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Thesis Abstract  

Interpreting motion in the natural world presents a major challenge for visual systems. 

Natural scenes vary enormously in structure, luminance and contrast, all parameters 

known to modulate the response of biological motion detectors. Nevertheless, many 

animals overcome this challenge and adopt visually guided behaviour for which the 

accurate estimation of self-motion and image velocity is required.  

It is generally accepted that Reichardt correlator-like computations underlie local 

motion detection in insects. Reichardt correlators, however, generate ambiguous 

estimates of velocity, because they are sensitive to several additional image 

parameters, such as those mentioned above. How does the visual system generate 

accurate estimates of apparent image velocity when the elements underlying local 

motion detection produce ambiguous velocity signals?  

This thesis investigates the neural processing of image velocity. I performed sharp 

electrode intracellular recordings from identified motion sensitive neurons in the 

lobula plate of the hoverfly, Eristalis tenax. A series of natural and artificial images 

were used to investigate the processing of a vast range of scenes. 

I show that the horizontal system (HS) neurons have a remarkable capacity to 

estimate image velocity reliably for vastly different natural scenes. This property is at 

odds with the HS neurons’ responses to experimenter-defined stimuli. I reveal several 

activity dependent features of the neural response that may reconcile the ability to 

accurately encode the velocity of natural images with the mechanisms underlying 

motion processing. Images that were initially weak neural drivers have long latencies, 

with responses continuing to increase in magnitude over several hundred 

milliseconds. Images that were initially strong neural drivers, reached peak responses 

more rapidly followed by significant reductions in response over longer time scales. 

Despite being different in sign and time course, these two activity dependent changes 

in response act as near-ideal normalisers for images that would otherwise produce 

highly variable response magnitudes.  
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By analysing the time course of neural response and manipulating image contrast, I 

show that this property is likely to emerge from a combination of static and dynamic 

non-linarities. When image contrast is reduced, thus reducing the range of input 

signals to local motion detectors, the essential non-linearity of the Reichardt 

correlator model provides a good prediction of global responses. Thus, suggesting an 

important role for non-linear mechanisms being recruited by high contrast local 

features in the robust encoding of natural scenes.  

Finally, I use an experimental paradigm that reduces the influence of spatial 

integration and thus enables the analysis of responses equivalent to the outputs of 

individual local motion sensitive elements presynaptic to the HS neuron. I show 

evidence for an adaptive gain reduction that affects the sensitivity of individual 

motion detector responses to subsequent features. This gain reduction is facilitated by 

local neighbouring motion stimulation and is thus, well suited to take advantage of the 

predictable nature of natural scenes.  



 iii 

Declaration  

This work contains no material which has been accepted for the award of any other 

degree or diploma in any university or other tertiary institution and, to the best of my 

knowledge and belief, contains no material previously published or written by another 

person, except where due reference has been made in the text. 

I give consent to this copy of my thesis when deposited in the University Library, 

being made available for loan and photocopying, subject to the provisions of the 

Copyright Act 1968. 

The author acknowledges that copyright of published works contained within this 

thesis (as listed below*) resides with the copyright holder(s) of those works. 

I also give permission for the digital version of my thesis to be made available on the 

web, via the University’s digital research repository, the Library catalogue, the 

Australasian Digital Theses Program (ADTP) and also through web search engines, 

unless permission has been granted by the University to restrict access for a period of 

time.  

 

1.  Nordström, K. Barnett, PD., Moyer de Miguel, IM., Brinkworth, RSA. and 

O’Carroll, DC. (2008) Sexual dimorphism in the hoverfly motion vision pathway. 

Current Biology 18: 661–667. DOI 10.1016 DOI 10.1016/j.cub.2008.03.061 

Copyright: © 2008 Elsevier Ltd. All rights reserved. 

 

2.  Barnett, PD., Nordström, K. and O’Carroll, DC. (2009). Motion adaptation 

and the velocity coding of natural scenes, Submitted to Current Biology, MS Current-

Biology-D-09-00354  

Copyright: © 2009 Elsevier Ltd. All rights reserved. 

 



 iv 

3.  Barnett, PD. and O’Carroll, DC. (2009) Receptive fields of fly motion 

detecting neurons integrate local features within natural scenes unpredictably.  

 

 

4.  Barnett, PD., Nordström, K. and O’Carroll, DC. (2009) Local motion 

detection: temporal and spatial modulation of gain and transient responses to features 



 v 

Acknowledgments 

First and foremost I owe a great deal of thanks for the ongoing support and help I 

received from my three supervisors, David O’Carroll, Karin Nordström, and Russell 

Brinkworth. I received more help and support throughout the duration of my 

candidature than I could have ever expected, thank you dearly. 

Thanks to all the members of the O’Carroll lab who have been present at one stage or 

another and helped me throughout my candidature, Irene Moyer de Miguel, Adam 

Kane, Joanne Wilkins, Yun Leung (Esther), Bart Geurten, Marcel Mertes, Jodi Gray, 

Sharn Perry, Melissa Walker, Lachlan Dowd.   

Special thanks to Steve Weiderman and Douglas Bolzon who not only continually 

provided constructive and critical conversations but also friendship and support in the 

lab at all times. 

Outside of the lab I must also thank my friends: El Geko, Sprat Cat, Lukozade, 

Stefan, Bergs, Moff, Bod, Gerry, Puff, Lara, Stevey D, and Bryant for housing me 

and maintaining my sanity, albeit marginally on occasions, throughout the whole 

PhD.  

Finally, a big thanks to Mum, Dad and the Sister.  



 vi 

Statement of Contributions to Jointly Authored Works 

The following states the contribution of the authors to the following published works  

1.  Nordström, K., Barnett, PD., Moyer de Miguel, IM., Brinkworth, RSA. and 

O’Carroll, DC. (2008) Sexual dimorphism in the hoverfly motion vision 

pathway. Current Biology 18: 661–667. DOI 10.1016/j.cub.2008.03.061  

Conceptualization: Receptive field mapping and analysis techniques were developed 

by David O’Carroll. The primary observation resulted from collection of various 

receptive fields from motion sensitive neurons collected during electrophysiological 

experiments (see below). The interpretation of these results was shared amongst all 

the coauthors.  

Realization: Electrophysiological recordings were conducted by Karin Nordström, 

Paul Barnett, and Irene Moyer de Miguel. Anatomy was done by Paul Barnett. 

Stimulus movies were collected and modified by Russell Brinkworth. Data collection 

and analysis was primarily done by Karin Nordström. 

Documentation: Karin Nordström and David O’Carroll were primary writers of the 

paper, with contributions from Paul Barnett and Russell Brinkworth. Figures were 

made by Karin Nordström, except for the anatomy where Paul Barnett developed the 

images and movies.  

 

2. Barnett, PD., Nordström, K. and O’Carroll, DC. (2009) Motion adaptation and 

the velocity coding of natural scenes. Submitted to Current Biology, MS 

Current-Biology-D-09-00354 

Conceptualization: All the coauthors were involved in the conceptualization and 

development of ideas included throughout the paper.  

Realization: Electrophysiological recordings were conducted by Paul Barnett and 

Karin Nordström. Data analysis was done by Paul Barnett.  

Documentation: Paul Barnett, Karin Nordström and David O’Carroll were all 

involved in writing the paper. Figures were made by Paul Barnett.  



 vii 

 

3. Barnett, PD. and O’Carroll, DC. (2009) Receptive fields of fly motion 

detecting neurons integrate local features within natural scenes unpredictably.  

Conceptualization: Both authors were involved in the conceptualization and 

development of ideas included throughout the paper.  

Realization: Electrophysiological recordings were conducted by Paul Barnett. 

Analysis was done by Paul Barnett.  

Documentation: Paul Barnett and David O’Carroll wrote the paper. Paul Barnett 

made the figures.  

 

4. Barnett, PD., Nordström, K. and O’Carroll, DC. (2009) Local detector 

analysis reveals a locally mediated mechanism of motion adaptation.  

Conceptualization: Paul Barnett and David O’Carroll conceived the experiments. 

Paul Barnett, Karin Nordström and David O’Carroll all contributed to the 

development of ideas.  

Realization: Electrophysiological recordings were conducted by Paul Barnett. 

Analysis was done by Paul Barnett.  

Documentation: Paul Barnett primarily wrote the paper. Karin Nordström and David 

O’Carroll provided significant written contributions and editing. Paul Barnett made 

the figures.  

 





 ix 

 

Author’s Comments 

All publications within this thesis are in the exact form of the original articles as 

published or as submitted in cases where the article are not yet in press, with the 

following exceptions: 

Typesetting has been altered so that there is a consistent format throughout the entire 

thesis. 

The figures have been inserted into the text at appropriate places, which may differ 

from the final published version of the papers. 

Figures are referenced throughout the text as they are in the published or submitted 

versions of the papers, but are captioned based on their chapter and figure number, 

e.g. Figure 1 in Chapter 2 is captioned as Figure 2.1. 



Neural Estimation of Image Velocity  

 1 

Table of contents 

 

Chapter 1: Introduction ................................................. 9 

1.1 Motion vision and velocity estimation 9 

1.2 Optic flow and the optomotor response 11 

1.3 The motion-processing pathway in flies 14 

1.3.1 Optics and photoreception ........................................................14 

1.3.2 Early visual processing.............................................................17 
1.3.3 Feature and target motion detection .........................................19 

1.3.4 Wide-field motion detection: The lobula plate tangential cells ..19 
1.3.5 Horizontal System (HS) neurons ...............................................22 

1.3.6 Vertical System (HS) neurons ...................................................23 
1.3.7 Local motion sensitivity ............................................................24 

1.3.8 Descending and pre-motor neurons ..........................................25 

1.4 Mechanisms of visual motion detection 26 

1.4.1 Feature-based tracking schemes ...............................................26 

1.4.2 Gradient schemes .....................................................................27 
1.4.3 The Hassenstein-Reichardt correlator and motion energy models

.................................................................................................28 
1.4.4 Response characteristics of the Reichardt correlator ................30 

1.4.5 Behavioural evidence for the Hassenstein - Reichardt correlator 
underlying motion detection in insect........................................31 

1.4.6 Neurophysiological evidence for the Hassenstein-Reichardt 
correlator underlying motion detection in insects......................32 

1.4.7 Velocity estimation ...................................................................34 

1.5 Natural scenes 35 

1.6 Naturalistic motion 38 



1. Introduction  

 2 

1.7 Additional Neural Processes 41 

1.7.1 Static nonlinearities.................................................................. 41 
1.7.2 Dynamic nonlinearity: motion adaptation................................. 43 

1.8 Approach and aims of this thesis 49 

1.9 References 50 

Chapter 2: Sexual Dimorphism in the Hoverfly 

Motion Vision Pathway .................................69 

2.1 Context 69 

2.2 Summary 71 

2.3 Results and Discussion 72 

2.3.1 Receptive field analysis ............................................................ 72 
2.3.2 Sexual dimorphism of HSN....................................................... 74 

2.3.3 Sexual isomorphism in HSNE ................................................... 77 
2.3.4 HSN as a fronto-dorsal yaw detector ........................................ 80 

2.3.5 Conclusion ............................................................................... 83 

2.4 Experimental procedures 84 

2.5 Acknowledgements 87 

2.6 References 88 

2.7 Supplemental Results and Discussion 90 

2.7.1 Male Calliphora HSN .............................................................. 90 

2.7.2 Lateral sensitivity of HSNE....................................................... 90 
2.7.3 Role of a small HSN ................................................................. 93 

2.8 Supplemental References 99 



Neural Estimation of Image Velocity  

 3 

Chapter 3: Motion adaptation and the velocity 

coding of natural scenes............................101 

3.1 Context 101 

3.2 Summary 103 

3.3 Introduction 104 

3.4 Results 106 

3.4.1 Accurate encoding of image velocity by HS neurons ............... 106 

3.4.2 Saturation and artificial manipulation of contrast................... 111 
3.4.3 Motion adaptation reduces response variance across the image 

set........................................................................................... 116 
3.4.4 Natural scenes and urban scenes rescale differently ............... 121 

3.5 Discussion 124 

3.5.1 Velocity constancy and natural image coding ......................... 124 

3.5.2 Saturation and the coding of natural images........................... 124 
3.5.3 Adaptation and its role in natural image coding ..................... 125 

3.5.4 Higher order scene statistics – urban and natural scenes........ 127 

3.6 Experimental Procedures 129 

3.6.1 Experiments............................................................................ 129 

3.6.2 Data acquisition and analysis ................................................. 129 
3.6.3 Image collection and display................................................... 130 

3.6.4 Image manipulation................................................................ 131 

3.7 References 133 

3.8 Supplemental Data 138 

3.8.1 Measuring image contrast ...................................................... 138 
3.8.2 Image contrast manipulation .................................................. 141 

3.8.3 Motion adaptation and response normalization ...................... 143 
3.8.4 Contrast gain.......................................................................... 148 



1. Introduction  

 4 

3.9 Supplemental References 150 

Chapter 4: Receptive fields of fly motion detecting 

neurons integrate local features within 

natural scenes unpredictably. ...................151 

4.1 Context 151 

4.2 Summary 153 

4.3 Introduction 154 

4.4 Results 157 

4.4.1 Natural images induce large response fluctuations in HS neurons 
to constant velocity stimuli ..................................................... 157 

4.4.2 Receptive field size and shape influences neuron pattern 
dependence............................................................................. 160 

4.4.3 Differences in response are not merely a consequence of different 
neuronal receptive fields ........................................................ 163 

4.4.4 Artificially lowering image contrast produces unpredictable 
changes pattern dependence ................................................... 165 

4.4.5 Local motion responses to natural scenes show pronounced 
pattern dependence ................................................................ 169 

4.4.6 Local motion responses are a poor predictor of neural pattern 
dependence produced when the entire receptive field is stimulated
............................................................................................... 175 

4.5 Discussion 177 

4.5.1 Absolute magnitude of responses ............................................ 177 

4.5.2 The existence of local hyperpolarizing transients in the model 
data........................................................................................ 179 

4.5.3 Nonlinear spatial integration across the receptive field .......... 180 
4.5.4 Function of the narrow male HSN in feature detection ........... 181 

4.6 Experimental Procedures 182 

4.6.1 Experiments and neuron identification ................................... 182 
4.6.2 Data acquisition and analysis................................................. 182 



Neural Estimation of Image Velocity  

 5 

4.6.3 Statistics ................................................................................. 183 

4.6.4 Image collection and display................................................... 183 
4.6.5 Local motion detector analysis................................................ 183 

4.6.6 Model predictions ................................................................... 184 

4.7 References 186 

4.8 Supplemental data 190 

4.8.1 Natural scenes ........................................................................ 190 
4.8.2 Model predictions of pattern dependence................................ 191 

4.8.3 Justification for using weighted linear spatial integration of local 
motion responses .................................................................... 194 

4.9 Supplemental References 196 

Chapter 5: Local motion detection: temporal and 

spatial modulation of gain and transient 

responses to features................................. 197 

5.1 Context 197 

5.2 Summary 199 

5.3 Introduction 200 

5.4 Results: 203 

5.4.1 Local motion detector analysis................................................ 203 

5.4.2 Response characteristics of local motion-sensitive elements 
supplying the HS neurons ....................................................... 205 

5.4.3 Feature-feature interactions to transient stimuli depend on the 
temporal order of contrasts within a stimulus ensemble .......... 210 

5.4.4 Global effects of feature-feature interactions within an image. 217 

5.4.5 Simultaneous stimulation of neighbouring local motion sensitive 
elements recruits a powerful reduction of motion detector gain 
for subsequent features ........................................................... 224 

5.5 Discussion 229 



1. Introduction  

 6 

5.5.1 Reconciling model response magnitude with neuron response 229 

5.5.2 Reconciling model response magnitude with neuron response for 
local transient responses ........................................................ 230 

5.5.3 Locally acting response-gain reduction .................................. 231 
5.5.4 Higher order structure and its influence on local adaptation.. 232 

Experimental Procedures 234 

5.5.5 Experiments and neuron identification ................................... 234 

5.5.6 Data acquisition and analysis................................................. 234 
5.5.7 Statistics................................................................................. 234 

5.5.8 Images and display................................................................. 235 
5.5.9 Local motion detector analysis ............................................... 235 

5.5.10 Model predictions................................................................... 235 

5.6 References 238 

Chapter 6: Discussion ...............................................242 

6.1 Summary of findings 242 

6.2 Mechanisms of natural image contrast invariance 244 

6.2.1 Response saturation ............................................................... 244 
6.2.2 Response normalization.......................................................... 245 

6.2.3 Local gain control .................................................................. 245 

6.3 Why do insects use Reichardt correlator like computations for 

motion detection? 248 

6.4 Velocity estimation in the insect visual system 250 

6.4.1 The HS neurons as velocity estimators.................................... 250 
6.4.2 Behavioural evidence for velocity estimation.......................... 252 

6.4.3 Small-field motion detection ................................................... 253 
6.4.4 Multiple speed tuning channels............................................... 254 

6.5 Limitations of the current study 255 

6.5.1 Naturalistic conditions ........................................................... 255 



Neural Estimation of Image Velocity  

 7 

6.6 Future directions 256 

6.7 References 258 

 

 

 

 



1. Introduction 

 8 

 



Neural Estimation of Image Velocity  

 9 

 

Chapter 1:    

Introduction  

1.1 Motion vision and velocity estimation  

While numerous animals have visual systems that do not permit the analysis of 

colour, or depth through binocular vision, the ability to compute movement is 

ubiquitous. After the most basic visual task of detecting changes in light intensity, 

the computation of motion may represent one of the most fundamental capabilities of 

biological visual systems (reviewed in Nakayama, 1985). Motion of the entire visual 

scene, arising from self-motion, or object motion relative to the viewer, are not 

explicitly represented at the level of the retina, however. Rather, the brain has to 

compute motion based on local changes in light intensity across space and through 

time (Reichardt, 1961).  

The detection and analysis of visual motion can provide an animal with a wealth of 

information about its surrounds. For example, motion cues are essential for tracking 

the trajectory of moving objects, avoiding obstacles, and for interpreting the 

orientation of self-motion (Collett & Land, 1978, Srinivasan, Zhang, Lehrer & 

Collett, 1996). Furthermore, parallax induced by self-motion relative to the scene can 

provide important cues for gathering three-dimensional information about the 

surrounding environment (Koenderink & Van Doorn, 1976, Nakayama & Loomis, 

1974) (see section 1.2 below – Optic-flow processing and the optomotor response).  

While motion detection per se is an important cue to gather information about the 

environment, the velocity of visual motion, at least as a crude estimate of relative 

speed and direction, is essential for many tasks. It comes as little surprise then that 

there is a great deal of evidence suggesting that animals exploit apparent retinal 

velocities to control behaviour. Honeybees, for example, balance the apparent 

velocity in the left and right visual hemispheres to pass centrally between obstacles 
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or along corridors (Srinivasan et al., 1996), while fruit flies use similar cues to 

control their ground speed when flying through tunnels (David, 1982). In addition, 

both honeybees and ants integrate apparent retinal velocity over time to estimate total 

distances travelled to or from food sources (Esch & Burns, 1996, Ronacher & 

Wehner, 1995, Srinivasan, Lehrer, Kirchner & Zhang, 1991, Srinivasan et al., 1996). 

These observations are not limited to insects: human subjects also integrate image 

velocity over time to estimate distance travelled (Bremmer & Lappe, 1999, McKee, 

Silverman & Nakayama, 1986)  

Computing motion, and particularly velocity, within the natural environment is a 

challenging task. Natural scenes vary tremendously in brightness, contrast, and 

spatial structure (Ruderman, 1994, Ruderman & Bialek, 1994, Torralba & Oliva, 

2003). For example, in one instance the visual system might have to interpret motion 

above a lake or in the desert where the visual panorama is sparse, homogenous, and 

bright, and yet in another, a densely wooded forest where the panorama is otherwise 

dark cluttered. How does the visual system overcome the problems associated with 

computing motion in an enormously variable natural world?  

These problems seem to be solved with apparent ease by even the simple visual 

system of the fly. For example, a hoverfly may in an instance switch from precisely 

controlled stationary hovering to zip off through the foliage and chase a conspecific 

in an aerobatic courtship display where they engage in turns at up to 3000°/s (Collett 

& Land, 1975, Land & Collett, 1974). The precision and speed when flying in their 

natural environment is enough to impress even the most reserved viewer. Although 

small in absolute terms, the fly visual system is often huge with respect to overall 

body size and is organised in a highly structured manner. In fact, much of the fly’s 

brain is devoted to the task of processing vision. For example, in the housefly, minus 

the retina, the visual neuropils make up 50% of the volume of the entire brain and the 

first two optic neuropils are 20 and 10 times more densely packed than equivalent 

areas in the primate visual system (Strausfeld, 1976).  

The fly’s optic lobes and particularly, the motion processing ganglia are amenable to 

electrophysiological recordings and individual neurons can be easily identified from 

one animal to the next. The modern conceptual understanding of motion detection 
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arose from experiments using insects in the 1950’s and over the subsequent decades, 

insects, and the fly particularly, have remained dominant models for investigating the 

neural processing of motion.  

In this thesis the hoverfly, Eristalis tenax, has been used as an experimental model to 

investigate the neural mechanisms of natural image processing. Eristalis is a master 

of exquisite flight control in multiple flight modalities. In the subsequent sections of 

this chapter, I will review some of the most relevant literature pertaining to the 

processing of motion in the flies visual system.  

1.2 Optic flow and the optomotor response  

Animals will encounter: either motion of the entire visual field generated by self-

motion; object motion relative to the visual field; or a combination of both wide-field 

and object motion (Hausen & Egelhaaf, 1989). For self-motion, translation and/or 

rotation about different body axes result in characteristic patterns of velocity vectors, 

known as optic flow fields (Figure 1.1) (Koenderink & van Doorn, 1987, Nakayama 

& Loomis, 1974). For example, forward translation generates a flow field with a pole 

of expansion in the direction of heading with the velocity of the scene moving past 

the eyes more rapidly lateral to the direction of heading (Figure 1.1B) (Franz & 

Krapp, 2000, Krapp, Hengstenberg & Hengstenberg, 1998, Krapp & Hengstenberg, 

1996). Roll rotation, on the other hand generates a different flow-field whereby local 

velocities run in concentric rings converging around poles of singularity frontally 

and caudally (see Figure 1.1C). Optic flow fields generated by self-motion provide 

useful feedback to the animal about how it is moving relative to its surrounds 

(Gibson, 1958, Koenderink, 1986, Lee & Kalmus, 1980, Warren & Hannon, 1988). 

Many animals ranging from insects to fish, reptiles, birds, and primates have all been 

shown to rely on optic flow cues to gather information about their own motion within 

the environment (Lappe, Bremmer & van den Berg, 1999, Reichardt & Poggio, 

1976, Srinivasan, Poteser & Kral, 1999).  

In tethered insects, image motion produces a robust syn-directional motor response 

that stabilizes the image on the retina, a reflex known as the optomotor response 

(Buchner, 1984, Pflugfelder & Heisenberg, 1995, Poggio & Reichardt, 1976). In 
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flies, optic flow fields simulating different types of self-motion generate different 

motor responses matched to the optic flow field. For example, tethered flies respond 

to purely rotating stimulus with turning responses in the same direction as the image 

motion (Blondeau & Heisenberg, 1982, Götz, 1968), whereas an expanding optic 

flow field, simulating back to front motion, results in the animal producing forward 

thrust (Götz, 1968). Optic flow fields do not just generate changes in heading from 

tethered flies, though. When presented with expanding optic flow fields or dimming 

ambient light levels, flies have been shown to initiate landing responses (Borst & 

Bahde, 1986, Braitenberg & Taddei-Ferretti, 1966, Wagner, 1982). Recent 

experiments using tethered Drosophila in a flight arena have challenged the basic 

premise that flies respond to rotating flow-fields, instead suggesting that the 

optomotor response is generated by image expansion at different locations in the 

visual field (Tammero, Frye & Dickinson, 2004). These results suggest that the 

visual system is responding to translational movements, such as side-slip, to control 

stable flight, rather than rotational flow-fields (Tammero et al., 2004). This is yet to 

be confirmed in other fly species, though.  

Optic flow does not only provide useful information about the animal’s self-motion. 

It can also provide important information about the three-dimensional layout of 

scenes. Translational optic flow causes closer objects to generate faster retinal 

velocities than those that are farther away, thus enabling the animal to ascertain 

relative distance information based on relative retinal velocity cues (Koenderink, 

1986, Koenderink & Van Doorn, 1976, Nakayama & Loomis, 1974). For example, 

locusts and praying mantids display characteristic peering behavior, swaying in a 

controlled way to induce lateral translational shifts in the scene, to gather 

information about the distance of objects in their frontal visual field (Horridge, 1986, 

Kral, 1998, Kral, 2003, Sobel, 1990). Self-induced optic flow has also been 

suggested to be important for figure-ground discrimination and the tracking response 

of flies (Reichardt & Poggio, 1979, Virsik & Reichardt, 1976).  
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Figure 1.1 Optic flow 
An animal’s movement through the environment can be thought of as either 

rotation or translation about different body axes (A). Different self-movements 

generate different patterns of local velocity vectors across the eye, known as 

optic flow fields. Optic flow field resulting from translation along the vertical 

axis (lift), B, and rotation around the horizontal axis (roll), C. The distribution of 

velocity vectors depends on the momentary self-motion. Generally, there is no 

motion at the flow field singularities (At for translation and Ar for rotation). The 

Mercator plots show optic flow across the whole visual field. Positions are 

specified by angles of azimuth ψ and elevation Θ, where ψ<0 represents the left 

visual hemisphere and ψ>0 the right. f, denotes frontal; c, caudal; d, dorsal; v, 

ventral. Although globally different, locally, different optic flow fields can 

produce undistinguishable motion signals. Boxes at ψ=90° shows a region of 

local similarity between the two flow fields. Adapted from Krapp and 

Hengstenberg (1996).  
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1.2 The motion-processing pathway in flies  

1.2.1 Optics and photoreception  

The compound eyes of insects are fundamentally different from those of vertebrates. 

Vertebrates have camera-type eyes, where a single lens focuses light onto arrays of 

receptors each with different receptive fields. Insects, on the other hand, have 

compound eyes, which sample the visual panorama with thousands of tiny lenses, or 

facets (Figure 1.2A; Land, 1981, Land, 1989). Each facet points in a different 

direction and focuses light from a narrow angle onto a waveguide structure 

containing a set of (typically) eight photoreceptors (R1-8). Collectively, this optical 

cartridge is known as an ommatidium (Figure 1.2B; Nilsson, 1989, Strausfeld, 1989).  

There are two basic variants of the compound eye: apposition and superposition 

eyes. For apposition compound eyes, the photoreceptors behind each facet are 

optically isolated from one another, only accepting light from the lens in its own 

ommatidium (Figure 1.2C). The photoreceptors of superposition eyes are separated 

from the facet by a clear zone, enabling many neighbouring facets to act in unison as 

a single optical device (Figure 1.2C; Land, 1981, Land, 1989). Apposition compound 

eyes however, are the stereotypical eye design for day active insects as they enable 

maximum spatial resolution (but see Warrant 2008), while the superposition 

compound eyes enable greater light capture at the expense of spatial resolution and 

thus, are typically found in nocturnal insects (Land, 1981, Land, 1989).   

Flies utilize a variant of the apposition eye design, the neural-superposition eye 

(Figure 1.2C). In the neural superposition eye, photoreceptors within one 

ommatidium are optically separated from each other and accept light from different 

optical axes. Each photoreceptor shares a parallel optical axis with six other 

photoreceptors from the six neighbouring ommatidia. Photoreceptors orientated 

along the same optical axis from neighbouring ommatidia cross over in the first optic 

chiasm and converge onto a common neural column in the following neuropil, thus 

generating a topographic representation of visual scene (Figure 1.2C). Neural 

pooling of signals in this manner results in greatly enhanced light capture without 

any sacrifice in visual acuity (Land, 1981, Land, 1989, Nilsson, 1990).  
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Figure 1.2 The compound eye 
A. Diagram of a compound eye. B. A single ommatidium from lens to basement 

membrane. Each ommatidium has 8 photoreceptors, R1-8. Their arrangement is shown 

on the inset to the left. C. The two main types of compound eye: apposition and 

superposition compound eyes. Photoreceptors of apposition eyes are optically isolated 

from neighbouring ommatidium, whereas the photoreceptors of superposition eyes are 

separated from the facet by a clear zone, enabling many neighbouring facets to act in 

unison as a single optical device. Far right, the neural superposition eye is a form of 

apposition eye. Photoreceptors within one ommatidium are optically separated from 

each other and accept light from different optical axes. Each photoreceptor shares a 

parallel optical axis with six other photoreceptors from the six neighbouring ommatidia. 

Photoreceptors orientated along the same optical axis from neighbouring ommatidia 

cross over in the first optic chiasm and converge onto a common neural column. A. 

Adapted from (Land & Nilsson, 2002). C. Adapted from (Kirschfeld, 1867)  
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Although the front end of the fly’s visual system is substantially different from that 

of vertebrates, it still results in light being focussed onto an array of receptors 

representing visual space. Thus in that sense, the initial neural representation is 

similar. However, the quality of the image represented at the retinal level does differ 

substantially between flies and vertebrates. The fruitfly, Drosophila, for example has 

just 700 facets per eye with an interommatidial angle of 4.6°, resulting in a very 

blurry field of view that covers almost 180° of visual space (Land, 1981). In stark 

contrast, the human fovea has roughly 60,000 cones in about 2° of visual space with 

an interreceptor angle of approximately 0.01° (Land, 1981). Thus, between fruitflies 

and humans, as an extreme example, there is an enormous difference in the spatial 

quality of the image represented at the level of the photoreceptors (approx. 500-fold). 

Many larger flies species do not suffer from quite as low resolution as the fruitfly. 

For example, the spatial resolution in blowflies is about 1-2° (Land, 1997) and large 

hoverflies and dragonflies can carry even larger compound eyes, improving their 

spatial resolution further (Land, 1981, Land, 1997). However, even in these eyes the 

spatial resolution is still far lower than the resolution of most vertebrate eyes.  

As each facet has its own receptor cartridge, improvements in spatial resolution 

require an increase in the total number of ommatidia and consequently, an increase in 

eye size. For flying insects particularly, there is a huge trade-off associated with 

increased spatial resolution and the energy burden of having to fly around with large, 

heavy, and cumbersome compound eyes. The importance of having a visual system 

with relatively high spatial resolution is not more apparent than in many fly species, 

which have evolved enormous optical apparatus covering their entire head and in 

some cases amounting to roughly 30% of their entire body weight (O’Carroll, Niven, 

and Laughlin, in preparation). To reduce the overall increase in eye size required to 

improve spatial resolution, many species have improved spatial resolution in 

specialized regions of the eye (acute zones), similar to the fovea in vertebrates (Land 

& Eckert, 1985). Other species have similar specialized regions but where facet size 

is increased (bright zones) allowing greater light capture and thus, contrast 

sensitivity, as opposed to increased resolution (Straw, Warrant & O'Carroll, 2006, 

van Hateren, Hardie, Rudolph, Laughlin & Stavenga, 1989). The amount of blurring 
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induced by the optics of the eye is the first stage of image processing and has 

important consequences for motion processing at later stages of the visual system 

(Dror, O'Carroll & Laughlin, 2001; Brinkworth and O’Carroll, 2009).  

1.2.2 Early visual processing  

The six off-axis photoreceptors in each ommatidium, R1-6, are achromatic and send 

projections onto the first optic ganglion, the lamina, whereas the two central 

photoreceptors, R7 and R8, are chromatic sending their projections further to the 

second optic ganglion, the medulla (Figure 1.2). Studies in Drosophila have verified 

that only the achromatic photoreceptors R1-R6 are involved in motion processing 

(Heisenberg & Buchner, 1977, Yarnaguchi, Wolf, Desplan & Heisenberg, 2008). 

Logarithmic encoding of luminance combined with dynamic adaptive mechanisms 

enable these photoreceptors to operate across the enormous range of light intensities 

encountered in the natural environment, despite having a limited coding range 

(Laughlin, 1994, van Hateren & Snippe, 2001, van Hateren & Snippe, 2006).  

Photoreceptors R1-6 form histaminergic synapses with the Large Monopolar Cells 

(LMC) of the lamina (Laughlin, Howard & Blakeslee, 1987). Each retinotopic 

column in the lamina contains five principal LMCs, L1-5, an amacrine cell and a 

basket T1 cell. The amacrine cells spread laterally across the visual columns of the 

lamina and are thought to play a role in lateral spatial inhibition (Strausfeld, 1976). 

The basket neuron, T1, is proposed to receive input from photoreceptors R1-6 

indirectly via the amacrine neurons. It projects to the medulla where its outputs mix 

with the L2 terminals. The response properties of the LMCs have been extensively 

studied and can be well approximated with high-pass filtering in space and time 

(James, 1990, Laughlin, 1981, Srinivasan, Laughlin & Dubs, 1982). This has been 

shown to be effective for removing redundant information in the visual input and 

enhancing edge-like boundaries (Srinivasan et al., 1982, Srinivasan, Pinter & Osorio, 

1990). Of the LMCs, only L1 and L2 are necessary for generating the optomotor 

response to visual motion (Rister, Pauls, Schnell, Ting, Lee, Sinakevitch, Morante, 

Strausfeld, Ito & Heisenberg, 2007). The LMCs project their axons to the second 

optic ganglion, the medulla.  
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Figure 1.3 Anatomy of the fly’s brain  
A. Dorsal view of the fly’s brain showing the retina and four main optic 

neuropils: lamina, medulla, lobula and lobula plate. B. Three-dimensional 

schematic of the successive optic ganglia from the retina to the lobula plate. 

Each of the main optic neuropils retains a retinotopic organization, however the 

orientation of these neuropils change from one to the next (B). Colored columns 

show the orientation of visual space at each successive ganglion. Adapted from 

Borst and Haag (2002).  

 

Recordings from neurons in the following optic ganglion, the medulla, show some 

evidence for direction selectivity (DeVoe, 1980, Douglass & Strausfeld, 1995, 

Douglass & Strausfeld, 1996). Activity dependent labelling in Drosophila, shows 

that different layers of the medulla are excited when motion is presented as opposed 

to full field flicker with the same temporal frequency, suggesting the medulla is 

likely to be the first location of the emergence of direction selectivity (Bausenwein & 

Fischbach, 1992, Buchner, Buchner & Bülthoff, 1984). These layers contain 

ramifications of the T4 neuron, which has been shown to form chemical synapses 

with the motion sensitive neurons of the lobula plate (Strausfeld & Lee, 1991). 

Motion sensitive neurons in the medulla are small and notoriously difficult to record 

from (Douglass & Strausfeld, 1995, Douglass & Strausfeld, 1996, Douglass & 

Strausfeld, 2003, Strausfeld, 1976), hence the precise neural elements involved in the 

early detection of motion have largely remained elusive.  

The third optic ganglion, or the lobula complex, is split into two separate 

interconnected ganglia, the lobula and the lobula plate, the latter of which contains a 
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range of identified motion sensitive neurons (Borst & Haag, 2002, Egelhaaf & Borst, 

1993, Nordström & O'Carroll, 2009). Different identified neural classes give 

complex response properties, which parse the processing of different types of motion 

(Borst & Haag, 2002, Egelhaaf & Borst, 1993, Nordström & O'Carroll, 2009).  

1.2.3 Feature and target motion detection  

Several neural classes have been identified that respond exclusively to the motion of 

features or objects. The Feature Detecting (FD) and Contralateral Inhibited (CI) 

neurons respond optimally to the motion of grating patterns far smaller than the size 

of their receptive fields, e.g. less than 10° (Egelhaaf, 1985, Gauck & Borst, 1999). 

They are hypothesised to be involved in the detection of features and in figure-

ground discrimination. Using photo-ablation techniques, the size tuning of the FD 

neurons was shown to arise from inhibitory feedback from the GABA-ergic wide-

field centrifugal horizontal (CH) neurons (Egelhaaf, Borst, Warzecha, Flecks & 

Wildemann, 1993, Warzecha, Egelhaaf & Borst, 1993). However, their optimal 

responses are still to relatively large features (Egelhaaf, 1985, Gauck & Borst, 

1999b; Nordström and O’Carroll, 2009a).  

