results.41 However, at greater pressures
or where high accuracy was required, Fatt concluded reservoir overburden
pressure conditions may be warranted during testing. Wilson [173] tested at
5000 psi, and recorded only a moderate change in relative permeability.

Temperature

The effect of temperature on relative permeability is not clear. Akin et
al. [3] conducted a literature review on the effect of temperature on heavy
oil-water relative permeability, covering room temperature to 260 degrees
Celcius. While various temperature effects could be observed, there were no

40Dandekar [45] page 227.
41Fatt [57] page 326.
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conclusive results. Donaldson et al. [50] report that the system becomes
more water-wet as temperature increases. An increase in the irreducible
water saturation and a decrease in the residual oil saturation is reported in
[54], Poston et al. [139], Davidson [47], Sinnokrot et al. [150] and Weinbrandt
et al. [168].

Clay and Fines Content

Laboratory measurements of relative permeability can be adversely altered
by the movement of fines that comprise the rock sample. One side effect of
the higher flow rates typically employed to minimise capillary end effects is
fines can be mobilized that alter the characteristic of the rock-fluid system.
Clay swelling occurs if the injected brine is incompatible with the clay or not
in ionic equilibrium with the rock.42 This can also affect relative permeability.
Both these issues are examined in Amaefule et al. [6].

Summary

From this section it should be clear that there is considerable debate con-
cerning the many factors that affect relative permeability. Factors that are
deemed negligible by one author are seen as significant by another. Pore
structure and wettability are generally believed to have the strongest influ-
ence on the shapes of the relative permeability curves, but there is a long list
of secondary effects. The numerous sources of variation and error provides
the motivation for considering the problem within a stochastic setting.

4.6 Two-Phase Analytical Models

Although relative permeability curves are generally determined experimen-
tally, a number of analytical models have been proposed either for examining
solutions mathematically or for use in reservoir simulators.

42Dandekar [45] page 228.
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4.6.1 Corey and Brooks

Based on the work of Burdine [25], Kozeny [92], and Carman [28], Corey [35]
suggested a simple but useful approximation for relative permeability.

kr1 ∝ S4
e (4.6.1)

kr2 ∝ (1− Se)2(1− S2
e ) (4.6.2)

where Se = (S1− S1c)/(1− S1c) is the effective saturation: since the wetting
fluid is immobile below its irreducible level, one can assume that values in
the irreducible range are part of the solid structure. In effect, the irreducible
saturation becomes zero. These equation have been used by petroleum engi-
neers because of their simplicity, despite having limited validity. Brooks and
Corey [20] developed an alternative, more general description that could be
applied to a wider range of materials. The effective saturation was specified
by

Se =

(
Pd
Pc

)λ
(4.6.3)

where Pd is the entry pressure, Pc is capillary pressure and λ is the pore size
distribution index. They then proposed the following functions to describe
relative permeability:

kr1 = (Se)
2+λ
λ (4.6.4)

kr2 = (1− Se)2

(
1− S

2+λ
λ

e

)
(4.6.5)

4.6.2 MBC

The most common model in petroleum engineering is the modified Brooks
and Corey model (MBC). As Lake [96] explains, these give an analytical form
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that fits most experimental data for oil-water flow:

kr1 = k0
r1

(
S1 − S1c

1− S1c − S2c

)n1

(4.6.6)

(4.6.7)

kr2 = k0
r2

(
1− S1 − S2c

1− S1c − S2c

)n2

where kr1 and kr2 are the relative permeabilites of water and oil respectively,
k0
r1 and k0

r2 are the endpoint permeabilities of each fluid, S1 is the saturation
of fluid 1 (water), S1c and S2c are the connate water and critical oil saturations
and n1 and n2 are constants. Using this formulation, the fractional flow will
be given by:

f1 =
1

1 + (1−S)n2

MSn1

(4.6.8)

where

S =
S1 − S1c

1− S2c − S1c

(4.6.9)

is the reduced water saturation and

M =
k0
r1µ2

µ1k0
r2

(4.6.10)

is the endpoint water-oil mobility ration. M has an important interpretation,
which is:

maximum velocity of the displacing fluid
maximum velocity of the displaced fluid

4.6.3 Carman-Kozeny

Kozeny [92] and later Carman [28], interpreted reservoir rock as a bundle of
capillary tubes. Utilizing the concept of mean hydraulic unit radius, they
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developed a single phase relationship between permeability and porosity.

k =
φer

2
mh

2τ 2
(4.6.11)

where φe is the effective porosity (fraction bulk volume), the constant τ is
called the tortuosity, and the hydraulic unit radius is given by

rmh =
Volume Open to Flow
Wetted Surface Area

(4.6.12)

The general form, known as the Kozeny-Carman equation is:

k =
φ3
e

(1− φe)2

(
1

Fsτ 2S2
gv

)
(4.6.13)

where Sgv is surface area per unit grain volume and is given by:

Sgv =
1

rmh

(
φe

1− φe

)
(4.6.14)

In the generalised form, Fs is the shape factor. The group Fsτ
2, known as

the Kozeny constant, varies between hydraulic units but is constant within
a single unit.

Alpak et al. [4] developed expressions for relative permeability based on the
ideas of the Carman-Kozeny model, proposing

krw = S3
w

τ

τw

A2
T

(Aow + Aws)2
(4.6.15)

kro = S3
nw

τ

τnw

A2
T

(Aow + Aos)2
(4.6.16)

where AT is the total surface area of the solid, and Awo, Asw and Aso are the
interfacial areas between water-oil, solid-water and solid-oil respectively.

Amaefule et al. [5] have developed a method for separating different hydraulic
units, within which Fsτ

2 is constant. Dividing both sides of the Carman-
Kozeny equation by the effective porosity and taking square roots gives,
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√
k

φe
=

φe
(1− φe)

(
1√

FsτSgv

)
(4.6.17)

A number of quantities are then defined:

RQI = 0.0314

√
k

φe

is the reservoir quality index,

φz =
φe

(1− φe)
is the porosity group and,

FZI =
1√

FsτSgz
=
RQI

φz

is the flow zone indicator. The parameters FZI, RQI and φz are now sub-
stituted into (4.6.17), and taking logarithms yields

logRQI = log φz + logFZI (4.6.18)

Quoting from Amaefule et al. [5] page 3, On a log-log plot of RQI versus
φz, all samples with similar FZI values will lie on a straight line with unit
slope...Samples that lie on the same straight line have similar pore throat at-
tributes and, thereby, constitute a hydraulic unit.

The approach of Amaefule et al. [5] to defining a single hydraulic unit has
been extended by Behrenbruch and Goda43 [15]. It was found that relative
permeabilites from the same hydraulic unit form a straight line in the modi-
fied two phase Carman-Kozeny space. Formulas for relative permeability for

43The method is credited to another paper by Behrenbruch, P., Two-Phase Relative
Permeability Prediction: A New Semi-Empirical Model Based on a Modified Carman-
Kozeny Equation, which was unpublished at the time of [15].
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oil-water are given by:

krw =
1014m2

wφ
3
eSw

k

[
Sw

1− φeSw
− Swir

1− φeSwir

]
(4.6.19)

kro =
1014m2

oφ
3
e(1− Sw)

k

[
1− Sw

1− φe(1− Sw)
− Soc

1− φeSoc

]
(4.6.20)

where mw and mo are the slopes of the straight line relationships in the
Carman-Kozeny space.44

4.6.4 Other Models

Although MBC are the most widely used expressions, there are a large num-
ber of other analytical relative permeability models. Siddiqui et al. [148]
make a comparison of ten two-phase relative permeability models. The au-
thors group them into models that require the use of capillary pressure (Bur-
dine [25], Fatt and Dykstra [60], Gates and Lietz [64], Purcell [140], Tim-
merman [162], and Wyllie and Gardner [176]), and those that do not (Corey
[35], Fulcher et al. [62], Honarpour et al. [79], Naar and Henderson [122],
and Pirson [138]). For modeling water-oil relative permeabilities, Chierici
[31] suggested the following exponential forms for an oil-water system (water
is the wetting phase):

krw = kmaxrw Exp[−AS−pwN ] (4.6.21)

kro = kmaxro Exp[−BSqwN ] (4.6.22)

where the normalized wetting saturation is given by SwN = Sw−Swc
1−Soc−Sw . Mod-

els that account for hysteresis effects, which can be significant, have been
developed by Killough [88] and Carlson [26].

4.7 The Relative Permeability Ratio

More often than not, we are interested in the ratio of the relative permeabil-
ities. It so happens that the plot of saturation versus the logarithm of the

44[15] page 3.
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relative permeability ratio is frequently linear. This is clearly demonstrated
in Figure 4.7.1, which is a worked example taken from Ahmed [2]. Other

Figure 4.7.1: Relative permeability ratio, Ahmed [2] Figure 14-22.

examples can be found in Craft and Hawkins [38],45 or the Malay Basin data
used in Chapter Six. It is common usage46 to describe the central straight
part of the relationship by µw

µo
αebS, where α = ea. This leads to a convenient

expression for the fractional flow function:

f(S) =
1

1 + µw
µo
αe−bS

(4.7.1)

Like the MBC model, the fraction flow expression (4.7.1) is determined by
two parameters. In this case, the parameters can be estimated using linear
regression on the plot of saturation versus the logarithm of the relative per-
meability ratio. The fractional flow curve that results has the expected S
shape and possesses sufficient flexibility to cover a wide range of experimen-
tal data for two-phase flow. We will make use of this expression when we
consider a stochastic version of the Buckley-Leverett equation.

45page 341.
46Ahmed [2], page 309.
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4.8 Conclusion

There are several circumstances in which one might consider using a stochas-
tic differential equation. In the first instance, there is insufficient information
to understand the system completely. With respect to petroleum engineer-
ing, it is only possible to take measurements at a relatively small number
of places, with no guarantee such measurements are fully representational.
In the second instance, the system might be known quite well, but accurate
measurement is not possible due to physical or technological problems in
measurement. In the third instance, the system is all together too complex
to fully capture; the many and various individual parts are well understood,
there are too many components and interactions to grasp the system with
full confidence. Each of these three types of uncertainty are applicable where
relative permeability is concerned, but a thorough review the literature indi-
cates the third limitation is especially relevant.