Small Target Motion Detectors (STMDs), have been identified and characterized in 

the lobula of hoverfly and dragonfly visual systems with exquisite sensitivity for the 

motion of small objects (Barnett, Nordström & O'Carroll, 2007, Collett, 1971, 

Nordström & O'Carroll, 2009a, Nordström & O'Carroll, 2006, Nordström, Barnett & 

O'Carroll, 2006, O'Carroll, 1993). STMDs show optimal sensitivity for the motion of 

very small features, 1.6-3.2°, close to the size of individual ommatidia. Olberg 

identified pre-motor descending neurons in the ventral nerve cord of dragonflies with 

similar response properties (Olberg, 1981, Olberg, 1986). The response properties of 

many STMDs have also been shown to be robust against the presence of background 

motion, suggesting that the likely mechanisms underlying their small target 

selectivity are different from that described for the FD neurons (Barnett et al., 2007, 

Nordström et al., 2006). They have been suggested to have a role in the detection and 

tracking of small moving targets during prey capture or courtship behaviour 

(reviewed in Nordström & O'Carroll, 2009a).  
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1.2.4 Wide-field motion detection: The lobula plate tangential cells  

While the study of neurons sensitive to smaller features is still in its infancy, wide-

field motion processing in the lobula has been extensively studied. There is a suit of 

roughly 60 giant motion-sensitive interneurons known as the lobula plate tangential 

cells (LPTCs), which have formed the basis for the study of motion processing in the 

fly (Borst & Haag, 2002, Egelhaaf & Borst, 1993, Strausfeld, 1976) (Figure 1.4). The 

LPTCs spatially pool local motion inputs across their receptive fields, responding 

optimally to wide-field motion. Their input dendrites span across many thousands of 

input columns in the peripheral layers of the lobula plate corresponding to their 

extensive receptive fields (Borst & Haag, 2002, Egelhaaf & Borst, 1993, Strausfeld, 

1976).  

Numerous studies have revealed that LPTCs are crucial elements in the processing 

pathway from visual stimulation to motor output (Borst & Bahde, 1988, Geiger & 

Nässel, 1981, Hausen & Wehrhahn, 1983, Heisenberg, Wonneberger & Wolf, 1978). 

The response properties of LPTC show spatio-temporal frequency tuning and 

sensitivity to pattern contrast with remarkable resemblance to torque responses 

produced by tethered flies (Hausen, 1982b, Hausen & Wehrhahn, 1989, 

Hengstenberg, 1982). The ablation of some LPTCs in larval houseflies results in 

reduced optomotor responses (Geiger & Nässel, 1981) and Drosophila mutants that 

are missing the entire lobula plate do not display optomotor responses at all whilst 

walking (Blondeau & Heisenberg, 1982, Heisenberg et al., 1978). Additionally, 

microsurgical lesions that sever LPTC projections to central brain areas 

(protocerebrum) result in altered optomotor responses in the blowfly (Hausen & 

Wehrhahn, 1983, Hausen & Wehrhahn, 1990), providing further evidence that the 

LPTCs are a necessary link in the visuo-motor pathway for the animal to generate 

optomotor responses. Furthermore, activation of LPTCs via extracellular field 

potentials can produce turning and landing responses from flies in the absence of 

visual stimuli, suggesting that activation of these neurons alone may be enough to 

initiate certain responses (Blondeau & Heisenberg, 1982).  

Unlike the optic ganglia preceding the lobula complex, where neurons show 

remarkable similarity not just across dipteran species but also arthropods (Osorio, 
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Averof & Bacon, 1995, Strausfeld, 2005), species differences in the lobula plate 

appear to be far more pronounced (Buschbeck & Strausfeld, 1997). Nevertheless, the 

LPTCs can be grouped into two prominent subclasses based on their global direction 

selectivity: the vertical system (VS), and the horizontal system (HS). Although VS 

and HS neurons are conserved as groups across taxa, the number and structure of 

neurons differs from species to species (Buschbeck & Strausfeld, 1997).  

 

 

 

Figure 1.4 Lobula plate tangential cells 
A. Retinotopic organization of the lobula plate in the left visual hemisphere, f, 

frontal; c, caudal; d, dorsal; v, ventral. B. The three horizontal system (HS) 

neurons in the blowfly. C. The 10 vertical system neurons (VS) in the blowfly. 

Both the VS and HS neurons cover the whole neuropil. D. The 10 VS neurons 

separated to more clearly show their dendritic arbors. Modified from Krapp et al. 

(1998). A. Originally adapted from Hausen, (1993); B originally adapted from 

Hausen (1982a); C and D originally adapted from Hengstenberg et al. (1982).   
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1.2.5 Horizontal System (HS) neurons  

Neurons of the Horizontal System (HS) are sensitive to horizontal image motion. In 

blowflies, and many other flies, there are three HS neurons in each visual hemisphere 

(Hausen, 1982a, Strausfeld, 1976). The HS neurons have semi-overlapping receptive 

fields, which are centred at different locations along the dorso-ventral axis of the 

visual field (Figure 1.4B). They are named based on the location of their receptive 

fields on the dorsal to ventral axis: north, equatorial, and south (HSN, HSE, and HSS 

respectively Hausen, 1982a, Hausen, 1982b, Krapp, Hengstenberg & Egelhaaf, 

2001). Their receptive fields stretch from the visual midline and far (~100 degrees) 

into the ipsilateral visual field (Hausen, 1982a, Hausen, 1982b). Whereas most fly 

species have three HS neurons in each visual hemisphere, hoverflies have four HS. 

The HSNE, north-equatorial, neuron’s receptive field lies between that of HSN and 

HSE on the dorsal-ventral axis (Buschbeck & Strausfeld, 1997, Nordström, Barnett, 

Moyer de Miguel, Brinkworth & O'Carroll, 2008, O'Carroll, Laughlin, Bidwell & 

Harris, 1997).  

The HS neurons receive their inputs from the distal layers of the lobula plate and 

send stout axons and output dendrites into areas of the sub-oesophageal ganglion 

associated with pre-motor descending neurons (Hausen, 1982a, Strausfeld, 1976). 

HS neurons respond to visual motion in the ipsilateral visual field with characteristic 

graded shifts in membrane potential either depolarisation for preferred direction 

stimulation or hyperpolarization for motion in the opposite direction (Haag & Borst, 

1996, Haag, Vermeulen & Borst, 1999, Hausen, 1982a, Nordström & O'Carroll, 

2009). In blowflies, motion in the contralateral visual field produces spikelets, which 

coincide in a one-to-one fashion with extracellularly recorded spikes presumed to be 

from the heterolateral H2 neuron (Haag et al., 1999). The fast irregular HS spikelets 

have been suggested to enhance specificity to rotational optic flow (Horstmann, 

Egelhaaf & Warzecha, 2000) and arise from fast-activating sodium currents (Haag & 

Borst, 1996, Haag, Theunissen & Borst, 1997).  
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Other neurons sensitive to horizontal image motion include two additional 

centrifugal horizontal neurons (CH) in each hemisphere (Eckert & Dvorak, 1983, 

Gauck, Egelhaaf & Borst, 1997, Strausfeld, 1976). Unlike the HS neurons, the CH 

neurons receive their inputs from areas in the midbrain and have their output 

dendrites in the distal layers of the lobula pate. They also make post-synaptic 

connections in the distal layers of the lobula plate. They are GABA-ergic neurons 

and amongst other things play an important role in size selectivity of the FD neurons 

(Egelhaaf, 1985, Egelhaaf et al., 1993, Warzecha et al., 1993). Several other neurons 

sensitive to horizontal image motion have been identified that send output 

projections to the contralateral hemisphere, for example the H1-4 neurons (Borst & 

Haag, 2001, Eckert, 1980).  

1.2.6 Vertical System (HS) neurons 

The VS neurons are primarily sensitive to vertical image motion. There are 10 VS 

neurons whose receptive fields are elongated vertically (Hengstenberg, 1982, 

Hengstenberg, Hausen & Hengstenberg, 1982, Krapp & Hengstenberg, 1996) 

(Figure 1.4C and D). Each VS neuron has a receptive field that spreads the dorsal-

ventral axis of the visual field, but unlike the HS neurons they have limited spread 

laterally. In the blowfly, the VS neurons are numbered 1-10 based on their location 

around the azimuth, with VS1 having a frontally orientated receptive field around to 

VS10 which has a receptive field towards the posterior visual field (Hengstenberg, 

1982, Hengstenberg et al., 1982). Like the HS neurons, the VS neurons also respond 

to image motion with graded shifts in membrane potential superimposed with 

spikelets of irregular amplitude.  
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1.2.7 Local motion sensitivity  

The naming convention for vertical (VS) and horizontal (HS) system neurons reflects 

the global direction preferences of LPTCs. However, the LPTC are not just sensitive 

to motion in one direction, but rather pool their inputs from local motion sensitive 

elements with different local preferred directions (Franz & Krapp, 2000, Karmeier, 

Krapp & Egelhaaf, 2003, Krapp et al., 1998, Krapp & Hengstenberg, 1996, Krapp & 

Hengstenberg, 1997, Krapp et al., 2001). A key observation that has been thoroughly 

investigated in all the HS and VS neurons is that their local preferred directions share 

remarkable similarities to optic flow fields generated by self-rotation (Franz & 

Krapp, 2000, Krapp et al., 1998, Krapp & Hengstenberg, 1996) (Figure 1.5). These 

observations have led to the proposal that many of the LPTCs act as matched filters 

for specific optic flow fields generated from self-motion about different body axes 

(Figure 1.5). Similar observations have also been made for motion sensitive neurons 

in primates (for review see Lappe et al., 1999). Nevertheless, despite the ‘matched 

filter’ nature of their receptive fields it is still unclear how these neurons are able to 

deal with the enormous variability inherent within natural images.  

One mechanism for overcoming locally variable responses is to integrate these over a 

large region of space. Owing to the retinotopic organization of the lobula plate the 

LPTCs should have receptive fields that are matched to the extent of their dendritic 

arbours. However, intracellularly recorded receptive fields of VS neurons are 3-4 

times larger than that predicted by spread of their input dendrites (Farrow, Borst & 

Haag, 2005, Krapp et al., 1998, Krapp & Hengstenberg, 1996). Several recent studies 

have revealed that this increase in receptive field size is the direct result of lateral 

gap-junctions between the VS neurons, thus blurring their receptive fields with those 

of their neighbours (Elyada, Haag & Borst, 2009, Farrow et al., 2005, Haag & Borst, 

2004, Haag & Borst, 2005). This cross-communication of retinotopic inputs has been 

suggested to lead to more robust representation of specific optic flow fields in natural 

image conditions (Cuntz, Haag, Forstner, Segev & Borst, 2007).  
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1.2.8 Descending and pre-motor neurons   

The output dendrites of HS and VS neurons project to central areas in the mid-brain, 

which are associated with pre-motor descending neurons involved in the control of 

neck and flight muscles (Gronenberg & Strausfeld, 1990, Strausfeld & Bassemir, 

1985a, Strausfeld & Bassemir, 1985b). The descending neurons of the ocellar and 

vertical system (DNOVS) integrate the outputs of different combinations of VS 

neurons, most likely via both chemical and direct electrical connections (Haag, 

Wertz & Borst, 2007, Wertz, Borst & Haag, 2008). The extra spatial pooling of 

motion signals is suggested to further improve the DNOVS neurons selectivity for 

specific rotational optic flow fields (Haag et al., 2007, Wertz et al., 2008).  

In a hierarchical manner the neck motor neurons (NMNs), receive direct input 

directly from LPTCs and indirectly via the descending neurons (Grönenberg, Milde 

& Strausfeld, 1995, Huston & Krapp, 2008, Strausfeld & Seyan, 1985). The neck 

motor neurons synapse directly on muscles that control head rotations and have 

receptive fields that extend substantially into each visual hemisphere, far beyond the 

Figure 1.5 Local preferred directions 
A-C shows the anatomy and response fields for 

VS1, VS6, and VS8. Local motion sensitivities 

are shown as Mercator maps as in Figure 1.1. 

The direction of the arrows show local 

preferred direction and arrow length shows 

local sensitivity (response strength). The 

response fields of all VS neurons show 

similarity to rotatory optic flow fields. Each 

VS neuron, however, matches rotation around 

a different body angle. Adapted from Krapp 

and Hengstenberg (1996).  
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extent of any individual LPTCs or DNOVS neurons (Huston & Krapp, 2008). Like 

the DNOVS neurons, the NMNs pool their inputs to enhance their selectivity for 

specific optic flow fields (Huston & Krapp, 2008). Thus, a direct chain from 

photoreception at the level of the retina to the muscles that control head rotations 

might include as few as five serial synapses (Hausen & Egelhaaf, 1989).  

The control of the wing steering muscles is slightly more sophisticated though. 

Evidence suggests that steering muscles do not receive direct input from motion 

sensitive descending neurons but rather indirectly via the mechano-sensory hind 

wings, the halteres (Chan, Prete & Dickinson, 1998). The halteres mediate corrective 

reflexes during flight by detecting coriolis forces that result from angular rotations of 

the animal and presumably combining this with visual feedback from the direction 

selective descending neurons (Frye & Dickinson, 2001).  

1.3 Mechanisms of visual motion detection  

How is motion computed locally prior to the integration by the LPTC receptive 

fields? Computer scientists and engineers have developed several different schemes 

for computing image motion, each with its own pros and cons. These models can be 

grouped into three major schemes: The feature tracking schemes; the gradient 

detectors; and the family of correlation-based motion detection models, which 

include the popular motion energy models.  

1.3.1 Feature-based tracking schemes  

The feature-based tracking schemes rely on identifying particular features, or 

derivatives of features, within a scene and then comparing their positions at different 

points in time. By calculating the displacement of an object over a known amount of 

time, the velocity of motion can easily be derived (Smith & Brady, 1997). These 

models are highly popular with computer scientists and engineers, but require the 

challenging task of identifying and locating the same feature through multiple time 

points. Consequently, they require large amounts of computing power.  
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1.3.2 Gradient schemes  

The family of gradient detector models has emerged as one of the best-known 

approaches for reliably detecting the velocity of image motion (Limb & Murphy, 

1975, Srinivasan, 1990). Gradient detectors measure local light intensity gradients at 

multiple locations in space (Figure 1.6B). A major advantage of this family of 

movement detectors is that they are able to accurately calculate image velocity under 

a wide range of conditions. The gradient detector calculates motion by dividing the 

temporal luminance gradient taken from one receptor by the spatial luminance 

gradient measured across at least two different points in space. Consequently, if the 

spatial derivative is small, noise in the temporal derivate gets amplified and 

furthermore, if the spatial derivative is equal to zero, then the velocity is undefined 

(Limb & Murphy, 1975, Srinivasan, 1990). Subsequently, at low light levels the 

gradient detector has a poor signal to noise ratio (Borst, 2007, Srinivasan, 1990). 

Although these models have gained momentum in the areas of machine vision and 

image processing, there has been little reciprocity in biology, where neurobiological 

evidence has directly contradicted the implementation of such mechanisms 

underlying motion detection in flies (Haag, et al, 2004).  
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Figure 1.6 Motion detector models 
Two popular models for motion detection in the insect visual system. (a) The 

Hassenstein-Reichardt detector consists of two mirror symmetrical subunits 

whose outputs are subtracted. Each subunit receives luminance inputs from two 

adjacent points in space and correlates them (M) after one has been delayed by a 

low-pass filter (τ). Correlation (M) is often modeled as multiplication. (b) The 

gradient detector divides the temporal luminance gradient from one point in 

space (

 

"I
"t

) by the spatial luminance gradient across two points in space 

(

 

"I
"x

). Adapted from Borst (2007). 

 

1.3.3 The Hassenstein-Reichardt correlator and motion energy models  

More than half a century ago, in an elegant suit of experiments using the robust 

optomotor response of the beetle Chlorophanus, Hassentstein and Reichardt 

characterized behavioural responses to different visual stimuli. These experiments 

led to the proposal of a delay and correlate model for motion detection, commonly 

known as the ‘Hassenstein – Reichardt correlator’ or ‘Reichardt correlator’ (Figure 

1.6A) (Hassenstein & Reichardt, 1956, Reichardt, 1961). Over the past 50 years or 

so, this model has received widespread acclaim and is now one of the most enduring 

models in visual neuroscience (Borst & Egelhaaf, 1989, Clifford & Ibbotson, 2002, 

Egelhaaf & Borst, 1993).  
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Broken down into its principal components the Reichardt correlator computes the 

direction of image motion by correlating luminance at one point in space with the 

temporally delayed luminance at a neighbouring, or spatially offset, point in space 

(Hassenstein & Reichardt, 1956, Reichardt, 1961). In the implementation of the 

Reichardt detector, the correlation is typically modelled as a supra-linear interaction, 

such as multiplication (Figure 1.6A). The above description produces a model whose 

output is greater for motion in one direction than the other. It is sensitive to absolute 

changes in brightness, i.e. if the stimulus becomes brighter without the presence of 

any motion, model output also increases confounding the two parameters. By 

subtracting the output of two such subunits with mirror symmetry, a model whose 

output is sensitive to the direction of image motion is generated. The response is 

positive in one direction, negative in the oppsite direction, and is also largely 

insensitive to changes of non-motion related stimuli, such as absolute changes in 

brightness (Figure 1.6A).  

Hassenstein and Reichardt’s original description of the model was far more 

complicated than described above. In order to accurately predict the behavioural 

responses of the beetle used in their experiments, they had to include several linear 

filtering stages (Hassenstein & Reichardt, 1956, Reichardt, 1961). They represented 

the delay as a first-order low-pass filter (Figure 1.6A) as opposed to the more simple, 

pure temporal delay. This enables the model to detect motion across a range of 

speeds, as opposed to a pure temporal delay that would result in sensitivity at only 

one speed, defined by the duration of the delay (Buchner, 1984, Reichardt, 1961, 

Reichardt, 1987).  

Since its inception, various elaborations and changes have been made to match the 

Reichardt correlator to the properties of motion detection in many additional animal 

species. For example in humans (Vansanten & Sperling, 1985), primates (Emerson, 

1992), birds (Crowder, Dawson & Wylie, 2003, Wolf-Oberhollenzer & Kirschfeld, 

1994), and marsupials (Ibbotson, Mark & Maddess, 1994; for reviews see Borst & 

Egelhaaf, 1989, Clifford & Ibbotson, 2002, Srinivasan et al. 1999). In some cases, 

the problem has been approached from a different angle only to arrive at a solution 
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that despite starting with different internal structures, produces outputs that are 

mathematically similar to the Reichardt correlator model (Adelson & Bergen, 1985).  

Other studies have developed alternative schemes where some of the response 

properties are otherwise in opposition to the predictions of the Reichardt correlator, 

for example, the delayed inhibitory mechanisms (or veto mechanisms) underlying 

the direction selective responses in DS ganglion neurons of the rabbit and turtle 

retinas (Ariel & Adolph, 1985, Barlow & Levick, 1965). Nevertheless, while the 

specific implementation of such motion detecting mechanisms may vary, they are all 

qualitatively similar to the Reichardt correlator in terms of their input/output 

relationship. 

1.3.4 Response characteristics of the Reichardt correlator  

The Reichardt correlators fixed spatial inputs with simple delay and multiplication 

operation, generate several nontrivial predictions about responses to motion stimuli.  

1. Response increases with the square of image contrast (changes in luminance) 

due to the multiplicative non-linearity at the correlation stage (Figure 1.6 and 

1.7B).  

2. Response does not increase monotonically with stimulus velocity, but rather 

increases up to an optimum, based on the characteristics of the delay filter, 

and then falls away again for faster stimulus velocities (Figure 1.7).  

3. Any imperfection in the subtraction stage causes the response to a sinusoidal 

grating to modulate at double the temporal frequency of the grating, i.e. it 

responds to both polarities of the sinusoid (increasing and decreasing 

luminance changes). Such imbalance is a likely consequence of any 

biological implementation of subtraction via, for example, excitatory versus 

inhibitory interactions mediated by different neurotransmitters, and has been 

observed in locally measured motion responses (Egelhaaf, Borst & Reichardt, 

1989a).  
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4. The fixed spatial separation results in the response being sensitive to the 

spatial frequency of the stimulus, with an optimum which depends on the 

angle of the separation of the inputs, 

 

"# , by 

 

fs, opt =
1

4"#
 (Figure 1.7A).  

5. Consequently, the response is sensitivity to the spatial and temporal 

frequency of the stimulus as opposed to velocity per se, whereby 

 

Velocity =
Tf

Sf
, where 

 

Tf  is the temporal frequency of the stimulus and 

 

Sf  is 

the spatial frequency.  

6. The correlator also produces response reversals (spatial aliasing) for 

sinusoidal gratings with spatial frequencies between 

 

1

2"#
 and 

 

1

"#
, although 

these are damped by the gaussian blur introduced by the optics of the eye 

(Buchner, 1984).  

1.3.5 Behavioural evidence for the Hassenstein - Reichardt correlator underlying 

motion detection in insect  

While the underlying structure of the Reichardt correlator was originally proposed 

from behavioural experiments on beetles, a great deal of subsequent work and 

development has been based on tethered flies (Götz, 1975, Poggio & Reichardt, 

1976, Virsik & Reichardt, 1976). By attaching a rod dorsally to the flies torso and 

measuring the magnitude of the optomotor response, Reichardt and his colleagues 

were able to confirm many of the predictions of the correlator model (Buchner, 1976, 

Buchner, 1984). I briefly list some of these below in the same order as described 

above.  

1. At lower pattern contrasts, the torque response increased quadratically with 

stimulus contrast. Similar behavioural result were also obtained from both 

walking and flying fruitflies, Drosophila (Buchner, 1984).  

2. Torque responses varied with the temporal frequency of the stimulus: 

increasing to an optimum then decreasing for higher frequencies.  
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3. By limiting the stimulus to a vertically elongated slit, Reichardt and Egelhaaf 

(Reichardt & Egelhaaf, 1988) were able to remove much of the influence of 

spatial integration and record optomotor responses that approximated the 

outputs of local detectors. They showed that consistent with predictions of the 

correlator model, optomotor responses in flies were modulated by the spatial 

phase of the stimulus pattern. These responses fluctuated tremendously and 

periodically signalled motion in the opposite direction (Reichardt & Egelhaaf, 

1988).  

4. Torque responses of the fly depended on the spatial frequency of the stimulus 

in the same way as that predicted by the Reichardt correlator, with an optimal 

spatial frequency related to the inter-ommatidial angle, 

 

"# , by 

 

fs, opt =
1

4"#
. 

Behavioural work in light adapted animals showed that 70% of the optomotor 

response could be explained by nearest neighbour interactions (Buchner, 

1976).  

5. Responses are sensitive to spatial and temporal frequency, as opposed to 

velocity per se.  

6. Torque responses produced negative response for spatial frequencies between 

 

1

2"#
 and 

 

1

"#
 (Buchner, 1984).  

1.3.6 Neurophysiological evidence for the Hassenstein-Reichardt correlator 

underlying motion detection in insects  

Electrophysiological recordings from fly LPTCs have also provided a great deal of 

support for Reichardt correlator at the cellular level. Some of the key observations 

are listed below again in the same order as above (for reviews see Borst & Egelhaaf, 

1989, Clifford & Ibbotson, 2002, Egelhaaf & Borst, 1993).  

1. At low stimulus contrasts, LPTCs show a quadratic response relationship 

with contrast. However, at higher stimulus contrasts the response saturates, 

consistent with the optomotor responses (Egelhaaf & Borst, 1993, Egelhaaf, 
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Borst & Reichardt, 1989b, Harris, O'Carroll & Laughlin, 2000, Hausen, 

1982b, Srinivasan & Dvorak, 1980).  

2. The response of HS neurons are temporal frequency tuned, rising to a 

maximum and then declining for higher temporal frequencies (Haag et al., 

2004, Hausen & Egelhaaf, 1989, O'Carroll et al., 1997, O’Carroll, Bidwell, 

Laughlin & Warrant, 1996, Straw et al., 2006).  

3. Egelhaaf et al. (1989a) extended the slit paradigm used in the behavioural 

experiments mentioned above to characterize local motion detector 

responses. They showed that HS neuron responses fluctuated at double the 

temporal frequency of the stimulus grating.  

4. The spatial frequency tuning of HS neurons rises to an optimum, which is 

proportional to spatial sampling baseline of the ommatidial lattice, before 

falling away at higher spatial frequencies (Eckert, 1980, Egelhaaf & Borst, 

1989, Egelhaaf et al., 1989a, Haag et al., 2004, Haag, Egelhaaf & Borst, 

1992, O'Carroll et al., 1997, O’Carroll et al., 1996, Srinivasan & Dvorak, 

1980, Straw et al., 2006). Apparent motion flashes showed that LPTCs 

responded to motion over only neighbouring ommatidia. This indicates that 

the spatial baseline of motion computation is primarily on the order of 

individual ommatidia, consistent with the behavioural observation 

(Franceschini, Riehle & Le Nestour, 1989, Schuling, Mastebroek, Bult & 

Lenting, 1989). 

5. In addition, Srinivasan and Dvorak (1980) showed in H1 recordings that there 

is an inversion of the response at high spatial frequencies as a result of spatial 

aliasing, as predicted by the correlator.  

Many additional investigations have further verified the response properties of the 

LPTCs. For example, showing the transient oscillating responses properties of HS 

neurons can be accounted for by intrinsic properties of the Reichardt correlator 

(Egelhaaf & Borst, 1989). Furthermore, even some of the adaptive rescaling 

responses of the H1 neuron can be explained as a consequence of the non-linearity 
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inherent within motion detectors of the correlation type (Borst, Flanagin & 

Sompolinsky, 2005). Finally, Egelhaaf et al. (1989b) showed that the correlation of 

the Reichardt detector is well approximated with a pure multiplication and that the 

underlying motion detectors were not perfectly anti-symmetrical, but rather allowed 

some transfer of non-motion stimuli.  

The Reichardt correlator makes some clear predictions about the type of neural 

elements that might be involved in motion detection. However, few studies have 

been successful in recording from areas of the brain (i.e. the medulla) that are likely 

to contain these elements and as such, to date their anatomical and physiological 

identity remain elusive. Douglass and Strausfeld (1995) recorded from a number of 

small-field elements in the medulla, lobula, and lobula plate, where they found 

motion-sensitive interneurons whose anatomical location may suggest that they 

could serve a putative role in the elementary computation of motion. However, the 

physiological response properties of these elements, the so-called Tm1 and T5 

interneurons, are still inconclusive (Douglass & Strausfeld, 1995).  

1.3.7 Velocity estimation  

The above evidence supports the Reichardt correlator or similar mechanism 

underlying local motion detection in biological vision. Although, such a mechanism 

is sufficient to compute local 2-D velocity fields in controlled circumstances 

(Reichardt & Egelhaaf, 1989), it produces local responses that are sensitive to many 

stimulus parameters and thus, are enormously variable in natural environments 

(Reichardt, 1987). However, behavioural observations show conclusively that 

animals can accurately calculate retinal velocities (Srinivasan et al., 1996). This has 

led to the proposal of many alternative mechanisms for computing motion. For 

example, some authors have suggested that the biological system might employ two 

schemes for motion detection, a gradient like detector in high luminance conditions 

and then switch to Reichardt correlator like mechanisms under low light conditions. 

This would enable velocity estimation at both high light levels, and with high signal 

to noise ratio in low light conditions (Potters & Bialek, 1994). However, subsequent 

studies from blowfly LPTCs have revealed that, in these neurons at least, this is not 

the case, with responses consistent with a Reichardt correlator-like mechanism 
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persisting to very high luminance conditions (Borst, 2007, Haag et al., 2004). Other 

species, such as crabs, appear to have solved this problem by having multiple parallel 

EMD channels tuned to different temporal frequencies (Nalbach, 1989).  

 Natural scenes  

Much of the earlier, characterizational, research on biological motion detectors took 

advantage of their predictable responses to experimenter defined stimuli, such as 

sinusiodally modulated contrast gratings, bars, spots, or square-wave gratings. These 

stimuli have proven to be powerful tools for revealing many of the fundamental 

processes underlying motion detection (Borst & Egelhaaf, 1989, Egelhaaf & Borst, 

1993). However, they share little similarity with the kinds of scenes that biological 

visual systems have adapted to encode. It is generally assumed that visual systems 

are specifically tuned to the statistics of natural images on both developmental and 

evolutionary time scales (Carandini, Demb, Mante, Tolhurst, Dan, Olshausen, 

Gallant & Rust, 2005, Simoncelli & Olshausen, 2001).  

Although natural scenes appear complex and enormously variable, there is a 

remarkable degree of predictability from one scene to the next and as such, natural 

scenes only occupy a small niche within the parameter space of all potential images 

(Balboa & Grzywacz, 2003, Field, 1987, Ruderman & Bialek, 1994, Simoncelli & 

Olshausen, 2001, Tadmor & Tolhurst, 1993, Tolhurst, Tadmor & Chao, 1992). 

Importantly, for correlation-based motion processing, natural images have a 

characteristic spatial frequency amplitude spectrum with the following relationship, 

 

amplitude" Sf
#1 0+n , where n has been shown to vary between ~ -0.25 to 0.25 

(

 

Sf =spatial frequency) (Field, 1987, Tolhurst et al., 1992). This property of natural 

scenes alone negates the spatial frequency sensitivity of Reichardt correlators, 

because the fixed spatial sampling baselines produces the same velocity optimum 

across enormously different natural scenes (Figure 1.7B and C; Dror et al., 2001). 

Note that the small variation in 

 

n  has little qualitative effect on the shape of the 

predicted velocity tuning (Figure 1.7C; Dror et al., 2001).  
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Natural scenes however, vary enormously in contrast (average amplitude) and 

because the response of correlation-based models increases with the square of image 

contrast, absolute model responses are highly variable from one scene to the next 

(Figure 1.7B; Dror et al., 2001, Straw, Rainsford & O'Carroll, 2008 see also Chapters 

3 Figure S1C). This presents a fundamental problem for velocity analysis.  

Recently, Straw et al. (2008) recorded the responses of hoverfly HS neurons to the 

motion of natural images. Across a large range of velocities, they showed that the 

responses of HS neurons had the same optimal velocity for all the natural images 

used, consistent with the predictions of the Reichardt correlator mentioned above 

(Straw et al., 2008). Interestingly though, although the images spanned a large range 

of contrasts, the magnitude of the responses were relatively consistent across the 

image set and accurately represented image velocity with membrane potential (Straw 

et al., 2008). This observation is in direct contradiction to the response properties of 

HS neurons to experimenter-defined stimuli, such as sinusoidal gratings. Straw et al. 

(2008) showed that this same set of images produced a near 10-fold range in 

responses from a Reichardt correlator model, which had many elaborations matched 

to motion processing in the hoverfly.  
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Figure 1.7 Responses of a Reichardt correlator as a function of velocity  
A. Response to a sinusoidal grating at two different spatial frequencies, 0.2 

cycles/° and 1.0 cycles/°, shows that velocity is confounded with spatial 

frequency. B. Responses to four natural images and C. same four curves as B but 

normalized to their maximum shows that different natural images result in 

correlator responses peaking at the same velocity. Adapted from Dror et al. 

(2001).  
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1.4 Naturalistic motion  

Beyond the statistics of natural images, the dynamics of naturalistic motion are also 

critical for understanding how the visual system is processing motion and negotiating 

the natural environment (for a brief review see Zeil, Boeddeker & Hemmi, 2008). In 

naturally occurring behaviour the visual system is under closed loop, i.e. it is sensing 

changes in visual input and combining them with other sensory signals, such as those 

from olfactory and inertial sensors, and initiating motor responses appropriately 

(Frye & Dickinson, 2004, Zeil et al., 2008). Thus, the patterns of optic flow and 

feedback from other sensory modalities experienced by the visual system during 

flight are not going to be random, but rather well orchestrated sequences matched to 

specific behaviours that may well simplify a lot of the problems associated with 

motion estimation.  

In free flight, flies adopt a characteristic flight behaviour, whereby periods of 

forward translation are interspersed with rapid alterations of flight direction, called 

saccades (Schilstra & Van Hateren, 1999). This stereotypical saccadic flight mode 

greatly defines the optic flow experienced by the animal. For example, the animal 

compresses rotational optic flow fields into brief high velocity turns, of 90° over ~50 

ms with peak rotational velocities of >1000°/s (Schilstra & Van Hateren, 1999, 

Tammero & Dickinson, 2002b). During inter-saccadic periods of flight, the animal 

minimizes rotational optic flow with precisely controlled flight and head orientation 

so it only experiences optic flow fields matched to translation (Kern, van Hateren, 

Michaelis, Lindemann & Egelhaaf, 2005, Van Hateren & Schilstra, 1999). 

Separating different flow-fields into different parts of flight might greatly simplify 

the task of having to interpret self-motion and thus, enable the visual system to 

extract information about the spatial layout of the environment (Lindemann & 

Egelhaaf, 2005). More recently, studies in Drosophila have suggested that these 

saccadic turns are initiated by lateral image expansion, i.e. by optic flow fields 

generated from sideslip translation or approaching objects (Tammero & Dickinson, 

2002a, Tammero & Dickinson, 2002b).  
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Recording neural activity during naturally occurring flight behaviour is not feasible 

with current technology. Nevertheless, research has begun to explore the response 

properties of motion sensitive neurons to naturalistic image motion reconstructed 

from optic flow experienced by freely flying or walking flies. Although some authors 

endeavoured to reconstruct optic flow experience in outdoor environments, they 

were not able to account for the head position during flight (Boeddeker, Lindemann, 

Egelhaaf & Zeil, 2005). Subsequent studies revealed the importance of taking into 

consideration the animal’s head position before reliable interpretations of neural 

response could be made (Kern, van Hateren & Egelhaaf, 2006, Kern et al., 2005). 

During saccades the fly’s head turns faster than the body thereby increasing the 

retinal velocities experienced as well as shortening the duration of the saccade. 

During periods of inter-saccadic flight, head orientation counteracts roll and sideslip, 

further stabilizing image motion and limiting optic flow fields experienced to 

translation (Schilstra & Van Hateren, 1999).  

When presented with optic flow reconstructed from freely walking flies where the 

head orientation could be resolved, HS neurons were shown to encode turning 

responses relatively independent of translation experienced by the animal (Kern, 

Petereit & Egelhaaf, 2001). However, when optic flow was reconstructed from 

animals flying freely inside a confined space, the HS neurons were now shown to 

respond to both image rotation and translation, because of the higher translational 

velocities experienced (Karmeier, van Hateren, Kern & Egelhaaf, 2006, Kern et al., 

2005). On the other hand, the H1 neuron, which is also sensitive to horizontal image 

motion, only produced responses during saccades and was suppressed during periods 

of forward translation (van Hateren, Kern, Schwerdtfeger & Egelhaaf, 2005). 

Subsequently, it has been suggested that once one considers the responses of 

populations of VS and HS neurons it is possible to parse optic flow generated by 

either rotation or translation (Karmeier et al., 2006). Separating these two types of 

flow fields might enable the animal to take advantage of motion parallax induced by 

translatory motion and gather three-dimensional information about the structural 

layout of the scene. 
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Although these endeavours are generating interesting conclusions about the 

functional roles of LPTCs, they are still very different from simulating the conditions 

experienced during naturally occurring flight. For example, on the occasions where 

head orientation was taken into account during flight, the arena was small (0.4 x 0.4 

m) and had flat walls with no three-dimensional information (Schilstra & Van 

Hateren, 1999, Van Hateren & Schilstra, 1999). This could have promoted a collision 

avoidance low-speed flight mode in which objects were fixated followed by regular 

saccades to a new path. The blowflies never reached forward speeds above 0.4 m/s in 

this scenario (Schilstra & Van Hateren, 1999, Van Hateren & Schilstra, 1999) 

compared with those observed in more natural habitats (up to 2 m/s, see Boeddeker 

et al., 2005), let alone during hoverfly conspecific pursuit (up to 10 m/s, see Collett 

& Land, 1978). Furthermore, these conditions still have the system in open-loop, 

consequently, although the visual neurons are ‘seeing’ the stimulus they are not 

controlling it or receiving feedback from motor areas or other sensory modalities, all 

likely to be active during free flight.  
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1.5 Additional Neural Processes  

Although the flight patterns adopted by flies will likely simplify many of the 

problems associated with analysing optic flow, i.e. separating rotatory and 

translatory motion, they still need to accurately interpret visual motion to coordinate 

flight. For example, in order to precisely control head positions during inter-saccadic 

flight periods the animals must be continually updating retinal image motion to 

account for unintentional shifts in self-motion, such as sideslip. Furthermore, the 

evidence that animals are able to make accurate estimates of image velocity is 

impossible to reconcile with accepted models for motion processing, which show a 

dependence on image contrast amongst other parameters. Thus, it still remains 

unclear how the visual system accurately computes motion within the natural 

environment.  

Simple computational models for motion detection, such as the Hassensten–

Reichardt correlator, often seek to represent as much of the experimental 

observations as possible with as few computational elements as possible. In the 

visual systems of animals though, the neural networks that make these kinds of 

computations are undoubtedly far more complex. The question beckons, how might 

additional neural processes be influencing the generation of local motion signals? 

The response properties of LPTCs show several characteristics additional to those 

typically included in motion processing models, yet their role in natural image 

processing remains poorly understood.  

1.5.1 Static nonlinearities  

The expansive non-linearity resulting from the multiplication stage in the correlator 

could only operate over a limited range in any biological implementation due to the 

biophysical limitation of signal transmission. Although the LPTC response increases 

as a function of the square of stimulus contrasts for sinusoids at very low contrast, as 

the contrast of the stimulus increases further the response becomes saturated, so that 

high stimulus contrasts are no longer accompanied by increases in response (Dvorak, 

Srinivasan & French, 1980, Egelhaaf & Borst, 1989). Subsequently, several authors 

have investigated the effects of including saturating elements in computational 
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models of motion detection in the insect visual system (Rajesh, Rainsford, 

Brinkworth, Abbott & O'Carroll, 2007, Rajesh, Straw, O'Carroll & Abbott, 2005, 

Rivera-Alvidrez & Higgins, 2005, Shoemaker, O'Carroll & Straw, 2005).  

Dror and colleagues (Dror et al., 2001) showed that the inclusion of a saturating 

nonlinearity prior to motion correlation on the input arms of a Reichardt correlator 

improved the accuracy with which the model encoded the velocity of different 

natural images by reducing the amount of variability from one image to the next. In a 

subsequent modelling study using an elaborated Reichardt correlator, Shoemaker et 

al. (Shoemaker et al., 2005) included saturation in both early visual processing and 

after motion correlation. They showed that inclusion of compressive non-linearities 

at both these levels, in the form of response saturation, improved the performance of 

a correlator in terms of the response strength for one scene compared to another. 

Although the inclusion of these elaborations provided a degree of contrast invariance 

for natural scenes, no single elaboration, or combination of elaborations, has been 

shown to match the invariance observed for the HS neurons in the recent 

experiments (Straw et al., 2008; see also Chapter 3).  

The spatial integration properties of LPTC have been studied thoroughly (Borst, 

Egelhaaf & Haag, 1995, Gauck & Borst, 1999a, Haag et al., 1992, Hausen, 1982b, 

Single, Haag & Borst, 1997). The responses of LPTCs saturate significantly as 

stimulus size increases. Interestingly, when the pattern is displayed at different 

velocities, the LPTC response saturates at different levels (Single et al., 1997). Single 

et al. (1997) showed that this could be predicted by a compartment model of the 

LPTC if the opponent operation from Reichardt correlator type local motion 

elements occurs on its dendrites, because motion in one direction jointly activates 

both excitatory and inhibitory conductances with a ratio that depends on pattern 

velocity (Single et al., 1997). They verified this experimentally by blocking 

inhibitory inputs in LPTCs with picrotoxin, which abolished the velocity dependence 

of the response saturation and increased the level of the excitatory response (Single 

et al., 1997). Gain control in spatial integration like this has been proposed to have 

important consequences for the processing of image velocity in natural environments 

(Borst et al., 1995), but how it is recruited in natural conditions remains unknown.  
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1.5.2 Dynamic nonlinearity: motion adaptation  

Adaptation in sensory systems is ubiquitous and the motion-processing pathway is 

no exception. Motion adaptation manifests in a very salient visual illusion and was 

first reported in the scientific literature nearly two centuries ago by Robert Addams 

(1834). He noted after staring at a particular part of a waterfall for several seconds, 

that when he shifted his gaze to the stationary rock-face adjacent to the fall, he saw 

the rocky surface in motion upwards, i.e. in the opposite direction that the water was 

travelling. This impressive after-affect induced by staring at a continually moving 

surface, coined ‘the waterfall effect’ or ‘motion after effect’ (MAE) has subsequently 

attracted enormous attention, particularly in the psychophysical literature (Wade, 

1994).  

Recently, there has been an explosion of research focussing on the function and basis 

of motion adaptation (Fairhall, Lewen, Bialek & van Steveninck, 2001, Harris & 

O'Carroll, 2002, Harris, O'Carroll & Laughlin, 1999, Harris et al., 2000, Kalb, 

Egelhaaf & Kurtz, 2008, Maddess, 1986, Maddess & Laughlin, 1985, Nordström & 

O'Carroll, 2009, Reisenman, Haag & Borst, 2003, Safran, Flanagin, Borst & 

Sompolinsky, 2007, Sanchez-Vives, Nowak & McCormick, 2000a, Sanchez-Vives, 

Nowak & McCormick, 2000b). Such motion adaptation may allow motion responses 

to remain sensitive to subtle changes in velocity at low speeds whilst rescaling it 

from saturation at high velocities, thus increasing the coding range of the system. 

Yet, despite thorough investigation our understanding of the mechanisms and 

reasons for motion adaptation are still limited (Anstis, Verstraten & Mather, 1998).  

As in other animals, the visual system of flies also reveals substantial adaptive 

properties at all levels from photoreception to higher-order neurons. At the level of 

the LPTCs motion adaptation manifests as a reduction in membrane potential, or 

spike frequency, over several seconds as a grating is moved at constant velocity 

(Maddess & Laughlin, 1985). In early experiments, Maddess and Laughlin (1985) 

showed that if they suddenly switched a grating to a new location in the receptive 

field of the H1 neuron, the response immediately returned to its original level. Thus, 

they concluded that motion adaptation was occurring in the retinotopically organized 

columnar elements presynaptic to the H1 neuron. More recently, studies on HS 
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neurons have shown that some components of motion adaptation are local while 

other components are able to transfer to previously unstimulated areas of the 

receptive field (Neri & Laughlin, 2005, Nordström & O'Carroll, 2009).  

Brenner et al. (2000) showed that, not only did the amplitude of the H1 neuron’s 

response change after adaptation with constant velocity stimulus, but also that its 

dynamics changed with changing stimulus history. When they increased the dynamic 

range of the input signal, in this case a white noise modulated velocity signal, the 

input/output relationship of the neuron adjusted to maximize its coding range and 

thus, match the dynamic range of the input signal (Brenner et al., 2000). For 

example, when the stimulus incorporated only a narrow range of velocities, the H1 

neuron showed high sensitivity to changes in stimulus velocity and reached 

saturation at relatively low velocities. However, when the velocity of the stimulus 

varied over a large range, the H1 neuron showed a low sensitivity to changes in 

stimulus velocity and saturated only at higher velocities. This change in sensitivity 

incorporated several regimes and operates over timescales ranging from tens of 

milliseconds to minutes (Fairhall et al., 2001). The timing of individual spikes or 

brief spike patterns may encode individual stimulus features, whereas the statistics of 

the interspike intervals may encode the stimulus ensemble on slightly longer 

timescales. Furthermore, the spike rate itself could provide information about the 

changing stimulus ensemble on even longer timescales.  
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Adaptation with prior motion has been shown to change the contrast sensitivity of 

HS neurons (Harris et al., 2000, Nordström & O'Carroll, 2009) (Figure 1.8). By 

stimulating the neuron with a high contrast adapting probe and then recording 

responses to subsequent stimuli of varying contrast Harris et al. (2000) showed that 

HS neurons were far less sensitive to stimulus contrast following constant velocity 

adaptation. Harris et al. (2000) revealed that three separable adaptive components 

contributed to the reduction in sensitivity (Figure 1.8). Subsequenlty, Nordström and 

O’Carroll (2009) highlighted a fourth adaptive component that contributes to gain 

reduction by altering the spikelet generation mechanism (AC component of 

adaptation). These four different consequences of motion adaptation have been 

thoroughly characterized and are recruited differently (Figure 1.8): 

 1.  Hyperpolarizing antagonistic after-potential, or motion after effect 

(MAE) 

 2.  Contrast gain reduction, seen as a rightward shift in the contrast response 

function  

 3.  Reduction in the output range of the neuron, causing it to saturate at a 

lower response level  

 4.  Direction-selective boost in spikelet probability that is independent of 

membrane potential (AC component)  
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 Figure 1.8 Motion adaptation 
A. Data from an HS neuron using a test-adapt-test protocol to evaluate 

adaptation to sinusoidal gratings. The response to the 2nd test, immediately after 

stimulation with a high contrast constant velocity grating, is weaker than the 1st 

test response. B. By changing the test contrasts Harris et al. (2000) could 

evaluate the effect of adaptation on the contrast response function. C. Shows the 

different components of adaptation: 1 antagonistic after-potential (MAE), 2 

contrast gain reduction, and 3 output range reduction. From Harris et al. (2000).  
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The hyperpolarizing antagonistic after-potential (1; Figure 1.8C) is direction 

selective and is recruited by preferred direction stimuli that maximally excite the HS 

neuron (Harris et al., 2000, Nordström & O'Carroll, 2009). Stimuli that depolarise 

the neuron cause the neuron to be more hyperpolarized relative to resting membrane 

potential following the cessation of motion. Studies using calcium imaging have 

shown that the MAE is associated with an accumulation of dendritic calcium and it 

has been suggested to be generated within the HS neurons itself (Durr & Egelhaaf, 

1999, Kurtz, 2007, Kurtz, Durr & Egelhaaf, 2000). The MAE is able to transfer to 

previously unadapted regions in the receptive field and thus, while the antagonistic 

after potential may still be generated locally it exerts its influence globally 

(Nordström & O'Carroll, 2009).  

The contrast gain reduction (2; Figure 1.8C) is direction insensitive: motion in any 

direction, even orthogonal motion that produces no response from the neuron, 

strongly reduces the contrast gain of the neuron. Unlike the MAE it does not transfer 

to unadapted regions in the receptive field. Thus, the contrast gain reduction is 

locally generated and local in its influence, and, most likely associated with 

decreased gain at the synaptic inputs to the HS neurons (Harris et al., 2000, 

Nordström & O'Carroll, 2009).  

The reduction in output range (4; maximum response; Figure 1.8C) is recruited by 

either preferred or anti-preferred direction stimulation but not by orthogonal motion. 

It is generated locally and acts locally and is either generated in local pre-synaptic 

elements or the dendrites of the HS neuron itself (Nordström & O'Carroll, 2009).  
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Finally, the most recently identified component of motion adaptation, the AC 

component, results in an increase in the generation of spikelets following prior 

motion stimulation (Nordström & O'Carroll, 2009). It is recruited by motion in the 

anti-preferred direction (opposite to that of the MAE), but like the MAE it is globally 

acting even though it may be recruited locally (Nordström & O'Carroll, 2009).  

Shoemaker et al. (2005) implemented a form of locally generated contrast gain 

reduction in an elaborated Reichardt correlator model, inspired from the 

aforementioned experiments, and investigated its performance to natural images. 

They showed that although such an elaboration improved the performance of the 

model as a velocity estimator, output was still far more variable than the observed 

neural responses (Shoemaker et al., 2005). This held true even when they included 

several adaptive and saturating non-linearities (Shoemaker et al., 2005).  
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1.6 Approach and aims of this thesis  

Insects manage to control their visually guided behaviour using underlying motion 

computations that are sensitive to several image parameters and thus, generate 

ambiguous estimates of pattern velocity. However, when confronted with natural 

stimuli (Straw et al., 2008) or when moving around freely (Baird, Srinivasan, Zhang 

& Cowling, 2005, Srinivasan et al., 1996) they seem to be able to overcome many of 

these problems. The question beckons: How do they get away with using ambiguous 

local motion information to control their behaviour with precision?  

In this thesis, I use a combination of natural and artificial images as stimuli to 

explore the response properties of the HS neurons in the hoverfly, Eristalis tenax. In 

Chapter 2 we characterize the two most dorsal HS neurons and uncover an 

interesting sexually dimorphic receptive field adaptation, which is hard to reconcile 

with a role in optic flow processing. We go on to explore the response properties of 

these neurons to a dynamic broadband stimulus collected from natural fly habitats. In 

Chapters 3 and 4 we investigate the time-averaged and time-varying response 

characteristics to a large and diverse range of natural panoramic images. We reveal 

several activity dependent processes that act as a powerful normaliser of neural 

responses, reducing variability across otherwise vastly different natural scenes. 

Finally, in Chapter 5 we investigate the recruitment of local changes in response gain 

associated with motion adaptation using artificial stimuli. The results show that there 

are interactions between features beyond those predicted by the Reichardt correlator. 

There are changes in gain that are rapid in their activation and which greatly alter the 

response of subsequent features. The recruitment of the local adaptive changes in 

response gain seem to be mediated by simultaneous activity of neighbouring motion 

sensitive elements. Recent studies suggest that a locally mediated gain control, such 

as the one described, may be ideally suited to take advantage of the statistics of 

natural signals (Schwartz & Simoncelli, 2001).  
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Chapter 2:    

Sexual Dimorphism in the Hoverfly 

Motion Vision Pathway  

 

2.1 Context  

My original thesis aims focussed on both local and global encoding of natural image 

motion and adaptation. I used both physiological and computational approaches to 

understand global integration of local cues. It was thus essential to obtain detailed 

information about the receptive field organization of the neurons that form the basis of my 

experiments and modelling. In the process collecting detailed morphological and receptive 

field data, we discovered and interesting difference in the horizontal system neurons (HS) 

between the two sexes that was in many respects in contradiction of the requirements for 

optic flow detection – the role the HS neurons are proposed to subserve. This sexual 

dimorphism has not been observed in other fly species, we therefore elaborated my initial 

data into an extensive comparison.  

In this paper, we characterize the receptive field properties and morphology of the two 

most dorsal HS neurons in the hoverfly, Eristalis tenax. We also describe a new technique 

for rapidly characterizing the receptive field properties of these neurons, a method used 

throughout subsequent chapters to identify HS neurons and distinguish one from another. 

We go on to investigate HS neurons response properties under more naturalistic and test 

whether the sexually dimorphic male HSN may have an alternative role in the hoverfly 

visual system.  

Supplemental data published online with the paper is included at the end of the chapter 

with its own set of references, as published. 
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2.2 Summary  

Many insects perform high-speed aerial maneuvers where they navigate through visually 

complex surrounds. Among insects, hoverflies stand out with males switching from 

stationary hovering to high-speed pursuit at extreme angular velocities [1]. In dipterans 50-

60 large interneurons, the lobula plate tangential cells (LPTCs), detect changes in optic 

flow experienced during flight [2-5]. It has been predicted that large LPTC receptive fields 

are required of accurate ‘matched filters’ of optic flow [6]. While many fly taxa have 3 

horizontal system (‘HS’) LPTC neurons in each hemisphere, hoverflies have 4 [7], 

possibly reflecting the more sophisticated flight behavior. We here show that the most 

dorsal hoverfly neuron (HSN) is sexually dimorphic, with the male receptive field 

substantially smaller than in females or in either sex of blowflies. The (hoverfly specific) 

HSNE is, however, sexually isomorphic. Using complex optic flow, we show that HSN 

codes yaw velocity as well as HSNE, despite its smaller receptive field. Responses to a 

target moving against a plain or textured background suggest that the male HSN could 

potentially play a role in target pursuit under some conditions.  
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2.3 Results and Discussion  

2.3.1 Receptive field analysis 

The 3 HS neurons in the blowfly lobula plate view the dorsal (HSN - north), medial (HSE - 

equatorial), and ventral (HSS - south) visual field respectively [8]. Hoverflies have, 

however, been shown anatomically to have 4 HS neurons [7]. To characterize the 

physiological receptive fields of the 2 most dorsal of these, we mounted Eristalis tenax in 

front of a monitor on which we moved a small high-contrast bar (1.6 x 3.9º) in 4 directions 

at 50º/s with the bar oriented perpendicular to its direction of motion. This stimulus elicits 

a non-saturating membrane potential change that, because of its limited angular extent, 

primarily reflects the location of the stimulus, as evident from near perfect mirror 

symmetry of responses in preferred and anti-preferred directions (Figure 2.1A-C). We 

recorded intracellular responses at 21 elevations and azimuths (Figure 2.1C), allowing 

reconstruction of the 2-dimensional receptive field for 4 directions of motion (Figure 2.1A, 

B, D, E). Compared with earlier methods [8-10] our technique permits very fine resolution 

of subtle receptive field details. For example, small irregularities appear in responses to all 

4 scan directions, and thus also in the resulting receptive field (Figure 2.1).  

Exploiting the near-sinusoidal direction tuning of these neurons [11], we fitted the 

responses to the 4 directions of motion with a sinusoid (Figure 2.1F), to determine the local 

preferred direction (LPD) and the response amplitude for each point in space. We used the 

LPD and response amplitude for the 21 x 21 matrix to plot vectors for a receptive field 

map representing the whole visual display, illustrated as a gnomonic azimuthal projection 

to account for distortions introduced by the flat stimulus screen (Figure 2.1G).  
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Figure 2.1 Receptive field acquisition  
A) Response of a male HSN to horizontal rightward motion of a 1.6 x 3.9º high-contrast bar 

moving at 50º/s across a bright visual display (shown as a gnomonic azimuthal projection). The 

interpolated response is color-coded to show hyperpolarizing events compared to pre-stimulus 

membrane potential (grey). B) The same neuron of the left lobula plate is depolarized by 

horizontal leftward motion. C) Intracellular response to the target moving across the centre of the 

screen (top trace), with lines indicating peri-stimulus duration as the bar moved right and then left. 

Response to vertical motion as the target moved up and then down across the middle of the 

monitor (lower trace). D) The same neuron is depolarized by upward motion in the fronto-dorsal 

visual field. E) The neuron is hyperpolarized by downward motion. F) The mean response to 4 

directions of motion (black circles) for each point in space was fitted with a sine wave, to estimate 

the local preferred direction (LPD, 143º) and response amplitude (11 mV), as indicated by the 

arrow. G) The LPD and response amplitude for the entire 21 x 21 matrix with the length of the 

arrows normalized to their maximum and projected onto the interpolated response amplitude. 
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2.3.2 Sexual dimorphism of HSN 

We determined complete receptive fields as described above for 16 female and 39 male 

hoverfly HSN neurons (Figure 2.2). The receptive field of female HSN is asymmetric with 

maximum sensitivity in the fronto-dorsal visual field and a broad peak in sensitivity 

between 30 and 60º above the equator (see 4 mV contour, Figure 2.2B). Although the 

asymmetry makes estimation of a true ‘center’ for the receptive field difficult, we can 

quantify its size and shape across multiple individuals by measuring the maximum width 

and height at a contour representing 75% response amplitude (Figure 2.2A). The 

intersection of these two measures (the ‘centroid’, Figure 2.2B) provides a useful basis for 

comparison of the location of the receptive field. The centroids show individual variation, 

perhaps reflecting differences in the distribution of synaptic inputs from local motion 

detectors, as was previously found morphologically in blowfly HS neurons [12]. 

As the representation of azimuthal angles decreases with increasing elevation to finally 

become infinitely small at the pole, we need to account for the fact that body-centered 

coordinates do not represent angular size when we compare receptive field size and shape 

between neurons. Hence, we express receptive field dimensions in terms of absolute 

angular size (i.e. angular subtense at the eye, independent of orientation), and receptive 

field location based on body coordinates (azimuth and elevation). In female HSN (Figure 

2.2A), receptive field width at 75% response amplitude is 19 ± 7.1º and the height is 31 ± 

6.2º (mean ± SD). The receptive field of male HSN (Figure 2.2D) is 40% narrower (11 ± 

2.2º, p < 0.001) and 45% shorter (17 ± 5.1º, p < 0.001) than the female HSN. To compare 

the neurons’ motion sensitivity across the entire visual display we subtracted the average 

male from the average female receptive field (using both LPD and response amplitude) and 

found the two to be significantly different (p < 0.001, Figure 2.2A, D). 

Both male and female HSN receive input from photoreceptors from a small region of 

binocular overlap (approximately 20º, [10]) in the fronto-dorsal visual field (Figure 2.2A, 

D). The female HSN centroid is located at an elevation of 52 ± 7.1º and an azimuth of -16 

± 10º (Figure 2.2B). The male HSN receptive field centroid is located at a similar elevation 

(47 ± 7.5º, no significant difference), and closer to the midline (-5.0 ± 6.4º, p < 0.001, 

Figure 2.2E). However, as the female receptive field is larger than the male, and we 

determine the centroid utilizing width and height at 75% maximum, the actual maximal 
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sensitivity in individual recordings may be similarly frontal to those in males (Figure 2.2A, 

D). 

Lucifer Yellow fills of HSN in females (Figure 2.2C, and see [13]) and males (Figure 2.2F, 

filled 3 times) show input dendrites confined to the dorsal lobula plate. The input dendrites 

display pronounced anterior-posterior flattening (Supplementary Movie 1), but cover a 

smaller part of the dorsal lobula plate than their Calliphorid counterparts [8, 12, 14]. The 

greater lateral extension of the female receptive field (Figure 2.2B) corresponds to more 

proximal input dendrites in the medio-ventral lobula plate (arrowheads and inset, Figure 

2.2C). These dendrites are absent in male HSN, where most input dendrites terminate in 

the distal limits of the lobula plate (Figure 2.2F), consistent with a frontally confined 

receptive field (Figure 2.2E).  

Previous work on blowfly HSN neurons [8, 12, 15] suggests that their receptive fields 

extend more laterally than those of Eristalis although the methods used differ and most 

data are for female flies. To permit more direct comparison we also characterized a male 

Calliphora HSN neuron using our method. Consistent with the previously published data, 

this receptive field extends laterally well beyond the boundary of our display 

(Supplementary Figure 2.1). Thus both sexes of Eristalis have more frontally located 

receptive fields than in other flies, particularly so in males. 



2. Sexual Dimorphism 

 76 

 

 

Figure 2.2 Sexual dimorphism of hoverfly HSN.  
A) Average LPD and response amplitude of 16 female HSN shows a receptive field 

extending to the ipsilateral border of the display. The arrows have been normalized to 6 

mV (arrow in bottom left hand corner of graph). The average 75% response amplitude 

is delineated in blue. B) The same data in 1 mV increments. Black circles indicate the 

centroids of individual receptive fields, with the mean location as a black cross, and the 

arms representing the standard deviation. C) Z-series maximum intensity projection of 

an individually Lucifer yellow- filled female HSN. Dendritic input arbors are confined 

to the dorsal lobula plate (dashed line delineates the lobula plate). Arrowheads indicate 

input dendrites proximal to the main arbor corresponding to the lateral limits of the 

receptive field (inset shows a high contrast 10x magnification of this area). D) Average 

LPD and response amplitude of 39 male HSN with a receptive field contained within 

the fronto-dorsal visual field. The arrows have been normalized to 6 mV. The average 

75% response amplitude is delineated in blue. E) The same data in 1 mV increments. 

Black circles show individual centroids. F) Lucifer yellow fill of an individual male 

HSN shows dendritic arbors confined to the dorsal lobula plate (dashed). Inset shows a 

schematic representation of the retinotopic organization of the lobula plate, with 

asterisks in the same areas as in the photo. Me = medulla; LP = lobula plate; SOG = 

sub-esophageal ganglion; v = ventral; d = dorsal; f = frontal; c = caudal.  
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2.3.3 Sexual isomorphism in HSNE 

The additional HS neuron previously identified anatomically in hoverflies [7] has been 

classified as HSNE, based primarily on its intermediate location between blowfly HSE and 

HSN [13]. We recorded complete HSNE receptive fields in 11 female and 34 male HSNE 

Eristalis. While HSN neurons display striking sexual dimorphism, HSNE is similar in the 

two sexes (Figure 2.3). By subtracting the average male from the average female receptive 

field across the entire visual display we find no significant difference between the two (p = 

0.45, Figure 2.3B, E). 

Although maximal sensitivity is nearly frontal as in HSN, the centroids of female and male 

(Supplementary Figure 2.2) HSNE receptive fields are more equatorial (females 13 ± 6.0º, 

males 12 ± 5.3º) and extend further into the ipsilateral visual field (females at an azimuth 

of -14 ± 7.7º, males at -17 ± 7.6º), but again there is no significant difference between the 

sexes. This more dorsal receptive field differs from blowfly HSE that straddles the equator 

symmetrically [6, 8], justifying our morphological label HSNE [13]. 

The sensitivity of male and female HSNE extends laterally beyond the limits of our 

display. In some recordings we mapped lateral sensitivity by rotating the monitor 45º 

around the center of the fly’s head. Small differences in apparent sensitivity at the same 

receptive field locations in these laterally mapped fields (Figure 2.3A, D) result from this 

being a subset of the neurons for which we mapped frontal sensitivity. Nevertheless, these 

maps underscore the physiological similarity of HSNE in the two sexes. 

Unsurprisingly (given the physiological similarity) the morphology of HSNE in females 

(Figure 2.3C, and see [13]) and males (Figure 2.3F, filled 5 times) shows little sexual 

dimorphism. Individual variation in branching pattern is apparent between different fills 

(not shown), just as Hausen found in blowfly HS neurons [12], but the gross morphology 

of major branches (Supplementary Movies 3 & 4), and the area of dendritic spread is 

conserved between individuals and sexes. In particular, the input dendrites in both sexes 

extend from the frontal (distal) lobula plate more caudally (proximal) and ventrally 

compared to HSN, consistent with their physiologically recorded receptive fields being 

closer to the equator and laterally extended.  
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Figure 2.3 Sexually isomorphic HSNE  
A) Average LPD and response amplitude of 4 female HSNE with the monitor rotated 

45º around the center of the fly’s head. This is a subset of HSNE neurons with high 

sensitivity. The arrows have been normalized to 6 mV (arrow in bottom left hand corner 

of graph). The skew in the gnomonic azimuthal projection results from the angle of the 

fly’s head (35º). B) Average LPD and response amplitude for the frontal visual field of 

11 female HSNE. The arrows have been normalized to 6 mV. The average 75% 

response amplitude is delineated in blue. C) Lucifer yellow fill of a female HSNE 

shows dendritic input arbors in the medio-dorsal lobula plate (dashed line delineates the 

lobula plate). D) Average LPD and response amplitude of 5 male HSNE with the 

monitor rotated 45º. The arrows have been normalized to 6 mV. E) Average LPD and 

response amplitude for the frontal visual field of 34 male HSNE. The arrows have been 

normalized to 6 mV, and the average 75% response amplitude is delineated in blue. F) 

Lucifer yellow fill of a male HSNE shows dendritic input arbors located in a similar 

area of the lobula plate (dashed) as in the female neuron (panel C). Me = medulla; LP = 

lobula plate; SOG = sub-esophageal ganglion. 
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2.3.4 HSN as a fronto-dorsal yaw detector 

We conclude that the differences observed in HSN both between sexes and compared with 

other diptera are unique to this neuron, and are not due to the different methods we have 

employed, and thus are likely to be associated with differences in the role of this neuron in 

behavior. Most dipteran LPTCs have receptive fields with sensitivity extending over a 

large part of the visual field with properties suggesting tuning to particular patterns of ego-

motion, with blowfly HSE and HSN proposed to be ‘matched filters’ for yaw rotation [15-

18]. Large receptive fields have been interpreted as a pre-requisite for reliable signals to 

particular patterns of ego-motion, as signals from small parts of the visual field can be 

ambiguous [6]. Small receptive fields could also be more affected by local high-contrast 

features than neurons that spatially pool across larger number of local motion detectors 

(i.e. ‘pattern noise’, see [19]). Considering this, the receptive field of the hoverfly HSN is 

not only remarkably small, but additionally, local direction tuning is not as clearly aligned 

with elevation lines on the gnomonic projection (in either sex) as one would expect from a 

neuron tuned to pure yaw rotation (Figure 2.2A, D). 

To test whether the smaller HSN receptive field can code for yaw velocity in complex 

optic flow, we designed a broadband stimulus containing yaw rotation and forward 

translation. We moved a camera platform through a park environment with the forward 

component (2.7 ± 1.1 m/s) interspersed with turns (yaw rotation) towards new trajectories 

(Figure 2.4A-C). While we have no control over the 3D structure in a natural environment, 

an analysis of the resulting image sequence shows resulting optic flow within the coding 

range of these neurons [10] with yaw at 96 ± 107º/s, and off-axis retinal velocity caused by 

forward translation at 48 ± 38º/s (Supplemental Figure 2.3D-H). This is an artificial 

stimulus as the highly sexually dimorphic behavior of hoverflies makes it impossible to 

compare responses between the sexes to behaviorally generated optic flow. Furthermore, 

saccadic head movements [5] make it extremely difficult to determine the exact gaze of 

flies (particularly during high-speed pursuit) and complete reconstruction of ‘real’ optic 

flow has only been possible in restricted environments [20]. Nevertheless, using this 

stimulus we find a high correlation between yaw velocity and the response of both HS 

neurons in either sex, but no difference between neurons (Figure 2.4D, H).  

The small HSN receptive field is confined to the fronto-dorsal visual field (Figure 2.2), in 

the region of the visual world associated with male specializations for conspecific pursuit 
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[1, 10, 21-23], which could suggest a role in such behavior. In blowflies the male-specific 

lobula giant MLG1 was described as a key neuron for visualizing conspecifics [24, 25]. 

However, a recent study found that blowfly HS neurons responded to targets against 

naturalistic background motion with a higher signal-to-noise ratio than MLG1 [26]. To test 

whether the smaller hoverfly HSN enables robust target signaling in complex backgrounds, 

we inserted a target in the fronto-dorsal visual field of the movie, so target motion 

preceded orienting turns of the camera as in pursuits (Figure 2.4F). Correlation of 

responses to background motion with and without target motion show 97% similarity in 

male and female HSN and HSNE (Figure 2.4E). It is thus unlikely that the male HSN is 

used as a fronto-dorsal target detector when targets are moving against high contrast 

clutter.  

However, hoverflies often chose habitats where they can track targets against the bright 

background of the sky [21]. Our receptive field scanning technique shows that small 

targets moving over blank backgrounds induce large membrane potential changes in both 

neurons of either sex (Figures 2.1-3). When we display the target sequence from the 

complex optic flow scenario with the target moving over a mean luminance background, 

we also find a strong correlation with target velocity in both neurons of either sex (Figure 

2.4F-H). This suggests that HS neurons could encode target velocity under uncluttered sky 

conditions. In this context, the smaller, fronto-dorsally located receptive field of the male 

HSN would be clearly advantageous (Supplementary Figure 2.4). 



Neural Estimation of Image Velocity  

 81 

 

 

Figure  2.4 Responses to complex optic flow  
A) Forward translation velocity (m/s) of the camera platform as a function of time. B) 

Yaw velocity (deg/s) of the platform. C) Log of the yaw velocity. D) Average of 5 

intracellularly recorded responses from a single male HSN to the movie (black), and the 

movie sequence mirror imaged (grey). E) Intracellularly recorded response to the movie 

sequence (grey), and the response to the movie with target motion superimposed 

(black). F) Horizontal and vertical velocity (deg/s) of the target. G) Average of 5 

intracellularly recorded responses to the target moving over the mean luminance 

background (black), and to the target sequence mirror imaged (grey). H) Cross 

correlation between responses of hoverfly HS neurons and yaw velocity (column 1), log 

yaw velocity (column 2), and forward translation velocity of the platform (in m/s, 

column 3). Cross correlation between responses and off-axis retinal velocity caused by 

forward translation (deg/s, column 4). Cross correlation between responses and target 

velocity (column 5). Stars (*) indicate significant difference, p < 0.05. 
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2.3.5 Conclusion  

We have shown here sexual dimorphism in receptive field properties of a hoverfly 

tangential neuron, previously described as sexually isomorphic (at least in blowflies [11]). 

While hoverfly HS neurons are clearly able to code for yaw velocity (Figure 2.4), the 

question arises as to why the male HSN receptive field is smaller and limited to the frontal 

visual field (Figure 2.2D). This area is close to the pole of the expansion generated by 

forward translation, and yaw signals generated by high-contrast features seen against the 

sky could easily ‘swamp’ any forward translational optic flow. By shrinking the receptive 

field to a region where yaw is least ambiguous, this neuron may simplify the otherwise 

daunting task of disambiguating yaw from forward translation during pursuit. This, 

however, happens at the expense of a decreased area of sampling, which may explain why 

this strategy is limited to the HSN neuron, and why it is not observed in some other flies.  
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2.4  Experimental procedures 

Animals: Hoverflies (Eristalis tenax) and blowflies (Calliphora stygia) were collected 

under permit from the wild (the Botanic Gardens of Adelaide) and kept in the dark at 4ºC 

until experimental time.  

Electrophysiology: The animal was waxed down with the head tilted forward. A small hole 

was cut over the left lobula complex leaving the neural sheath intact. Neurons were 

recorded intracellularly using aluminium silicate micropipettes pulled on a Sutter 

Instruments P-97 puller and filled with 2 M KCl. Electrodes had a typical tip resistance of 

120 MΩ and were inserted with a Piezo micromanipulator. The flies were mounted in front 

of a RGB CRT display at a distance of 14 cm. They were aligned with the monitor using 

the planar back surface of the head as a morphological landmark and the eye’s equator was 

assumed to be 90º perpendicular to this. The animal’s midline was used to determine the 

vertical axis. This was used in later analyses to correct for angular distortion introduced by 

the flat screen. Visual were generated using VisionEgg (www.visionegg.org). The monitor 

subtended 100 x 75º at the fly’s central visual field, with a resolution of 640 x 480 pixels, 

and a refresh rate of 200 Hz. The monitor could be rotated around the center of the fly’s 

head to retrieve responses to lateral visual input. Data were digitized at 5 kHz using a 16 

bit A/D converter (National Instruments) and analyzed off-line with Matlab (a few early 

recordings were digitized using a 12 bit A/D converter).  

Receptive field acquisition: To determine receptive fields we scanned the bright monitor 

with a black 1.6 x 3.9º bar oriented perpendicular to the direction of motion. Scans were 

performed with a 2 s horizontal rightward scan, followed by a 1 – 3 s rest, and a 2 s 

leftward scan back over the same path (50º/s, given for the fly’s central visual field). 

Following a 1 – 3 s rest, a new semi-randomly chosen elevation was scanned, until the 

entire monitor had been covered 21 times. Vertical scans were performed at the same 

velocity, with upward drifts followed by downward presentations at 21 azimuths. We 

recorded complete receptive fields for a total of 27 HS neurons in the left lobula plate of 24 

female and 73 neurons in 69 male hoverflies (Eristalis tenax). For each scan direction, we 

analysed the membrane potential averaged across 21 bins expressed relative to the resting 

potential. This permitted a 2-dimensional matrix of membrane potentials to be produced, 
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representing the area of the stimulus display. The data for each bin was transformed into 

azimuth and elevation coordinates, using the calibrated position of the fly and the angle of 

its head to correct for distortions introduced by the flat display, before averaging data 

across animals. Following convention, azimuths are negative left (ipsilateral) of the 

midline, and elevations are positive dorsal to the equator.  

Data analysis: We further analyzed the local preferred direction (LPD) of motion using a 

method analogous to that of Krapp & Hengstenberg [9] and Frye & Olberg [27]. The 

response to the 4 directions of motion at each point in the receptive field was fitted in a 

least squares manner with a sinusoid with variable phase, response amplitude and offset 

but the frequency fixed at 360º. We used the phase of the fitted function to find the LPD 

and response amplitude, which we then used to plot the orientation and length of local 

motion vectors in receptive field maps. To average receptive fields we interpolated the 

LPD and response amplitude across the visual field using a delaunay-based triangulation 

method. We also delineated the 75% response amplitude, which we used to measure the 

widest and tallest part of each receptive field in angular terms. In finding the tallest and 

widest part we simultaneously identified the centroid, which we express in terms of 

azimuth and elevation, thereby taking the distortion of the dorsal visual field into account.  

We display all data as mean ± SD unless otherwise stated. We performed statistical 

analyses of width and height at 75% response amplitude, and of centroid location, with un-

paired, 2-tailed Student’s t-tests. To compare complete receptive field maps across the 

entire visual display, we subtracted average male from average female receptive fields and 

determined the difference from 0 (LPD and response amplitude difference of 0 represent 

identical receptive fields).  

Morphology: To identify recorded neurons we backfilled micropipettes with 4% Lucifer 

Yellow in 0.1 M LiCl. The dye was injected by passing a hyperpolarizing current (0.2 to 2 

nA, depending on the amount of current individual electrodes would pass without 

blockage) for 10-30 minutes. The brain was dissected out of the head capsule, fixed in 4% 

paraformaldehyde (in 0.1 M phosphate buffer), dehydrated through an ethanol series and 

cleared in methyl salicylate. A series of digital photographs were taken at different depths 

of the tissue (Olympus BX-50 epifluorescence microscope), and the morphology of the 

neuron was reconstructed using Adobe Photoshop. The position of the neuron within the 
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lobula plate was confirmed by constructing a 3-dimensional image from a Z-series in a 

scanning confocal microscope (Leica Spectral Confocal SP5).  