In this chapter, we have examined the many factors known to influence rel-
ative permeability, together with the inherent errors, variation and uncer-
tainty. Perhaps the entire subject could have brushed over with a simple
statement that uncertainty is a core feature of petroleum engineering - but
that would be unprofessional. The relative permeability curves are the mech-
anism through which reservoir conditions enter the Buckley-Leverett model
via the fractional flow curve, and a comprehensive understanding of this in-
put is required before any alteration of the model to include a stochastic
input can be proposed.

The more commonly employed analytical expressions used to describe rela-
tive permeability were examined. In the following chapters we will investi-
gate a stochastic version of the Buckley-Leverett model. In order to obtain
a stochastic differential equation, we need an analytical expression for the
fractional flow curve, which is itself, dominated by the relative permeability
curves. Without an analytical expression for fractional flow, we will be con-
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demned to numerical approximations, possibly involving Monte Carlo meth-
ods, rather than a family of closed form solutions. Obtaining closed form
solutions is our ambitious goal.
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PART II - Something New



Chapter 5

A Stochastic Version

“As far as the laws of mathematics refer to reality, they are not certain; and
as far as they are certain, they do not refer to reality.” (Albert Einstein)

In this chapter we will discuss the motivation for considering the

Buckley-Leverett equation within a stochastic setting. We will con-

sider one possible way of introducing uncertainty into the model.

This will lead to a clearly defined problem, complete with assump-

tions. Given this formulation, mathematical expectation will be

used to calculate the shock front saturation and the position and

velocity of the shock front under conditions of uncertainty.

5.1 Introduction

Flow in porous media, as it applies to the modeling of petroleum reser-
voirs, occurs under conditions of uncertainty. Stochastic differential equa-
tions, where one modifies a deterministic equation with a stochastic pertur-
bation, or where there are stochastic initial conditions, offers one possible
way of accounting for this uncertainty in order to make the model more re-
alistic. The great benefit of examining a stochastic differential equation is
that mathematically rigorous results can be obtained concerning issues such
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as the physical characteristics of shock waves and the asymptotic behavior
of solutions.

Over the last thirty years there have been enormous developments in stochas-
tic differential equations. The list of applications of this branch of mathemat-
ics is almost endless - finance, optimal control and population growth being a
few typical examples (see Øksendale [126] or Karatzas and Shreve [87]). How-
ever, these uses have mostly involved second order equation with relatively
well behaved solutions. First order conservation equations, in comparison,
often are not well behaved, as the solutions may involve discontinuities.

The Buckley-Leverett equation is a good approximation for a homogeneous
core plug. On this scale, fluid velocities, absolute permeability, injection
rates and pressure differentials can be accurately determined. However, fac-
tors which are more prominent for larger formations, like dispersion, capillary
effects and local heterogeneities, will naturally be more difficult to evaluate.
To this add the issue of sampling error. The areal extent of a reservoir is
invariably very large and it is only possible to sample at a few selected points,
which may turn out not to be representative. Or perhaps only limited sam-
ple data is available, due to the high cost of collection. Then there is the
problem of averaging information pertaining to different scales. Over a reser-
voir, or part of a reservoir, there are a number of different rock behaviors,
and this will be reflected in the samples brought to the surface. To derive
breakthrough time, or one of the other results of interest, a representative
element volume must be selected. Thus, the spread of values is discarded in
favor of a value that is more representative. It should be clear that there
are many avenues for errors to enter the model. It is therefore reasonable
to state that there is an intrinsic uncertainty in quantifying the model inputs.

By modeling a stochastic version of the Buckley-Leverett equation, we aim
to draw conclusions about the uncertainty associated with the flow proper-
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ties of an immiscible two-phase system, generally taken as oil-water. In this
enterprise, we are faced with a trade-off between validity and tractability.
The way in which uncertainty is introduced into the model must be physi-
cally relevant. However the equation, which is already particularly difficult
to solve, will be made even more difficult by introducing a non-deterministic
term.

5.2 Incorporating Uncertainty

The Input

Relative permeability curves are fundamental to reservoir engineering and
central to Buckley Leverett theory. The specific characteristics of the porous
media and of the fluids are introduced into the model through the choice
of these curves. The relative permeability curves substitute directly into
the fractional flow formula, and how they effect the fractional flow curve
determines the solution. One could argue that the fractional flow curve is
more fundamental than relative permeability, particularly when we consider
the process of water-drive in a reservoir, the theoretical mechanics of which
are underpinned by Buckley-Leverett displacement theory. This is the view
of Dake 2001 [43],1 who supports this view by writing,

- it is a single function, the shape of which reveals all about the
efficiency of the flood where as the two relative permeability curves
do not

- when applied in the description of flooding in the reservoir, it
incorporates the correct, in situ oil and water viscosities, which
is not the case in most relative permeability measurements.

The fractional flow expression will be used to introduce uncertainty into the
models via the fractional flow. This is done for the following reasons:

1page 342.
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• The fractional flow curve is the input mechanism for different physi-
cal situations, and therefore the mechanism through which uncertainty
enters the model.

• This has a clear and logical physical interpretation.

• We capture the uncertainty inherent in the system in an appropriate
but relatively simple way, while ensuring the problem remains tractable.

What form should the fractional flow expression take? Generally, relative
permeability curves are derived experimentally, and no general theoretical
expression exists. However, in order to derive closed form solutions, we need
some kind of analytical expression. Recall from the previous chapter that an
analytical form of the fractional flow expression (4.6.8) is given by:

f(S) =
1

1 + µd
µnd

αe−bS

This function is applicable in a wide range of situations, and it ensures the
fractional flow curve has the expected S -shape. The parameters α = ea and
b are set by conducting linear regression on the logarithm of the relative
permeability curves. Given this choice, we now have the following problem
to solve.

5.3 The Problem
∂S

∂t
+

qt
Aφ

df(S)

dS

∂S

∂x
= 0 (5.3.1)

S(x, 0) =

{
Sl if x ≤ 0

Sr if x > 0
(5.3.2)

f(S) =
1

1 + µd
µnd

αe(−bS+ε)
(5.3.3)
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ε ∼ N(µ, σ2) (5.3.4)

where ε is a normally distributed random variable representing the error.
The properties of the normal distribution are given in Annex A. Equation
(5.3.3) can be written in the form:

f(S) =
1

1 + Z µd
µnd

αe−bS
(5.3.5)

In this expression Z is a random variable equal to eε. The distribution and
properties of Z can be calculated in a straightforward manner. We are not
restricted to using the normal distribution, the family of beta distributions,
noteworthy for its flexibility, could equally be used.2 However, the normal
distribution is closely linked to the analysis of error is regression and appears
to be the best choice.

Why do we use a random variable of this form? The parameters a and b

are determined by linear regression of saturations versus the logarithm of
the ratio of relative permeabilities. The use of linear regression to gener-
ate relative permeabilites was employed in Mohamad Ibrahim and Koederitz
[115]. Performing regression on the semi-log ratio of relative permeability is
less difficult than deriving separate relative permeability curves because the
semi-log relationship is usually monotonic and either linear or near linear. An
example was given section 4.7. As with any linear regression, there is an error
term. The size of the error is determined through standard techniques of re-
gression analysis. It is assumed that the error ε has a normal distribution. If
there is no uncertainty we return to the purely deterministic case. In taking
this approach, we are not guessing the degree of uncertainty, or choosing a
convenient value, rather it comes from the analysis of the ratio of permeabil-
ities. It does, however, depend on the ratio of relative permeabilites being

2The properties and application of the beta distribution are given a comprehensive
treatment in Gupta and Nadarajah [68].
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log linear against the saturation. Later we will relax this condition to only
requiring that there is a semi-log relationship that can be determined using
regression. The method will be difficult to follow as it is, without moving to
a general regression function. However, there is little additional difficulty by
taking the general case.

Given this formulation, we are interested in questions such as:

• How will the shock front propagate?

• What is the velocity of the shock front?

• What is the location of the shock front?

• What is the time to break-through?

• What is the asymptotic behavior of the solution?

• How does the degree of uncertainty change under different fractional
flow curves?

5.3.1 Assumptions

To solve this system, we will make two assumptions:

• A1 We restrict the model to the situation in which (5.3.3) is appro-
priate, that is, there is a clear relationship between saturation and the
logarithm of the permeability ratio. We will start with a linear rela-
tionship.

• A2 The initial conditions (saturations) are non-random.

We make these assumptions for a number of reasons. The first is that any
stochastic model is based upon an underlying deterministic model. Where the
underlying deterministic equation does not model reality well, it is no surprise
that the stochastic version also fails. This model for the fractional flow is
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accepted in the literature and sufficiently general to be useful. Clearly, if
(5.3.3) is not appropriate, the stochastic form chosen here should not be used.
Regarding the second assumption, it is justified on the following grounds:

• several mechanisms through which uncertainty enter the model are un-
necessary; one input that captures the majority of uncertainty inherent
in the system is sufficient.

• the connate water saturation is often chosen as the initial state and
there is less uncertainty in specifying the connate saturation than the
shock front saturation. The shock front saturation is affected by the
variation of two curves, while the connate saturation is a property of
the solid and the non-wetting fluid only (sorting and wettability are
the most significant factors influencing the connate saturation).

• in modeling stochastic first order conservation equations, either stochas-
tic flux or stochastic initial conditions are considered, but not both; the
second assumption/limitation keeps the problem solvable.

5.4 Analytical Solution

TheWelge Tangent Method gives a geometric solution to the Buckley-Leverett
equation, and this will motivate us in finding the solution to the stochastic
problem. We would expect that the new solution will be the old solution
plus a perturbation. We might therefore look for some kind of distribution
around the original, non-stochastic solution.

For the flux function under consideration, the concave hull has two compo-
nents: the straight line tangent to the curve and the component of the hull
that follows the original function at saturation values greater than the shock
front value. First we will obtain the closed form solution to the shock front
value. This is found by solving:
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f(S∗)

S∗ − sc
= f ′(S∗) (5.4.1)

where sc is the connate water saturation and S∗ is the shock front saturation,
which is a random variable. We are restricted to the concave section of f in
order to avoir physically impossible triple valued solutions.

c

Figure 5.4.1: Welge tangent method - again.

Equation (5.4.1) can be more conveniently written as,

f ′(S∗)

f(S∗)
=

1

S∗ − sc
(5.4.2)

f(S∗) =
1

1 + Z µd
µnd

αe−bS∗
(5.4.3)

ln f(S∗) = − ln (1 + Z
µd
µnd

αe−bS
∗
) (5.4.4)

f ′(S∗)

f(S∗)
=

Z µw
µnw

αbe−bS
∗

1 + Z µd
µnd

αe−bS∗
(5.4.5)

Using (5.4.2),

1

S∗ − sc
=

Z µd
µnd

αbe−bS
∗

1 + Z µd
µnd

αe−bS∗
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This leads to,
Z = ξ(S∗) =

1

(b(S∗ − sc)− 1) µd
µnd

αe−bS∗
(5.4.6)

on saturation values such that f is concave. Just why this expression is useful
will soon become clear.