For 3-dimensional reconstruction we imported the confocal stack into the open-source 

software package OsiriX (http://www.osirix-viewer.com/). We then utilized OsiriX to 

generate a movie by giving the appropriate 3-dimensional coordinates in the lobula plate. 

The movies were saved in Quicktime format for viewing as supplementary information. 

Display and analysis of movie: We designed a broadband stimulus by moving a camera 

platform through a visually rich natural surround. The movie sequence was captured by a 

14-bit camera (XCD-V50, SonyTM) with a 90º wide-angle lens (TF2.8DA-8, FujinonTM) 

mounted on a customized robotic platform fitted with a damped, inertial stabilization 

system (Brinkworth et al, under review). Data from wheel-mounted optical encoders gave 

the trajectory. A green filter (N52-534, EdmundTM) was used to match input to the spectral 

sensitivity of the fly motion pathway [28]. The nonlinear (gamma) characteristics of the 

camera were quantified by comparing images of the same scene taken at different shutter 

speeds. The camera was programmed to alter the shutter speed for several samples of each 

frame (5 different shutter speeds used), which were then combined, thus increasing the 

dynamic range of the images to 90 dB, providing detail in both the dark and light parts of 

the scene and reducing noise in any one pixel. The platform was moved slowly so the 5 Hz 

image acquisition rate could be scaled to the 200 Hz display frame rate used during 

electrophysiology. 

We moved the robot in bright sunlight along a curving path through a visually rich outdoor 

scene and directed in a ‘saccadic’ manner, with forward motion (2.7 ± 1.1 m/s) 

interspersed by rapid turns towards a new trajectory. While optic flow caused by yaw 

rotation is homogenous across the visual field, forward translation causes different retinal 

velocities in different parts of the visual field, and also depends on the structure of the 

environment. To get an estimate of retinal velocities we measured the movement of a 

feature in the most peripheral part of the movie by comparing frames separated by 50 ms. 

We repeated this procedure with the selection of frames shifted by 25 ms. To get the retinal 

velocity caused by forward translation we finally subtracted the yaw rotation. 

A small black target (1.4 x 2.8º) was inserted into the reconstructed movie and animated 

with random jitter (maximum 0.7º/frame) and ‘turns’ that preceded the actual platform 
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motion by 0.1 s to simulate ‘chasing’ of the target. The target elevation was varied slowly 

and randomly in the dorsal part of the visual field associated with pursuit flight [1]. 

We recorded responses of HS neurons (8 male HSN, 3 female HSN, 3 male HSNE and 4 

female HSNE) to the movie with the background scene alone, combined background and 

target, or the target only against a mean luminance background. We then repeated all 

conditions with the movie displayed in a mirror-symmetrical fashion. We performed 

correlation analysis of visual input signals and recorded responses, with the optimal lag 

determined for each cell (25 – 40 ms, i.e. 5 – 8 frame delay). Statistical analysis of 

correlation in different neurons was performed with un-paired, 2-tailed Student’s t-tests. 
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2.7 Supplemental Results and Discussion 

2.7.1 Male Calliphora HSN 

Previous work on blowfly HSN neurons [1-3] suggests that their receptive fields are more 

extended laterally than those described here (Figure 2.2), although the methods used differ 

and data are for female flies (however, sexual isomorphism has been mentioned [4]). To 

allow for more direct comparison with our technique, we also characterized a male 

Calliphora HSN neuron, which reveals a receptive field extending laterally well beyond 

the boundary of our display (Supplementary Figure 2.1A), and corresponding neuronal 

morphology with much greater ventral-caudal extent of input dendrites (Supplementary 

Figure 2.1B, Supplementary Movie 2).  

2.7.2 Lateral sensitivity of HSNE 

Despite the hoverfly HSN (Figure 2.2) showing substantial sexual dimorphism we found 

no difference between sexes in the hoverfly specific HSNE (Figure 2.3). In addition to 

similar centroid location in the two sexes (Supplementary Figure 2.2), we found no 

difference in width or height at 75% maximum amplitude (Figure 2.3B, E). In 

Supplementary Figure 2.2, it appears that the sensitivity of HSNE drops off towards the 

lateral edge of the display in its frontal position. However, the receptive fields of a smaller 

range of neurons with the monitor rotated 45º around the center of the fly’s head, show that 

sensitivity in fact extends far out in the lateral visual field to an azimuth of -90º (Figure 

2.3A, D). The apparent drop-off in sensitivity is therefore probably caused by the 

distortion induced by using a flat screen which reduces the apparent size of the stimulus 

towards the edges.  
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Supplemental Figure 2.1 Male Calliphora HSN  
A) LPD and amplitude of a male Calliphora HSN. B) Lucifer yellow fill of the same 

HSN shows dendritic arbors to be confined to the dorsal lobula plate, with a large 

spread of input dendrites. Me = medulla; LP = lobula plate; SOG = sub-esophageal 

ganglion. 
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Supplemental Figure 2.2 Frontal sensitivity and centroids of hoverfly HSNE  
A) The frontal sensitivity for 11 female HSNE depicted in 1 mV increments shows. 

Black circles indicate the centroids of individual receptive fields, with the mean 

location indicated with a black cross, where the arms represent the standard deviation. 

B) The frontal sensitivity for 34 male HSNE depicted in 1 mV increments. Black circles 

indicate the centroids of individual receptive fields, with the mean location indicated 

with a black cross, where the arms represent the standard deviation. 
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2.7.3 Role of a small HSN 

While the optic flow caused by yaw rotation is homogenous across the visual field, 

forward translation causes different retinal velocities in different parts of the visual field, 

and also depends on the structure of the environment. For example, near objects will cause 

higher retinal velocities than distant objects, and objects near the pole of expansion will 

move little across the retina compared to those further out in the periphery. To get an 

estimate of the retinal velocity caused by forward translation of the platform (Figure 2.4A) 

we measured the movement of a feature in the most peripheral part of the movie by 

comparing frames separated by 50 ms (Supplementary Figure 2.3D, E). We repeated this 

procedure with the selection of frames shifted by 25 ms. To get the off-axis retinal velocity 

caused by forward translation we finally subtracted the yaw rotation from the measured 

value (Supplementary Figure 2.3F-H). The resulting retinal velocity correlates qualitatively 

well with the forward velocity of the platform (Supplementary Figure 2.3G, H).  

Due to input differences it was originally hypothesized that blowfly HSE and HSN were 

matched filters for the detection of yaw rotation, and that HSS was used for detecting 

translational optic flow across the ventral visual field [3, 5, 6]. Our data show that hoverfly 

HSN and HSNE respond primarily to yaw even during complex flight scenarios (Figure 

2.4H), and thus lend further support to the matched filter hypothesis [3, 5, 7]. Despite a 

strong ‘progressive’ component of our image sequence (forward translation 2.7 ± 1.1 m/s, 

generating an off-axis retinal velocity of 48 ± 38º/s, Supplementary Figure 2.3G, H), the 

neurons frequently signal complete hyperpolarizing reversal of responses during turns 

(Figure 2.4D, black trace). Furthermore, there is little correlation between the responses of 

the neurons and either the forward velocity of the platform, or the off-axis retinal velocity 

this movement generates (Figure 2.4H). 
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Supplemental Figure 2.3 A complex optic flow sequence containing yaw rotation 

and forward translation  

A) Coherence of the response of male HSN neurons to yaw and forward translation of 

the optic flow. We calculated the coherence for each individual response and show the 

mean coherence across neurons (n = 8, N = 50). Translation in m/s refers to the forward 

velocity of the platform, while translation in deg/s refers to the off-axis retinal velocity 

caused by this forward translation. B) The power spectrum of the yaw and translation of 

the optic flow. C) The forward velocity of the platform as a function of its yaw velocity. 

D) A single frame from the movie. E) The same frame superimposed on the frame 

shown 50 ms earlier. The inset shows an example of how off-axis retinal velocity was 

measured by measuring the distance a tree (in this case) had moved across the visual 

field between 2 frames separated by 50 ms. The red circled bar shows how we measured 

the distance the tree trunk moved. F) Yaw velocity of the platform (black) and the 

measured off-axis retinal velocity as a function of time. G) The forward translation of 

the platform (m/s). H) The remaining off-axis retinal velocity after subtracting the yaw 

rotation. 
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Our finding is thus contrary to the recent suggestion that blowfly HS neurons are not 

primarily matched filters for yaw as originally proposed, but instead serve a role in 

detection of translation [8, 9]. This recent work was based on coherence analysis of 

responses to reconstructed flight paths that represent the best attempt yet to fully account 

for both head and body movements [10, 11]. Relative head motion is, however, extremely 

difficult to estimate in free flight, so this data set was based on flight data from blowflies 

moving within a limited space (0.4 x 0.4 x 0.4 m3). This could have promoted a collision 

avoidance low-speed flight mode in which objects are fixated followed by regular saccades 

to a new path. The blowflies never reached forward speeds above 0.4 m/s in this scenario 

[10, 11] compared with those observed in more natural habitats (up to 2 m/s, see [12]), let 

alone during hoverfly conspecific pursuit (up to 10 m/s, see [13]). Our visual input differs 

from this scenario in displaying yaw throughout the stimulus (Figure 2.4B). Yaw rotation 

velocities are also lower, as we aimed at keeping these within the coding range of HS 

neurons [14], which could potentially explain our different result. 

Rapid saccadic turns are, however, well outside the operating range of many LPTCs and it 

has previously been argued that LPTC responses are deliberately tuned to lower speeds to 

avoid control-loop instability during high speed turns [15]. It is thus not surprising to find 

little coherence [8, 9] between the yaw signal in a scenario where there is little or no non-

saccadic yaw experienced and the response of HS cells. When more naturalistic conditions 

were used, with optic flow regenerated from outdoor flight paths, the rotational velocity 

was found to dominate the HS response for most of the flight [12], despite higher forward 

translation velocity, although this analysis could not account for the effect of head 

movements.  

To confirm that our analysis method of using overall correlation did not bias our 

conclusion we also performed coherence analysis of the response of male HSNs to the 

movie. Again, we found high coherence between the yaw signal and the response over a 

large range of frequencies, but low coherence between the forward translation velocity and 

the response (Supplementary Figure 2.3A).  
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Supplemental figure 2.4 Response of HS neurons to target motion 
A) The response of a single male HSN as a function of target velocity. The target was 

moving across a mean luminance background in the fronto-dorsal visual field in a 

‘saccadic’ manner (Figure 2.4F). The data is plotted assuming a delay of 15 ms (i.e. 3 

frames) at a sample rate of 200 Hz (the refresh rate of our monitor). B) The response of 

a female HSN as a function of target velocity. C) The response of a male HSNE. D) The 

response of a female HSNE. For each panel we show the response of the single neuron 

with the highest correlation to target velocity (Figure 2.4H). 
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An additional sex-specific behavior in hoverflies (as implied by their common name) is the 

near-stationary hovering flight of males whilst awaiting the approach of conspecifics and 

the subsequent initiation of pursuit flights and courtship [16]. Stationary hovering has the 

advantage of facilitating detection of moving features against complex backgrounds, whilst 

still permitting very rapid responses to incoming targets without the need to become 

airborne [17]. During stationary hovering in front of textured foliage, all of the HS neurons 

could generate useful responses to any (undesired) yaw, aiding this ‘gaze’ stabilization. 

The frontal receptive field of HSN, however, is also directed towards the part of the world 

where sideward slip would be best detected. With the higher resolution and very high 

contrast sensitivity provided by the optics of this visual region [14], this neuron is 

particularly well suited to detection of the very low angular side-slip velocities that would 

be generated by more distant image features.  

During conspecific pursuits both the pursuer and its target frequently make sharp turns [13] 

and during these one might expect the optomotor response to be suppressed, perhaps by a 

re-afferent motor command generated by the target detection pathways [18]. An interesting 

possibility suggested by the unique male HSN, whose small receptive field would allow 

for less target position ambiguity, is that such suppression may not be required when 

targets are pursued against the sky. In this respect it is interesting to note the strong 

correlation between target velocity and the response seen in a single male HSN, compared 

to the responses of the other cells (Supplementary Figure 2.4). Our data certainly support 

the possibility that the signal from the same control system that normally generates syn-

directional torque responses to yaw would contribute to centring of the target on the frontal 

fields when tracked against a uniform background. This remarkable receptive field could 

thus be an adaptation appropriate for optic flow analysis under several different flight 

modes of the hoverfly. 



Neural Estimation of Image Velocity  

 99 

2.8 Supplemental References  

1. Hausen, K. (1982). Motion sensitive interneurons in the optomotor system of the 

fly. I. The horizontal cells: structure and signals. Biol Cybern 45, 143-156. 

2. Hausen, K. (1982). Motion sensitive interneurons in the optomotor system of the 

fly. II. The horizontal cells: receptive field organization and response 

characteristics. Biol Cybern 46, 67-79. 

3. Krapp, H.G., Hengstenberg, R., and Egelhaaf, M. (2001). Binocular contributions 

to optic flow processing in the fly visual system. J Neurophysiol 85, 724-734. 

4. Hausen, K., and Egelhaaf, M. (1989). Neural mechanisms of visual course control 

in insects. In Facets of Vision, D.G. Stavenga and R.C. Hardie, eds. (Berlin 

Heidelberg: Springer Verlag), pp. 391-424. 

5. Franz, M.O., and Krapp, H.G. (2000). Wide-field, motion-sensitive neurons and 

matched filters for optic flow fields. Biol Cybern 83, 185-197. 

6. Hausen, K. (1984). The lobula-complex of the fly: structure, function and 

significance in visual behavior. In Photoreception and vision in invertebrates, M. 

Ali, ed. (New York: Plenum), pp. 523-559. 

7. Krapp, H.G., and Hengstenberg, R. (1996). Estimation of self-motion by optic flow 

processing in single visual interneurons. Nature 384, 463-466. 

8. Kern, R., van Hateren, J.H., Michaelis, C., Lindemann, J.P., and Egelhaaf, M. 

(2005). Function of a fly motion-sensitive neuron matches eye movements during 

free flight. PLoS Biol 3, e171. 

9. Karmeier, K., van Hateren, J.H., Kern, R., and Egelhaaf, M. (2006). Encoding of 

naturalistic optic flow by a population of blowfly motion-sensitive neurons. J 

Neurophysiol 96, 1602-1614. 

10. Schilstra, C., and van Hateren, J.H. (1999). Blowfly flight and optic flow. I. Thorax 

kinematics and flight dynamics. J Exp Biol 202, 1481-1490. 



2. Sexual Dimorphism 

 100 

11. van Hateren, J.H., and Schilstra, C. (1999). Blowfly flight and optic flow. II. Head 

movements during flight. J Exp Biol 202, 1491-1500. 

12. Boeddeker, N., Lindemann, J.P., Egelhaaf, M., and Zeil, J. (2005). Responses of 

blowfly motion-sensitive neurons to reconstructed optic flow along outdoor flight 

paths. J Comp Physiol A 191, 1143-1155. 

13. Collett, T.S., and Land, M.F. (1978). How hoverflies compute interception courses. 

J Comp Physiol A 125, 191-204. 

14. Straw, A.D., Warrant, E.J., and O'Carroll, D.C. (2006). A 'bright zone' in male 

hoverfly (Eristalis tenax) eyes and associated faster motion detection and increased 

contrast sensitivity. J Exp Biol 209, 4339-4354. 

15. Warzecha, A.-K., and Egelhaaf, M. (1996). Intrinsic properties of biological motion 

detectors prevent the optomotor control system from getting unstable. Phil Trans 

Roy Soc Lond B 351, 1579-1591. 

16. Fitzpatrick, S., and Wellington, W. (1983). Contrasts in the territorial behavior of 3 

species of hoverflies (Diptera, Syrphidae). Can Entomol 115, 559-566. 

17. Wells, D.J., and Ellington, C.P. (1994). Beyond the vertebrates: achieving 

maximum power during flight in insects and hummingbirds. Adv Vet Sci Comp 

Med 38B, 219-232. 

18. Collett, T.S. (1980). Angular tracking and the optomotor response. An analysis of 

visual reflex interaction in a hoverfly. J Comp Physiol A 140, 145-158.  



Neural Estimation of Image Velocity  

 101 

 

Chapter 3:    

Motion adaptation and the velocity 

coding of natural scenes  

 

3.1 Context  

In this paper, we investigate the response properties of HS neurons to a large range 

of natural scenes. We show that these neurons are able to provide robust estimates of 

image velocity across an enormous range of natural images. Using image 

manipulation techniques, we explore the likely mechanisms underlying the robust 

encoding of natural images.  
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3.2 Summary  

Background: It is generally assumed that many animals adopt visually guided 

behavior for which the accurate estimation of relative image velocity is required. 

Yet, despite decades of research into the neuronal mechanisms underlying motion 

detection, the most widely accepted motion-models, classical motion-energy or 

correlation based schemes, are still unable to account for the apparent ease with 

which animals are able to estimate image velocity. However, previous investigations 

of fly visual neurons using natural images revealed robust responses that deviate 

substantially from the predictions of classical motion-models and encode image 

velocity independent of other parameters, such as contrast. Recent investigations 

have revealed mechanisms that are likely to make, at the global scale, the estimation 

of behaviourally relevant parameters much easier.  

Results: Using in vivo recordings, we reveal several activity dependent features of 

the neural response that reconcile the ability to accurately encode the velocity of 

natural images with the mechanisms underlying motion processing. Images that were 

initially weak neural drivers have long latencies, with responses continuing to 

increase in magnitude over several hundred milliseconds. Images that were initially 

strong neural drivers, reached peak responses more rapidly followed by significant 

reductions in response over longer time scales. Despite being different in sign and 

time course, these two activity dependent changes in response act  as near-ideal 

normalisers for images that would otherwise produce highly variable response 

magnitudes. We further show that a subset of scenes, which contained man-made 

features, recruits these mechanisms differently despite having similar low-order 

statistics and hence producing similar responses from correlation-based motion 

detectors. Hence, the mechanisms underlying this response normalization appear to 

be matched to the higher order statistics of natural scenes.  
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3.3 Introduction 

It is widely accepted that the Hassenstein-Reichardt Correlator [1] and 

mathematically equivalent motion energy models [e.g. 2] provide a robust 

explanation for motion detection in many animal species [for review see 3]. In 

essence, these models compute motion by correlation of luminance at two 

neighboring points in space, one delayed with respect to the other [1, 4]. Motion 

detectors of this type are inherently ambiguous estimators of velocity because they 

are sensitive to additional stimulus parameters, such as contrast and spatial frequency 

[5]. Alternative motion processing schemes have been proposed that redress this 

deficiency [3, 6], but to date the primary evidence and motivation for the 

implementation of these schemes has been some insects behavioral evidence for 

velocity estimation [7, 8 , 9, 10]. Specific tests of the predictions of alternative 

models are not supported by neurobiological evidence [11, 12]. Recent experiments, 

however, showed that insect tangential neurons involved in optic flow analysis code 

image velocity reliably when stimulated with natural images, but largely independent 

of the global contrast and spatial structure of the specific scene [13, 14]. This 

property, termed ‘velocity constancy’, enables these neurons to act as accurate 

velocity estimators to vastly different natural scenes over several decades of image 

velocity.  

The fly tangential neurons used in these recent experiments are the same class that 

has been used for many years to provide evidence for the Hassentein-Reichardt 

model using simple stimuli [e.g. sinusoidal gratings, 3, 12]. Located in the third optic 

ganglion of the fly visual system, the tangential neurons respond to the direction of 

image motion [15, 16] and synapse with descending neurons that control flight 

responses [17, 18]. They receive input from arrays of retinotopically arranged 

elementary motion detectors (EMDs) of the Hassenstein-Reichardt correlator type [5, 

19, 20]. Their responses have been shown to be sensitive to the spatial and temporal 

structure of a moving stimulus as well as its contrast [21]. Behavioral testing with 

sinusoidal stimuli are consistent with the physiological data and show that the visual 

system generates ambiguous estimates of velocity in both insects [11, 22] and 

humans [23, 24].  
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What additional neural processes might enable these neurons to encode velocity 

accurately when presented with natural images but not with simple stimuli? Natural 

images contain a rich blend of spatial structures and contrasts, with some second-

order statistical predictability from one scene to the next [25-28]. In a modeling 

study, Dror et al. [29] showed that this predictability, combined with inclusion of 

additional non-linear filtering stages such as spatial bandpass filtering and static non-

linear saturation, both inspired by observations from basic neurophysiology, reduced 

the variance in response of correlation-based EMDs when stimulated by natural 

scenes. Subsequent work [14] elaborated this approach further to include a form of 

dynamic motion gain reduction in motion detector inputs and non-linear spatial gain 

control on motion detector outputs, both inspired directly from experiments on fly 

horizontal system (HS) neurons [30-32]. Although these elaborated models for 

motion detection provide a certain degree of contrast invariance for natural scenes, 

none have been shown to match the invariance observed for the HS neurons in a 

recent experiment [13]. Furthermore, if the contrast of natural images is re-scaled 

artificially, HS neuron responses rescale in a manner more consistent with the 

predictions of the Hassenstein-Reichardt correlator, an observation not well captured 

by the above-mentioned model elaborations [13]. 

Here, we investigate the neural representation of 26 natural images, which contain an 

enormous range of natural contrasts and spatial structures. While this image set 

produces vastly variable responses from the elaborated Hassenstein-Reichardt 

models tested in earlier studies [14, 29], we reveal several activity dependent non-

linear adaptive properties of HS neuron responses that can account for their ability to 

robustly encode image velocity.   
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3.4 Results 

3.4.1 Accurate encoding of image velocity by HS neurons 

In order to quantify image velocity tuning, we displayed natural images moving at a 

large range of velocities, whilst recording intracellularly from HS neurons in the 

lobula plate of the hoverfly. We used a protocol, which holds the neuron in a steady 

motion-adapted state with near-optimal velocity stimulation (100°/s) interleaved with 

short test pulses of a range of velocities. This protocol allowed us to obtain full 

velocity tuning curves for many images in a reasonable time frame. Figure 3.1A and 

3.1B show the velocity tuning of two different HS neurons from a male and female 

fly to 16 images from a larger set of 26 panoramas, which includes 6 images from 

the set used in the earlier study of Straw et al. [13] (Supplemental Figure 3.1A, 3.1K, 

3.1M, 3.1N, 3.1U, and 3.1X). To test the limits of the contrast invariant ‘velocity 

constancy’ mechanism, we deliberately included images that spanned a wide range 

of contrasts and textures (Supplementary Figure 3.1).  

As observed by Straw et al. [13], HS neurons give responses that increase with image 

speed to an optimum of 249°/s in the male HSN, and 88°/s for the female HSNE 

before falling away at higher velocities, with a tightly clustered magnitude of 

response for the majority of images (Figure 3.1A and 3.1B). Although our image set 

clearly spans a range of contrasts by any measure, quantifying contrast in natural 

scenes is not trivial ([33]; Supplemental Data). As in other previous studies [13, 14] 

we therefore used an elaborated correlation model for motion detection in Eristalis 

HS neurons as a biologically relevant measure of image contrast, CHS (Supplemental 

Data).  



Neural Estimation of Image Velocity  

 107 

Considering that a ‘perfect’ correlation EMD ought to give a response that scales 

quadratically with contrast [29], the response variation we observe between images 

at any particular image speed is relatively small, e.g. 10.2±1.8 mV (mean ± S.D.) at 

optimum velocity of 249°/s for males (Figure 3.1A) and 9.9±1.2 mV (mean ± S.D.) 

at 88°/s for females (Figure 3.1B). Sparse images such as ‘Rubble’ and ‘Field’ with 

lower contrast (CHS 0.14 and 0.12 respectively) than the lowest used in the study by 

Straw et al. [13] reveal the limits of the invariance mechanism, however. On every 

occasion we tested (n=5), the ‘Field’ image produced responses well below the other 

images, peaking at 6±0.3 mV (mean ± SEM) compared with peak responses of 

10.3±0.3 mV (mean ± SEM) for the high contrast image ‘Botanic’ during the same 

recordings.  

This result is consistent with a relatively simple explanation for the observation of 

invariance for ‘typical’ natural scenes by Straw et al. [13], that the contrast is 

generally high enough to recruit saturation mechanisms within the motion pathway, 

leading to a similarity in overall response. A key feature of our data argues against 

this simple explanation, however. Even if saturation limits responses at high 

contrasts it will not change the order of image responses thus, we should still see a 

clear correlation between the rank order of responses and image contrast. In Figure 

3.1A and 3.1B we have used line-styles with dash length symbolizing the rank order 

of image contrasts, CHS (shorter dashes = lower contrast; see Supplemental data). 

With the exception of the ‘outlier’ sparse images, however, there is little obvious 

relationship between contrast and neuron response. This is confirmed by data pooled 

from a larger set of recordings (n=5) for 25 images at a constant velocity of 45°/s 

(Figure 3.1C). Despite these stimuli producing a greater than 34-fold variation in our 

elaborated EMD model output (Supplemental data), HS neuron response remains 

relatively robust, with less than two-fold of variation and little dependence on CHS 

(r=0.35, p=0.084, Pearson correlation). On three occasions we were able to record 

responses in the anti-preferred direction also, where we observed a much better 

correlation (data not shown, r=-0.42, p=0.038). However, the response range was 

still less than two-fold.  
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Figure 3.1 Contrast insensitivity to natural images  
A. Velocity response function of a male HSN (north) neuron to 16 panoramic images, including 1 

image ‘All’, which is synthesized by averaging the amplitude and phase of all the images in the set. 

Data are the average of 8 trials with image start position offset by 45° on each occasion, thereby 

averaging the response over the whole 360° panorama. Neurons were held in the adapted state with 

100°/s adapting velocity interleaved with 200ms test velocities pulses. The legend (top right) shows 

the image name followed by its corresponding contrast (CHS). Line types are organized so that line 

density is determined by the rank order of CHS (i.e. solid line type is the highest contrast and sparse 

dotted line is the lowest contrast). B. Similar data for a female HSNE (north-equatorial) neuron to the 

same set of images. C. Responses to 25 natural images plotted against contrast (CHS). For each image, 

responses are averaged over one second after constant velocity stimulation (45°/s) for 3 seconds. Data 

shown are the mean ± SEM (N=5). D. Rank order comparisons of response amplitudes to individual 

images averaged across all velocities for the data shown in part A (ordinate) and B (abscissa) of this 

figure. Dashed line represents the line of unity (i.e. where points would lie if the two rank orders were 

identical). 
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The weak correlation between neuron response to most images and low order image 

statistics such as CHS is unlikely to result from experimental variability, as our data 

reveal consistent trends in responses for specific images between the recordings. For 

example, Figure 3.1D shows a strong correlation in the rank order of image 

responses for the two recordings in Figure 3.1A and 3.1B (ρ=0.72, p<0.01, 

Spearman’s rank correlation). Such a strong correlation is even more surprising 

given the substantial differences in receptive fields between HSN and HSNE neurons 

[34] and spatiotemporal tuning between sexes (as evident from Figure 3.1A and 

3.1B) [35]. While individual images depart substantially from unity by several rank 

values (dotted line in Figure 3.1D), these are mostly from within the intermediate 

range of response levels, where the curves are tightly clustered and thus, small 

differences in response could equate to large changes in rank. Hence, while response 

magnitude is not easily explained by simple statistics (e.g. contrast), we can 

nevertheless conclude that there are specific features of the scenes that recruit 

consistent response levels in different neurons.  
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3.4.2 Saturation and artificial manipulation of contrast 

Is the weaker response for the ‘Field’ image simply a result of it having unusually 

low global contrast (CHS 0.17), bringing it out of the compliance range for whatever 

mechanisms may be responsible for apparent contrast invariance for the other 

images? If so, artificially increasing the contrast of this image ought to boost the 

response. To test this, we recorded responses for the ‘Field’ image and two other 

higher contrast images before and after artificially doubling image contrast. Figure 

3.2A-C shows the full response tuning for a single male HSN neuron. Response 

clearly does not increase following the contrast manipulation and if anything is 

reduced for two of the images, a conclusion supported by recordings averaged for six 

neurons over the full range of velocities (Figure 3.2D-F).  

While our manipulation had little effect on neuron response, it boosted model 

response by as much as 200% for the already high contrast ‘Botanic’ image (Figure 

3.2D), showing that our images were not already dominated by saturated and under-

saturated pixels. Although the contrast manipulation for the sparse ‘Field’ image, 

which contains a large amount of bright sky was slightly less effective, it still 

boosted model responses by more than 100% (Figure 3.2F) and yet the HS neuron 

was unaffected as for the other images. We therefore, cannot attribute the invariance 

in response to a simple mechanism of global response saturation for a system with 

high response gain.  
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Figure 3.2 Increasing the global contrast does not increase the response  
A-C. Velocity tuning curves of a male HSN (north) neuron to the ‘Botanic’, ‘Library’, 

and ‘Field’ images before (dashed line) and after (solid line) the image contrasts were 

artificially increased. Data are the average of 8 trials each with image start position 

offset by 45° on each occasion, thereby averaging the response over the whole 360° 

panorama. The neuron was held in the adapted state with a 100°/s adapting velocity 

interleaved with 200 ms test velocities. D-F. Bar graphs showing the percentage change 

in response averaged across all velocities for several HS neurons (mean ± SEM; N=6) 

and the elaborated EMD model, after artificially increasing the contrast of the ‘Botanic’ 

(D), ‘Library’ (E), and ‘Field’ (F) image.  
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Figure 3.3 Artificial reductions in image contrast reduce overall response and 

increase variance.  
A. Averaged raw responses from a male HSN neuron to the ‘Botanic’ image in the 

preferred direction at three contrast scale factors, CSF 1 (unscaled), CSF 0.5 (50% 

original contrast), CSF 0.25 (25% original image contrast). Vertical dashed lines show 

the 1 second analysis time window, after velocity stimulation at 45°/s for 2 seconds. B. 

Box plots show the spread of responses generated by 26 natural images for the three 

contrast scale factors mentioned above. For each image, responses are averaged over a 

minimum of 4 start trials with the image start position offset by 90° on each occasion, 

thereby averaging the response over the whole 360° panorama (N=1). C-D. Show 

identical data for the same neuron in the anti-preferred direction. Crosses (+) indicate 

outlier images (see Experimental procedures). 
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While the experiments in Figure 3.1 and Figure 3.2 seem to preclude an obvious role 

for global response saturation, local non-linearity, e.g. saturation at an earlier stage in 

visual processing, remains a possible contributing factor to the observed image 

contrast invariant responses. To test this, we artificially reduced image contrast to 

50% or 25% of the original level in order to release the system from any saturating 

influences. Figure 3.3 shows results for a male HSN (horizontal system north) 

neuron to which we displayed 26 different images at 45°/s for 3 seconds, averaged 

across four initial start presentations of the image. We chose the relatively low speed 

of 45°/s as this produces responses approximately 50% of the maximal value for 

male HSN neurons (see Figure 3.1A) and so is less likely to recruit strong global 

saturating non-linearities (i.e. in the HS neuron itself). Consistent with the results of 

similar rescaling by [13], reducing image contrast produced a significant but non-

linear reduction in response (Figure 3.3).  

Importantly, as contrast was reduced, image-to-image variance increased in absolute 

terms by more than 40% for either direction of motion, despite the weaker responses 

(Figure 3.3B and 3.3D and Table 3.1). Does the increase in response variability for 

re-scaled images reflect a gradual release of response from saturation? If this were 

the case, we would expect an improvement in the correlation between the HS neuron 

response and underlying image contrast for contrast-reduced images. Yet, rank 

orders of contrast (CHS) and neuron response were never well correlated for preferred 

direction motion stimuli even when we include the ‘outlier’ sparse images described 

(Table 3.1).  Interestingly, in the anti-preferred direction, we observe a correlation 

for unscaled images (p<0.02) but as we rescale the image contrast, this correlation 

becomes weaker (Table 3.1). When we compared the rank order of neuron responses 

between the preferred and anti-preferred direction at each contrast there was a very 

strong correlation on every occasion (ρ>0.52; p<0.01). Hence, variability within our 

data cannot explain the lack of correlation between contrast and neuron response at 

any individual contrast scale factor.  
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Table 3.1 Contrast rescaling of natural images.  
Rank correlation (ρ) between neuron response and image contrast (CHS) for 26 natural 

images at three contrast scale factors, 1 (unscaled), 0.5 (50% original contrast), 0.25 

(25% original image contrast) for the data shown in Figure 3.3. Standard deviation 

shows the image-to-image variance for each scale factor.  

 

 

Direction of 

motion 

Contrast scale 

factor 

Spearman’s rank 

correlation ρ 
Standard deviation 

 

Preferred 

1 

0.5 

0.25 

0.04 

0.05 

0.07 

0.98 

1.31 

1.44 

 

Anti-preferred 

1 

0.5 

0.25 

0.51 (p<0.02) 

0.25 

0.17 

0.84 

1.02 

1.20 
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3.4.3 Motion adaptation reduces response variance across the image set 

So far, our analysis considers HS neuron responses under strongly motion-adapted 

conditions. Might motion adaptation itself contribute to the consistency in velocity 

coding by HS neurons? Figure 3.4 shows responses to the same three images as used 

in Figure 3.2 (‘Botanic’, ‘Library’ and ‘Field’, Supplementary Figure 3.2F, 3.1W, 

and 3.1Z) representing the upper, middle and lower ranges of image contrast (CHS). 

The time-course of HS response to these three images differs substantially. The 

higher contrast images give responses that reach a peak value within the first 200 ms 

but then decline steadily over time, presumably reflecting the influence of motion 

adaptation. Very low contrast images roll-on much more slowly though, reaching a 

peak after 400 ms followed by little or no subsequent decrease (Figure 3.4C and 

3.4D). Similar effects are observed for both directions of motion, except that at the 

cessation of motion, preferred direction responses are followed by an antagonistic 

after-potential. This motion after-effect has a magnitude that is response dependent, 

as observed in previous work [31, 36] and so is more evident for the higher contrast 

images (Figure 3.4A and 3.4B).  

Our stimulus avoids neural after-image effects [37, 38] by adapting the neurons to a 

blank screen before presenting motion of the natural images. Unfortunately, this 

sudden stimulus onset and offset evokes a direction-independent depolarizing 

transient similar to those previously observed for sinusoidal grating stimuli [39], 

complicating the analysis of very early response windows and making it difficult to 

evaluate truly unadapted responses. Because response transients have the same sign 

and similar magnitude independent of the direction of image motion, subtracting the 

anti-preferred direction responses from the preferred effectively removes their 

influence [see 39]. Figure 3.4C shows the result of such an analysis of the first 500 

ms of our data, confirming the substantive difference in initial response time course 

for different natural images. Comparison of the initial and final response levels 

reveals a significant increase for the ‘Field’ image, but a significant decrease for the 

‘Library’ and ‘Botanic’ images (Figure 3.4D). 
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Figure 3.4 Response time course varies for different images  
A. Averaged response for ‘Botanic’, ‘Library’, and ‘Field’ image (from top to bottom) 

rotated in the preferred direction at 45°/s for 4 seconds (N=3). Images were averaged 

over a minimum of four trials each with image start position offset by 90°, thereby 

averaging the response over the whole 360° panorama. B. As for A, but in the anti-

preferred direction. C. First 1 second of the response after subtracting the anti-preferred 

direction from the preferred direction data, and thus eliminating the influence of non-

directional (flicker) response components. D. Data from part C averaged over 100 ms 

time windows (x-axis shows the centre of each time window) commencing 50 ms after 

the onset of stimulus motion. Significance of differences was determined by repeated 

measures ANOVA and Bonferroni post hoc test for selected pairs, with *** denoting 

p<0.001 and NS: not significant.  
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Figure 3.5 Adaptation is dependent upon initial response and reduces 

variability across the image set.  
A. Box plots show the spread of responses generated by 25 natural images at three time 

points after the onset of image motion: an early (unadapted) time window, 50-150 ms, 

an intermediate time window, 200-300 ms, and a late (adapted) time window, last 100 

ms of stimulus. Responses were averaged across 100 ms time windows (centered on the 

abscissa). Data shown are for the preferred (see Supplementary Figure 3.5A) minus 

anti-preferred direction (see Supplementary Figure 3.5B) responses (N=3). Crosses (+) 

show outlier responses. Superimposed open circles show the position of the low 

contrast ‘Field’ image and closed circles show the position of the high contrast 

‘Botanic’ image. B. Response change (ordinate), determined by subtracting the 

averaged response from 50-150 ms after the onset of image motion (initial response) 

from the averaged response to the last 100 ms of image motion (adapted response), 

plotted against the initial response (50-150 ms after the onset of image motion). The 

data for three neurons is indicated with different symbols. Lines show linear regression 

through data for each individual neuron. Cell 1 and Cell 3 include data for all 26 

images; Cell 2 includes data for 25 images. Data shown are for anti-preferred direction 

(see Supplementary Figure 3.6B) subtracted from preferred direction (see 

Supplementary Figure 3.6A) to eliminate the influence of non-directional response 

transients. Data for each image was averaged over a minimum of 4 trials each with 

image start position offset by 90°, thereby averaging the response over the entire 360° 

panorama.  
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Figure 3.5A shows box and whisker plots summarizing the distributions of responses 

to 25 images at different time points. In the earliest parts of the response these 

distributions are very broad. Overall spread of image responses is substantially 

compressed following adaptation, however. The inter-quartile range is 51% smaller 

for preferred, 37% smaller for anti-preferred (Supplementary Figure 3.4A and 3.4B 

respectively), and 64% smaller following adaptation for the condition in which the 

anti-preferred direction was subtracted away from the preferred direction (Figure 

3.5A).  

Our analysis of an intermediate time-point (50-150ms) shows that the median 

response actually increases over the first 300 ms, and is associated with some 

reduction in overall response spread (Figure 3.5A, Supplementary Figure 3.4). 

Images that produced the weakest responses in the early time window showed the 

most prominent increases, such as the ‘Field’ image (open circles in Figures 3.5A). 

Could this effect be associated with an early onset increase in the contrast gain of the 

system? To investigate this we used a test-adapt-test protocol to measure the contrast 

gain before and after a brief adapting presentation (200 ms) with the ‘Field’ image 

(Supplementary Figure 3.6). Our data revealed that even after such a brief adaptation 

stimulus, contrast gain was slightly reduced; not increased (Supplementary Figure 

3.6). Figure 3.5B shows a comparison between the initial response level and the 

magnitude of the response change over the 4-second stimulus duration for three 

neurons. This confirms the trends described above where initially weak responses are 

subsequently boosted and initially strong responses tend to decline over time Figure 

3.5B. When we subtract preferred and anti-preferred responses to minimize response 

transients, we get a clear linear relationship for each neuron (r2=0.78, 0.88, 0.74, for 

cells 1, 2, and 3 respectively; Figure 3.5B). Although the relationship between these 

parameters appears linear for individual recordings, the operating range differs 

substantially between recordings, most likely due to differences in the quality of 

neuronal recordings between experiments that influence absolute response 

magnitude, and subtle differences in response onset transients. Interestingly, the 

slope of the relationship between initial response and response change is relatively 

steep (-0.42, -0.57, and -0.46, for cells 1, 2, and 3 respectively; see Figure 3.5B) so 
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these opposite direction effects could potentially contribute to strong normalization 

of the response for different images.  

We conclude that the changes observed over the response time-course contribute 

substantially to contrast invariance, at least at the velocity used for this analysis. 

These effects appear to be due to two separable components: 1. A slow initial roll-on 

or build-up in response within the first 500 ms for initially weak stimuli, which is not 

attributable to a change in contrast gain. 2. And a progressive response reduction for 

initially stronger stimuli, similar to that characterized for sinusoidal stimuli. 

3.4.4 Natural scenes and urban scenes rescale differently 

Although none of our images are truly natural in the sense that they are not from 

completely unspoiled natural fly habitats, our image set nevertheless contained a 

diverse range of scenes from bushland and park settings to urban, man-made, 

habitats such as car parks and indoor scenes. While similar in terms of second-order 

statistics [25, 26, 40], a fractal-based analysis of the same set of images used in the 

present study suggests higher order statistical differences between images composed 

primarily of foliage and those that contain man-made structures such as buildings or 

walls [41]. To investigate the effects of feature distribution we therefore separated a 

group of ‘urban’ scenes, which contained at least one major man-made structure, 

such as a building or a wall, from the remaining group of predominantly ‘natural’ 

scenes. These two image subsets do not differ in global contrast (CHS of 0.517 ± 

0.053 for the natural group, n=16, versus 0.461 ± 0.040 for the urban group, n=10, 

p=0.46, unpaired t-test).  

When displayed at their normal contrast (i.e. have a contrast scale factor of 1), the 

two image categories produced similar responses (Figure 3.6A and 3.6B). However, 

when rescaled to lower contrasts, responses to the two image categories clearly 

separate, with natural images decreasing in response more than the urban images for 

either direction of motion (Figure 3.6A and 3.6B). Figures 3.6A and 3.6B show that 

after contrast rescaling to 25% of the original level, response to the urban images 

increased relative to the mean for all images, while the response to natural images 

decreased. Similarly, when we plot the change in rank order of response amplitudes 
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(i.e. the change in rank for individual images across the whole set) we see a similar 

shift, with urban images tending to be more highly ranked after contrast reduction 

(insets in Figure 3.6A and 3.6B). These average trends were not observed for every 

image in each category, but nevertheless suggest that the hard edges and other 

structural features typical of man-made scenes are inherently more potent drivers for 

motion detector responses in a manner not predicted by energy-based motion 

detector models and hence our CHS values. Consequently, at low contrasts such 

images produce stronger responses than the natural group. This cannot be easily 

explained by simple spatial high-pass filtering (e.g. lateral inhibition) on the inputs, 

however, as responses converge at higher contrasts. Unless, as contrast increases, 

these images become more effective in recruiting the mechanisms (e.g. adaptation) 

that drive response invariance for ‘normal’ contrast images. 
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Figure 3.6 Natural and Urban scenes rescale differently with artificial 

reductions in image contrast 
A. The effect of artificially reducing image contrasts on the response of an individual 

neuron to ‘natural’ (dashed line, open symbol) and ‘urban’ images (solid line, closed 

symbol) in the preferred direction. B. As for A, but in the anti-preferred direction. Insets 

show the change in average response rank for natural and urban images after contrast 

rescaling to 25% their original contrast (contrast scale factor 0.25), where responses to 

all the images are ranked 1-26 with 26 being the largest response. 
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3.5 Discussion 

3.5.1 Velocity constancy and natural image coding 

In this study, we use panoramic natural images rotated about the yaw axis to 

investigate velocity encoding. This type of stimuli is unlikely to represent the kind of 

flow fields, which a fly might experience during free flight in the natural 

environment, though. While recording neural activity under truly natural conditions 

is an ideal goal, to date many technical limitations have prevented this from 

happening for the fly visual system. Not only does the capture of truly natural optic 

flow from freely flying flies present a hurdle but, reproducing this optic flow 

accurately, i.e. with high spatio-temporal resolution at full luminance/color on a 

panoramic display, is not possible with current technology. 

Nevertheless, many recent studies have revealed the importance of the dynamical 

properties of behaviourally generated optic flow on neuronal responses [42-46]. 

Some studies have sought to investigate how neurons encode naturalistic stimuli by 

reconstructing optic flow fields based on the body position of freely flying animals 

[46]. Although for technical reasons, the head movements of these animals were not 

resolvable, and thus the real optic flow experienced was not able to be reconstructed. 

Other studies have used optic flow reconstructed from flight paths of flies flying in 

confined spaces in order to resolve such head movements. These reconstructed flow 

fields implicated a role for HS neurons in the encoding of translational optic flow 

[43, 44], although the flight arena was very small 40 x 40 x 40 cm, and thus altered 

the animals natural flight behavior.  

3.5.2 Saturation and the coding of natural images 

Dror et al. [29] showed that the inclusion of saturation in basic correlation type 

motion detection models mitigated some of the contrast dependence and hence 

variance produced for different natural images. Other studies, confirmed that the 

inclusion of saturation to both early visual processing and the motion correlator, on 

the output of individual EMDs, could reduce the contrast dependence of such a 

model [14, 30]. However, while there is substantive evidence for non-linear spatial 
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summation within the HS neuron [i.e. on local motion detector outputs 32, 47], 

heavy response compression at this stage is inherently in conflict with the 

requirements of velocity sensitivity – excessive saturation ‘flattens’ the 

velocity/response function. Rivera-Alvidrez and Higgins [48] showed that in order to 

match HS neuron contrast response functions accurately, more moderate saturation is 

likely on the inputs to the motion processing pathway. Regardless of the location and 

magnitude, moderate saturation and other compressive non-linearities should still 

lead to a predictable rank order in responses with respect to global image contrast. 

We have shown that responses to natural images are poorly predicted by measures of 

global contrast to which such detectors should be sensitive (Figure 3.1, Table 3.1). 

Furthermore, our artificial contrast manipulation reveals effects poorly explained by 

obvious elaborations to basic correlator mechanisms, such as response saturation. We 

conclude that even the elaborated EMD models accounting for compressive non-

linearities are poor predictors of the response magnitudes to different natural images. 

3.5.3 Adaptation and its role in natural image coding  

Motion adaptation is a prominent feature of the response properties of fly motion 

sensitive neurons.  A great deal of research has focused on quantifying the effect of 

experimenter-designed stimuli on motion adaptation, e.g. enhanced detection and 

coding of direction and speed changes [49, 50], relief from saturation due to 

inherently high contrast gain [31], or adaptive rescaling match stimulus statistics [51, 

52]. We show that activity-dependent adaptive components contribute to response 

invariance in the velocity tuning for natural images, by causing a greater reduction in 

response for images that recruit initially strong responses and boosting responses that 

are initially weak (Figures 3.4, 3.5, S3.4, and S3.5). These changes lead to 

substantially decreased variance in response once images have been in motion for 

several seconds.  

Decreases in the response to initially potent images are consistent with the gain 

reduction mechanism observed for fly motion sensitive neurons obtained using high 

contrast sinusoidal patterns [31, 53-55]. The adaptation to images that produce a 

weak initial response is more problematic to explain, however. We observe a small 

increase in response to such stimuli over the first 500 ms of stimulation (Figure 3.4). 
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Yet we show that the initial stimulus period (200 ms) actually leads to a small 

decrease in contrast gain (Figure S3.6). Hence, this response increase cannot be 

attributed to increased contrast gain. A slow ‘roll-on’ for images of low contrast has 

previously been reported using sinusoidal images [55, 56]. In this earlier work, it was 

interpreted as a stimulus-dependent effect on response latency. However, response 

time course ought to depend primarily on the delay mechanism inherent to the 

motion correlation mechanism [57, 58]. Since the underlying optimum of fly 

tangential neurons is at relatively high temporal frequencies even in the unadapted 

state [55, 58, 59], latencies of more than a few tens of milliseconds are difficult to 

account for by the underlying properties of motion detection. Interestingly, many of 

the conditions under which Warzecha et al. [56] observed slow response onsets to 

sinusoidal patterns were for stimuli which were weak initial drivers of neuron 

responses (e.g. low contrast). Similar results were obtained for monkey cortical 

neurons [60], in which response latency has been shown to reflect stimulus strength. 

Hence, previous work is consistent with our observation that ‘sparse’ natural scenes 

such as the ‘Field’ image produced slow initial response onsets, whilst scenes that 

are more detailed produce rapid onsets.  

One mechanism that Warzecha et al. [56] proposed to explain slow response onset 

was increased dendritic resistance at multiple levels in the motion pathway when 

input synaptic activation was weak, leading to a cascade of activity-dependent 

membrane time constants, but primarily operating at peripheral levels. While our 

data do not refute such a mechanism, they reveal a surprising consequence of it: the 

magnitude of response roll-on to the ‘steady state’ level after a few hundred 

milliseconds scales linearly with initial response level (Figure 3.5, and S3.5). 

Moreover, the same linear trend is observed, but with opposite sign, once motion 

adaptation takes effect for images that produce initially stronger responses. Such a 

bi-directional and linear dependence of final response level on initial level is very 

strongly suggestive of an active normalization strategy. While the slope that we 

observe is less than 1, as might be expected for a ‘perfect’ activity-dependent 

normalization, this might simply reflect the difficulty inherent in assessing ‘initial’ 

response level of a motion sensitive neuron. To avoid after-image phenomena our 

stimuli were presented following adaptation to a blank screen and thus evoke a 
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direction-independent (i.e. flicker) response transient (e.g. Figure 3.4). To avoid 

these transients, our ‘initial’ response is evaluated between 50 and 150 ms after 

stimulus onset, so that response normalization may already have commenced by the 

time we are able to evaluate ‘initial’ response.  

Although our data suggest that several components contribute to response 

normalization in a manner that depends on activity, we also show (Figure 3.1 and 

3.2) that responses still reliably encode the velocity of the stimulus. Because 

intracellular recording durations are of limited duration, we focused our more 

detailed analyses (Figures 3.5, S3.4, and S3.5) on a single velocity, 45°/s, selected as 

it produces half-maximal responses. Individual tuning curves for different images 

appear consistent across the full velocity range, however (Figure 3.1), arguing 

against the normalization mechanism being as simple as an antagonistic activity-

dependent adaptation. Further work is required to investigate the degree to which the 

normalization strategy revealed by our analysis extends to other parts of the velocity 

tuning range.  

3.5.4 Higher order scene statistics – urban and natural scenes 

Also arguing against a simple activity-dependent phenomenon as an explanation for 

‘velocity constancy’, we found that scenes containing man-made features are 

stronger drivers for motion detector responses when re-scaled to low contrast (Figure 

3.6). There are two possible explanations for this divergence. Despite their similarity 

in global contrast, the urban scenes could contain structures that are inherently more 

potent stimuli for the motion detectors, but recruit normalization, including motion 

adaptation, more strongly at high contrasts. The fact that the two image groups have 

similar contrast (CHS) suggests that the insect motion-processing pathway must be 

sensitive to higher order scene statistics in a manner not predicted by our EMD 

model. An alternative explanation is that the similarity in response at higher contrast 

reflects the global similarity in contrast for the two image groups, but that the natural 

scenes may contain features that are distributed in a manner that more effectively 

recruit adaptation and other normalization mechanisms, persisting to lower rescaled 

contrasts. The features we used to classify scenes as ‘urban’ include walls, window 

frames, buildings and other dominant man-made structures that are generally 
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characterized by sharp, vertically orientated edges followed by areas of little 

contrast. It is possible that the upwards shift in rank order for responses to contrast-

rescaled urban images (Figure 3.6) results from the local manner in which motion 

adaptation is recruited [39, 49]. Local adaptation at the ‘sparse’ edges of large 

features, which may dominate the global contrast of such scenes, would have little 

effect on subsequent responses to the low contrast inner texture of many larger 

features that subsequently stimulate the same receptive field locations. Conversely, 

natural scenes dominated by foliage may have similar first order statistics, yet have 

features that are irregularly distributed so that local adaptation exerts a more potent 

influence on responses to subsequent features even when contrast of the images is 

reduced.  

Regardless of which of these two alternatives turns out to explain our data, we have 

clearly shown evidence for additional properties poorly predicted by even elaborated 

models that have dominated our understanding of insect motion detection for more 

than 50 years. These mechanisms appear to normalize responses to an enormous 

variety of natural scenes and yet allow those responses to continue to reliably encode 

velocity via response magnitude. As such, our data have the potential to reconcile the 

longstanding problems with the correlation EMD model as an explanation for the 

remarkable abilities of many insects to exploit relevant velocity information for a 

variety of tasks, from landing on a stationary surface to visual odometry [10]. Since 

the case for a correlation-based operation lying at the core of these motion detectors 

is not in dispute [see 12] our findings highlight the need for further work to 

understand exactly how additional neural mechanisms such as motion adaptation 

operate both locally and globally, to bring about velocity constancy. 
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3.6 Experimental Procedures 

3.6.1 Experiments  

Wild caught drone flies, Eristalis tenax, were immobilized with wax. We performed 

sharp electrode intra-cellular recordings on Horizontal System (HS) neurons in the 

left lobula plate using aluminosilicate electrodes pulled on a Sutter Instruments P97 

electrode puller with a 3 x 3 mm box filament. Electrodes filled with 2M KCl 

typically had tip resistances of 80-250 MΩ. Upon successful penetration, we 

identified each neuron on-line based on its receptive field properties, as recently 

described in detail by Nordström et al. [34].  

3.6.2 Data acquisition and analysis  

Data were digitized at 5 kHz using a 16-bit A/D converter (National Instruments, 

Austin Texas, United States) and analyzed off-line with Matlab 

(http://www.mathworks.com). In all experiments, membrane potential was 

normalized by subtracting the average resting membrane potential recorded for 1 

second immediately prior to each trial. While HS neurons predominantly respond 

with graded shifts in membrane potential, which makes them ideal models to 

investigate the nature of the signal arriving at their synaptic inputs, the response is 

influenced by activity induced spikelets [61]. To reduce the influence of response 

non-linearities generated in the HS neuron itself from our analysis, such as these 

spikelets, we ‘spike filtered’ our data by removing spike-like events and replacing 

them with the local mean membrane potential [39]. 

We used Spearman’s rank correlation (ρ) to determine the degree two sets of 

responses correlated. Linear regression fits and r2 values were computed in Matlab. 

Two-way repeated-measures analysis of variance and Pearson correlation coefficient 

(r) were computed in Prism (Graphpad Software Inc. www.graphpad.com). All box 

plots were generated using the MatLab boxplot function, which identifies outliers as 

those data that lie beyond 1.5 times the inter-quartile range and are displayed as 

crosses (+). All data are presented as mean ± standard error of the mean (SEM) 

unless otherwise mentioned. 
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3.6.3 Image collection and display 

We collected a large range of panoramic natural images from various field sites 

around South Australia. Scenes ranged from densely forested creek beds, to vast 

open hillsides, and to entirely man-made environments. Supplementary Figure 3.1 

shows the full complement of 26 panoramic images used in this paper, including the 

six images also used in previous studies done by Shoemaker et al. and Straw et al. 

[13, 14]. Limitations in recording duration meant that not every image was displayed 

in all recordings, but where means are shown legends give the number of images 

presented. We collected images using a Nikon D-70 digital camera and panoramic 

tripod head. These images are available from Russell Brinkworth upon request 

(russell.brinkworth@adelaide.edu.au).  

We displayed stimuli on a linearized, 8-bit, RGB CRT at 200 Hz refresh rate with 

mean luminance of 100 cd/m2 using VisionEgg software (www.visionegg.org). The 

stimulus monitor was placed 14-15 cm in front of the animal and was centred 

approximately 20° degrees to the left of the flies mid-line at an elevation of 35°. It 

subtended approximately 100° x 75° of the fly’s visual field. In Figures 3.1 and 3.2 

full velocity tuning curves were collected using a rapid motion-adapted protocol 

developed by Straw et al. [13] whereby the neuron is held in a strongly motion 

adapted state with optimal velocity (100°/s) stimulation, which after 4 seconds is 

interleaved with 25 short test pulses (200 ms in duration) of monotonically 

increasing then decreasing velocities. This protocol produces qualitatively similar 

responses to displaying each velocity individually but is much quicker and thus 

allowed us to collect full velocity tuning curves for up to 16 images in individual 

recordings. For all other experiments  (Figures 3.3-3.6 and S3.4-S3.6), images were 

rotated at 45°/s for a minimum of three seconds in both anti- and preferred 

directions. 

Because natural images are non-homogenous in their distribution of features and 

contrasts, and because HS neurons have receptive fields of limited width, their 

responses are strongly influenced by local image properties. To ensure our 

recordings reflected the average image characteristics across the entire panorama, we 
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averaged responses over a minimum of 4 different image start phases. Data in Figure 

S3.6 was averaged over a minimum of 16 different start phases, as images were 

shown for only short periods.  

3.6.4 Image manipulation  

In several experiments, we used artificial manipulation of image contrast to probe the 

HS neurons’ responses. We artificially reduced the contrasts of natural images by 

scaling the value for each pixel (

 

Ifinal ) about the mid-grey level of our display such 

that to 

 

Ifinal = C(Iimage " 0.5) + 0.5 , 

 

Iimage , is a floating-point number from 0 to 1 

representing luminance intensity in the original image and 

 

C  is the contrast scaling 

factor [13]. In Figure 2 we increased image contrast in a similar fashion, but scaled 

luminance around mean image luminance, such that 

 

Ifinal = C(Iimage "mean(Iimage))+ mean(Iimage) .
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3.8 Supplemental Data 

3.8.1 Measuring image contrast 

Although our image set spans a large range of contrasts by any measure, quantifying 

contrast in natural scenes is not trivial. Tadmor and Tolhurst [1] argued that an 

appropriate contrast measure should account for the receptive field properties of the 

neurons, since many features may be outside the range encoded. As in other recent 

studies [2, 3] we adopted an elaborated correlation model for motion detection in 

Eristalis HS neurons to generate a biologically relevant measure of image contrast 

(Supplementary Figure 3.1A). Because models of this type inherently produce 

outputs, which are the square of image contrast, we take the square root of model 

output to get a measure of image contrast, CHS (Supplementary Figure 3.1B). Spatial 

and temporal filtering matched to Eristalis tenax optics, early visual processing, and 

motion correlation ensures that CHS reflects the spatio-temporal pass-band of the 

insect motion-sensitive neurons we record from (Supplementary Figure 3.1A).  

The elaborated correlation model (Supplementary Figure 3.1A) had an interreceptor 

angle of Δφ=1.1°, which is a physiologically realistic value for the separation of 

frontally orientated elementary motion detectors (EMDs) in Eristalis. Spatial pre-

filtering was implemented as a two dimensional gaussian blur Δρ=1.4°, which 

approximates the acceptance function of typical fly photoreceptors [4, 5]. Temporal 

pre-filtering was based on the work of James [6] who characterized the response of 

Eristalis large monopolar cells (LMCs) to continuously varying white noise stimuli. 

James showed that the response could be modelled as the difference of two log 

normals with different time constants. At high light levels he found typical values of 

tp=10.3ms and σ=0.236 for the positive log normal and tp=15.6ms and σ=0.269 for 

the negative log normal, where tp represents the time to peak of the curve and σ is a 

dimensionless parameter that determines the curves width [5, 7]. The delay was 

implemented as a first-order low-pass filter with a time constant, τ, of 31ms. Model 

output was taken as the mean steady state response to horizontal image motion at 

45°/s to a panoramic array of EMDs. 
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We normalized model output by the response to a maximum contrast sine wave 

grating of optimal spatial and temporal frequency (Supplementary Figure 3.1B). As 

CHS is the square root of model output, our analysis revealed that the image set used 

herein had a maximum CHS of 0.68 and minimum CHS of 0.12 (‘Hamlin’ and ‘Field’, 

Supplementary Figure 3.2A and 3.1Z respectively), which is a near six-fold range of 

contrast (Supplemental Figure 3.1B). Supplemental Figure 3.2 shows the full image 

set used in this study, with respective CHS values. 
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Supplementary Figure 3.1 Calculating natural image contrast  
A. Shows a schematic of the elaborated Hassenstein – Reichardt correlator used to 

calculate image contrast. All model simulations were run on an array of EMDs. 

spanning the size of the panorama. S, spatial low-pass filters on the luminance input. T, 

temporal band-pass filtering. D, delay implemented as a first-order low-pass filter. As 

the correlator output represents the square of luminance contrast, we take the square 

root of the mean output across an entire image as a physiologically relevant measure of 

image contrast (CHS). B. CHS is normalized by output to maximum contrast sine wave 

grating of optimal spatial and temporal frequency. Superimposed red circles show CHS 

and equivalent sine wave contrast of the 26 natural images used in the present study. 

Box plot inset reveals the spread of natural image CHS relative to the sine wave contrast. 

 

3.8.2 Image contrast manipulation 

In Figure 3.2, we increase the contrast of three images to investigate the contribution 

of a simple mechanism of global saturation on neural response. Note that a nominal 

doubling of image contrast is not trivial given the limited dynamic range of our 

display, since some parts of the original image are likely to be already rendered at the 

maximum and minimum luminance that the display can produce before the contrast 

is increased. The artefacts introduced by this type of image manipulation will vary 

between images. For example, an image with large amounts of bright sky, close to 

maximal luminance, and deep shadow, close to minimum, may be barely altered by a 

nominal doubling of contrast once this ‘clipping’ by the display is accounted for, 

whilst a scene with many values close to mid luminance will be more strongly 

altered (Supplemental Figure S3.3). To ensure that our contrast manipulation was 

providing an effective boost to contrast after clipping, we therefore compared neural 

response with the output of the elaborated EMD model using the same re-scaled 8-bit 

images as in the experiment (Figure 3.2D-F). 
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Supplementary Figure 3.2 Panoramic natural images  
A-Z show the complement of panoramic images used in this study ordered from A, 

highest contrast, to Z, lowest contrast. This image set also includes six images (A, K, 

M, N, U, and X) used in an earlier study done by Straw et al. [14].  

 

3.8.3 Motion adaptation and response normalization  

Supplemental Figure 3.4 shows box and whisker plots summarizing the distribution 

of responses to 25 images at different time points for both the preferred and anti-

preferred direction. In the earliest parts of the response these distributions are very 

broad, however, following adaptation the overall spread of responses is substantially 

compressed. The inter-quartile range is 51% smaller for preferred, 37% smaller for 

anti-preferred direction (Supplemental Figure 3.4), and 64% smaller for the condition 

in which the anti-preferred direction was subtracted away from the preferred 

direction following adaptation (Figure 3.5A). 

While the initial response to a high contrast image in our set (‘Botanic’) is at the 

upper end of this distribution, after 4 seconds of preferred direction adaptation it 

actually lies below the median (filled circles in Supplemental Figure 3.4A). In the 

anti-preferred direction, responses to this same image are somewhat different, with a 

weaker initial response and less obvious response decrease (Supplemental Figure 

3.4B). When the anti-preferred direction is subtracted away from the preferred 

direction though, this image occupies a similar response strength compared to the 

population across the analysis period (Figure 3.5C). Our analysis of an intermediate 

time-point (50-150ms) shows that the median response actually increases over the 

first 300 ms, and is associated with some reduction in overall response spread 

(Supplemental Figure 3.4; Figure 3.5). Images that produced the weakest responses 

in the early time window showed the most prominent increases, such as the ‘Field’ 

image (open circles in Supplemental Figure 3.4; and Figure 3.5A). Interestingly, 

despite the initially strong increase in response this image remains an outlier in 
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preferred direction but is boosted in response enough in the anti-preferred direction 

to join the group. 

Supplemental Figure 3.5 and Figure 3.5B show a comparison between the initial 

response level and the magnitude of the response change over the 4-second stimulus 

duration for three neurons. This confirms the trends described above where initially 

weak responses are subsequently boosted for either preferred direction 

(Supplemental Figure 3.5A) or anti-preferred direction stimuli (Supplemental Figure 

3.5B), while initially strong responses tend to decline over time. The relationship 

between these parameters appears linear for individual recordings, although the 

operating range differs, likely due to differences in the quality of neuronal recordings 

between experiments that influence absolute magnitude, and subtle differences in 

response onset transients. If we subtract preferred and anti-preferred responses to 

minimize the transients, we get a clear linear relationship for all the neurons (r2=0.78, 

0.88, 0.74, for cells 1, 2, and 3 respectively; Figure 3.5B).  
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Supplementary Figure 3.3 Image power is increased across all relevant 

spatial frequencies after increasing image contrast.  
A-C shows the three images used in Figure 2 before and after a nominal doubling of 

image contrast. A. The ‘Botanic’ image before (left; Contrast scale factor 1) and after 

artificially increasing image contrast (right; Contrast scale factor 2). B. As for A, but for 

the ‘Library’ image. C. As for A, but for the ‘Field’ image. D. Horizontal spatial 

frequency power spectrum for the  ‘Botanic’ image before and after artificially 

increasing image contrast. Dashed lines outline the range of spatial frequencies relevant 

for fly motion detectors. E. As for D, but for the ‘Library’ image. F. As for D, but for 

the ‘Field’ image. 
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Supplementary Figure 3.4 Adaptation reduces response variability 

across the image set.  
Box plots show the spread of responses generated by 25 natural images at three time 

points after the onset of image motion: an early (unadapted) time window, 50-150 ms, 

an intermediate time window, 200-300 ms, and a late (adapted) time window, last 100 

ms of stimulus. Responses were averaged across 100 ms time windows (centered on the 

abscissa) for a minimum of four trials within each neuron. Image start position was 

offset by 90° for each trial, thereby averaging the response over the whole 360° 

panorama. A. Preferred direction (N=6). B. Anti-preferred direction (N=3). Crosses (+) 

show outlier responses. Superimposed open circles show the position of the low 

contrast ‘Field’ image and closed circles show the position of the high contrast 

‘Botanic’ image. Data for the anti-preferred direction (B) subtracted from preferred 

direction (A) to eliminate non-directional response transients, is shown in the paper  

(Figure 3.5A). 
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Supplementary Figure 3.5 Adaptation is dependent upon initial response  

A. Response change (ordinate), determined by subtracting the averaged response from 

50-150 ms after the onset of image motion (initial response) from the averaged response 

to the last 100 ms of image motion (adapted response), plotted against the initial 

response (50-150 ms after the onset of image motion). Each image was averaged over a 

minimum of 4 trials each with image start position offset by 90°, thereby averaging the 

response over the entire 360° panorama. The data for three neurons is indicated with 

different symbols. Lines show linear regression through data for each individual neuron. 

Cell 1 and Cell 3 include data for all 26 images; Cell 2 includes data for 25 images. B. 

Same as part A but for anti-preferred direction. Data for the anti-preferred direction (B) 

subtracted from preferred direction (A) to eliminate non-directional response transients, 

is shown in the paper  (Figure 3.5B). 
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3.8.4 Contrast gain 

Although the progressive reduction in response magnitude, seen for some images in 

Figures 3.4-3.6 and Supplemental Figures 3.4 and 3.5 is consistent with an adaptive 

reduction in contrast gain, as extensively described for artificial stimuli such as 

sinusoidal gratings [8], the increase in response to images that initially produced 

weak responses are less easily explained. Could this effect be associated with an 

early onset increase in the contrast gain of the system? To investigate this we used a 

test-adapt-test protocol to measure the contrast gain before and after a brief adapting 

presentation (200 ms) with the ‘Field’ image (Supplemental Figure 3.6). 

Supplemental Figure 3.6A shows that the contrast gain, determined using a 

sinusoidal test image with a near optimal spatial and temporal frequency, is slightly 

reduced (i.e. shifted to the right). Supplemental Figure 3.6B shows the contrast gain 

of the system assessed using the same image (‘Field’) used as the adaptor. Because 

this is an inherently low contrast image, the unadapted contrast threshold is much 

higher and responses never reached the magnitude seen for the sinusoidal gratings 

(Supplemental Figure 3.6). At lower contrasts, contrast sensitivity again seems 

slightly reduced. However, when the test pattern reaches maximum contrast (i.e. the 

same as the unscaled test image) responses are significantly increased compared with 

the unadapted response (see inset in Supplemental Figure 3.6B). Hence, we conclude 

that the facilitation in response seen for some images is an image-specific effect and 

is not due to an increase in contrast sensitivity. As in all previous work, we only 

observe decreased contrast gain in the adapted state (albeit subtle for this particular 

image).  
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Supplementary Figure 3.6 Contrast response functions before and after 

adaptation with the ‘Field’ image  
A. Average contrast response functions before and after 200 ms adaptation with the low 

contrast ‘Field’ image using a sine wave of near optimal spatial frequency (0.1 

cycles/degree). Both adapting and test patterns were moved at 45°/s, which is equal to 

4.5 Hz temporal frequency for the sinusoid (N=3). Closed symbols show the unadapted 

response and open symbols show the response after adaptation. Data shown are the 

mean ± SEM for 63 trials in the unadapted condition and 142 trials in adapted condition 

(N=3). Inset shows a bar graph of the responses before (U) and after (A) adaptation at a 

contrast of 1. B. As for part A, except that in this example the test stimulus is the same 

image as the adaptor, ‘Field’. Data shown are the mean ± SEM for 140 trials in the 

unadapted condition and 151 trials in adapted condition (N=3). *** denotes p<0.001 

determined with paired t-test. Insets above the figure show the test-adapt-test protocol 

used to acquire the contrast response functions. 
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Chapter 4:    

Receptive fields of fly motion detecting 

neurons integrate local features within 

natural scenes unpredictably.  

 

4.1 Context  

In the previous chapter, we investigated HS neuron responses to a range of natural 

images. We show that these neurons have a remarkable ability to encode velocity 

accurately across an enormous range of image. Their robust responses appear to be 

mediated by powerful static and dynamic non-linearities that are recruited differently 

from one image to the next. However, in order to get reliable velocity responses, we 

carried out the analysis on time-averaged data, in effect averaging out any transient 

response fluctuations recruited by structure within the scenes.   

In this paper, we investigate the transient response properties of these neurons to a 

subset of the images used in the previous chapter. Our aim was to investigate these 

transient response characteristics both globally and locally, down to the level of 

individual motion sensitive elements.   
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4.2 Summary  

As an animal moves through its environment, the visual panorama projects onto the 

retina as a sequence of locally variable light intensities from which the visual system 

computes motion. A consequence of the nonlinear correlation underlying motion 

estimation in animals is that the variability in pattern structure and contrast inherent 

within natural scenes profoundly influences local motion responses. To accurately 

interpret optic-flow induced by self-motion, neurons in the fly’s visual system 

average locally variable responses by integrating visual inputs across wide regions of 

space. This does not occur in a single stage however, but rather hierarchically, such 

that many neurons have small receptive fields poorly optimised for averaging 

ambiguous local responses. Using motion sensitive neurons in the hoverfly, we 

investigated the integration local motion responses to natural scenes. We used a 

correlation-type model for motion detection that takes into account the receptive 

field properties of the neurons as a predictor for pattern dependence. Our results 

reveal that receptive field alone is a poor predictor of the spatial integration 

properties of these neurons. Specialized optic-flow detecting neurons sensitive to 

horizontal motion with vertically elongated but narrow receptive fields respond 

unpredictably to natural scenes, suggesting an additional role in the extraction of 

image features.  
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4.3 Introduction  

Accurately interpreting motion in the natural world presents a major challenge for 

biological visual systems. Natural scenes vary enormously in structure, luminance 

and contrast (Ruderman, 1994, Simoncelli & Olshausen, 2001). These are all 

parameters known to modulate the responses of biological motion detectors, which 

use nonlinear correlation of local changes in light intensity across space and time to 

estimate motion (for review see Clifford & Ibbotson, 2002). Consequently, even 

when presented with relatively simple stimuli, local motion responses show 

pronounced dependence on pattern structure and contrast (Egelhaaf, Borst & 

Reichardt, 1989, Reichardt, 1987, Reichardt & Egelhaaf, 1988).  

The visual system of the fly overcomes this, in part, through the spatial integration of 

retinotopically arranged local motion-sensitive elements by the so-called lobula plate 

tangential neurons (LPTCs) (Borst & Egelhaaf, 1992). In the third optic ganglion, 

there are approximately 60 individually identifiable LPTCs (Strausfeld, 1976) 

collectively thought to act as a neural centre for course control and visual 

stabilization (Borst & Haag, 2002, Egelhaaf & Borst, 1993). LPTCs have local 

preferred directions which vary across their receptive fields matched to optic-flow 

fields generated by the animal’s self-rotation about different body axis (Franz & 

Krapp, 2000, Krapp, Hengstenberg & Hengstenberg, 1998, Krapp & Hengstenberg, 

1996).  

The large receptive fields of these LPTCs have been interpreted as a prerequisite for 

parsing optic-flow fields generated from self-rotations about different body axes 

(Krapp et al., 1998, Krapp & Hengstenberg, 1996, Lappe, Bremmer & van den Berg, 

1999); however, they may also play an important role in the reduction of local 

pattern-dependence to image motion (Reichardt, 1987). Additional to their already 

large receptive fields, recent studies revealed that many LPTCs share axo-axonal gap 

junctions with neighbours (Elyada, Haag & Borst, 2009, Farrow, Borst & Haag, 

2005, Haag & Borst, 2004, Haag & Borst, 2005), resulting in receptive fields 

exceeding the size predicted from their dendritic arbours (Elyada et al., 2009, Franz 
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& Krapp, 2000, Hausen, 1982a, Krapp & Hengstenberg, 1996). This cross-

communication of retinotopic inputs has been suggested to lead to more robust 

representation of specific optic-flow fields (Cuntz, Haag, Forstner, Segev & Borst, 

2007).  

Further spatial pooling of local motion signals takes place in motor and pre-motor 

neurons. For example the descending neurons of the ocellar and vertical system 

(DNOVS) integrate across different combinations of LPTC, most likely via direct 

electrical connections, in such a way as to further improve their selectivity for 

specific rotational optic-flow fields (Haag & Borst, 2005, Haag, Wertz & Borst, 

2007, Wertz, Borst & Haag, 2008). In a hierarchical manner the neck motor neurons 

(NMNs), which synapse directly on muscles that control head rotations, further 

collate their inputs both directly from various LPTCs and via descending 

interneurons, such as those just mentioned (Gronenberg, Milde & Strausfeld, 1995, 

Huston & Krapp, 2008, Strausfeld & Bassemir, 1985, Strausfeld & Seyan, 1985). 