5.4.1 Distribution of a Function of a Random Variable

Knowing the distribution of ε, we can find the distribution of Z. We will look
at this issue in generality before evaluating the specific example above. Such
standard results concerning distributions and expectations can be found in
almost any comprehensive text on probability, such as Shiryayev [147].

Suppose X is a random variable with probability distribution function (pdf)
fX(x), and Y = h(X). We want to find the pdf of Y , which we will denote
by fY (y). Suppose the inverse h exists and is denoted h−1. We recall that X
has pdf fX if and only if for any bounded Borel (or continuous) measurable
function on R,

E[h(X)] =

∫
R
h(x)fX(x)dx (5.4.7)

To find the distribution of Y we write

E[Y ] = E[h(X)] (5.4.8)

=

∫
R
h(x)fX(x)dx (5.4.9)

=

∫
R
yfX(h−1(y))

∣∣∣∣ ddyh−1(y)

∣∣∣∣ dy (5.4.10)

so that

fY (y) = fX(h−1(y))

∣∣∣∣ ddyh−1(y)

∣∣∣∣ (5.4.11)
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Special Case

We shall calculate the distribution of Z.

g(X) = eX

g−1(X) = lnX

and,
g′(x) = ex

Hence,

fZ(z) =
fX(ln z)

|z|
(5.4.12)

If X ∼ N(µ, σ2),

fZ(z) =
e−

(ln z−µ)2

2σ2

zσ
√

2π
(5.4.13)

for z > 0, which is the familiar log-normal pdf. The properties of this distri-
bution are given in Annex A.

5.4.2 Expectation

As we have chosen a stochastic flux function, the shock front saturation will
now be a distribution. Other quantities of interest, such as the position and
velocity of the saturation profile will also have distributions, which we would
like to know. Mathematical expectation will provide a mechanism for calcu-
lating these results.

For a bounded Borel function g(x), the expectation is given by:

E[g(X)] =

∫
g(x)ψ(x)dx (5.4.14)

where ψ is a probability density function of the random variable X. The
saturation will be a random variable of the form S∗ ≡ S∗(Z), while we know
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both z = ξ(s∗) by (5.4.6) and the probability density function fZ(z) of the
random variable Z. Using (5.4.11),

fS∗(s
∗) = fZ(ξ(s∗))

∣∣∣∣∂ξ(s∗)∂s∗

∣∣∣∣ (5.4.15)

If I is the indicator function,

P [0 ≤ S∗ ≤ β] =

∫ ∞
−∞

I[0,β](ξ(s
∗))fS∗(s

∗)ds∗ (5.4.16)

=

∫ β

0

fS∗(s
∗)ds∗ (5.4.17)

Using (5.4.6) and (5.4.17),

ξ(s∗) =
1

µd
µnd

α(b(s∗ − sc)− 1)e−bs∗
(5.4.18)

∂ξ(s∗)

∂s∗
=

b(b(s∗ − sc)− 2)
µd
µnd

α(b(s∗ − sc)− 1)2e−bs∗
(5.4.19)

fZ(ξ(s∗)) =
N(0,σ2)(ln[ξ(s∗)])

|ξ(s∗)|
(5.4.20)

P [0 ≤ S∗ ≤ β] =

∫ β

0

e−
(ln[ξ(s∗)]−µ)2

2σ2

|ξ(s∗)|σ
√

2π

∣∣∣∣∣ b(b(s∗ − sc)− 2)
µd
µnd

α(b(s∗ − sc)− 1)2e−bs∗

∣∣∣∣∣ ds∗
(5.4.21)

where N(µ,σ2)(x) is the normal probability density function. That is:

N(µ,σ2)(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
(5.4.22)

Equation (5.4.21) is the distribution for the shock front saturation. Granted,
it is not a simple expression that can be worked out by hand. However,
many of the terms are known constants. The expression can be evaluated
quite easily using a symbolic package like Mathematica, which is capable of
finding an expression for the integral and plotting the function.
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5.4.3 Stochastic Velocity and the Position of the Shock

Front

If the flux function is stochastic, then of course the velocity will be stochastic
also. We now turn to calculating its distribution. This requires that we invert
the expression for velocity. Since this function happens to be quadratic in
the random variable Z, this is possible, provided we restrict the solution to
that part that is physically feasible. The concave hull of the flux function is
given by:

f̂(S) =


f(S) if S ≥ S∗

f(S∗)(S−Sc)
S∗−Sc if S ≤ S∗

(5.4.23)

The relevance of this is the inverse of the piecewise derivative of the concave
hull determines the saturation profile, as covered in Chapter Three. The
Buckley-Leverett equation models the velocity of a plane of non-wetting fluid
of constant saturation. We will be interested in the non-wetting saturations
greater than the S∗, which corresponds to the curved section of the concave
hull.

Velocity

The derivative of f(S) is given by,

f ′(S) =

µd
µnd

αbe−bS

(1 + µd
µnd

αe−bS)2
(5.4.24)

In this expression b is positive. According to Buckley Leverett theory, the
speed of a constant plane of water behind the shock front is given by,

x

t
=
qtotal
Aφ

f ′(S) (5.4.25)
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that is,

x

t
=
qtotal
Aφ

µd
µnd

αbe−bS

(1 + µd
µnd

αe−bS)2
(5.4.26)

We have just calculated the distribution of the shock front saturation S∗,
equation (5.4.21), and we would now like to find the distribution of (5.4.26)
using the shock front saturation distribution. Setting S∗ = η, which is a
random variable representing the shock front saturation, and ν = x/t

ν = g(η) =
qtotal
Aφ

µd
µnd

αbe−bη

(1 + µd
µnd

αe−bη)2
(5.4.27)

Multiplying the numerator and denominator by e2bη and setting R = ebη

results in a quadratic in R:

ν =
qtotal
Aφ

µd
µnd

αbR

(R + µd
µnd

α)2
(5.4.28)

νR2 +
µd
µnd

α(2ν − bqtotal
Aφ

)R + (
µd
µnd

α)2 = 0 (5.4.29)

Using the quadratic formula we have,

R(ν) =
−B ±

√
B2 − 4AC

2A
(5.4.30)

where,

A = ν (5.4.31)

B =
µd
µnd

α(2ν − bqtotal
Aφ

) (5.4.32)

C = (
µd
µnd

α)2 (5.4.33)

The inverse function of ν = g(η), which we denote g−1(ν) is then given by:
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g−1(ν) = log[R(ν)]/b (5.4.34)

Following the approach taken in using expectation to calculate the shock
front saturation, we can calculate the distribution of the shock front velocity:

P [0 ≤ V (t, S, Z) ≤ γ] =

∫ γ

0

χ(g−1(ν))

∣∣∣∣∂g−1(ν)

∂ν

∣∣∣∣ dν (5.4.35)

In these calculations χ(η), the probability density function of the shock front
saturation, is given by (5.4.17) and (5.4.21). Once again, the expression
obtained is not simple, but it can be evaluated quite easily using numeri-
cal methods and any symbolic package can evaluate and plot the function.
Although the expression looks complicated, it is simpler than first appears,
since A, α, b, qtotal, φ, µd, µnd, σ, and µ are known constants.

Why two solutions for R?

We have assumed there is a shock front solution in order to avoid the physi-
cally impossible situation of a triple valued solution. Under this assumption,
the saturation changes smoothly along the rarefaction wave from the satura-
tion value of S to the shock front value S∗, at which point there is an abrupt
change in saturation to the right initial state Sr. This means that saturations
between S∗ and Sr are not physically valid.

One of the solution R(ν) of the quadratic corresponds to the lower half of
the velocity function, which we discard as non-physical. The other solution
is for the half corresponding to the correct values. It is easy to tell which
solution is relevant. When we take log[R(ν)]/b, the appropriate R(ν) will
result in a function that is evidently the inverse of (5.4.27). Generally, it
will be visually obvious, but a simple plot of g(log[R(ν)]/b) will produce a
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straight line of gradient 1 for the correct root, and the other value of R(ν)

will not. A fully worked example is given in the next chapter.

Position

We have calculated the velocity of a plane of wetting fluid with a fixed satu-
ration. The position at time t (we will be especially interested in the position
of the shock front) is given by

xSw = vt (5.4.36)

If the velocity is a random variable denoted by V , and the position is a ran-
dom variable denoted X (which we do not yet know), then we can calculate
the distribution of X:

fX(x) =
fV (x/t)

t
(5.4.37)

where fV is given by (5.4.35). Here f is the probability density function, not
to be confused with the flux function. This leads to:

P [0 ≤ X(t, S, Z) ≤ β] =
1

t

∫ β

0

χ(g−1(x/t))
∂g−1(x/t)

∂ν
dx (5.4.38)

5.5 Conclusion

At the start of this chapter, the goal was to calculate the shock front satu-
ration, and the position and velocity of the shock front under conditions of
uncertainty. These results are found at (5.4.21), (5.4.35) and (5.4.38). In the
next chapter we will work through an example reservoir.

The results are entirely dependent on the assumptions:
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• A1 We restrict the model to this situation in which (5.3.3) is appropri-
ate, that is, there is a linear relationship between saturation and the
logarithm of the permeability ratio.

• A2 The initial conditions (saturations) are non-random.

It is fairly easy to question assumptions in any mathematical work. The sim-
ple fact of the matter is we need an expression for the flux function in order
to obtain a closed form solution. The flux function chosen is sufficiently gen-
eral to obtain results that are relevant and interesting. It is clear that even
with a relatively simple flux function, the calculations become exceedingly
difficult.
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Chapter 6

Numerical Results

“The theory of probability is nothing more than good sense, con-
firmed by calculation.” (Pierre Laplace)

In this chapter we will evaluate the expressions developed in the

previous chapter. The calculations will be based upon typical reser-

voir data.

6.1 Introduction

In Chapter Five we obtained closed form solutions for the distributions of a
number of quantities of interest. In this chapter we will calculate the deter-
ministic values of a number of important reservoir quantities, based upon an
example reservoir. This will be followed by the equivalent stochastic calcu-
lations.