Many neck motor neurons have receptive fields that extend substantially into each 

visual hemisphere, far beyond the extent of any individual LPTCs or DNOVS 

(Huston & Krapp, 2008).  

Although integration over large regions of visual space is an important means for 

overcoming ambiguity in local motion responses, this does not occur in a single stage 

but rather hierarchically. The existence of intermediate stages of optic-flow 

processing, such as the LPTCs, suggesting that for many tasks, more local 

representations of visual motion remain important. Recently, for example, Nordström 

et al., (2008) described an intriguing sexually dimorphic adaptation in the horizontal 

system (HS) neurons of the hoverfly, where the receptive field of the dorsal most HS 

neuron, HSN, in males is far narrower than in females. The HS neurons are a subset 

of the LPTCs whose receptive field organizations resemble self-motion about 

vertical meridian, yaw rotation (Krapp, Hengstenberg & Egelhaaf, 2001, Nordström 

et al., 2008). The two most dorsal HS neurons in the hoverfly, HSN and HSNE, have 

receptive fields that overlap substantially and spatio-temporal tuning, which is 

similar when stimulated frontally (Straw, Warrant & O'Carroll, 2006); yet, their 

receptive fields vary in size and shape dramatically (Nordström et al., 2008). For the 
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detection yaw rotation, a receptive field such as the male HSN in hoverflies, which is 

substantially limited in spatial extent along its preferred directional axis, is more 

likely to provide ambiguous signals about image motion.  

Spatial integration is not the only means for overcoming local pattern dependence, 

however. HS neurons rapidly adapt to prior motion stimuli with strong local changes 

in contrast gain (Harris, O'Carroll & Laughlin, 2000, Nordström & O'Carroll, 2009) 

and increased sensitivity to changes in stimulus velocity (Maddess & Laughlin, 

1985). Recently, time-averaged responses from HS neurons were shown to provide 

robust estimates of image velocity when stimulated with natural images, which 

varied enormously in spatial structure and contrast (Straw, Rainsford & O'Carroll, 

2008). This consistency in the velocity coding of natural scenes has been attributed 

to an active normalization strategy that minimizes the response variability from one 

image to the next (Barnett et al., 2009, submitted). However, these studies only 

analysed the ‘time-averaged’ responses of HS neurons and thus, didn’t consider their 

time dependent response characteristics to the motion of the natural images.  

In this paper, we have investigated the consequences of receptive field size and shape 

in the processing of natural-image motion by comparing the time dependent 

responses of the unique male HSN and HSNE optic-flow processing neurons. We 

have implemented an elaborated correlation type motion detection model, which 

incorporates the receptive field properties of the neurons we recorded from as a 

linearly weighted sum, to generate a prediction of pattern dependence in response. 

Our results reveal that the receptive fields of these neurons are poor predictors of the 

integration of local motion signals. Furthermore, the integration of local motion 

signals within the receptive field of HSN appears to result in an enhanced sensitivity 

to structure within natural scenes. Unpredictable responses to natural scenes 

combined with the unusual shape of the HSN receptive field, suggests that it may 

play an important role in the encoding of local optic-flow and the detection of image 

features.  
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4.4 Results 

4.4.1 Natural images induce large response fluctuations in HS neurons to 

constant velocity stimuli  

We employ two basic stimulus classes to investigate pattern dependence in the 

response of HS neurons to the motion of panoramic natural images. The first 

occupies the entire stimulus monitor to investigate pattern dependence at the global 

level, e.g. allowing the neuron to integrate local motion signals across large regions 

of the receptive field (‘whole-screen’ stimulus; Figure 4.1-4.5). The second isolates 

the stimulus to a small region within the receptive field to investigate pattern 

dependence in responses at the resolution of only a couple of local motion sensitive 

elements (‘slit stimulus’; Figure 4.6-4.8).  

Figure 4.1 shows an example of the whole screen stimulus and the panoramic natural 

image, ‘Field’, which was centred on the stimulus monitor and rotated at 45 °/s in the 

preferred direction for nine seconds (Figure 4.1A). To avoid confounding pattern 

dependence with adaptation of the HS neurons response, we pseudo-randomly varied 

the stimulus over eight initial start phases each separated by 45° (Figure 4.1C). For 

subsequent analysis we took the ‘phase aligned’ average of the response recorded at 

the eight different start phases, but excluded the first second of image motion to 

avoid the influence of the transient phases of adaptation.  

As different parts of the scene move across the stimulus monitor, they generate local 

response fluctuations that are repeatable across the start phases and from one 

recording to the next (Figure 4.1). For example, the group of vertically aligned 

clouds, shown on the left hand edge of the monitor (Figure 4.1A), appears to produce 

a large increase in response at around 3.5 seconds (Figure 4.1B). The region 

immediately preceding it, on the other hand, has few vertically aligned features and 

produces a negligible response from the neuron (obvious at around 2-2.5 seconds; 

Figure 4.1A and 4.1B). Over the course of a full image rotation, eight seconds, 

average neural response varied by 85% from maximum to minimum for this image, 

even though image velocity remained constant at 45°/s. Undoubtedly, such large 

fluctuations in response would make it impossible for a neuron of this kind to 

provide accurate instantaneous velocity information to the animal.  
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Figure 4.1 Natural image pattern dependence 
A. The ‘Field’ image, one of six natural panoramic images used in this study as stimuli. 

Images rotated at 45°/s for nine seconds along the preferred directional axis of the HS 

neurons. B. ‘Phase aligned’ normalized response (mean±standard deviation; black solid 

line±grey dashed lines) for male HSN neurons to stimulation with the field image 

shows remarkable dependence upon structure when stimulated with natural images. The 

response of each neuron was normalized by its mean, therefore reducing the variance of 

absolute magnitude differences from one recording to the next. To avoid the influence 

of onset transients and the early adaptation period, we omitted the first second of the 

stimulus period. The data and the image are space-time aligned so that features of the 

image correspond to the neural responses immediately below it. C. Because the time 

course of HS neuron responses adapts to the stimuli presented, we started each trial at 

one of eight pseudorandom image start phases for each recording, with a minimum of 

four for each recording (0°, 90°, 180°, and 270° offset). The ‘phase aligned’ data (B) is 

the average of the response recorded adjusted for the image start phase and thus, aligned 

for space rather than time (see Experimental Procedures). Diagonal dotted lines connect 

time points where the same image segment is present on the stimulus monitor. Note the 

different time axis shown for parts B and C. Image start phase of 0° (C) is the same 

alignment as that shown for the average data (B). Responses are the average of N=4 

neurons with n=32 repeats.  
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4.4.2 Receptive field size and shape influences neuron pattern dependence  

How does receptive field size and shape influence pattern dependence? The male 

HSN and HSNE neurons have largely overlapping receptive fields with similar 

centres along the azimuth and spatio-temporal frequency tuning, which is well 

matched when stimulated frontally (Straw et al., 2006). However, these two neurons 

have demonstrable differences in receptive field shape and size (Figure 4.2A and 

4.2B). The male HSN neuron has a compact fronto-dorsally located receptive field, 

which prefers motion from bottom right to top left across the stimulus monitor, 

although local preferred directions vary across the receptive field (Nordström et al., 

2008). The receptive field stretches vertically from the equator beyond the upper 

limit of our stimulus display, yet has limited spread along the azimuth (11° at 75% 

maximum response) (Figure 4.2A). The HSNE neuron on the other hand, has a more 

ventrally located receptive field centre but also prefers motion from bottom right to 

top left across the monitor. The HSNE receptive field however, spreads laterally 

along its preferred directional axis well into the ipsilateral visual field beyond the 

limits of our stimulus display (Figure 4.2B) (Nordström et al., 2008).  

Figure 4.2C-2E shows the average responses from HSN (red) and HSNE (blue) 

neurons to six different natural images using the whole screen paradigm as described 

in Figure 4.1 (see Figure S4.1 for images). Despite producing time-averaged 

responses of similar magnitude from one image to the next (HSN: 7.8±1.5 mV; 

HSNE: 6.5±0.9 mV; mean±standard deviation), structures within some images 

clearly induces more response fluctuations than other images (compare Figure 4.2C 

with 4.2H, for example). Although HSN and HSNE have receptive fields centred at 

similar locations, using correlation analysis that assumes a 0 time lag between their 

responses there is a poor correlation between HSN (red) and HSNE neurons (blue), 

r=0.23±0.13 (mean cross-covariance coefficient±SEM; see insets on Figures). Given 

that the maximum sensitivity region of the HSNE receptive field is shifted along the 

azimuth by 10.5° compared to that of HSN, we might expect to see a small temporal 

delay (0.233 seconds at 45°/s) in the HSNE neuron’s response. When we accounted 

for such a delay, there was a slight improvement in the correlation between the two 

neuron classes. However, this was still relatively weak, r=0.47±0.1 Interestingly, 
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despite the substantial overlap of HSN and HSNE receptive fields, the differences in 

structure and integration within the receptive fields lead to very clear differences in 

the phase and magnitude of the residual pattern dependencies in the response (Figure 

4.2).  

When we compared the pattern dependence of HSN with HSNE, as measured by the 

response deviation for each image averaged across the set, HSN revealed a 

significantly larger mean standard deviation: SD=1.29±0.15 (mean±SEM) compared 

to SD=0.98±0.0.11 (mean±SEM) for the HSNE, p<0.05 (paired, t-test). The 

variance-to-mean ration (VMR), however, was not significantly different. The large 

lateral extent of the HSNE neuron’s receptive field extends far beyond the limit of 

the stimulus monitor thus, we are only able to stimulate the frontal part of the 

receptive field (Nordström et al., 2008) (Figure 4.2A and 4.2B). Consequently, we 

expect that these results significantly overestimate the amount of response 

fluctuation for HSNE, thus this difference may have been more profound if we were 

able to stimulate the neurons panoramically.  

Close inspection of the data reveals substantial variation between responses to 

different images (arrows inset on Figure 4.2). For some images (e.g. ‘Hamlin’, 

Figure 4.2D), the difference in response fluctuation between the two neural classes is 

profound, with a time lag-corrected correlation coefficient r=0.17. Whereas, for other 

images (e.g. ‘Field’, Figure 4.2G), the responses of the two neural classes is very 

similar, r=0.81. The arrows inset on Figure 4.2 highlight some response regions 

where the two neural classes differ substantially. 
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Figure 4.2 Effect of receptive field on pattern dependence 
A. The average receptive field of male HSN neurons, the arrows show the direction of 

image motion. The images were perspective distorted to simulate pure yaw rotation 

about the fly’s head on our stimulus monitor, which is flat, whited-out areas shown 

within monitor outline. The receptive fields were mapped using a small black bar 

scanned across the screen left to right and vice versa then up to down and vice versa at 

50°/s. The receptive field contour lines (red) connect points of equal response in 1 mV 

increments. Outermost contour line is 1 mV response level inner most 4 mV. The 

receptive field data is from Nordström et al., (2008). B. The same as A but for male 

HSNE neurons. C-H. Average ‘phase aligned’ response of male HSN (red) and HSNE 

(blue) to rotation of the ‘Car Park’ image (C), ‘Hamlin’ image (D), ‘Botanic’ image (E), 

‘Library’ image (F), ‘Field’ image (G), and ‘Creekbed’ image (H). The dashed line 

shows resting membrane potential. Cross-covariance coefficient (r), shown in brackets 

after the image name, is for the correlation between HSN and HSNE for each image. 

HSN: N=4 neurons, with a minimum of 26 repeats for each image; HSNE: N=5 

neurons, with a minimum of 21 repeats. Despite having largely overlapping receptive 

fields, the responses of HSN and HSNE are often obviously out of phase arrows inset 

(C and D).  
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4.4.3 Differences in response are not merely a consequence of different neuronal 

receptive fields  

We compared neuron responses with the output of an elaborated model for motion 

detection, which included filters matched to many of the processing stages known to 

occur up to the level of the HS neurons in Eristalis (Dror, O'Carroll & Laughlin, 

2001, Straw et al., 2008). However, on this occasion we weighted the outputs of an 

array of local motion detectors with the average receptive fields recorded from the 

neurons, to get a prediction of the pattern dependence generated by each image (for 

full description of the models implementation and simulation see Supplementary 

data; Figure S4.2). For the six images used in this study, mean model output varied 

more than 45-fold from one image to the next though (HSN: 0.29±0.22; HSNE: 

0.39±0.35; mean±standard deviation from image to image). To overcome this for 

display purposes, in Figures 4.3 and 4.5 we have normalized model output to the 

maximum neural response for each image. Figure 4.3 shows the neural responses, as 

plotted in Figure 4.2, in grey with the model response for each image overlaid. There 

is a poor correlation between the observed pattern dependence (grey; data from 

Figure 4.2) and that predicted by our model for either of the neural classes (HSN: 

red; HSNE: blue), with average covariance coefficients of r=0.36±0.04 for the HSN 

and r=0.39±0.11 for the HSNE (Figure 4.3). Though once again, there was 

substantial variation from one image to the next. Some images for example, ‘Library’ 

and ‘Field’, Figure 4.3D and 4.3E, were poorly predicted by our model; whereas, 

other images were well predicted, for example, ‘Creek bed’ (Figure 4.3F).  

In contrast to the neural recordings, despite taking into account the large differences 

between receptive fields, the model HSN and model HSNE responses are well 

correlated (r=0.78±0.02, mean±SEM; Figure 4.3). The correlation was even better 

when we added a delay to account for the small lateral shift in the receptive field 

centre of the HSNE (0.23 s at 45°/s; r=0.86±0.02, mean±SEM). Thus, we conclude 

that the observed differences in pattern dependencies in HSN and HSNE (as seen in 

Figure 4.2), and differences between the model and the neurons (Figure 4.3) are not 

only the result of the receptive field size and shape but are also modulated by 

additional non-linear processes acting either locally, globally or both. 
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Figure 4.3 Model pattern dependence 
A-F shows the output of a motion detector array with receptive field weightings taken 

from HSN (red) and HSNE (blue) for the same six images used in Figure 2. ‘Car Park’ 

image (A), ‘Hamlin’ image (B), ‘Botanic’ image (C), ‘Library’ image (D), ‘Field’ 

image (E), and ‘Creekbed’ image (F). Average neuron data taken from Figure 2 is 

shown in grey (HSN: dashed grey lines; HSNE: solid grey lines). Cross-covariance 

coefficients (r) are shown at the top of each panel. rHSN compares the model HSN 

response (red) with the neuron HSN response (dashed grey lines); rHSNE compares the 

model HSNE response (blue) with the neuron HSNE response (solid grey lines). The 

straight dashed line running across the bottom of the panels shows zero model output 

and the resting membrane potential of the neuronal data. We normalized maximum 

model responses to equal the maximum neuronal response for each image. Non-

normalized model responses show a 45-fold variation in average response across the six 

images.  
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4.4.4 Artificially lowering image contrast produces unpredictable changes in 

pattern dependence  

Compressive nonlinearities such as response saturation (Dvorak, Srinivasan & 

French, 1980) and nonlinear spatial summation (Haag & Borst, 2004)  are well 

established as mechanisms that influence the responses of LPTCs. Recent studies 

showed that the inclusion of such nonlinearities in correlation-type motion detector 

models reduced inter-scene variance in response when stimulated with the motion of 

natural images (Dror et al., 2001, Shoemaker & O'Carroll, 2005). While we cannot 

remove these nonlinear influences from the response of HS neurons entirely, they are 

largely activity dependent. Thus, a common approach to reduce the influence of such 

nonlinearities is to ‘linearize’ the neural response by reducing the contrast of the 

stimulus.  

A four-fold reduction in image contrast resulted in an increase in the VMR for each 

image and both neuron classes, consistent with a release from the influence of 

compressive nonlinearities (Figure 4.4). HSN had a mean VMR of 0.27±0.11 at full 

image contrast, which increased to 0.70±0.13 at ¼ image contrast (p<0.05; Wilcoxon 

signed rank test; Figure 4.4, red). HSNE showed a similar change in VMR, 

increasing from 0.17±0.04 at full image contrast, to 0.64±0.12 at ¼ image contrast 

(p<0.05; Figure 4.4, blue). Furthermore, after reducing image contrast, the model did 

a much better job at predicting neural responses (Figure 4.5). Mean correlation 

coefficients significantly improved from r=0.36±0.04 to r=0.62±0.06 in HSN 

(p<0.05) and r=0.39±0.11 to r=0.65±0.08 in HSNE (p<0.05) after reducing image 

contrast. However, again there was a great deal of variation from one image to the 

next. For example, for ‘Hamlin’ the model accurately predicted the neural response 

(r=0.84 for HSN, and r=0.88 for HSNE; Figure 4.5B), whereas for ‘Field’ the model 

remained a poor predictor (r=0.41 for HSN, and r=0.35 for HSNE; Figure 4.5E).  
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Figure 4.4 Affect of reducing image contrast on pattern dependence  
We artificially reduced the contrast of all six images in the set and recorded HSN (red) 

and HSNE (blue) neuronal responses. ‘Car Park’ image (A), ‘Hamlin’ image (B), 

‘Botanic’ image (C), ‘Library’ image (D), ‘Field’ image (E), and ‘Creekbed’ image (F). 

Responses to the full contrast images taken from Figure 2 are shown in grey (HSN, 

dashed grey line; HSNE, solid grey line). The straight dashed line running across the 

bottom of the panels shows the resting membrane potential. Cross-covariance 

coefficients (r) are shown at the top of each panel. rHSN compares the low contrast HSN 

response (red) with the normal contrast HSN response (dashed grey lines); rHSNE 

compares the low contrast HSNE response (blue) with the normal contrast HSNE 

response (solid grey lines).  
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After reducing image contrast, the model matched the relative shape and magnitude 

of the residual pattern dependence relatively well (Figure 4.5). However, remember 

that the response of the model in these examples has been normalised to the 

maximum neural response for each image. The absolute model response actually 

varied more than 45 fold across these six images. Thus, although our elaborated 

model in combination with the receptive field provides a reasonable prediction of the 

pattern dependence once image contrast is reduced, it fails dismally at capturing the 

absolute magnitude of responses produced.  

The inclusion of simple compressive nonlinearities in a further elaborated version of 

the model would, without doubt, reduce some of the spread of absolute response 

magnitudes (as shown by Dror et al, 2001) However, it would also severely ‘flatten’ 

the local response fluctuations far more than that evident in the physiological data. 

Although there is some evidence of a release from response saturation in the data 

(Figure 4.4 and Figure 4.5), the neural responses did not merely rescale after we 

lowered image contrast. In fact, for several images the shape of the response after 

reducing the image contrast shared little resemblance to the response produced at the 

full image contrast, despite the structure within the scenes remaining the same. The 

emergence of residual effects, such as the appearance or disappearance of new peaks 

and troughs in the data, are difficult to account for solely with an explanation based 

on a release from the influence of compressive nonlinearities (for example see solid 

arrows inset in Figure 4.4). Consequently, on average in both neuron classes there 

was only a mediocre mean correlation between the two contrast conditions (HSN, 

r=0.62±0.06; HSNE, r=0.67±0.07). Once again, this varied greatly from image to 

image. For example, in both neuron classes ‘Car park’ and ‘Field’ showed strong 

correlations (HSN: r=0.81, and r=0.79 respectively; HSNE: r=0.76, and r=0.74 

respectively; see Figure 4.4A and 4.4E) whereas, ‘Creek bed’ showed a much poorer 

correlation (HSN, r=0.5; HSNE, r=0.35; see Figure 4.4F). In addition, there were 

differences between the two neuron classes, for example ‘Library’ produced a very 

strong correlation in HSNE (r=0.83) and yet only a mediocre correlation for HSN 

(r=0.54; Figure 4.4D).  
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Figure 4.5 Model pattern dependence and reducing image contrast 
A-F shows a comparison of the model HSN (red) and HSNE (blue) responses with the 

neuronal data (taken from Figure 4) for HSN (grey dashed lines) and HSNE (grey solid 

lines) for the contrast-reduced images. ‘Car Park’ image (A), ‘Hamlin’ image (B), 

‘Botanic’ image (C), ‘Library’ image (D), ‘Field’ image (E), and ‘Creekbed’ image (F). 

Cross-covariance coefficients (r) are shown at the top of each panel. rHSN compares the 

model HSN response (red) with the neuron HSN response (dashed grey lines); rHSNE 

compares the model HSNE response (blue) with the neuron HSNE response (solid grey 

lines). The straight dashed line running across the bottom of the panels shows zero 

model output and the resting membrane potential of the neuronal data. We normalized 

maximum model responses to equal the maximum neuronal response for each image. 

Non-normalized model responses show a 45-fold variation in average response across 

the six images.  
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4.4.5 Local motion responses to natural scenes show pronounced pattern 

dependence  

Up until now, we have only analysed pattern dependence to natural images on a 

global level, with our stimulus largely filling the receptive field. To investigate local 

response properties, we used a window to mask the stimulus, limiting its spatial 

extent to the size of only one or two local motion-sensitive subunits (Figure 4.6A) 

(Egelhaaf et al., 1989, Reichardt & Egelhaaf, 1988). Figure 4.6B and 4.6C show the 

strip of the ‘Close’ image (Figure S4.1G) visible through the window (stretched 

vertically for display purposes) and the membrane fluctuations recorded axonally 

from a HS neuron. Areas in the image strip that contain few contrast boundaries 

generate almost no response, i.e. in the grass from 1-3.5 seconds and in the dark 

bushy area from 5-7.5 seconds (Figure 4.6C). Conversely, obvious contrast 

boundaries in the image produce sizeable membrane potential depolarisations  

(Figure 4.6C). Figure 4.6D shows the output of the model to the same image strip. 

Although the model captures the general phase and relative magnitude of the neural 

pattern dependence, its local response profile is quite different from that of the 

neuronal recording (see arrows in Figure 4.6D).  

Experiments using the window stimulus evoke only weak responses and thus require 

averaging over many identical trials to isolate neural response from noise (see Figure 

4.6C). To allow us to collect the equivalent of local responses in fewer trials, we 

adapted a method originally developed to study local motion detector responses to 

grating patterns (Egelhaaf et al., 1989, Reichardt & Egelhaaf, 1988). We extended 

the height of single image rows to stretch across many vertically aligned local 

motion sensitive elements. The stimulus image was vertically blurred to account for 

the optics of Eristalis tenax (Straw et al., 2006). The resultant neural response is 

much larger and effectively equivalent to the sum of many individual local motion 

sensitive elements viewing the same image row (Egelhaaf et al., 1989, Reichardt & 

Egelhaaf, 1988). This allowed us to obtain full response maps for six cells and two 

images in recordings that were greater than an hour in duration.  
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Figure 4.6 The slit-window stimulus 
A. Pictogram of the slit, or window, paradigm used to limit the size of the stimulus 

down to the size of only a couple of elementary motion sensitive elements. The natural 

image panorama is rotated about the fly’s head, as in the previous experiments in this 

paper, but on this occasion, the stimulus monitor is windowed (‘window mask’) such 

that only a small portion of the stimulus is visible to the animal. Thus, as represented in 

the pictogram, which represents the couple elementary motion sensitive elements as 

basic Hassenstein-Reichardt correlator schemes, the signal recorded from the HS 

neuron is only that produced from one or two elementary motion sensitive elements. B. 

Shows the ‘Close’ image, only used in this Figure due to the clear distinction between 

cluttered and uncluttered regions within the scene, as it appeared through the ‘window 

paradigm’. The window paradigm limited the stimulus to a 5°x5° window. The image 

strip below shows the strip of image visible to the animal through the widow, for 

display purposes the image strip has been stretched vertically so its structure is clearly 

visible. C. Average response of 240 repeats in one HSN neuron to the ‘Close’ image 

rotating at 45°/s with the ‘window paradigm’ as shown immediately above (N=1, 

n=240). The image strip shown in part B and the data are space-time aligned such that 

response fluctuations in the data correspond to image feature directly above in the 

image slit. D. Model response to the same strip of image as that viewed by the neuron 

above. The arrows inset on the neuronal and model data traces highlight one major 

difference between the two data traces, which, in this case, maybe the result of 

adaptation. Because the stimulus in the ‘widow paradigm’ was small responses were 

frequently tiny and thus required large numbers of averages to obtain reliable data. In 

the experiments shown in Figure 7, however, the window mask was extended vertically 

to represent a slit, the dashed white lines in B show this diagrammatically. In these ‘slit 

paradigm’ conditions the image strip was also vertically stretched such the stimulus was 

effectively the same as the ‘window paradigm’ but rather stimulated many vertically 

aligned elementary motion elements simultaneously thus, significantly reducing the 

number of repeats required to obtain useful data.  
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Figure 4.7 Local pattern dependence 
A. A central strip taken from the ‘Botanic’ image. Individual rows were stretched 

vertically and then played back to the animal using the ‘slit window stimulus’ as 

described in Experimental Procedures. B. Average neuronal responses recorded from 

stimulation with the section of the ‘Botanic’ image shown directly above (N=3, n=~12). 

The neural response is spatially mapped to the equivalent vertical location of the image 

rows and has the response time course matched to horizontal locations in the image. 

Membrane potential is represented in colour as indicated by the colour bar, such that red 

through to yellow colours reflect membrane depolarisations of increasing magnitude; 

grey shows membrane potentials proximal to the resting membrane potential; and green 

through to blue colours reflect membrane hyperpolarizations of increasing magnitude. 

C. Model output to the same stimulus. The model response is the average of three 

neighbouring elementary motion detectors to match the width of the stimulus window 

used (see Methods and Materials). D-E show the same configuration as A-C but for the 

‘Car Park’ image.  
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Figure 4.7 shows two images, ‘Botanic’ and ‘Car Par’ (Figure 4.7A and 4.7D, 

respectively), and the recorded local motion responses using the ‘slit windowed 

stimulus’ (Figure 4.7B and 4.7D). Large transient depolarisations associated with 

obvious image features (e.g. the edge of the car or columns in the ‘Car park’ image) 

dominate the neural response for both images (Figure 4.7B and 4.7E). Between these 

transients, the membrane potential tends to remain slightly hyperpolarized, despite 

the image moving continually in the preferred direction (Figure 4.7B and 4.7E). The 

slight hyperpolarization of the membrane potential between depolarising events 

likely reflects the antagonistic motion after-effect previously reported (Harris et al., 

2000, Nordström & O'Carroll, 2009, Srinivasan & Dvorak, 1979). 

While the local response of the elaborated model to the same scenes predicts the 

location of the gross features of the response, it only results in a mediocre correlation 

with that of the neuronal data (average row coefficients: r=0.58±0.05 for ‘Botanic’, 

and r=0.53±0.15 for ‘Car Park’; Figure 4.7C and 4.7D). In the model data, many 

features that produced responses are associated with subsequent hyperpolarizations, a 

prediction of basic Hassenstein/Reichardt correlator response to discrete contrasting 

objects (Geurten, Nordstrom, Sprayberry, Bolzon & O'Carroll, 2007), however such 

transient hyperpolarizations are not apparent in the neuronal response (Figure 4.7B 

and 4.7E)  
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4.4.6 Local motion responses are a poor predictor of neural pattern dependence 

produced when the entire receptive field is stimulated 

If we take into account the neurons receptive fields, how well do the locally 

measured neuronal motion responses predict the global pattern dependence? To test 

this we weighted the local motion responses with the neurons receptive fields and 

then linearly summed them to generate a prediction of the pattern dependence under 

the ‘whole screen stimulus’ (Figure 4.8). Interestingly, once again we see poor 

correlations between recorded pattern noise and that predicted by the local motion 

detector responses (r=0.29 for the HSN and r=0.41 for the HSNE; Figure 4.8A). 

Moreover, if we compare this same prediction with the response to pattern 

dependence recorded under reduced image contrast conditions the correlations 

improved but remained relatively weak (r=0.52 for the HSN and r=0.62 for the 

HSNE; Figure 4.8B). Surprisingly, the predictions of this neuronal response derived 

‘model’ for spatial integration are, if anything, worse than those of our 

Hassenstein/Reichardt correlator derived model (Figures 4.3 and 4.5). Part of this 

discrepancy may be due to recording noise that persists in our locally measured 

responses. Unfortunately though, the technically demanding nature of this technique 

means that it is very time consuming to collect repetitions of locally generated 

neuronal responses or, for that matter, explore this effect across a wider range of 

images.  
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Figure 4.8 Predict pattern dependence 
We used local motion responses (shown in figure 4.7) to generate a prediction of pattern 

dependence based on the receptive fields of the HSN (red) and HSNE (blue) neurons. 

A. Shows predicted pattern dependence overlaid on the observed pattern dependence 

recorded with the ‘whole screen’ stimulus (HSN, dashed grey line; HSNE solid grey 

line) for the Botanic and Car park images. B. Shows the same as (A) except that the 

observed pattern dependence on this occasion was recorded at ¼ image contrast. Insets 

show the covariance coefficients computed at zero time lag for the observed versus 

predicted pattern dependence for each neuron and image. Local response predicted 

pattern dependence is normalized to the maximum of the observed pattern dependence 

for each image. Arrow inset show response feature poorly accounted for by the 

prediction.  
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4.5 Discussion 

We never intended to implement a model that was going to fully account for all the 

processes occurring in the biological motion vision pathway. For simpler models, 

such as the one used here, it is often not the features of the data that the model 

captures, but rather the features of the data that it fails to capture, which lead to 

useful interpretations of the processes occurring within the system. The model we 

implemented, however, does incorporate spatial and temporal pre-filtering matched 

to Eristalis yet, it frequently fails to provide accurate predictions of the biological 

data, despite wide spread support for its predictive powers under conditions where 

simple experimenter defined stimuli are used (Clifford & Ibbotson, 2002, Egelhaaf & 

Borst, 1993).  

4.5.1 Absolute magnitude of responses  

Despite the time-averaged neuronal responses showing little variation in absolute 

terms from image to image (HSN: 7.8±1.5 mV; HSNE: 6.5±0.9 mV; mean±standard 

deviation; Figure 4.2), the model had time-averaged responses that varied more than 

45-fold from one image to the next. Nonlinearity inherent within basic correlation 

based models means that model output varies with the square of image contrast, thus 

the massive differences in absolute model response reflects the highly variable 

contrasts of the natural scenes (Dror et al., 2001) (see also Chapter 3). Dror et al. 

(2001) showed that the inclusion of saturation as an elaboration on the inputs of 

correlation based models for motion detection greatly reduced the spread in absolute 

time-averaged response to different natural scenes. However, recent results from HS 

neurons under natural image conditions suggest that simple saturating processes are 

unlikely to be playing a prominent role in limiting the spread of time-averaged 

responses (Straw et al., 2008) (see also Chapter 3).  

When we reduce image contrast, there was some evidence for a release from the 

influence of compressive nonlinearites for some features of the response (Figure 

4.4). However, a clear prediction of compressive nonlinearites, is that images which 

are strong drivers of response, will show a ‘flattening’ of residual pattern 
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dependence; whereas, images, which are weak neural drivers, will show more 

pronounced residual pattern dependence. Despite these images producing a greater 

than 45-fold spread in time-averaged model response, when we reduced image 

contrast, there was little evidence for the influence of prominent compressive effects 

in the neuronal data. Furthermore, once normalized to the maximum neuronal 

response for each image, our model, which does not contain compressive 

nonlinearities, shows an impressive match for the overall shape and magnitude of 

many of the residual pattern dependencies in response (Figure 4.5). This observation 

lends further support to the notion that static compressive nonlinearities are unlikely 

to be reducing image-to-image variance in the neuronal recordings.  

Shoemaker et al. (2005) showed that the inclusion of dynamic adaptive 

nonlinearities, in the form of motion adaptation in correlation-based motion detection 

models, also reduced the image-to-image spread in time-averaged responses to 

natural scenes. Although, Shoemaker et al. (2005) noted that none of the 

combination of saturating and adaptive elaborations to basic correlation-based 

schemes they tried could match the image-to-image response consistency observed in 

the biological recordings (Shoemaker, O'Carroll & Straw, 2005). Furthermore, 

Brinkworth and O’Carroll (2009, in press) show that, by carefully cascading many of 

the features known to exist on the motion processing pathway with some of those 

processes that are reasonably expected to exist, they were able to match the 

consistency in response from image to image observed in the biological data. 

However, in recent work, Barnett et al. (2009, submitted; Chapter 3) showed that a 

combination of dynamic adaptive properties of motion detectors, likely arising from 

different stages along the motion processing pathway, act as a powerful response 

normaliser, minimizing variance between images.  
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4.5.2 The existence of local hyperpolarizing transients in the model data   

The non-linear interactions underlying correlation-based models can lead to complex 

interactions between leading and trailing edges of features. Discreet features can 

generate complex triphasic responses, which transiently inhibit response even with 

preferred direction motion (Figure 4.6D; Geurten et al., 2007). The model’s response 

to the natural scenes often revealed such interactions, responding to image features 

with a brief depolarisation-hyperpolarization-depolarisation triplet (Figure 4.7F). The 

neuronal recordings however, showed little evidence for the existence of such 

interactions responding to the same image features with tonic depolarisations (Figure 

4.7E).  

A means for overcoming the transient hyperpolarizations in the model responses is to 

include temporal high-pass filtering on the inputs to the correlator. However, the 

model used in this paper already has high-pass filtering implemented on its inputs, 

based on observations from recordings from the lamina monopolar cells (LMCs) in 

Eristalis tenax (James, 1990). The response properties of the LMCs have been 

extensively studied and can be approximated by high-pass filtering in space and time 

(James, 1990; Laughlin, 1981; Srinivasan, Laughlin & Dubbs, 1982). This has been 

shown to be effective for removing redundant information in the visual input and 

enhancing edge-like boundaries (Srinivasan et al., 1982; Srinivasan, Pinter & Osorio, 

1990). The observation that the hyperpolarizing transients persist despite the 

implementation of temporal filtering to the level of the LMCs, suggests that the 

biological motion-processing pathway may also have additional temporal high-pass 

characteristics at least one serial stage of processing after LMCs. Alternatively, it is 

also possible that the filtering characteristics of early visual processing in flies are 

adapting to match the spatial and temporal structure of the prevailing stimulus, such 

that the observations based on white noise stimuli no longer reflect LMC response 

properties in more natural conditions (Kim & Rieke, 2001).  
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4.5.3 Nonlinear spatial integration across the receptive field 

The spatial integration properties of LPTCs have been studied thoroughly (Borst, 

Egelhaaf & Haag, 1995, Gauck & Borst, 1999, Haag, Egelhaaf & Borst, 1992, 

Hausen, 1982b, Single, Haag & Borst, 1997). As the size of a stimulus increases, the 

response of the LPTCs saturate significantly. Single et al. (1997) showed that this 

could be predicted by a compartment model of the LPTC if the opponent operation 

from a Reichardt correlator-type local-motion element occurs on its dendrites, 

because motion in one direction jointly activates both excitatory and inhibitory 

conductance’s.  

Nonlinearity in spatial integration, such as that mentioned above, has a compressive 

effect on the spatial integration of local motion responses (Borst et al., 1995, Haag et 

al., 1992, Elyada et al., 2009). Yet, when we varied the area of a natural image across 

the receptive field of HSNE, we saw that the neurons response increased relatively 

linearly up to an image height of about 50° (Figure S4.3). Interestingly, our model, 

which linearly summed local motion responses across the receptive field, began to 

saturate at smaller image sizes than the neuronal recording. The sub-linear response 

of the model results from spatial sensitivity profile of the receptive fields of these 

neurons, because as a stimulus gets larger it first spreads into areas of the receptive 

field that have weaker sensitivity and then beyond the bound of the receptive field. 

The observation that the neuron shows a more linear increase in response with image 

height than our model suggests that under these conditions the neuron may be 

integrating local motion signals supra-linearly.  

The HSN neuron shows observed pattern dependence that is far more erratic than 

that predicted from the local motion responses we recorded and the neurons receptive 

field (Figure 4.8). In these examples it would appear as if integration across the 

receptive field is having the effect of sharpening the response to local pattern 

features within the image. This is most apparent for the ‘Car Park’ image (Figure 

4.8B), where although the prediction captures the two main depolarising ‘bumps’, 

the whole receptive field response includes many sharp de- and hyperpolarizations 
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within these (Figure 4.8). This observation does not appear to hold true for the 

HSNE, which much better matched with the prediction (Figure 4.8).  

4.5.4 Function of the narrow male HSN in feature detection  

Despite having a putative role in the processing of rotatory optic-flow, the male HSN 

has an extremely narrow receptive field (Nordström et al., 2008). Such a narrow 

receptive field is poorly optimised for averaging out residual pattern dependent 

response fluctuations. What role, then, might the male HSN serve in optic flow 

processing? Nordström et al. argued that the small frontally oriented receptive of 

HSN was ideally positioned, at the pole of expansion for forward translation, to 

disambiguate rotatory and translatory optic-flow fields.  