6.2 Example Reservoir

Table (6.1) contains the various values we need in order to apply Buckley-
Leverett to the modeling of two-phase flow. It should be obvious that the
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example does not pretend to be a real reservoir. We are only considering
one dimensional, horizontal flow. The parameters included in the table are
generally known to a good degree of accuracy compared to the relative per-
meability curves. It is upon this basis that we have concentrated on the
errors and variation in relative permeability.

Reservoir Length, L 300 m

Cross-sectional area, A 2500 m2

Porosity, φ 25%

Injection rate iw 100 m3/day ≡ 629 bbl/day

Oil viscosity, µo 2.0 cp

Water viscosity, µw 1.0 cp

Connate water saturation, Swc 26.5%

Initial water saturation, Swi 26.5%

Critical oil saturation Soc 20%

Formation thickness, h 20 m

Table 6.1: Example reservoir.

Table (6.2) shows experimental imbibition relative permeability data for wa-
ter (increasing) and oil (decreasing) of a sample taken in the Malay Basin.1

These represent typical water and oil relative permeability curves. It is un-
derstood that there is an underlying true model for the data set, but mea-
surement errors prevent us from obtaining an exact picture. In the following,
water is the wetting fluid and oil the non-wetting fluid.

Relative permeability are usually shown as smooth and well behaved curves.
This gives a false impression of uniformity. In the steady state method (which
is how this example was derived), a set of discrete values is obtained. Inter-
polation is employed between data points to obtain smoothness. The curves

1Coyne [37] page 7.
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Sw 0.265 0.313 0.376 0.430 0.488 0.560 0.628 0.700 0.800

krw 0.000 0.006 0.025 0.075 0.180 0.280 0.400 0.520 0.750

kro 1.000 0.650 0.350 0.230 0.150 0.070 0.021 0.004 0

Table 6.2: Saturation values
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Figure 6.2.1: Malay Basin example

shown in Figure (6.2.1) are in their natural, non-smoothed state. The reader
may consult Carlson [27] Chapter Seven (pages 182-189 in particular) for
examples of individual, unadulterated relative permeability curves.

Following the approach of Ahmed [2] or Craft and Hawkins [38] amongst oth-
ers, we form the ratio kro/krw and make a semi-log plot against saturation,
as shown in Figure (6.2.1). The linear relationship on the interval [0.3, 0.7] is
clearly very strong. We are limited in making any claims outside this interval
if we wish to use a linear (or possibly higher polynomial) approximation for
the data. Fortunately the saturation values outside the linear region play a
small part in the calculation we wish to make. This corresponds to the re-
gions of the lower values of the derivatives, and the error has a small effect on
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the calculations2. When we do need to look outside this region, for example
when considering recovery, we shall take a different approach.

X

X

X
X

X
X

X
X

X

4 5 6 7 8
Sw

- 20

-10

10

20

log
kro

krw

Figure 6.2.2: Semi-log plot.

We can calculate the coefficients of the fractional flow curve by performing
linear regression on y = Sw against x = log( kro

krw
). The coefficients are given

by:3

b =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
(6.2.1)

a = ȳ − bx̄ (6.2.2)

and the mean square error is,

s2 =

∑n
i=1(yi − ȳ)

n− 2
(6.2.3)

Tables (6.3) and (6.4) summarise the regression calculations.

2Craft and Hawkins [38] page 351.
3Draper and Smith [52] page 22-25.
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Estimate SE TStat PValue

1 10.9078 0.4352 25.0624 0.0000

x −22.3313 0.8030 −27.8086 0.000

Table 6.3: Parameter values.

DF SumOfSq MeanSq FRatio PValue

Model 1 37.0861 37.0861 773.32 0.0000

Error 4 0.1918 0.0480

Total 5 37.2779

Table 6.4: ANOVA

This results in the fitted model:

y = −22.3313Sw + 10.9078 (6.2.4)

The estimated variance is 0.048 and R2 is 0.99, indicating a very good fit.
It is common practice with regression analysis to assume the errors are nor-
mal independent and identically distributed random variables with zero mean
and some variance σ2. Provided the model chosen is the correct model, then
using s2 as an estimate of σ2 is appropriate.4 If we have chosen the incorrect

4[52] page 35.
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Figure 6.2.3: Fitted line.

105



*

*

*

*

*
*

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Sw

0.2

0.4

0.6

0.8

1.0
Fractional Flow

Figure 6.2.4: Fractional Flow

model (in this case that the ratio of relative permeabilites are semi-log linear)
then we cannot use s2 for the variance.

With the calculated values of a and b, and the viscosities of each fluid, we
obtain an analytical expression for the fractional flow equation:

fw =
1

1 + 0.5e−22.3313Sw+10.9078
(6.2.5)

The curve in Figure 6.2.4 is the graph of equation (6.2.5) and the points are
the fractional flow calculated using the now familiar form:

fw =
1

1 + kroµw
krwµo

(6.2.6)

As is evident from the figure above, the fractional flow approximation is very
good for middle saturation value.

There are at least four different kinds of error that afflict this model, the first
two of which we have captured with a degree of success. Modeling error is
the difference between the fitted model and the true values. Estimation error
incorporates the non-exact measurement of the apparatus used to determine
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data values (this is examined in Tao and Watson [155][154]). Closely related
to this is the error introduced by incorrect procedure, for example, how were
the cores prepared, whether the testing fluids are truly indicative reality.
Finally, and most significant of all, there is error due to variation between
core samples. This last source of error will generally greater than the others.

Accounting for Variation

Relative permeability curves are often averaged. This may be done to de-
scribe a multilayer reservoir where each layer is described by a number of
curves5. Reducing a multilayer problem to a single layer is a simplifying
assumption that can help in the simulation of a large field that cannot be
solved otherwise.6 Methods for obtaining pseudo relative permeability and
upscaling is discussed at length in Carlson [27] Chapter Eight. Averaging
may also be performed because the results of permeability measurements on
several core samples will almost certainly vary, however, a single set of curves
is required for calculations.

Dake 2001 [43] notes that averaging is a questionable practice (even though
widespread) as it has no theoretical basis, and he gives an example where
employing averaging clearly gives the incorrect result. Despite the theoretical
concerns, it is also true that there is no viable alternative.7 Without joining
the debate, the techniques employed in the last two chapters are amenable
to a form of averaging. This procedure is less ad-hoc because it would be
performed within the framework of regression on the combined values from
several curves, with the added flexibility of fitting the curve and analysing
the errors. A general method for normalizing relative permeability curves (to
remove the influence of different initial water and critical oil saturations), av-
eraging, and finally de-normalizing, is given in Ahmed [2] Chapter Five. We

5Ahmed [2] page 311.
6Carlson [27] page 205.
7Carlson [27] page 180.
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Sw 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

krw1 0.035 0.100 0.170 0.255 0.360 0.415 0.585 0.700 0.840
kro1 0.910 0.810 0.720 0.630 0.540 0.440 0.330 0.230 0.120

krw2 0.075 0.148 0.230 0.315 0.405 0.515 0.650 0.745 0.870
kro2 0.880 0.780 0.670 0.510 0.460 0.370 0.270 0.170 0.070

krw3 0.020 0.066 0.134 0.215 0.310 0.420 0.550 0.680 0.825
kro3 0.930 0.850 0.780 0.700 0.610 0.520 0.420 0.320 0.180

Table 6.5: Values for three cores.

will use this example as a means to account for variability. Rather than try-
ing to create an averaged curve, we are only interested in the combined error.

Consider the normalized data value for three different cores in Table (6.5).8

The semi-log plot of the relative permeability ratio is shown in Figure 6.2.5.
In this example, the cores are distributionally similar, and averaging to ob-
tain a combined total error appears to make sense. In this case, the es-
timated variance is 0.091. It is proposed that the samples could then be
de-normalized following the direction of Ahmed [2], and the error term ap-
plied to each sample. In this way, the variation between samples is accounted
for, without attempting to obtain an averaged curve.

The papers of Amaefule et al. [5] and Behrenbruch and Goda [15], which
were discussed in section 4.6.3, provide some interesting ideas with regards to
accounting for core variation. These papers discuss methods for determining
samples that come from a single hydraulic unit: Samples that lie on the same
straight line [on a log-log plot of RQI versus φz] have similar pore throat at-
tributes.9 Attempting to average in any way samples that belong to different
flow units will of course always produce a nonsense result. Averaging can

8These are taken from the normalization example in Ahmed [2] page 319.
9Amaefule et al. [5] page 3.
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Figure 6.2.5: Three cores, plotted values.

only make sense if there is some kind of distributional similarity between the
samples. This is a topic for future discussion.

While it is understood error and variation is an inherent quantity of all rel-
ative permeability curves, how it is quantified is an open issue and certainly
not a simple matter. Our immediate goal is to work through the mathemat-
ics. For the following calculations we will only focus on the modeling error
and estimation error, since there is a procedure for deriving this through
regression. It is assumed the correct preparation procedures were used, and
although sample variation is not incorporated into the model, a way in which
this can be done has at least been proposed. We are always free to increase
the size of the mean square error at any stage, either because it would be
more realistic or simply to determine the consequences.

6.3 Deterministic Calculations

The shock front saturation is found by solving equation (5.4.1), with the
flux function given by (6.2.5), which is easily done using Mathematica. This
results in the shock front saturation,

S∗ = 0.528 (6.3.1)

and front water-cut,
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fw|s∗ = 0.829 (6.3.2)

The position of the shock front is given by equation (5.4.36). For the example
reservoir,

x|s∗ =

(
100 m3/day

2500 m2 × 0.25

)
df

dS
|s=0.528 × t (6.3.3)

= 0.507t meters

where t is in days. The velocity of the shock front is thus 0.507 meters/day.
At this rate, the shock front would take 591 days to reach the end of the reser-
voir. The deterministic calculations in this section are found in any standard
textbook on petroleum engineering, including Ahmed [2], Craig [39], Craft
and Hawkins [38], Dake [44], Green and Willhite, Lake [96] and Towler [164].

6.4 Stochastic Calculations

To this point, we really have not calculated anything new. We have taken a
quite standard approach to using the Buckley-Leverett equation. Where we
depart from the past is how we treat the error term. The previous determin-
istic results will now become distributions. We begin with the expression for
the distribution of the shock front, using equations (5.4.18) to (5.4.21).

6.4.1 Stochastic Shock Front Saturation

ξ(η) =
1

1
2
e10.9078(22.3313(η − 0.265)− 1)e−22.3313η

(6.4.1)

∂ξ(η)

∂η
=

22.3313(22.3313(η − 0.265)− 2)
1
2
e10.9078(22.3313(η − 0.265)− 1)2e−22.3313η

(6.4.2)

ψ(ξ(η)) =
N(0,σ2)(ln[ξ(η)])

|ξ(η)|
(6.4.3)
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P [0 ≤ S(t, x, Z) ≤ β] =∫ β

0

N(0,σ2)(ln[ξ(η)])

|ξ(η)|
22.3313(22.3313(η − 0.265)− 2)

1
2
e10.9078(22.3313(η − 0.265)− 1)2e−22.3313η

dη (6.4.4)

where N(µ,σ2)(x) is the normal distribution for which in the calculations above
the mean µ is zero and the variance σ2 is set at 0.048, using the expression for
s2 from ANOVA. Equation (6.4.4) appears more complicated than it actually
is: the expression is simply a transformation of the normal distribution. It is
easy to integrate numerically and is shown at Fig. (6.4.1). The area under
the curve and the expected value, both calculated numerically, are 1.000 and
0.528 respectively. The expected value corresponds to (6.3.1).
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Figure 6.4.1: Shock front distribution, linear case.

6.4.2 Stochastic Velocity

In this section we will evaluate equations (5.4.27) to (5.4.35) in order to find
the distribution and expected value of the velocity of the shock front. The
first of these equations is for the velocity of a plane of water with constant
saturation.
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ν = g(η) =
97544.2e−22.3313η

(1 + 27300.3e−22.3313η)2 (6.4.5)

We are only interested in that half of the curve with higher water saturation
values so that physically impossible triple valued solutions are avoided. This
interval in shown in Fig (6.4.2).
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Figure 6.4.2: Velocity values that are physically acceptable.

Multiplying the numerator and denominator by e2×22.3313η and setting R =

e22.3313η results in a quadratic in R:

ν =
97544.2R

(R + 27300.3)2
(6.4.6)

R2 + (54600.6− 97544.2

ν
)R +

(27300)2

ν
= 0 (6.4.7)

Using the quadratic formula we have,

R(ν) =
1

2

−54600.6 +
97544.2

ν
±

√
−2.98123× 109 +

(
54600.6− 97544.2

ν

)2


(6.4.8)
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The inverse function of ν = g(η), which we denote g−1(ν) is then given by:

g−1(ν) = log[R(ν)]/22.3323 (6.4.9)

The larger root is the correct one for the inverse function and is shown below.
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Figure 6.4.3: The inverse, and verification.

The simple test to ensure we have the correct inverse, given the function is
one-to-one over the domain of interest, is plotting g−1(g(η)). This results in
a perfectly straight line.

Following the approach taken in using expectation to calculate the shock
front saturation, we can calculate the distribution of the shock front velocity:

P [0 ≤ V (t, x, Z) ≤ γ] =

∫ γ

0

χ(g−1(ν))

∣∣∣∣∂g−1(ν)

∂ν

∣∣∣∣ dν (6.4.10)

where the pdf χ comes from (5.4.21). The result is shown in Figure (6.4.4).

Perhaps it is worth pointing out that the distribution shown above is not
the spread of velocities for a single saturation value. Rather, there is a
spread of shock front saturations that arise because of the uncertainty we are
endeavoring to model. For each of these specific saturation values there is a
corresponding velocity.
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Figure 6.4.4: Distribution of shock front velocities.

6.4.3 Stochastic Position

In this section we will evaluate equations (5.4.37) and (5.4.38) in order to
calculate the distribution of the position of the shock front at various points
in time. Since we have the distribution for the velocity, we are finding the
the function of a distribution we already know.

fX(x) =
fV (x/t)

t
(6.4.11)

where fV is given by (5.4.35). This leads to:

P [0 ≤ X(t, S, Z) ≤ β] =
1

t

∫ β

0

χ(g−1(x/t))

∣∣∣∣∂g−1(x/t)

∂ν

∣∣∣∣ dx (6.4.12)

It was calculated that a fixed plane of water at the shock front saturation
of 0.528 would take 591 days to travel 300 meters. Figure (6.4.5) show the
movement of the shock front at 100, 200 and 400 days, along with the cor-
responding position and distribution at each of these times. Over time, the
distribution widens, as expected. In each case, it is slightly skewed to the
right. Long tailed distributions are not commonly employed in petroleum
engineering. We could have used a curtailed normal distribution. Beta dis-
tributions, which have a fixed support, are frequently employed in modeling.
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Figure 6.4.5: Shock front position

Mathematically, we are not restricted, and are free to use whatever distri-
bution is most appropriate. Since we are dealing with error, the normal
distribution, curtailed or otherwise, is the natural choice.

6.5 Extensions and Considerations

6.5.1 Non-Linear Semi-Log Relationships

Although the case in which the ratio of relative permeabilities forms a semi-
log relationship covers a wide range of cases, we are not restricted to the
linear case, because regardless of the regression function the error term can
still be written Z = eε. Of course, some calculations will be easier than oth-
ers. A significant benefit of the approach we have taken is there is a wealth
of information on regression and analysis of errors. Rather than simply ap-
proximate the fractional flow equation and the errors, the error term is at
the center of all the calculation we have made.
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Using the Malay Basin data, we can fit a cubic to the logarithm of the
permeability ratio, as was done for the linear case. Once again, the end
data values for low and high saturations have been omitted since they are
irrelevant for calculations. The model is:

g(S) = 4.02S3 − 7.34S2 − 17.98S + 10.08 (6.5.1)

To calculate the distribution of the shock front, we must repeat 5.4.18 to
5.4.21, modified for a general regression function g(S),

ξ(η) =
−1

µd
µnd

(1 + g′(η)(η − Sc))eg(η)
(6.5.2)

∂ξ(η)

∂η
=
g′(η)[2 + g′(η)(η − Sc)] + g′′(η)(η − Sc)

µd
µnd

(1 + g′(η)(η − Sc))2eg(η)
(6.5.3)

ψ(ξ(η)) =
N(0,σ2)(ln[ξ(η)])

|ξ(η)|
(6.5.4)

P [0 ≤ S∗(t, x, Z) ≤ β] =

∫ β

0

ψ(ξ(η))

∣∣∣∣∂ξ(η)

∂η

∣∣∣∣ dη
(6.5.5)

Evaluating these expressions results in Figure 6.5.1. Comparison with Figure
6.4.1 shows the two graphs are distinctly similar. The expectation for the
cubic case is 0.529 and for the linear case 0.528. Otherwise, it is difficult
to distinguish between the two distributions. In the context of probability
models, a difference of this order is negligible and the extra computational
difficulty is hard to justify.

Determining the velocity distribution adds an extra layer of complexity com-
pared to the linear case. This arises because it will be necessary to calculate
the distribution of the regression expression as a function of the shock front
distribution previously calculated. Section (5.4.1) explains how to determine
the distribution of the function of a known distribution. We have used this
technique a number of times over the last two chapters. The cases of linear,
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Figure 6.5.1: Shock front position, cubic regression.

quadratic and cubic semi-log relationships would likely be more than enough
for modeling any realistic fractional flow curve. For the Malay Basin, the
additional accuracy is not worth the computational effort - but it can be
done.

6.5.2 Generalized and Weighted Least Squares

How might we handle the case where some observation are less reliable than
others? Generalized least square applies when the error covariance ma-
trix is not diagonal. When it is diagonal, but the variance terms are not
equal, weighted least squares applies.10 The easiest way to determine if
heteroscedacity exists is by examining the residual plot. Virtually all sym-
bolic and numerical computer packages can perform weighted regression. In
Mathematica it is an option under the Regress command, as part of the Lin-
earRegression package.

For the calculation in this chapter, we are interested in the fractional flow
curve only in the neighborhood of the shock front saturation. Over a small

10Draper and Smith [52] page 223
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interval of saturation values, we do not expect the variance to change greatly.
On this basis, there would seem to be little benefit in complicating the model
still further. It is simply noted that the tools of regression analysis are more
than capable of dealing with this situation if required. Heteroscedacity is
more likely to pose a problem when examining recovery efficiency. Recovery
calculations are made over the saturation interval between the shock front
saturation and the critical oil saturation. We shall revisit this issue later.

6.5.3 Uncertainty is an Open Issue

It is well and good to derive a stochastic version of the Buckley-Leverett
equation, and make a number of calculations based on this model, but how
exactly is the level of uncertainty quantified? We have endeavored to cover
modeling error within a sample, and determining the standard error through
averaging for the multi-core case was proposed. What about the errors in-
troduced through using inappropriate fluids or preservation techniques, for
example? There is no simple answer - certainly not one that will be provided
here. The problem is not unlike the problem faced in using the Black-Scholes
formula.11 Black-Scholes is an elegant and highly successful model for deter-
mining the price of options. However, the accuracy of Black-Scholes is limited
by the determination of the volatility. This has not stopped the model being
useful.

6.6 Conclusion

In this chapter we have calculated everything we set out to determine from
the expressions that were derived in Chapter Five. It was assumed that the
experimental fractional flow curve is a noisy representation of the true, un-
derlying curve that we are attempting to model. Regression would appear

11Black and Scholes [17].
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to be a sound method for modeling the true curve.

At no point are we trying to model a particular realization of reality. The
approach taken involved modeling the fractional flow curve, while cognisant
of the errors in measurements. What separates the method we have used from
previous work is the specific interest in how the errors propagate. The reward
from taking this approach is we have obtained distribution and expected
values of the quantities of interest such as the:

• shock front saturation;

• shock front velocity; and,

• position over time of the shock front.

The method we have used is not a simple one, but difficult problems gener-
ally do not have simple solutions. These kinds of problems are difficult to
solve because they are non-linear and the solutions involve discontinuities.
By adding a stochastic terms there is now a further level of complexity that
makes the problem almost intractable. The solution we have obtained are
certainly not trivial. A number of extensions were also discussed, although
each would make the model even more complicated.
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Chapter 7

Break Through and Beyond

“There’s a whole ocean of oil under our feet! No one can get at
it except for me!” (from the film There Will Be Blood )

This chapter examines production from the time the shock front

reaches the end of the reservoir. The distribution of the break-

through time is calculated. Distributions and expectations for re-

covery are then calculated. This completes the model, as all quan-

tities of interest have been determined within a stochastic setting.