Male hoverflies have very distinctive behaviour, often hovering in a stationary 

position for many minutes before switching flight modes and shooting off to chase 

conspecifics that encroach into their territory. Hovering perfectly stationarily is a 

challenging task and hoverflies will often place themselves in small openings in the 

foliage or on the edges of bushes. In windy conditions, these animals can often be 

observed continually adjusting their hovering position, staying in sink with the 

swaying foliage immediately adjacent to them. The vertically elongated, narrow 

receptive field shape of the male HSN neuron along with its increased sensitivity to 

structural features within natural scenes is well adapted to respond strongly to 

prominent vertically aligned edges and thus, may be an important adaptation to aid in 

controlled hovering.  
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4.6 Experimental Procedures 

4.6.1 Experiments and neuron identification  

We used wild caught drone flies, Eristalis tenax, immobilized with wax and mounted 

14-15 cm in front of the stimulus display. We performed sharp electrode intra-

cellular recordings on Horizontal System (HS) neurons in the left lobula plate using 

aluminosilicate electrodes pulled on a Sutter Instruments P97 electrode puller with a 

3 x 3 mm box filament. Electrodes were filled with 2 M KCl and typically had tip 

resistances of 80-250 MΩ. Upon successful penetration, we identified each neuron 

on-line based on its receptive field properties, as recently described in detail by 

Nordström et al. (2008).  

4.6.2 Data acquisition and analysis  

Data were digitised at 5 kHz using a 16-bit A/D converter (National Instruments, 

Austin Texas, United States) and analysed off-line with Matlab 

(http://www.mathworks.com). In all experiments, we normalized the response to the 

resting membrane potential. HS neurons are ideal models to investigate the nature of 

signals arriving at their synaptic inputs because they predominantly respond with 

graded shifts in membrane potential. However, activity-induced spikelets often 

influenced the response adding an additional nonlinearity to the axonally recorded 

membrane potential (Hengstenberg, 1977). To reduce the influence of such spikelets 

in our analysis, we ‘spike filtered’ our data by removing spike-like events and 

replacing them with the local mean membrane potential (Nordström & O'Carroll, 

2009). Where we have shown neural pattern dependence, we have attempted to 

minimize the effects of adaptation on our results by presenting each image several 

times (minimum of 4) with each subsequent presentation at a different start phase 

(see Figure 4.1).  
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4.6.3 Statistics 

We performed cross-covariance analysis (r) in Matlab (http://www.mathworks.com) 

to compare pattern dependence between conditions and with model predictions. 

Where we have quoted cross-covariance coefficients, they have been taken at zero 

lag between the two data, i.e. when the data are time aligned with each other, unless 

otherwise mentioned. Wilcoxon signed rank tests and t-tests were performed to 

determine significance using GraphPad Prism software (http://www.graphpad.com). 

All data are presented as mean ± standard deviation unless otherwise mentioned.  

4.6.4 Image collection and display 

The panoramic natural images used in the present paper were chosen from the image 

set used in Barnett et al, (2009) and represent various field sites around South 

Australia. Scenes ranged from densely forested areas (e.g. ‘Botanic’, ‘Creek bed’, 

‘Hamlin’; Figure S4.1), to vast open hillsides (e.g. ‘Field’), and to entirely man-made 

environments (‘Car park’; Figure S4.1). Figure S4.1 shows the full complement of 

the seven panoramic images used in this paper. We collected images using a Nikon 

D-70 digital camera and panoramic tripod head. These images are available from 

Russell Brinkworth upon request (russell.brinkworth@adelaide.edu.au). We 

displayed images on a linearized, 8-bit, RGB CRT at 200 Hz refresh rate with mean 

luminance of 100 cd/m2 using VisionEgg software (www.visionegg.org). The display 

subtended approximately 100° x 75° of the fly’s visual field. In several experiments, 

we used artificial manipulation of image contrast to probe the HS neurons’ 

responses. We artificially reduced the contrasts of natural images by scaling the 

value for each pixel (

 

Ifinal ) about the mid-grey level of our display such that to 

 

Ifinal = C(Iimage " 0.5) + 0.5 , 

 

Iimage , is a floating-point number from 0 to 1 representing 

luminance intensity in the original image and 

 

C  is the contrast scaling factor (Straw 

et al., 2008).  

4.6.5 Local motion detector analysis 

To investigate local motion responses, we windowed our stimulus to the size of only 

a couple of local motion sensitive elements (Figure 4.6). The stimulus window was a 

5°x 5° square window located at -10 of azimuth on the equator in the frontal visual 
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field of the fly, such that the central rows of the image were visible through it (Figure 

4.6). Experiments using the window stimulus evoke only weak responses and thus 

require averaging over many identical trials to isolate neural response from noise 

(see Figure 4.6C). To allow us to collect the equivalent of local responses in fewer 

trials, we adapted a method originally developed to study local motion detector 

responses to grating patterns (Egelhaaf et al., 1989, Reichardt & Egelhaaf, 1988). We 

extended the height of single image rows and the stimulus window to stretch across 

many vertically aligned local motion sensitive elements, such that the widow was 

now a slit 5° wide by 50° high. The stimulus image was vertically blurred to account 

for the optics of Eristalis tenax  (Straw et al., 2006). The resultant neural response is 

much larger and effectively equivalent to the sum of many individual local motion 

sensitive elements viewing the same image row (Egelhaaf et al., 1989, Reichardt & 

Egelhaaf, 1988). This allowed us to obtain full response maps for six cells and two 

images in recordings that were greater than an hour in duration.   

4.6.6 Model predictions  

We used an elaborated Hassenstein – Reichardt correlator model for motion 

detection to get a prediction of pattern dependence in the response of HSN and 

HSNE neurons. This model incorporated many of the spatial and temporal filtering 

processes known to occur on the motion-processing pathway of Eristalis. A full 

description of the model used to generate predicted responses has been included as 

Supplemental data. Briefly, the model was the sum of an array of local motion 

detectors of the Reichardt correlator type that were weighted by average receptive 

fields for these neurons as published in Nordtröm et al, (2008). For obtain local 

motion detector predicted pattern dependence (Figure 4.8), we combined the 

responses recorded to natural images using the slit window stimulus and then 

weighted them with the average local motion sensitivity of the neurons’ receptive 

fields.  
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Supplemental data  

4.7.1 Natural scenes  

We chose a set of panoramic natural images taken from the study done by Barnett et 

al. (2009, submitted; Chapter 3) as a representation of the natural scenes that flying 

insects might encounter (Figure S4.1). The scenes were chosen to represent a large 

spread of different environments ranging from highly cluttered bush and woodland 

scenes to barren field scenes. We also included a couple of images with prominent 

man made objects, e.g. ‘Library’ and ‘Car park’ (Figure S4.1).  

 

 

Figure S4.1 Natural image panoramas  
The seven natural panoramic images used in this study taken from Barnett et al., (2009, 

submitted; Chapter 3). The panoramic natural images were chosen to represent a wide 

range of natural and urban environments. Note that some of the images have many 

prominent vertical edges (A), whereas others have few prominent vertical features (D). 

A. ‘Car park’ image; B. ‘Hamlin’ image; C. ‘Botanic’ image; D. ‘Library’ image; E. 

‘Field’ image; F. ‘Creek bed’ image; and G. ‘Close’ image.   
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4.7.2 Model predictions of pattern dependence  

As a predictor of neural response, we used an elaborated correlation based model for 

motion detection (Figure S4.2). The model includes spatial and temporal filtering 

matched to Eristalis tenax optics, early visual processing, and motion correlation, to 

ensure that model output reflects the spatio-temporal pass-band of the insect motion-

sensitive neurons we recorded from (Figure S4.2A). The elaborated correlation 

model (Figure S4.2A) had an interreceptor angle of Δφ=1.1°, which is a 

physiologically realistic value for the separation of frontally orientated elementary 

motion detectors (EMDs) in Eristalis (Straw, Warrant & O'Carroll, 2006). Spatial 

pre-filtering was implemented as a two dimensional gaussian blur Δρ=1.4°, which 

approximates the acceptance function of typical fly photoreceptors (Dror, O'Carroll 

& Laughlin, 2001, Hardie, 1985). Temporal pre-filtering was based on the work of 

James (1990) who characterized the response of Eristalis large monopolar cells 

(LMCs) to white noise stimuli. James showed that LMC responses could be 

modelled as the difference of two log normals with different time constants. At high 

light levels he found typical values of tp=10.3ms and σ=0.236 for the positive log 

normal and tp=15.6ms and σ=0.269 for the negative log normal, where tp represents 

the time to peak of the curve and σ is a dimensionless parameter that determines the 

curves width (Dror et al., 2001, Payne & Howard, 1981). The delay was 

implemented as a first-order low-pass filter with a time constant, τ, of 31ms.  

In order to predict pattern noise, we needed to incorporate the receptive fields of the 

neurons we recorded from. Recently, we published (Chapter 2) detailed results on the 

receptive field properties of HS neurons in the hoverfly, Eristalis tenax (Nordström, 

Barnett, Moyer de Miguel, Brinkworth & O'Carroll, 2008). To model the receptive 

field, we weighted the outputs of an array of elaborated EMDs with the average 

receptive fields shown in Chapter 3 (Nordström, Barnett, Moyer de Miguel, 

Brinkworth & O'Carroll, 2008). Model output was taken as the sum of these 

weighted local responses (Figure S4.2B). However, the absolute time-averaged 

model responses varied by more than 45-fold across the image set, so for Figure 4.3 

and 4.5 we normalized model output by the maximum neural response for each 

image to allow us to display model and neuron responses on the same vertical axis.  
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Figure S4.2 Reichardt correlator 
A. Shows a schematic of the elaborated Hassenstein–Reichardt correlator (EMD) model 

used. S, spatial low-pass filters on the luminance input. T, temporal band-pass filtering. 

D, delay implemented as a first-order low-pass filter. B. Shows the average receptive 

field strength of male HSN neuons in hoverflies, Eristalis tenax, taken from Nordström 

et al. (2008; Chapter 2). Response strengths are indicated in mV by the colour bar. 

Superimposed is a representative array of EMDs shown as black circles, note that for 

display purposes these are not scaled to their actual size relative to the receptive field. 

We weighted local EMD responses by the average local motion sensitivities from 

within the neurons receptive and then linearly summed the weighted outputs.  
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4.7.3 Justification for using weighted linear spatial integration of local motion 

responses  

To integrate local motion responses across the receptive field we took a receptive 

field weighted linear sum of EMD outputs. However, there is a large base of 

literature established which indicates significant nonlinearity in the spatial 

integration properties of LPTCs (Borst, Egelhaaf & Haag, 1995, Gauck & Borst, 

1999, Haag, Egelhaaf & Borst, 1992, Hausen, 1982, Single, Haag & Borst, 1997). As 

the size of a stimulus increases, the response of the LPTCs saturate significantly. 

Single et al. (1997) showed that this could be predicted by a compartment model of 

the LPTC if the subtraction operation of a Reichardt correlator type local motion 

element (Figure S4.2) occurs on its dendrites, because motion in one direction jointly 

activates both excitatory and inhibitory conductances with a ratio that depends upon 

pattern velocity.  

None of the previous studies investigating the spatial integration properties of LPTCs 

had considered the integration of natural images though. Thus to test how local 

motion responses are integrated when natural images are used as stimuli, we 

recorded the response of an HSNE to images with varying vertical extent. We 

compared the response of the neuron with that of the EMD model, where integration 

across the receptive field was simulated as weighted linear sum (Figure S4.3). The 

implemented receptive field properties of these neurons already mean that the model 

response shows a sub-linear relationship with increasing image height (Figure S4.3). 

As image height increases, more of the image extends beyond the ‘hot spot’ of the 

receptive field into less responsive regions. Consequently, increases in image height 

greater than 50° yield a negligible increase in model response (Figure S4.3). 

Although the neuron shows a similar plateau for image heights above 50°, for image 

heights below this, response appears to increase approximately linearly with 

increasing stimulus height (Figure S4.3). Thus, once the limited receptive field size 

and variability in local motion sensitivity across it are considered, these neurons 

appear to spatial integrate local responses to natural images in a supra-linear way.  
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Figure S4.3 Spatial integration 
We varied the extent of the visible region of the ‘Botanic’ image by windowing the 

stimulus about the central row of the image whilst rotating the panorama at a constant 

velocity of 45°/s as per the other experiments. The Figure shows neuron response 

(dotted line) and model response (dashed line) to different stimulus heights in degrees. 

Model response is normalized to the maximum neural response.  
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Chapter 5:    

Local motion detection: temporal and 

spatial modulation of gain and transient 

responses to features 

 

5.1 Context 

In the previous two chapters, we explored HS neurons responses to natural images at 

both the local and global level. We show that the reliable encoding of natural images, 

likely results from a combination of static and dynamic nonlinearities that act as 

powerful response normalisers to images that would otherwise produce highly 

variable responses. These active normalization strategies appear to operating on both 

a local and global scale.  

In this paper, we investigate the transient response properties of the HS neurons to 

discreet features. The aim of the chapter is to investigate transient feature-feature 

interactions that might be locally modulating the neurons gain, and thus response to 

natural image. We use variants of local stimulus method, the slit-windowed stimulus, 

used in the previous chapter to investigate local transient responses to image features 

and their influence on local response gain.  
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5.2 Summary  

Background: Interpreting motion of the natural environment is a challenging visual 

task. Natural scenes have enormous variance in brightness, contrast and spatial 

structure. Several recent studies have shown that neurons on the motion-processing 

pathway in flies are able to make robust estimates of image velocity when shown 

natural images, an observation poorly predicted by models that otherwise predict 

their response properties to simple experimenter defined stimuli. We investigated 

how local features within scenes influence local transient responses to subsequent 

features and thus contribute to the normalization of global responses to motion of 

complex patterns.  

Method: We recording intracellular local-motion responses of identified motion-

sensitive neurons in the third optic ganglion of the hoverfly, Eristalis tenax. We 

adapted a method originally developed to study local motion responses to sine wave 

gratings, which limits the stimulus to a small vertically elongated strip, to investigate 

local and global neural responses to stimuli that are designed to interact with each 

other in the temporal and spatial domain.  

Results: Correlation-based models for motion detection predict local motion 

responses well for relatively simple stimuli. However, when image features are 

combined, neural responses show additional response characteristics. We show that 

after the passing of a high contrast feature local motion detectors transiently show 

reduced gain. However, this gain reduction appears to be recruited only when 

features stretch across several neighbouring ommatidia and are aligned perpendicular 

to their direction of feature motion.  

Conclusion: Local gain reduction is gated by the simultaneous activation of local 

motion sensitive elements. Features in natural scenes with vertically aligned edges, 

such as tree, which would be most likely drive motion detectors strongly would also 

be expected to recruit the greatest amount of response suppression. Mechanisms such 

as this may facilitate more robust neural encoding of otherwise highly variable 

natural scenes.  
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5.3 Introduction  

The Reichardt correlator is generally accepted to underlie local motion computation 

in insects (Borst & Egelhaaf, 1989, Borst & Haag, 2002, Clifford & Ibbotson, 2002, 

Haag, Denk & Borst, 2004, Hassenstein & Reichardt, 1956). However, it generates 

ambiguous estimates of image velocities because it is sensitive to additional 

parameters, such as image contrast and spatial structure. Although many behavioral 

and neurophysiological response properties corroborate with the predictions of the 

correlator (Borst & Egelhaaf, 1989, Borst & Haag, 2002, Clifford & Ibbotson, 2002, 

Hassenstein & Reichardt, 1956, Reichardt, 1961), substantial evidence suggests that 

insects use apparent retinal velocities to control navigation (Baird, Srinivasan, Zhang 

& Cowling, 2005, Esch & Burns, 1996, Ronacher & Wehner, 1995, Srinivasan, 

Lehrer, Kirchner & Zhang, 1991, Srinivasan, Zhang, Lehrer & Collett, 1996).  

The lobula plate tangential cells (LPTCs) pool inputs from large arrays of elementary 

motion detectors (EMDs) with Reichardt correlator-like response properties (Borst & 

Egelhaaf, 1989, Borst & Haag, 2002, Egelhaaf, Borst & Reichardt, 1989, Reichardt 

& Egelhaaf, 1988, Single, Haag & Borst, 1997). They have been show to be involved 

in behavioral responses to moving patterns (Borst & Bahde, 1988, Geiger & Nässel, 

1981, Hausen & Wehrhahn, 1983, Heisenberg, Wonneberger & Wolf, 1978) and 

have complex receptive fields suggesting an important role in visually guided 

navigation (Franz & Krapp, 2000, Krapp, Hengstenberg & Hengstenberg, 1998, 

Krapp & Hengstenberg, 1996, Krapp, Hengstenberg & Egelhaaf, 2001). When 

stimulated with sinusoidal grating, LPTCs show a dependence on pattern contrast 

and spatial frequency as predicted by the Reichardt correlator (Eckert, 1980, Harris, 

O'Carroll & Laughlin, 2000, Srinivasan & Dvorak, 1980, Straw, Warrant & 

O'Carroll, 2006).  

However, in the natural environment, the visual system encounters scenes that vary 

enormously in these very parameters (Ruderman & Bialek, 1994, Tolhurst, Tadmor 

& Chao, 1992). When natural images are used as stimuli, the LPTCs respond 

independent of such parameters and encode images velocity robustly (Straw, 

Rainsford & O'Carroll, 2008, Barnett et al., 2009, submitted; Chapter 3). HS neuron 
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responses to natural images are hard to reconcile with both their response 

characteristics to experimenter-defined stimuli, such as sine gratings, and the outputs 

of correlation-based schemes for motion detection (Dror, O'Carroll & Laughlin, 

2001, Shoemaker, O'Carroll & Straw, 2005, Straw et al., 2008).  

What additional neural processing might enable LPTCs to encode the velocity of 

natural images accurately? Although non-linear spatial integration might mitigate 

much global variability (Haag et al, 1992, Borst et al., 1995, Elyada et al., 2009), our 

recent work suggests that it is unlikely that static compressive non-linearities such as 

response saturation alone can explain the robust encoding of image velocity (Barnett 

et al., 2009, submitted; Chapters 3 and 4). However, dynamic changes to global 

motion encoding could contribute to the normalisation of neural responses (Chapter 

3). Furthermore, it is difficult to predict the global neural response based on the 

integration of responses to local features (Chapter 4).  

Could adaptive mechanisms such as local gain control be contributing to the 

observed velocity constancy? Harris et al. (2000) showed that fly LPTCs adapt to 

visual motion with a powerful reduction in contrast gain (Harris et al., 2000). Such 

motion adaptation can be broken down into four main separate components (Harris et 

al., 2000, Kohn & Movshon, 2003, Nordström & O'Carroll, 2009, Neri & Laughlin, 

2005). Two of these, the contrast gain reduction and the output range reduction, are 

non-directional, local components, which are substantially, or even entirely, reduced 

when testing and adapting in different parts of a neuron’s receptive field. Two 

additional components, an activity dependent DC after-potential and a post-

inhibitory AC component exert a global effect in adapted neurons by transferring to 

previously unstimulated parts of the receptive field (Nordström & O'Carroll, 2009). 

Natural scenes often contain many high-contrasting, local features such as tree 

trunks, borders between the horizon and the sky, or other sharp boundaries between 

shaded and well illuminated areas. Although such features would generate locally 

transient responses from EMDs, it is possible that local adaptation following the 

passage of such features will alter the neural response to subsequent features, and 

thus affect the global response to natural scenes. Indeed, recent studies have 
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suggested that the dynamic nonlinear properties of neurons are likely to be optimised 

for the statistics of natural signals (Schwartz & Simoncelli, 2001).  

To investigate this in more detail we decided to determine how local features within 

a scene interact with each other to recruit local adaptation. We recorded 

intracellularly from HS neurons, which respond with graded membrane potential 

changes making it possible to record changes that would otherwise be below the 

spike threshold. We have especially investigated how the temporal and spatial 

distribution of the same features affect local adaptive processes. We show that local 

high contrasting features recruit powerful local adaptation and suppress the response 

to subsequently seen features. We show that these interactions are rapid but extend 

beyond the interactions expected for simple correlation-based models. Finally, we 

show that this local gain reduction is facilitated by simultaneous activation of 

neighbouring motion sensitive elements.  
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5.4 Results: 

5.4.1 Local motion detector analysis  

To determine how local responses interact to generate the global response of fly 

LPTCs we developed two stimulus display modes. The whole-screen mode (Figure 

5.1A) displays the entire stimulus across the width of the monitor allowing us to 

investigate neural responses following spatial integration (Figure 5.1B). The slit-

windowed mode, adapted from a method originally developed to study local motion 

detector responses to grating patterns (Egelhaaf et al., 1989, Reichardt & Egelhaaf, 

1988), limits the width of the stimulus to the size of only a couple of local EMDs 

(2.5º, Figure 5.1E). This enables us to investigate local response properties of just a 

few EMDs (Figure 5.1F).  

The effectiveness of the slit-windowed stimulus in revealing local motion-detector 

properties is illustrated by figure 5.1. When we display a vertically limited (20° high) 

sinusoidally modulated luminance grating strip of near optimal spatial frequency 

(0.06 cycles/°, 90º/s) moving in the preferred direction, using the ‘whole-screen’ 

stimulus, the HS neuron responds with a tonic depolarisation of  approximately 2.25 

mV (Figure 5.1C). However, if we display the same grating strip using the slit-

window, the HS neuron responds with pronounced time-dependent membrane 

potential fluctuations (Figure 5.1G). Despite the image continuously moving in the 

neuron’s preferred direction, local motion responses often feature subtle 

hyperpolarizations. While the mean membrane potential is similar to the response 

generated using the whole-screen approach, hyperpolarizations reflect motion in the 

anti-preferred direction. Note that although this stimulus is designed to stimulate a 

single row of vertically aligned EMDs, windowing the stimulus does not necessarily 

limit exposure to one EMD, as the window is likely to stimulate parts of the 

neighbouring EMDs.  
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Figure 5.1 Slit window stimulus and local motion responses 
A. A strip (20º) of a sinusoidally modulated luminance grating displayed at 90°/s with 

the whole screen mode. The whole screen mode is designed to stimulate large regions 

of the neuron’s receptive field simultaneously, to investigate global response properties. 

B. A pictogram of the whole-window mode, showing how spatial integration across an 

array of EMDs (representing either the model or the neuron’s dendritic tree) is un-

attenuated using the whole screen mode. C. The neural response represents the spatial 

average across many EMDs and shows a tonic depolarization by the stimulus. E. The 

slit windowed mode, which horizontally limits the stimulus width horizontally. F. In this 

case only vertically aligned EMDs are stimulated. G. Using this stimulus regime, the 

local neural response shows pronounced pattern dependent fluctuations with a 

frequency doubling in the time domain.   
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5.4.2 Response characteristics of local motion-sensitive elements supplying the 

HS neurons  

To investigate the influence of transient responses to locally discrete features more 

typical of those in natural scenes than the continuous grating stimuli in figure 5.1, we 

designed a simple stimulus comprising a square-wave, white-black luminance step 

on a mean luminance (grey) background, referred to as a ‘doublet’ (Figure 5.2A and 

5.2B). The doublet is 14° wide and 84° high (the height of the display). Although 

this apparently simple stimulus is actually more complex than a continuous sinusoid 

in terms of spatial frequency content,  it has a fundamental row frequency of 0.053 

cycles/°, just below optimum for Eristalis (Straw et al., 2006). Using the slit-window 

mode, we displayed the doublet at full and 10% contrast, in both the preferred and 

anti-preferred direction (Figure 5.2A and 5.2B). We flipped the doublet order before 

displaying in the anti-preferred direction, so that the temporal order of luminance 

change at a single point in space was the same in both directions, as is evident from 

the time-luminance traces (Figure 5.2C and 5.2D).  

To investigate our stimulus from a motion detection theory perspective, we first 

consider the local response of an elaborated EMD model. We elaborated a 

Hassenstein-Reichardt correlation-based model with spatial and temporal filtering 

matched to the optics, early vision, and motion computation of Eristalis tenax (Dror 

et al., 2001, Straw et al., 2008) Barnett et al, 2009, submitted). For full details of the 

local model implementation and simulation see Chapter 4, Figure S4.2 and for slit 

windowing see Figure 5.1B and 5.1E in this chapter. We stimulated an array of such 

EMDs with the same stimuli as those used in neural recordings, i.e. taking full 

account of the slit window, if applied.  

The slit window is 2.5° wide and thus just wide enough to stimulate a few 

neighbouring EMDs. When the doublet moves across the slit window the EMD 

model produces a complex triphasic response (Figure 5.2E). The stimulus is 

characterized by three contrast boundaries: grey-to-white, white-to-black, and black-

to-grey (Figure 5.2A and 5.2B). The three peaks in the model output (arrowheads in 

Figure 5.2E) correlate well with the timing of each of these contrast boundaries, 
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albeit with a slight delay due to the low-pass filtering stages of the EMD. As 

expected from an EMD type model, where we implement the opponent stage as an 

equally weighted subtraction (Figure S4.2, Chapter 4), the output following motion 

in the anti-preferred direction is identical but inverted (Figure 5.2F). The arrowheads 

highlight the timing of the three peaks in these, and subsequent figures (Figure 5.2F).  

Although our model incorporates several elaborations designed to match motion 

processing in the hoverfly, it is obviously far simpler than the biological system. 

Nevertheless, when we measure the neural response to doublet motion at full contrast 

in the preferred direction it is remarkably similar to the model output (compare 

Figure 5.2E and 5.2G). Like the model output, the neural response is characterised 

by three dominant peaks, which correspond well in relative magnitude and timing to 

the peaks produced by the model (see arrowheads in Figure 5.2G which indicate the 

timing of the model output peaks). The membrane potential remains well depolarised 

relative to the resting potential, with a mean of 2.93±0.18 mV (mean±SEM; mean is 

taken as the average response in a window that coincides with the stimulus).  

Unlike the model, however, which gives a symmetrical output to the two directions 

of motion, the response to anti-preferred direction motion shows some notable 

differences to that produced by preferred direction (compare Figure 5.2G and 5.2H). 

First, the three hyperpolarization peaks are much more similar in magnitude. The 

second response peak is only twice the magnitude of the first, while the third peak is 

similar in magnitude to the second (Figure 5.2H). Second, between the second and 

third hyperpolarization peak there is a brief and small depolarisation of the 

membrane potential (see * in Figure 5.2H). This small depolarisation could reflect 

the recruitment of voltage-gated sodium conductances within the HS neuron itself 

which may boost large depolarising transients (Haag, Theunissen & Borst, 1997), a 

feature not implemented in our model. Despite the brief depolarisation, the neuron 

produces a net mean hyperpolarized response of -1.41±0.16 mV (Figure 5.2H), 

which corresponds to 48% of the mean response magnitude to preferred direction 

motion (Figure 5.2G).  
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A reduction in contrast of the stimulus might be expected to induce locally weaker 

activation of the inputs and be less likely to recruit non-linearities such as 

amplification or rectification due to voltage gated conductances and thus to yield 

responses more similar in shape to the predictions of our simple model. Surprisingly, 

however if we display the doublet at 10% contrast, the neural response no longer 

retains an obvious triphasic shape. Instead, we see a single dominant depolarisation 

in the preferred direction (Figure 5.2I) and two smaller hyperpolarizations in the 

anti-preferred direction (Figure 5.2J). In both these cases, the peaks to low contrast 

motion correspond in time with the largest peaks observed to high contrast motion 

(compare Figure 5.2I, J with Figure 5.2G, H). However, despite the 10-fold reduction 

in stimulus contrast, the net neural responses only rescaled by approximately 1/3 and 

display the same asymmetry in response magnitude for the two directions. The mean 

response was 0.99±0.19 mV to preferred direction motion and -0.67±0.23 to anti-

preferred direction motion. The EMD model, on the other hand, is sensitive to the 

square of image contrast and thus simply rescales to 1% of its original response 

magnitude, but retains the same shape (not shown).  
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Figure 5.2 Blocklet response 
A, B. A combination of two square-wave, white-black luminance steps on mean 

luminance (grey) background, referred to as a doublet. The doublet is 14° wide and 75° 

high and has a fundamental row frequency of 0.053 cycles/°, near optimal for HS 

neurons in the hoverfly. We simulated doublet motion at 90°/s with the doublet at either 

full or 10% contrast in both the preferred (A) and anti-preferred direction (B). For 

display purposes the doublets are not shown at their true contrasts but adjusted for print. 

C, D. Normalized stimulus luminance plots as seen at the first edge of the slit-window, 

i.e. the right hand edge for preferred, right-left motion, and the left hand edge for anti-

preferred left-right motion, e.g. time-luminance graphs. Solid black lines represent the 

full contrast condition, dashed grey lines show the 10% original contrast condition. E. 

The doublet stimulus produces a characteristic triphasic response from the model in the 

preferred direction. F. The output is similar in the anti-preferred direction. G. The 

neuron response is also characterized by a triphasic response profile that closely 

resembles the model in the preferred direction. H. The neuron response to anti-preferred 

direction motion. I, J. The neural responses to the low contrast doublet. Arrowheads 

indicate the timing of response peaks produced by the model to the doublet stimuli. 

Although responses are qualitatively indistinguishable from one recording to the next, 

absolute response magnitude can vary. To enable accurate comparison of the responses 

across the six stimulus conditions in Figures 5.2-5.4, we show the response to one 

neuron in which all six conditions were performed, n=20.  
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5.4.3 Feature-feature interactions to transient stimuli depend on the temporal 

order of contrasts within a stimulus ensemble  

To investigate the adaptation recruited by high and low-contrast temporal changes 

respectively, we combined the high and low contrast doublets (from Figure 5.2A and 

5.2B). Initially we displayed the two doublets as an increasing contrast ensemble 

with the low contrast doublet followed by the high contrast doublet, but separated by 

a 1.2° gap (corresponding to a 14 ms delay at a velocity of 90°/s; Figure 5.3A-D).  

Figure 5.3E and 5.3F show the model output to the increasing contrast ensemble. 

Due to the sensitivity of the model to stimulus contrast, the high-contrast doublet 

completely dominates the output on the scale shown here (Figure 5.3E and 5.3F). To 

investigate how the separate doublets interact with each other, we compared the 

model with the linear sum of the outputs from the individual doublets (see Figure 

5.2E, F) with an appropriate delay to account for the timing (dashed grey lines, 

Figure 5.3E, F). The model output to the increasing contrast ensemble lies perfectly 

over the top of the linear sum of the independently modelled doublet responses 

(compare dashed and solid lines in Figure 5.3E and 5.3F). When we zoom in on the 

model’s response it is clear that the response to the second doublet slightly precedes 

that predicted by the linear sum (compare grey and black lines in Figure 5.3G and 

5.3H), revealing a weak predicted interaction between them.  

Again, the model output to the different contrasts is a poor predictor of the neural 

response. The neuron’s response to the increasing contrast ensemble shows four 

major peaks (Figure 5.3I, J) corresponding to the same contrast edges that generated 

responses to the single stimuli (compare figure 5.2G, I and 5.2H, J with Figure 5.3I 

and 5.3J, solid black lines). The arrowheads in Figure 5.3 indicate the timing of the 

three peaks from the model output to a single high contrast doublet (see Figure 5.2E, 

F). Much like the model output, the neural response can be largely predicted by the 

linear sum of the independently-recorded doublet responses, as seen in Figure 5.2G-J 

(compare grey and black lines, Figure 5.3I and 5.3J). The same observations holds 

for the anti-preferred direction.   
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We now consider a decreasing contrast ensemble, which presents the doublets in the 

opposite order, i.e. with the high contrast doublet followed by the low contrast 

doublet (Figure 5.4A-D). It is important to note that this ensemble is statistically 

identical to the one if Figure 5.3 with respect to global spatial frequency power 

spectrum, luminance, and contrast. It only differs in the temporal order that the 

different contrasts are seen by local motion elements.   

When we run the decreasing contrast ensemble past the model, the output to the high 

contrast feature dominates the output (Figure 5.4E and 5.4F). However, if we zoom 

in on the model’s response to the low contrast doublet it is clear that it differs from 

that predicted by the responses to the two doublets on their own (compare grey 

prediction and black output, Figure 5.4G and 5.4H). When we linearly sum the 

independently modelled doublet responses (dashed grey line Figure 5.4G), a small 

hyperpolarizing transient that follows the 3rd peak overshadows the initial response 

to the second (low contrast) doublet  - i.e. the first of the 3 predicted response 

peaks(Figure 5.4G, first arrowhead). However, when the two doublets are combined 

in the model, we actually see an amplification of the output (Figure 5.4G, solid black 

line). On the other hand, the second response peak to the low contrast doublet is 

suppressed to about 50% of its original magnitude (Figure 5.4G, second arrowhead). 

Importantly however, by the time the final contrasting edge falls within the field of 

the model, there are no remaining interactive effects - the model output perfectly 

overlies the linear sum of the independently modelled responses (Figure 5.4G, third 

arrowhead). 
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Figure 5.3 The increasing contrast ensemble  

A. We combined the high and low contrast doublets to produce an ensemble where the 

low contrast (10%) doublet is followed by the high contrast doublet, referred to as the 

increasing contrast doublet ensemble. B. The spatial arrangement is flipped for 

stimulation in the anti-preferred direction so that the temporal order of doublet contrasts 

remains the same. C. The time-luminance trace for motion in the preferred direction. D. 

The time-luminance trace for motion in the anti-preferred direction is identical. E. 

Model output to the ensemble moving in the preferred direction. The dashed grey line 

indicates the predicted output based on the linear sum of the response to each doublet 

individually (see Figure 5.2). The arrowheads highlight the timing of the three peaks in 

the output. F. Model output to the ensemble moving in the anti-preferred direction. The 

dashed grey line shows the linear sum of the individual responses. G. Magnified model 

output (x10 vertically) reveals the response to the low contrast doublet in the preferred 

direction. H. Magnified model out reveals the response to low contrast doublet in the 

anti-preferred direction. I. Intracellular response of an HS neuron to the increasing 

contrast ensemble moving in the preferred direction. The dashed grey line indicates the 

predicted response based on the linear sum of the response to each individual doublet 

(see Figure 5.2). The arrowheads highlight the timing of the three peaks in the model 

output. J. Intracellular response of an HS neuron  to the ensemble moving in the anti-

preferred direction. The dashed grey line indicates the linear sum of the response to the 

individual doublets (see Figure 5.2). The arrowheads highlight the timing of the three 

peaks in the model output. n=20 from the same neuron as shown in Figure 5.2 and 5.4, 

see Figure 5.2 legend for justification. 
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Figure 5.4 The decreasing contrast ensemble. 
A. We combined the high and low contrast doublets to produce an ensemble with the 

high-contrast doublet preceding the low contrast doublet. B. The spatial arrangement is 

flipped for stimulation in the anti-preferred direction so that the temporal order of 

doublet contrasts remains the same. C. The time-luminance trace for motion in the 

preferred direction. D. The time-luminance trace for motion in the anti-preferred 

direction is identical. E. Model output to the ensemble moving in the preferred 

direction. The dashed grey line indicates the predicted output based on the linear sum of 

the response to each doublet individually (see Figure 5.2). The arrowheads highlight the 

timing of the three peaks in the output to the low-contrast doublet. F. Model output to 

the ensemble moving in the anti-preferred direction. The dashed grey line shows the 

linear sum of the individual responses. G. Magnified model output (x10 vertically) 

reveals the response to the low contrast doublet in the preferred direction. The dashed 

grey line shows the linear sum of the individual responses. H. Magnified model output 

reveals the response to the low contrast doublet in the anti-preferred direction. The 

dashed grey line shows the linear sum of the individual responses. I. Intracellular 

response of an HS neuron to the decreasing contrast ensemble moving in the preferred 

direction. The dashed grey line indicates the predicted response based on the linear sum 

of the response to each individual doublet (see Figure 5.2). The arrowheads highlight 

the timing of the three peaks in the model output. J. Intracellular response of an HS 

neuron to the ensemble moving in the anti-preferred direction. The dashed grey line 

indicates the linear sum of the response to the individual doublets (see Figure 5.2). The 

arrowheads highlight the timing of the three peaks in the model output. n=20 from the 

same neuron as shown in Figure 5.2 and 5.3, see Figure 5.2 legend for justification.  
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If we now look at the neural response, again it differs quite substantially from the 

prediction by the model, and also by the prediction based on summing the 

independently measured doublet responses (Figure 5.4I). The neuron’s response to 

the first low contrast doublet (solid line, first arrowhead, Figure 5.4I) is suppressed 

compared to the prediction (grey dashed line, first arrowhead, Figure 5.4I), whereas 

the model response was substantially facilitated (Figure 5.4G, first arrowhead). This 

is particularly evident in the anti-preferred direction (compare grey and black lines, 

Figure 5.4J, first arrowhead). Furthermore, the neuron’s response to the second 

(predicted to be largest) peak is entirely suppressed (solid black line, second 

arrowhead, Figure 5.4I, J), whereas the model only showed a partial suppression 

(second arrowhead, Figure 5.4G, H). The third major difference between the model 

and neural response occurs in the vicinity of the third predicted response peak to the 

second doublet. Whereas the model predicted no residual interactions between the 

two doublets (Figure 5.4G, H), the neural response is clearly still strongly 

suppressed, particularly evident in the anti-preferred direction (third arrowhead, solid 

lines, Figure 5.4I and 5.4J). Indeed, the overall impression of the physiologically 

recorded response is that the response to all three peaks predicted for the second 

doublet is completely suppressed by the prior passage of the first.  