7.1 Introduction

All the quantities we have calculated to this point only depend upon model-
ing the fractional flow function in the vicinity of a single point of the curve,
corresponding to the point of tangency of a line drawn from the initial water
saturation to the fractional flow curve. It has been important that we were
able to describe the behavior of the fractional flow function fw in the neigh-
borhood of the point of tangency, but the other points of the flux function
have been essentially irrelevant to the solution. In order to describe recovery
efficiency we need to accurately model the flux function on an interval above
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the shock front saturation S∗.

It is relatively easy to obtain good approximation for fractional flow in the
vicinity of the shock front saturation - in this region the logarithm of the
relative permeability ratio often forms a linear relationship. The analytical
expression we use so far is less effective for low saturation values and very
high saturation values. This deficiency does not significantly impact on the
calculations we wish to make. The low saturation values are irrelevant to
recovery calculations, and high saturations correspond to the circulation of a
large number of pore volumes of the displacing fluid, which is also of limited
relevance. If it is likely to be a problem, we are free to switch to a function
that can provide a better approximation to fractional flow over an extended
range. We can still use regression to find a suitable function, but more terms
may be involved.

A distribution for the breakthrough time can be calculated, following the
methods employed in previous two chapters. To calculate recovery efficiency
it is necessary to first model the fractional flow curve for high saturation
values. Oil recovery was first calculated by Welge in 1952 [169] by deter-
mining the average water saturation behind the shock front. We will look
at the expression Welge used, along with his method of integration. We will
then consider a stochastic model in order to obtain equivalent results. The
total oil recovery and the number of injected pore volumes of water required
to achieve this result will be calculated, but the solution will be in terms
of probability distributions. At the end of Chapter Eight, an alternative
approach is suggested, along the lines of stochastic splines. This is entirely
ancillary to the previous work, and merely points the way to one possible
avenue of future research.
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7.2 Breakthrough Time
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Figure 7.2.1: Breakthrough Time

We previously calculated the velocity distribution of the shock front. This
can be used to derive a distribution for the breakthrough time. If the reservoir
has length L, then the relationship between velocity and breakthrough time
is,

tbt(v) = L/v (7.2.1)

We have a simple functional relationship between breakthrough time and
velocity, and there is a straight forward derivative and inverse function. The
derivative is given by,

t′bt(v) =
−L
v2

(7.2.2)

and since (7.2.1) is self-inverse,

t−1
bt (v) = L/v (7.2.3)

If the velocity distribution density is given by fV (v), then the distribution
density of the breakthrough time will be:

fbt(y) =
LfV (L/y)

y2
(7.2.4)

Employing the velocity probability density function within the integrand of
(5.4.35) and the parameters of the example reservoir, we obtain Figure 7.2.1.
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The expected value of the distribution (7.2.4) is 610 days and the mode is
565 days. The deterministic value for this calculation based on zero error was
591 days. The distribution is mildly right skewed, which is evident visually
as well as from the difference in the mode and expected value. Some degree
of skewing is to be expected since there is an abrupt limit to how fast the
front can move.

7.3 Average Saturation and Recovery

Extending the Buckley-Leverett model to encompass average saturation and
oil recovery was first proposed by Welge [169]. To calculate recovery, it is
necessary to determine the average water saturation behind the shock front.
We will look at the expression Welge used, and directly follow his method of
integration. Welge obtained an elegant graphical solution for obtaining both
the shock front saturation and the average saturation. After deriving the key
equations, we will examine a stochastic version of recovery efficiency.

The situation before water breakthrough has occured is shown graphically in
Figure 7.3.1.1 It was noted in Craig [39] that the value of f ′ at the maximum
displacing fluid is not zero, as proposed by Welge, but has a finite value.
This neccesitates a slight modification to the approach in [169] but does not
alter the final result. At the moment the snap-shot is taken, an amount
of displacing fluid equal to Qi has been injected into the block of porous
media. In the following, S is the displacing fluid saturation (understood to
be water) and Smax is the maximum saturation of the displacing fluid (equal
to 1 − Sndc). The initial displacing saturation is the connate saturation Sc.
The average displacing saturation can be calculated by integrating over the
saturation profile from 0 to x2.

S̄ =
(Smax)x1 +

∫ x2

x1
Sdx

x2

(7.3.1)

1After Craig [39] Annex E or Dake [44] page 360.
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Figure 7.3.1: Profile of Shock Front

Welge observed that since x ∝ f ′ for saturation values behind the shock
front, equation (7.3.1) can me written,

S̄ =

Smax
df(Smax)

dS
+
∫ x2

x1
Sd

{
df(S)
dS

}
df(S∗)
dS

(7.3.2)

The second term of the numerator can be evaluated using integration by
parts,

∫ S∗

Smax

Sd

{
df(S)

dS

}
=

[
S
df(S)

dS

]x2

x1

− [f(S)]x2

x1
(7.3.3)

= S∗
df(S∗)

dS
− Smax

df(Smax)

dS
− (f(S∗)− 1)

(7.3.4)

where S∗ is the saturation at the shock front (located at x2) and the satura-
tion at x1 has the value Smax, so that equation (7.3.2) becomes,

S̄ = S∗ +
(1− f(S∗))

df(S∗)
dS

(7.3.5)
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This is equation (7) of Welge [169].

Turning to the quantity of injected water, from the Buckley-Leverett equa-
tion, we know that the velocity of a plane of constant water is given by,

v =
qtotal
Aφ

df(S)

dS
(7.3.6)

where qtotal, the total flow rate, is the sum of flow rate of oil and water
(q0 + qw). Integrating this with respect to time yields,

x =
1

Aφ

df(S)

dS

∫ t

0

qtotaldt (7.3.7)

If Qi is the quantity of injected water, then assuming that Qi = 0 at t = 0,
we have,

x =
Qi

Aφ

df(S)

dS
(7.3.8)

At x2, which is the location of the shock front (where the saturation is S∗),
we then have,

x2Aφ

Qi

=
df(S∗)

dS
(7.3.9)

At the production end, where x = L,

Qi

LAφ
=

1
df(SL)
dS

= Qdim (7.3.10)

In this last equation, SL refers to the saturation of water at the end of the
porous block having length L. Since the total void space of the block is given
by LAφ, it follows that dividing the injected fluid Qi by the total void space
gives the cumulative water injection expressed in terms of the number of pore
volumes, denoted by Qdim. In other words, if the entire space available for
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fluid is given the value 1 then the cumulative water injected in pore volumes
is the fraction of that total space.

Prior to breakthrough, the amount of oil recovered at the production end
will be equal to the volume of injected water. At breakthrough, the water
saturation will immediately rise to the shock front saturation value, since
breakthrough is the instant at which the shock front arrives. After break-
through, equation (7.3.5) can be rewritten at the production end as:

S̄ = SL +
1− f(SL)

df(SL)
dS

(7.3.11)

Since the amount of oil produced, denoted P is the difference between the
average and the initial water saturation, that is S̄ − Sc, subtracting Sc from
(7.3.11) gives us the desired recovery equation (expressed in dimensionless
pore volumes):

P = SL − Sc +
1− f(SL)

df(SL)
dS

(7.3.12)

To use (7.3.12), we take SL as the independent variable and using (7.3.10),

Qdim =
1

df(SL)
dS

(7.3.13)

we can calculate Qdim and hence P by incrementally increasing SL from the
breakthrough (shock front) value S∗ to the maximum displacing fluid satura-
tion level Smax. This is standard fare within the literature, and examples of
such calculations can be found in Ahmed [2], Craig [39], Craft and Hawkins
[38], Dake [44], Green and Willhite [67], Lake [96] and Towler [164], indeed
almost any modern book on petroleum engineering.

Geometric Interpretation

There is a simple geometric means of finding the average saturation behind
the shock front. If the tangent line to the fractional flow curve from the initial
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wetting saturation to an ordinate of 1 (100% wetting fractional flow), then
the abscissa is the average wetting saturation. This is included at Appendix
B for completeness. The interested reader may also refer to Dake [44] page
360-362.

7.4 Production with Uncertainty

How is (7.3.12) affected by uncertainty? In previous calculations we made
use of the semi-log linear relationship often found for the ratio of relative
permeabilities. It was made clear that other relationships could be modeled
using the same method.

f =
1

1 + µd
µnd

eg(S)+ε
(7.4.1)

For the moment, let us assume that the regression has been performed and
g(S) is known. From the process of regression, the error term will also be
known. Once again the regression error term eε can be replaced with the
random variable Z. The derivative of f is given by,

∂f

∂S
=
−Z µd

µnd
g′(S)eg(S)

(1 + Z µd
µnd

eg(S))2
(7.4.2)

Both f and its derivative can be substituted into (7.3.12) to give,

P = SL − Sc + (1− f(SL))
1

df(SL)
dS

= SL − Sc + (1− 1

1 + Z µw
µnd

eg(S)
)
(1 + Z µd

µnd
eg(S))2

−Z µd
µnd

g′(S)eg(S)

= SL − Sc −
1 + Z µd

µnd
eg(Sd)

g′(Sd)
(7.4.3)

Following the approach of Chapter Five, we rearrange (7.4.3) to make Z the
subject,
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Z =
(SL − Sc − P )g′(SL)− 1

µd
µnd

eg(SL)
(7.4.4)

Setting Z = ξ, P = %, we have

ξ(%) =
(SL − Sc − %)g′(SL)− 1

µd
µnd

eg(SL)
(7.4.5)

∂ξ(%)

∂%
=
−g′(SL)
µd
µnd

eg(SL)
(7.4.6)

ψ(ξ(%)) =
e

(ln[ξ(%)]−µ)2

2σ2

|ξ(%)|σ
√

2π
(7.4.7)

The distribution for oil recovery at a given endpoint water saturation SwL is
then given by:

Pr[0 ≤ P ≤ β]

∣∣∣∣
Sc

=

∫ β

0

e
(ln[ξη(%)]−µ)2

2σ2

|ξη(%)|σ
√

2π

∣∣∣∣∣ −g′(SL)
µd
µnd

eg(SL)

∣∣∣∣∣ d%
Example Calculations

Using the example reservoir and relative permeability curves given at the
beginning of Chapter Six, we will calculate recovery efficiency. The first step
is to obtain an appropriate regression function for water saturation above
the shock front value. This was calculated in Chapter Six as,

g(S) = −22.3313S + 10.9078 (7.4.8)

Applying the reservoir parameters and (7.4.8) to equations (7.4.5) through
to (7.4.8),

ξ(%) = e22.3313SL(0.000180137 + 0.000817987%− 0.000817987SL) (7.4.9)

∂ξ(%)

∂%
= 0.000817987e22.3313SL (7.4.10)
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Injected Water (pore vol.) 0.5 1 2 3 10

End Saturation 0.556 0.592 0.625 0.644 0.700

Fractional Flow 0.900 0.953 0.978 0.985 .996

Expected Production (pore vol.) 0.340 0.374 0.406 0.424 0.480

Table 7.1: Production values.

ψ(ξ(%)) =
e

(ln[ξ(%)])2

2σ2

|ξ(%)|0.219
√

2π
(7.4.11)

using σ2 = .048 and µ = 0. The distribution for oil recovery at a given end
point water saturation SL is then given by:

Pr[0 ≤ P ≤ β]
∣∣
SL

=

∫ β

0

e
(ln[ξ(%)])2

2σ2

|ξ(%)|0.219
√

2π
(0.000817987e22.3313SL)d% (7.4.12)

The recovery results are captured in Table (7.1). The injected water vol-
ume (in dimensionless pore volumes) is calculated using equation (7.3.13).
Deterministic calculations like this may be found in Craig [39] appendix E.
However, the expected production (in a probability sense) and distribution
curves for recovery at various saturation values, as shown below, will not be
found there or elsewhere.

Recovery

The distributions for production with the value σ = 0.657 were calculated.
This standard deviation is three times greater than that used in the previous
calculations we have made. It should be noted that this is not based on
any sound physical considerations, apart from the understanding that the
amount of error in the system must be greater at the relatively late stage of
calculating oil recovery, compared to the very beginning of our calculation
when we are first determining the shock front saturation. The criticism must
be accepted that precisely determining the degree of error is an open issue,
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without a simple answer. For the moment we are just interested in work-
ing through the mathematics, and showing the progression of recovery over
time. We are free to change the amount of error in the system at any time,
provided it is justifiable.

The results for oil recovery are shown in Figures (7.4.1) to (7.4.3), for different
injected pore volumes. The distribution for Figure (7.4.1) is significantly
skewed, with the result that the expected value for oil production in pore
volumes is different to the value calculated without a stochastic terms. It
is also evident from these plots that the variance diminishes significantly for
higher saturation values. This is consistent with Fig. 23.21 of Latil [100]
which shows production for two different displacement scenarios: the graph
forms a lens shape between slow displacement and rapid displacement curves.
The diminished variance is only to be expected. The fractional flow equation
is given by (2.4.3), that is

fd =
1

1 + µd
µnd

krnd
krd

As krnd approaches zero, fd approaches unity. This corresponds to a large
number of pore volumes circulating through the reservoir (in the order of 10
or more). Probability wise, it is hard to draw any meaningful conclusions
about this portion of the curve. Recovery efficiency approaches a limiting
value, and regardless of any variation, the dominant factor is how rapidly
krnd approaches zero. It is well understood that recovery efficiency is very
sensitive to the shape of the fractional flow curve at higher saturation values.
Thus even a small variation in the shape of the curve will strongly effect the
number of injected pore volumes required to further alter recovery.
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7.5 Conclusion

In this chapter, the focus was production from the moment the shock front
reached the end of the reservoir, the so called breakthrough time, and fol-
lowed the asymptotic decline in recovery. The distributions and expectations
for breakthrough time and recovery were obtained. The approach taken in
this chapter was conceptually the same as the approach taken previously.
However, recovery was examined over a large segment of the fractional flow
curve, rather than the neighborhood of a single point. Computationally, a
valid and meaningful approximation is more difficult to achieve since we need
to accurately model the flux function from the shock front saturation S∗ to
the critical oil saturation Sor. As mentioned previously, it is relatively easy
to obtain good approximation for fractional flow in the vicinity of the shock
front saturation - in this region the logarithm of the relative permeability
ratio often forms a linear relationship, although a more complicated relation-
ship can be employed if required.

We might have considered a piecewise approximation to the fractional flow
curve, but the question is, will this approach bring a significant improvement
in the results? One of the noticeable positives of the last three chapters is
that a “family” of results has been obtained that is quite easy to interpret,
without being either a gross approximation or too specific. It appears to be
true that most realistic situation could be modeled with the approach we
have taken. In the next chapter, we will consider an alternative method,
along the lines of stochastic splines. This is entirely ancillary to the previ-
ous work, and merely points the way to one possible avenue of future research.
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Chapter 8

Achievements, Future Research

and

Concluding Comments

“In mathematics you don’t understand things. You just get used to them.”
(Johann von Neumann)

In this chapter, we will discuss the success and limitations of the

approach taken and point to areas of future research.

8.1 Overview

We appear to have achieved as much as one could reasonably expect from
taking an analytical approach in which closed form solutions were sought. It
was noted at the start that the problem was a particularly difficult one: a first
order conservation equation, with a discontinuity, complicated still further
by the addition of a stochastic term. Despite the difficulties, a number of
results not found elsewhere were obtained. We have produced distributions
and expected values for a number of quantities of interest such as the:

• shock front saturation;
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• shock front velocity;

• position over time of the shock front; and,

• recovery efficiency.

In summary, we have obtained a well rounded description of the displace-
ment process within a stochastic setting. Other descriptions are possible,
and for a number of reasons may even be preferable. However, in light of the
mathematical issues, what has been achieved is significant.

Buckley-Leverett is a mathematical model which is useful because it gives
insight into the physical processes behind oil recovery. Any claim that the
proposed model is also useful rests upon the manner in which the uncertainty
inherent in petroleum engineering is translated into the solutions, and helps
us to understand the nature of the problem. The material in this thesis is not
about to end reservoir simulation and replace it with a stochastic model. We
have taken an analytical approach because closed form solutions can provide
insight into the physical situation that simulation cannot provide, and on
this basis the approach is valid. Such concerns no doubt prompted the plea
by Dake, quoted in the Preface, for a revival of displacement modeling based
upon fractional flow.

8.2 Limitations and Improvements

Any model lives and dies by the assumptions upon which it is based. Two
basic assumptions were made in section 5.3.1. The first restricted the model
to the situation in which a clear relationship between saturation and the log-
arithm of the permeability ratio exists, while the second specified that the
initial conditions (saturations) were non-random.
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A decision was made to use the fractional flow curve as the vehicle for incor-
porating the stochastic term. Since this curve is the fundamental input into
the Buckley-Leverett model, focusing on fractional flow (rather than relative
permeability) is reasonable and supported by at least one prominent author
- the one quoted in the Preface. The issue is whether the particular form
chosen is too limiting or, for some other reason, inappropriate. The fractional
flow curve was given by:

f(s) =
1

1 + µd
µnd

eg(s)

where g(s) models the logarithm of the ratio of the relative permeability
curves and is determined by regression. Any physical situation likely to be
faced can be adequately approximated; the accuracy of the approximation
depends on the number of terms in g(s). Provided there are enough data
points, a high order polynomial or any other suitable function can be fitted.
There are many published examples of a linear model being used, and several
prominent authors believe this is suffient for acceptable, although possibly
restricted, calculations to be made. By taking the more general approach,
we are free to cover a wider range of examples.

The solutions we have generated over the last three chapters depend upon a
surprisingly small section of the fractional flow curve. The shock front satu-
ration without a stochastic term was 0.528. Recovery calculations were only
relevant up to a saturation of 0.7 and even at this level, 10 pore volumes of
water must be injected through the reservoir. In short, the interval [0.5,0.7] is
used for calculations, and needs to be modeled effectively - the rest is largely
irrelevant. This goes some way to explaining why a semi-log linear model
is so effective. Accurately obtaining relative permeability curves across all
saturation values is very difficult. Determining the fractional flow over an
interval like [0.5,0.7] is significantly simpler. We are also faced with only
one uncertainty term, rather than two, which is the case if separate relative
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permeability curves are used.

The approach we took involved approximating the data points with smooth
curves. Smooth curves for relative permeability and fractional flow are ex-
pected by petroleum engineers. ‘Kinked data’ is viewed as bad from a mod-
eling perspective.1 This is grounds for not considering some kind of solution
to the problem in terms of Brownian motion, more common to the methods
emplyed in mathematical finance. This would not be physically appropriate
for the Buckley-Leverett model.

Regarding the second assumption, requiring that the initial state is deter-
ministic, this is not the same as insisting the irreducible wetting saturation
is deterministic. There is clearly a level of variation in Swc, but since our
focus is on middle to high wetting saturations, we have side-stepped the is-
sue to a degree. It would be worthwhile extension of the model if random
initial conditions could be included, but that might be hoping for too much
mathematically. There is nothing preventing any of the formulas being used
with a spread of different initial saturations. This suggests making Si a inde-
pendent random variable, which would result in double integrals to calculate
distributions and expectations. Perhaps that is something for the future.

The way in which errors have been modeled has features that are good and
also not so good. On the positive side, we have obtained a raft of results that
otherwise might have proved illusive. We have avoided an ad-hoc approach
by providing a mechanism for quantifying degree of error via regression. This
approach is flexible since the treasure chest of mathematical tools found in
regression analysis is available to interpreting both the input and the output.

When it comes to possible improvement, it is easier to obtain a solution
that is locally correct, as opposed to finding a global solution. Everything in

1Carlson [27] page 199.
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Chapter Five, Chapter Six and the first part of Chapter Seven, is firmly fo-
cussed on the neighborhood of the shock front, therefore the results are more
robust. The stochastic modeling of recovery efficiency is by necessity more
problematic because the solution is over all saturation between the shock
front and 1−Sndc. Heteroscedacity is likely to be a problem for recovery cal-
culations, although limiting this weakness by employing weighted regression
was discussed at the end of Chapter Six.

The Buckley-Leverett equation is a first order conservation equation. That
is, it takes the form,

ut + f(u)x = 0

In finding and manipulating the solution of a first order conservation equa-
tion, we must be alert to the existence of discontinuities and shock fronts,
and how they propagate. By contrast, the equation for recovery effciency is
not a first order conservation equation. There is no need to be troubled by
discontinuities and weak solutions, the solution is continuous and increasing.
Depending on how the problem is formulated, many of the more common
tools of stochastic partial differential equations, as found in say Øksendal
[126], where continuity is generally assumed, could be used to examine the
problem. Once again, this is something for the future.

8.3 Further Work

There are a number of extensions to the work in this thesis and ideas that
have arisen from studying this subject. There are many alternative ways
of looking at first order conservation equations in general and the Buckley-
Leverett equation in particular, within a stochastic setting. The following
points are worthy of further consideration.

• We only considered horizontal flow. The addition of a gravity term
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does not alter the approach.

• The initial saturation state was taken as given. A more general ap-
proach might take this as non-deterministic.

• The distributions calulated in chapters five to seven were left in inte-
gral form. It may be possible to evaluate these further if, instead of
the normal distribution, the triangular distribution2 or even the beta
distribution was used. The triangular distribution may seem a gross
simplification, but cumulative probability function of comparable tri-
angular and normal distribution are quite similar, and the difference
between the two may be unimportant for modeling purposes.

• Recovery efficiency only has continuous solutions, and the problem is
open to more general methods.

• The manner in which the error, variation and uncertainty interact with
the model needs to be better understood.

• Two-phase, three component models exist for tertiary miscible displace-
ments. Like the Buckley-Leverett model this can be solved analytically.
The alternative model has a rich solution structure, and it appears that
the ideas covered in this thesis could be extended to the more advanced
model in a straightforward fashion.3

8.4 One Alternative Approach

In this section we will consider an alternative approach to finding the distri-
bution of the equation for oil production as a function of the random variable
representing saturation. We will not explore this subject fully. Rather, this

2See Kotz and van Dorp [91] for the properties of this distribution.
3This final point was suggested by one of the thesis examiners. Since the examiner is

unknown to the writer, it is not possible to correctly attribute this contribution.
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is included to show that the problem is open many avenues of attack.

The relative permeabilities are determined at a finite number of discrete
points. This motivates us to consider stochastic splines in modeling the frac-
tional flow curve for high water saturation values. We might only be blessed
with a handful of data points and must endeavor to obtain the best curve
through these point and also obtain a measure of the uncertainty associated
with the underlying problem.

We would like to calculate the production recovery efficiency, using (7.3.12).
This could be done by:

• representing the flux function by a cubic spline;

• substituting this flux function into the oil production equation P, to
obtain a piecewise function;

• inverting the production equation piecewise by solving the resulting
cubic or by using Lagrange Inversion; and finally,

• determine the distribution of P by calculating the Expectation.

Recall recovery (production) efficiency is given by (7.3.12):

P (SL) = SL − Sc +
1− f(SL)

f ′(SL)

There are a number of considerations that will make our task easier. Firstly,
f is concave for saturation values greater than the shock front saturation.
Better still, it is monotonically increasing on this interval. Our task is to
calculate the distribution of P if SL is a random variable. Fortunately, we no
longer have to worry about a discontinuous solution. Recovery efficiency is
calculated after the shock front has reached the production end of the reser-
voir. From that point, there will be a continuous and steady increase in the
production level as an ever increasing quantity of water is injected into the
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system. We are therefore only concerned with solutions that are continuous.

Since we only have a finite number of known water-cut values fi, it is nat-
ural to consider some kind of piecewise interpolation. Cubic splines are the
most common interpolation procedure for fitting approximating polynomials
to data, since they are a good compromise between accuracy and complexity.
Suppose we have a table of data points on an interval [0, T ].

x t0 t1 t2 · · · tn

y f0 f1 f2 · · · 0

Table 8.1: Data points.

Using these values, we can to obtain a set of n piecewise cubic polynomial of
the form,

mi(t) = ai + bit+ cit
2 + dit

3, ti ≤ t ≤ ti+1 (8.4.1)

for i = 0, 1, 2..., n and 0 = t0 < t1 < t2...tn−1 < tn = T . The ti are called
knots. References van der Hoek and Elliot [165] Annex F or Hoffman [73]
chapter four provide information on how this system is obtained. As an ex-
ample, consider the following data points in Table (8.2).

A natural cubic spline is:

3.3− 20.2x+ 45.x2 − 30x3 on [0.5, 0.6) (8.4.2)

−8.58 + 39.2x− 54.x2 + 25.x3 on [0.6, 0.7) (8.4.3)

−1.72 + 9.8x− 12.x2 + 5.x3 on [0.7, 0.8] (8.4.4)

x 0.5 0.6 0.7 0.8

y 0.7 0.9 0.975 1

Table 8.2: Example.
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Substituting the spline form of the flux function into the expression (8.4.1),
gives a piecewise production curve.

P (x) =


−0.0193333+0.2x−0.7x2+0.666667x3

0.224444−x+x2 on [0.5, 0.6)
1.74+21.6x−69.x2+50x3

39.2−108x+75.x2 on [0.6, 0.7)
0.76+4.8x−15x2+10x3

9.8−24x+15x2 on [0.7, 0.8]

We are now in a position to find an expression for the inverse of the produc-
tion function. Ordinarily, this function would not be invertible, but using the
piecewise representation we have chosen, the problem of finding an inverse
reduces to solving a cubic. The production function is given by (8.4.1). If
the flux function is represented by a cubic spline, then on a given interval,
(8.4.1) will take the form,

P (SL) = SL − Sc +
1− (aS3

L + bS2
L + cSL + d)

3aS2
L + 2bSL + c

(8.4.5)

This can be re-arranged to give the cubic

S3
L +

S2
L

2

(
b

a
− 3P − 3Sc

)
+ SL

(
−bp
a
− bSc

a

)
+

1

2a
(1− d− cP − cSc) = 0

(8.4.6)
This equation is invertible (although possibly only on a restricted domain)
since closed form solutions of the cubic equation exist. The interested reader
is referred to Oldham and Spanier [127] or Abramowitz and Stegun [1]. The
formulas are significantly more complex than for the quadratic case. Solu-
tions may be all real and distinct, repeated, or one real and a pair of complex
conjugates may exist. Alternatively, the Langrange Inversion Theorem could
be used directly on (8.4.6). This theorem gives the inverse of any function
that can be represented by a Taylor Series. This theorem can be found
in Markushevich4, Whittaker and Watson [172] or Kranz [93]. Whichever
method is used, the inverse piecewise cubic function for P can be obtained.
Having obtained the inverse, we can use mathematical expectation to find
the distribution of (8.4.1). This technique has been used many times already

4Markushevich [111] vol. 2, page 86.
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in this thesis and there is no need to repeat it here. Stochastic splines are
gaining traction within the study of interest rate models, and it appears such
methods might be useful in examining the recovery equation.

8.5 Concluding Comments

In the Forward to Bedrikovetsky [14], which is a book that deals entirely
with analytical models, Professor John Archer writes: “the appropriateness
of particular representations of relative permeability relationships and par-
tition coefficients are not the primary concern. Rather, it is the way such
information could be used, if it were available, that is of importance in this
analytical mathematical approach.” While we accept that accurately speci-
fying the nature and level of variation and error is still an open issue, we
are permitted to hope that this will become a better defined quantity in the
future.

Since the paper by Holden and Risebro [75], it is unfortunate that the study
of the stochastic Buckley-Leverett equation has not been taken up by a larger
number of researchers. The problem is evidently difficult, but it is an inter-
esting problem that is becoming more relevant by the day with the ever
increasing dependence on enhanced oil recovery to meet the worlds energy
needs. It is unquestionably a problem worthy of further consideration.
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Appendix A

Properties of the Normal and

Log-Normal Distribution

The standard results found in this annex are drawn from Patel, Kapadia
and Owen, Handbook of Statistical Distributions [132] and Handbook of the
Normal Distribution [133].

The normal distribution with mean µ and variance σ2 is a continuous
probability distribution with unbounded support in < that has a probability
density function given by,

f(x)µ,σ2 =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
(A.0.1)

The median and mode are also µ. The cumulative density function is given
by,

Φ(x)µ,σ2 =
1

σ
√

2π

∫ x

−∞
exp

(
− (z − µ)2

2σ2

)
dz (A.0.2)

=
1

2

{
1 + erf

(
x− µ
σ
√

2

})
(A.0.3)

The error function erf must be calculated numerically or approximated. For
example, it can be defined by the Maclaurin series,

erf(x) =
2

π

∞∑
k=0

(−1)kx2k + 1

k!(2k + 1)
(A.0.4)
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The moment generating function is,

MX(t) = E[exp(tX)] (A.0.5)

= exp(µt+
t2σ2

2
) (A.0.6)

The lognormal distribution is the probability distribution of the random
variable Y whose logarithm is normally distributed. That is to say, Y =

exp(X), where X is a normally distributed random variable. The lognormal
distribution is single tailed, with support in <+. The probability density
function is given by,

f(x)µ,σ2 =
1

xσ
√

2π
exp

(
− (ln(x)− µ)2

2σ2

)
(A.0.7)

where µ and σ2 are the mean and variance of the random variable that is the
logarithm of Y . The mean, median and mode of the lognormal distribution
are exp(µ + σ2/2), exp(µ) and exp(µ − σ2) respectively. The variance is
(exp(σ2)− 1) exp(2µ+ σ2) and the cumulative distribution function is,

Φ(x)µ,σ2 =
1

2

{
1 + erf

(
ln(x)− µ
σ
√

2

})
(A.0.8)

The moment generating function for the lognormal distribution does not
exist.
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Appendix B

Geometric Method for Finding

Average Saturation

This Appendix follows directly from section 7.3. This is standard material
within petroleum engineering ([2] [39] [38] [44] [67] [96] [164]) and is included
here for completeness. From the end at which water is injected, at x = 0, to
the position of the shock front saturation, x2, the injected water volume is
proportional to the difference between the average saturation and the initial
water saturation in the porous medium. That is,

Qi = x2Aφ(S̄ − Sc) (B.0.1)

or by rearranging,

x2Aφ

Qi

=
1

S̄ − Sc
(B.0.2)

Re-arranging (7.3.5)

df(S∗)

dS
=

(1− f(S∗)

S̄ − S∗
(B.0.3)

Recall that (7.3.9) gave,
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x2Aφ

Qi

=
df(S∗)

dS
(B.0.4)

Combining (B.0.3), (B.0.2) and (B.0.4) results in,

1

S̄ − Sc
=

1− f(S∗)

S̄ − S∗
=
df(S∗)

dS
(B.0.5)

What does this mean? The implication is readily seen by considering the
following diagram, where the different terms have been marked.

( ), )(

( )*

d
d

S S

( ), )( **

*
c  Max

} ( )) ( )*

Each term in (B.0.5) is the slope of the same line, calculated as the derivative
of f at S∗ and over the intervals S̄ − Sc and S̄ − S∗. To find the average
water saturation S̄, we simply continue the tangent line at S∗ from Sc to
the horizontal line f(S) = 1. However, for recovery calulation, (7.3.5) is
generally used.
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