The change in presentation order of these features leads to a 30% net decrease in the 

mean response in the preferred direction, from 2.1±0.092 mV  (N=2, n=40) for the 

increasing contrast ensemble to 1.5±0.099 mV for the decreasing contrast ensemble 

(p<0.001; two-tailed t-test). It decreased by 15% in the anti-preferred direction, from 

-1.0±0.12 mV (mean±SEM; N=2, n=40) for the increasing contrast ensemble to -

0.85±0.095 mV for the decreasing contrast ensemble. However, this difference was 

not statistically significant.  

Does the EMD model predict the neural responses? Qualitatively the model captures 

some of the interactions caused by the doublets in decreasing contrast order, but the 

neural response is still suppressed well after the model predicts that there will be no 

further interactions (third arrowheads in Figure 5.4G-J). The suppressed responses to 

the low-contrast features are likely caused by a local dynamic reduction in contrast 

gain that outlasts the stimulus. This is not recruited when the feature order is 
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reversed, as might be expected for an adaptation mechanism that is itself sensitive to 

feature contrast. Additional experiments varying the spatial (and thus temporal) 

separation of the doublet features (not shown) reveal that the suppression remains 

substantial for features separated by 60 ms, and is weakly evident when features are 

separated by 165 ms, however, there is no interaction at larger separations (Data not 

shown).  

5.4.4 Global effects of feature-feature interactions within an image  

Up until now, we have considered the interactions between doublets from the 

perspective of local motion detector responses. How do these feature-feature 

interactive effects change the neuron’s global response? To investigate this, we first 

displayed the same doublet ensembles as in Figures 5.3 and 5.4 but recorded neural 

responses using the whole-screen mode (Figure 5.5).  

As the doublet ensembles sweep across the relatively narrow HSN receptive field, 

the neuron response builds to a peak before decaying away more slowly (Figure 

5.5B, C). In both the preferred and anti-preferred direction, the decreasing contrast 

ensemble (blue, Figure 5.5B and 5.5C) generates a peak response faster than the 

increasing contrast ensemble (red, Figure 5.5B and 5.5C). The peak response to the 

increasing contrast ensemble (red) is delayed by 131 ms in the preferred direction, on 

the order of the width of a doublet (156 ms at 90°/s). In the anti-preferred direction 

this shift is only 66 ms (Figure 5.5C). The slower response to the increasing contrast 

ensemble most likely reflects the delayed arrival of the high contrast doublet (second 

in this ensemble) in the receptive field. However, the peak response is reached more 

rapidly than predicted by this temporal offset in the anti-preferred direction (Figure 

5.5C).  

The mean neural response was significantly larger for the ‘increasing contrast 

ensemble’ 7.4±0.37 (mean±SEM) compared to 6.1±0.4 for the ‘decreasing contrast 

ensemble’ (p<0.0001, two-tailed t-test) in the preferred direction (Figure 5.5D). A 

similar change in response was evident for anti-preferred direction, -3.9±0.2 for the 

increasing contrast ensemble compared to -3.4±0.2 for the decreasing contrast 

ensemble (p<0.001, two-tailed t-test; Figure 5.5D).  
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Figure 5.5 The vertical distribution of the stimulus  
A. The doublet ensembles as whole-screen stimuli. Blue indicates the decreasing 

contrast ensemble, and red the increasing ensemble. B. Intracellular HS neuron response 

to the doublets as they pass through the receptive field in the preferred direction (blue = 

decreasing contrast, red = increasing contrast). C. Intracellular response to the doublets 

moving in the anti-preferred direction (blue = decreasing contrast, red = increasing 

contrast). D. The mean response to the doublets moving in the preferred and anti-

preferred direction (blue = decreasing contrast, red = increasing contrast). Stars indicate 

a significant difference (p < 0.001, Student’s t-test). E. The doublet ensemble broken up 

into individual pseudo-randomly distributed 1.8º high segments. The stimulus was 

displayed using the whole-screen mode. Blue indicates the decreasing contrast 

ensemble, and red the increasing ensemble. F. Intracellular HS neuron response as the 

stimulus moves in the preferred direction (blue = decreasing contrast, red = increasing 

contrast). G. Intracellular HS neuron response as the stimulus moves in the anti-

preferred direction (blue = decreasing contrast, red = increasing contrast). H. The mean 

response to motion in the preferred and anti-preferred direction (blue = decreasing 

contrast, red = increasing contrast). NS = no significant difference.  

 



Neural Estimation of Image Velocity  

 219 

However, in most scenes there will be many features simultaneously interacting with 

local EMDs across the receptive field. We therefore altered the stimulus by 

separating the doublets into 1.8° high segments (i.e. just larger than the predicted 

vertical extent of a single EMD), and redistributed these segments pseudo-randomly 

across the panoramic cylinder. The resultant image (Figure 5.5E) is identical along 

individual rows to the image used above (Figure 5.5A), but differs only in the 

alignment of the doublets between rows.  

When we display this image (Figure 5.5E) using the whole-screen mode (Figure 

5.1A), the neuron responds with a rapid onset transient, which then decays 

exponentially to a steady-state within a couple of seconds (Figure 5.5F and 5.5G). 

The grossly different response profile compared to Figure 5.5B, C highlights an 

important difference between the stimuli: Because we spread the doublets across the 

entire panorama, many segments are already present within the receptive field at the 

commencement of image motion, resulting in the initial response transient (Figure 

5.5F and 5.5G).  

Surprisingly, there is no evidence of a difference between the two different contrast 

ensembles (Figure 5.5F-H). For the increasing contrast ensemble in the preferred 

direction, mean neuron responses was 9.3±0.46 (mean±SEM), compared to 9.1±0.52 

for the decreasing contrast ensemble (Figure 5.5F and 5.5H). In the anti-preferred 

direction mean responses were -5.9±0.53 for the increasing contrast ensemble 

compared with -5.7±0.59 for the decreasing contrast ensemble (Figure 5G and 5.5H). 

In fact, in several individual recordings there was actually an opposite change to 

what might be expected on the basis of the earlier experiments.  

Thus, when our stimuli were vertically aligned we saw large response changes 

between the two doublet ensembles (Figure 5.5A-D). Yet despite the fact that each 

local EMD viewed the same stimulus, when the features were split up and distributed 

across the entire panorama, there was no longer any response change between the 

two doublets. There are a couple of important differences between the two stimuli 

used in Figure 5.5. First, the spatially confined stimulus (Figure 5.5A) sweeps 

through the receptive field but commences motion from outside. As a result, the 
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stimulus ensemble never permits the neuron to reach a steady state response (Figure 

5.5B and 5.5C), whereas, the spatially spread ensembles (Figure 5.5E) allow the 

neuron to rapidly reach a steady state  (Figure 5.5F and 5.5G) despite obvious 

recruitment of global adaptation (evident from the post-depolarization after-potential 

in Figure 5.5F). Second, the vertically-aligned stimulus (Figure 5.5A) stimulates 

many local EMDs simultaneously as it enters the vertically aligned HSN receptive 

field (Nordström, Barnett, Moyer de Miguel, Brinkworth & O'Carroll, 2008) and 

might thus be expected to be a stronger underlying driver of neural response. The 

spatially spread out stimulus (Figure 5.5E) on the other hand results in fewer 

doublets present within the receptive field at any one instance, and it may well be 

expected to be a weaker underlying driver of neural response. Could the different 

responses to the two contrast ensembles be a consequence of either of these two 

factors? 

We designed a new set of images to further investigate the mechanisms underlying 

the difference in response observed between the increasing and decreasing contrast 

ensembles. The images were similar to those used in Figure 5.5 but they included a 

continuum between having all the doublet ensembles perfectly aligned (Figure 5.5A, 

5.6B) to being spread evenly across the entire panorama (Figure 5.5E, 5.6J). These 

images are thus expected to generate similar responses from local EMDs but they 

differ in how coherently the local elements within a receptive field are stimulated. 

They all commenced motion from outside the receptive field in a similar way to the 

images shown in Figure 5.5A-C.  

When we show the image where we have pseudo-randomly offset vertically 

neighbouring doublet segments by a maximum of 8° (Figure 5.6B) the neuron 

response differs quite substantially from that in Figure 5.5B (Figure 5.6A). Although 

there is still a difference in the peak responses produced by the two contrast 

ensembles (compare blue and red lines Figure 5.6A), this is substantially less than 

that observed for the perfectly vertically aligned stimulus (Figure 5.5A). The inset 

(Figure 5.6A) shows the data from Figure 5.5B as dashed lines. Although the 

response to the increasing contrast ensemble remains the same (red, Figure 5.6A), 

despite the stimulus having changed slightly, the response to the decreasing contrast 
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ensemble is larger than that observed in Figure 5.5B (compare dashed grey line with 

solid blue lines, inset Figure 5.6A). Quantitative analysis reveals that the mean 

neural response is different between the two contrast ensembles in the preferred 

direction, but that no difference was evident in the anti-preferred direction (Figure 

5.6B).  

As we spread the stimulus out more (with segments varied by up to 20°, Figure 

5.6D), the overall neural response increases slightly for both the decreasing and 

increasing contrast ensembles (Figure 5.6C and 5.6D). However, the difference 

between the two contrast ensembles is even smaller (Figure 5.6C). Preferred 

direction motion still generated a small decrease in response for the decreasing 

contrast ensemble (blue, Figure 5.6C and 5.6D), however, in the anti-preferred 

direction there is no response change (Figure 5.6D). Dispersing the doublet 

ensembles further across the panorama (Figure 5.6F and 5.6H) produced even larger 

neural responses (Figure 5.6E and 5.6G). However, the two different contrast 

ensembles no longer generated different neural responses in either direction of 

motion (Figure 5.6E-H).  

In the final example, we spread doublet ensembles out over more than half the 

panorama (Figure 5.6J). While the neural response has become weaker, there is no 

magnitude difference between the two contrast ensembles (Figure 5.6I and 5.6J). In 

terms of recruiting a response difference between the two contrast ensembles, it 

appears that only a slight mis-alignment of doublets drastically alters the influence of 

local gain reduction recruited by the high-contrast doublet passing each location 

before the lower contrast feature. We thus conclude that while earlier work suggests 

that adaptive gain reduction is locally recruited within EMDs, this is somehow 

dependent on more global structure of the features and is more pronounced for 

coherent, vertically aligned edges. It is worth noting that in the earlier experiments 

using the slit-windowed stimulus, the doublet ensembles would have been vertically 

aligned, as the slit-window was 84° high (see Figure 5.1E).  
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Figure 5.6 The horizontal distribution of the stimulus  
A. Intracellular HS neuron response to preferred direction motion for the image shown 

in part B, using the whole screen stimulus (blue = decreasing contrast, red = increasing 

contrast). The inset highlights the difference between the responses to this image (B) 

and that shown in Figure 5.5A (dashed grey = decreasing contrast, dashed light red = 

increasing contrast). The increasing contrast ensemble (red) produces a similar response 

to that for the image shown in Figure 5.5A (dashed light red), however, the decreasing 

contrast ensemble (blue) is significantly larger than that seen for the image shown in 

Figure 5.5A (dashed grey). B. The doublet ensemble is broken up into individual 1.8º 

high segments, which are pseudo-randomly shifted horizontally, so that the maximum 

horizontal offset is 11º (The absolute spread of the ensembles horizontally is thus, 11º+ 

the doublet ensemble width, 11º+30º). The stimulus was displayed using the whole-

screen mode. The bars show the mean response to motion in the preferred and anti-

preferred direction. Stars indicate a significant difference (** p < 0.01, Student’s t-test). 

C. Response to preferred direction motion of the image shown in D. Once again, the 

doublet ensemble are broken up into individual 1.8º high segments, which are pseudo-

randomly shifted such that the maximum horizontal displacement is 22º. The bars show 

the mean response to motion in the preferred and anti-preferred direction. Stars indicate 

a significant difference (** p < 0.01, Student’s t-test). E. As above but for the image 

shown in F. The doublet ensembles are now distributed over 45º. The bars show the 

mean response to motion in the preferred and anti-preferred direction (NS = no 

significant difference, Student’s t-test). G. As above but for the image shown in H. The 

doublet ensembles are now distributed over 90º. The bars show the net mean response 

to motion in the preferred and anti-preferred direction (NS = no significant difference, 

Student’s t-test). I. As above but for the image shown in J. The doublet ensembles are 

now distributed over 180º. The bars show the mean response to motion in the preferred 

and anti-preferred direction (NS = no significant difference, Student’s t-test). In all 

cases blue = decreasing contrast, red = increasing contrast.   
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5.4.5 Simultaneous stimulation of neighbouring local motion sensitive elements 

recruits a powerful reduction of motion detector gain for subsequent features  

Could the change in neural response observed when the doublet ensembles are 

vertically aligned (Figures 5.3, 5.4, and 5.5B-D) result from the interactions of 

simultaneously activated neighbouring local motion elements? When the doublet 

ensembles are vertically aligned, a column of local EMDs are activated 

simultaneously, whereas when the doublet ensembles are separated there is no, or 

less, simultaneous activation of vertically neighbouring EMDs (Figure 5.5A and 

5.5E). If the reduction in response is the result of the simultaneous activation of 

vertically aligned local EMDs feeding into the HS neuron, we should be able to 

prevent the reduction in response by limiting the doublet ensembles to just one row 

of local EMDs.  

To test this hypothesis, we first limited the size of our doublet ensembles to 1.8° high 

(Figure 5.7A), the same height as in the experiments shown in Figure 5.5E and 5.6E-

J, where we showed no response magnitude difference between the two doublet 

ensembles. Interestingly, when we did this, neural response showed a difference 

between the two doublet ensemble conditions in the preferred direction (Figure 

5.7B). For the increasing contrast ensemble, the mean responses were 1.67±0.051 

(mean±SEM) compared with 1.52±0.055 for the decreasing contrast ensemble in the 

preferred direction (p<0.05; Figure 5.7C). In the anti-preferred direction, the 

response change was in the opposite direction, however this was only recorded in 

one neuron and the variability was large (Figure 5.7C). The response magnitude 

difference between the two doublet ensembles was smaller than that observed for the 

full size doublets (compare Figure 5.7B with Figure 5.5B). However, it was still a 

notable difference of approximately 9%.  
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Figure 5.7 The vertical extent of a small stimulus 
A. The doublet ensembles as whole-screen stimuli. The doublet has the same width as 

before, but is now only 1.8º high. B. Intracellular HS neuron response to the doublets as 

they pass through the receptive field in the preferred direction (blue = decreasing 

contrast, red = increasing contrast). C. The mean response to the doublets moving in the 

preferred (P) and anti-preferred (N) direction (blue = decreasing contrast, red = 

increasing contrast). The star indicates a significant difference (p < 0.05, Student’s t-

test). NS = no significant difference (Student’s t-test). 

 

The stimulus in Figure 5.7 is 1.8° high, and is thus almost certainly simultaneously 

stimulating more than a single EMD as it passes through the receptive field. 

Therefore, it is still possible that the response reduction to the decreasing contrast 

ensemble is resulting from interactions between vertically neighbouring EMDs. 

However, it is still unclear why a similar change in response was not evident for the 

images that had doublet ensembles of the same size, but distributed around the 

panorama (Figure 5.5E-H and Figure 5.6E-J). If the response difference to the two 

doublets shown in Figure 5.7 is the result of marginal interactions between nearest 

neighbour EMDs, then an additional mechanism is required to account for the 

absence of such a change when the stimulus segments are more sparsely distributed 

across the panorama (Figure 5.5E-H and Figure 5.6E-J).  
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Figure 5.8 Varying vertical extent  
A. The doublet ensembles as whole-screen stimuli. The doublet has the same width as 

before, but is now only 1º high, approximately the size of an individual ommatidium. B. 

Intracellular HS neuron response to the doublet ensemble shown in A, as it passes 

through the receptive field in the preferred direction (blue = decreasing contrast, red = 

increasing contrast. C. The mean response to the doublets as shown in part B (blue = 

decreasing contrast, red = increasing contrast). NS = no significant difference (Student’s 

t-test). Response is averaged over a window while the stimulus is visible on the 

monitor. D. The doublet ensembles as whole-screen stimuli. The doublet ensembles are 

now 8º high. E. Intracellular response to the doublet ensembles as they pass through the 

receptive field in the preferred direction (blue = decreasing contrast, red = increasing 

contrast. F. The mean response to the doublet ensembles as shown in part E (blue = 

decreasing contrast, red = increasing contrast). Stars indicate a significant difference (** 

p < 0.01, Student’s t-test). G. The average response difference between the increasing 

and decreasing contrast ensembles as a function of their vertical extent. A positive 

difference indicates that the response to the increasing contrast ensemble is larger. Data 

displayed as mean ± sem.  
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To investigate this further, we varied the vertical extent of the doublet ensembles 

from below the size of an individual ommatidium up to the maximum height possible 

on our stimulus monitor (Figure 5.8). We were primarily interested in two questions: 

1. If we do not stimulate vertically aligned EMDs, will there still be a response 

difference to the two contrast ensembles? 2. What stimulus heights are required to 

effectively recruit a response difference?  

Interestingly, when we limited the height of the stimulus to just 1° (Figure 5.8A), 

approximately the same size as the receptive field of an individual ommatidium in 

Eristalis tenax (Straw et al, 2006), we see no change in mean response between the 

two doublet scenarios (Figure 5.8B and 5.8C). The mean response was 1.8±0.091 

mV for the increasing contrast ensemble and 1.8±0.15 mV for the decreasing 

contrast ensemble in the preferred direction (mean±SEM; Figure 5.8B and 5.8C). 

However, when we extend the stimulus height to stretch across more than one 

ommatidium, the increasing contrast ensemble produces a stronger response than its 

counterpart, much like that observed in the earlier experiments (Figure 5.8D-F).  

Even for relatively small increases in stimulus height, the increasing contrast 

ensemble produces up to a 25% stronger response than the decreasing contrast 

ensemble (Figure 5.8G). Data for multiple doublet heights shows that the maximum 

difference in mean response between the two doublet ensemble scenarios is reached 

at stimulus heights of around 3-5° (Figure 5.8G). After the stimulus exceeds 10°, the 

difference between the two stimulus ensembles gets smaller, receding to 

approximately 10% (Figure 5.8G).  This is lower than that observed for the earlier 

experiments (Figure 5.5) and as this is the average from just one neuron, it might 

simply reflect recording variability (although the response magnitude in this 

recording was similar to that for the average responses seen in Figure 5.5). 

Nevertheless, for this neuron at least, a maximum difference between responses were 

observed for relatively small stimulus heights, ca. 2-10º (Figure 5.8G), strongly 

suggesting that local adaptation is facilitated by between-EMD interactions aligned 

orthogonal to the preferred direction.   
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5.5 Discussion 

5.5.1 Reconciling model response magnitude with neuron response   

Motion adaptation and its influence on the coding of image motion by the insect 

visual system has been extensively investigated at the level of the LPTCs (Fairhall et 

al, 2001; Harris et al, 2000; Maddess and Laughlin, 1985; Neri and Laughlin, 2005; 

Safran et al, 2007) Motion adaptation has been shown to enhance LPTC sensitivity to 

changes in stimulus velocity (Maddess and Laughlin, 1985; Neri and Laughlin, 

2005) and to reduce contrast gain to subsequent stimulation (Harris et al, 2000; 

Nordström and O’Carroll, 2009) as well alter information transmission (Safran et al, 

2007) 

However, despite progress in this field, the potential role of adaptation as an 

explanation for our recent observations that hoverfly HS neurons provide robust 

responses largely independent of global contrast in natural scenes has been largely 

limited to studying the steady-state behaviour of the system (Chapter 3, Barnett et al 

submitted). A complete understanding of how dynamic adaptation at a local level is 

integrated into the global representation of image motion is still some way off. 

Among the key questions to be addressed are whether the dynamics of local 

adaptation are fast enough to provide strong normalization of local features within a 

scene, or whether the gain of the system is adjusted more gradually in response to 

global structure. Here we made the first steps towards addressing these questions by 

studying the influence of local transient responses to simple local features on 

subsequent features that pass the same location. We make 3 key observations: 

(1) The magnitude of local transient responses to local feature ensembles is 

poorly predicted by the total contrast of the feature, yet within a feature the 

relative magnitude of transient responses is well predicted by simple models. 

(2) Local adaptation is contrast dependent and this leads to differences in 

transient response depending on the order of local contrasts experienced. 

When low contrast features pass a location within the receptive field, they 
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exert little influence on subsequent responses, but even transient stimuli with 

high contrast lead to potent suppression of responses to subsequent features.  

(3) The influence of dynamic adaptation in local transient responses is not 

determined solely by temporal order of stimuli that reach local motion 

detectors, but is recruited selectively for features that span larger parts of the 

receptive field of the tangential cell, with an orientation orthogonal to the 

direction of motion. 

5.5.2 Reconciling model response magnitude with neuron response for local 

transient responses  

The largest difference between the model response and the response of the HS 

neuron is in the relative magnitude of responses to the different contrast doublets, 

whether presented independently, or as an ensemble. While much work suggests that 

insect motion detection employs an expansive non-linearity, thus leading to a supra-

linear dependence on contrast (e.g. a quadratic relationship where the EMD employs 

multiplication), we found that a 10-fold reduction in contrast produced only a 3-fold 

reduction in transient response magnitude – i.e. a sub-linear effect of contrast. The 

simplest explanation for this discrepancy might be the recruitment of a compressive 

non-linearity such as saturation, as evident from the supra-threshold response-

contrast relationship observed in earlier work (Dvorak et al, 1980; Egelhaaf and 

Borst, 1989; Harris et al, 2000).  

Arguing against this, however, each doublet stimulus consists of 3 edge features, the 

2nd of which has double the contrast of the 1st and 3rd. These different components 

enter the visual field of each EMD in quick succession and the temporal delay 

intrinsic to the EMD leads to some interaction between these components, so our 

model (which employed pure multiplication as the essential non-linear correlation 

operation), did not predict a strict 4-fold difference between the middle and flanking 

contrast boundaries (Figure 2E). Nevertheless, despite these interactions the model 

predicts that a saturation-free system would still display substantial differences in 

response to each of these three edges, with the middle (higher contrast) boundary 
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dominating the response. Suprisingly, this was what we observed even for the higher 

contrast doublet (Figure 2).  

Based on these considerations, either saturation is not playing a dominant role in 

shaping the dynamics of transient responses to features, or some other mechanism is 

re-scaling the response gain at high contrast so that it is less subject to saturation. 

Note that while the edges within our doublet features are locally discrete, they would 

be blurred in space by the optics, and in time by the dynamics inherent to motion 

detectors, so while they pass a fixed point in space in an instant, the transient 

response to them lasts tens of milliseconds. Given that one of the first papers on 

adaptation by LPTCs suggested both that adaptation acts locally and that it may 

serve to relieve the system from saturation (Maddess & Laughlin 1985) a potential 

explanation for our observation is that adaptation to the first of the 3 edge features of 

the stimulus is fast enough that responses are already adapting as they occur. This is 

further suggested by our observation that while the model predicts that the 3rd feature 

would provide a stronger response than the first our data shows the opposite (Figure 

2G).  

5.5.3 Locally acting response-gain reduction   

The small overall magnitude difference that we observed between the low and high 

contrast doublet features (Figure 2) might thus be explained by local adaptation 

within the doublet itself leading to strong local gain reduction and thus relief from 

saturation even as the feature is passing individual EMDs. This is strongly supported 

by our observations (Figure 3,4) that the specific order of doublet ensembles shapes 

the overall response. The low contrast doublet feature seems to exert little effect on 

subsequent stimulation by the higher contrast doublet. Yet even allowing for the 

likely dynamics of the motion detector itself, we see little evidence of any response 

at all to the lower contrast feature when it follows the higher.  

A critical consideration in understanding the potential influence of this effect in 

coding natural scenes is its time-course. Our data suggests that the duration of local 

gain reduction is similar to that of the stimulus itself. Nevertheless, since the 

adaptive effect outlasts the passage of the individual doublet by more than 100ms, it 
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is clearly slower than the dynamics of motion detection itself, at least given the delay 

time constant of 30-40 ms suggested by experiments based on sinusoidal stimulation 

(Harris et al 1998, Reisenmann et al, 2003). Of course we have investigated only a 

single type of local feature moving at a single velocity (albeit one close to the global 

optimum indicated by our earlier experiments). It is highly likely that the dynamics 

of adaptation depend strongly on the dynamics of the scene itself – as suggested by 

work from other labs (Fairhall, Lewen, Bialek & van Steveninck, 2001). We clearly 

need much further work to quantify the dynamics of recruitment of adaptation both 

locally and globally. Nevertheless, our results at least support the idea that adaptation 

is both rapid enough in recruitment yet long-lasting enough to influence global 

responses in a manner that depends strongly on the higher-order relationship between 

features within a scene. This is an important point when considering natural scenes, 

since features that generate high local contrasts within some parts of such scenes 

(e.g. the branches of a tree seen against the bright sky) may ‘cluster’ within scenes. 

Hence EMDs viewing a patch of such texture be strongly adapted, while others 

viewing lower contrast patches may maintain very high contrast gain.  

5.5.4 Higher order structure and its influence on local adaptation   

Our 3rd key observation is perhaps the most surprising. If we take feature ensembles 

(high followed by low contrast) that in figure 4 we show produce strong local 

adaptation and now examine their influence on global responses by removing the slit 

window, we only observe the expected adaptation if the feature is presented in-phase 

orthogonal to the direction of motion (Figure 5). Splitting the feature into multiple 

local elements that are distributed horizontally completely abolishes the effect, even 

though individual EMDs are seeing identical stimuli and are clearly powerfully 

recruited by the stimulus. Two further observations suggest that this is very likely the 

result of a higher order interaction within the receptive field. Firstly even small 

horizontal displacement of the features leads to a dramatic decrease in the amount of 

local adaptation that is recruited (figure 6). Secondly, as we extend a local doublet 

feature into a vertical edge (i.e. orthogonal to its direction of motion) the adaptive 

effect strengthens up to several degrees in height and then declines (although the 

effect remains pronounced for full-screen stimuli). These data argue strongly for a 
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role in facilitation or recruitment of local adaptation by a component that is not as 

local as the EMD itself.  

The observation that this is most effectively recruited by a vertical coherent edge of 

intermediate size, and orthogonal to the preferred-null axis of the EMDs is 

particularly intriguing, as it raises the possibility of involvement of a separate neuron 

to facilitate local adaptation. Our data (Figure 5.8) suggest that such facilitation 

might be mediated on a scale of several ommatidia in the local surround. In 

mammalian V1 and also auditory neurons local responses have been shown to be 

scaled by an adaptive processes based on local surround excitation (Schwartz and 

Simoncelli, 2001). In these examples local adaptation can be modelled by a divisive 

feedback of surround activity, therefore normalizing local neural response based on 

its surround. Such adaptive normalization strategies have the advantage over linear 

filters in that they rescale neural response and maximize coding range for the 

prevailing stimulus. Such local adaptive rescaling could be particularly advantageous 

in the encoding of natural image motion, as natural scenes have local structures and 

contrasts that are highly erratic from one location to the next. This is clearly a 

question that requires more careful consideration in future work.  
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Experimental Procedures  

5.5.5 Experiments and neuron identification  

We used wild caught hoverflies, Eristalis tenax, immobilized with wax and mounted 

14-15 cm in front of a CRT display, which subtended approximately 100° x 75° of 

the fly’s visual field. We performed sharp electrode intracellular recordings on 

Horizontal System (HS) neurons in the left lobula plate using aluminosilicate 

electrodes pulled on a Sutter Instruments P97 electrode puller with a 3 x 3 mm box 

filament. Electrodes were filled with 2 M KCl and typically had tip resistances of 80-

250 MΩ. Upon successful penetration, we identified each neuron on-line based on its 

receptive field properties, as recently described in detail by Nordström et al. (2008).  

5.5.6 Data acquisition and analysis  

Data were digitised at 5 kHz using a 16-bit A/D converter (National Instruments, 

Austin Texas, United States) and analysed off-line with Matlab 

(http://www.mathworks.com). In all experiments, we normalized membrane 

potential by subtracting the average resting membrane potential recorded for 1 

second immediately prior to each trial. HS neurons are ideal models to investigate 

the nature of signals arriving at their synaptic inputs because they predominantly 

respond with graded shifts in membrane potential. However, activity-induced 

spikelets often influenced the response adding an additional nonlinearity to the 

axonally recorded membrane potential (Haag et al., 1997, Hengstenberg, 1977, 

Nordström & O'Carroll, 2009). To reduce the influence of such spikelets in our 

analysis, we ‘spike filtered’ our data by removing spike-like events and replacing 

them with the local mean membrane potential (for details see Nordström & 

O'Carroll, 2009). 

5.5.7 Statistics 

All data are presented as mean ± standard error of the mean (SEM) unless otherwise 

mentioned. All statistics were performed using GraphPad Prism software 
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(http://www.graphpad.com). Data was analysed off-line in Matlab 

(http://www.mathworks.com). N refers to the total number of animals, while n refers 

to the number of trial done. 

5.5.8 Images and display 

All the images used in this study were developed using Matlab. We displayed stimuli 

on a linearized, 8-bit, RGB CRT at 200 Hz refresh rate with mean luminance of 100 

Cd/m2 using VisionEgg software (Straw, 2008).  

5.5.9 Local motion detector analysis 

We use a slit paradigm method for determining local motion detector responses 

similar to that used in behavioural experiments by Reichardt and Egelhaaf (1988) 

and in electrophysiological experiments by Egelhaaf et al, (1989). By limiting our 

stimulus display to the size of only a few ommatidia, 2.5° in the fronto-dorsal visual 

field, we limited the amount of spatial integration occurring in the HS neuron itself. 

This means that only a fraction of the image is seen at any one point in time and the 

axonal response we record in the HS neuron reflects the output of local motion 

elements in that region of the visual field. Stimulating just one local motion sensitive 

element is problematic though, because the axonal signal recorded is very small and 

hard to distinguish from membrane noise without performing very large numbers of 

repetitions (but see Chapter 4, Figure 4.6). To overcome this issue we vertically 

elongated our stimulus so that it simultaneously stimulated many local motion 

elements with the same stimuli. This means that on each individual trial we recorded 

the summed response of several local motion sensitive elements, which save 

performing large numbers of repeats.  

5.5.10 Model predictions  

We used an elaborated Hassenstein – Reichardt correlator model for motion 

detection to obtain a prediction of local motion response. This model incorporated 

many of the spatial and temporal filtering processes of the motion-processing 

pathway of Eristalis. A full description of the model is included in Chapter 4 

Supplemental data. Briefly, the model was the sum of an array of EMDs that were 
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limited in space by the size of the slit window used in the neuronal experiments 

(Figure 5.1).  

As the slit window in the neural experiments was 2.5°, it did not limit the stimulus 

exclusively to just one elementary motion sensitive element, but rather most likely 

partially stimulated some neighbouring elements also. To emulate this in our model 

simulations, we mimicked the experimental conditions and windowed the array of 

model EMDs with the same size window. Each frame of the stimulus simulation was 

then convolved with a gaussian blur kernel of 1.4° half-width so that the edge effects 

of the stimulus window were accounted for.  
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Chapter 6:    

Discussion  

6.1 Summary of findings 

This thesis investigates natural image processing by the HS neurons in the lobula 

plate of the hoverfly. The main finding is that on the one hand, when shown natural 

images, HS neurons reliably estimate image velocity (Chapter 3). However, on the 

other hand, when shown experimenter-defined stimuli, such as sinusoidal gratings, 

these neurons generate ambiguous estimates of velocity. Although this property of 

their response operates across an enormously range of scenes, it does not hold for all 

natural images. Some scenes that are particularly barren, containing few notable 

features, break this consistency and generate weaker responses than the other images 

(Chapter 3). Thus, although the mechanisms of response normalization are robust, 

some natural images lie outside the compliance range of response normalization.  

By analysing the time course of neural response and manipulating image contrast, we 

show that this property is likely to emerge from a combination of static and dynamic 

non-linarities within the motion processing pathway. Notably, we reveal at least two 

distinct dynamic adaptive non-linearities that act as powerful normalisers to images 

that would otherwise generate highly variable responses (Chapter 3). Due to the 

different time courses of these adaptive affects, we conclude that they are likely to 

arise from different processes occurring along the motion-processing pathway. These 

characteristics are additional to that typically included in motion-processing models, 

such as the Reichardt correlator.  

In chapter 4, we show that the local responses provide a poor prediction of the global 

response of HS neurons when natural images are presented at their full contrast, even 

when we take full account of the receptive field structure of the neuron. However, 

when we reduce image contrast and thus bring the input signals to local motion 

detectors closer together (i.e. ‘linearize’ the stimulus) the essential non-linearity of 

the correlator model provides a better prediction of global responses. This strongly 
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supports an important role for non-linear mechanisms being recruited by high 

contrast local features in the production of robust responses to different scenes.   

In Chapter 5, we investigate in more detail the mechanisms underlying locally 

recruited contrast gain control. We use an experimental paradigm that reduces the 

influence of spatial integration and thus enables the analysis of responses equivalent 

to the outputs of the local motion sensitive elements presynaptic to the HS neuron 

(Chapter 5). We show evidence for an adaptive gain reduction that affects the 

sensitivity of individual motion detector responses to subsequent features. This 

adaptive effect is driven by the contrast of local image features and operates on very 

rapid time scales. Interestingly, subsequent experiments show that local gain 

reduction is likely to be recruited only when neighbouring motion sensitive elements 

are stimulated simultaneously.  

In Chapter 2 we show a comprehensive characterization of the receptive field 

properties of HS neurons in the hoverfly, Eristalis tenax, (Chapter 2). We revealed 

an interesting sex specific difference in the HSN neuron, such that the receptive field 

of the male HS was far smaller than that of its female counterpart (Chapter 2, Figure 

2.3). This kind of receptive field shape is in contradiction to what one would expect 

for a neuron tuned to rotational optic flow. Furthermore, in Chapter 4, we reveal that 

the spatial integration properties of this neuron are unpredictable, showing 

unexpectedly large response fluctuations to certain image features. These 

observations suggest that male HSN neurons may be specifically adapted to subserve 

different behaviours than its female counterparts.  
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6.2 Mechanisms of natural image contrast invariance 

6.2.1 Response saturation  

Although HS neuron response increases as a function of the square stimulus contrasts 

for sinusoids at very low contrast, as the contrast of the stimulus increases further the 

response becomes saturated, such that high stimulus contrasts are no longer 

accompanied by increases in response (Dvorak, Srinivasan & French, 1980, Egelhaaf 

& Borst, 1989). Subsequently, several authors have investigated the effects of 

including saturating elements in computational models of motion detection as a 

means for achieving contrast invariance (Rajesh, Rainsford, Brinkworth, Abbott & 

O'Carroll, 2007, Rajesh, Straw, O'Carroll & Abbott, 2005, Rivera-Alvidrez & 

Higgins, 2005, Shoemaker, O'Carroll & Straw, 2005).  

We show several lines of evidence (Chapters 3-5) suggesting that this normalization 

is not due to a simple saturation-like mechanism: 

1. Rescaling images to 25% of their original contrast reveals little evidence for a 

release from saturation, in terms of revealing the underlying contrast dependence in 

the time averaged neural response (Figure 3.3; Chapter 4, Figure 4.4).  

2. The time dependent response fluctuations to the natural images are well matched 

in relative magnitude by a model with no compressive non-linearities once the 

receptive field of the neurons are considered, despite the models absolute response 

varying 40-fold from one image to the next.  

3. Local responses show little evidence of static saturation mechanisms even when 

we show stimuli at the highest contrast our monitor can generate (Figure 5.1).  

4. Even compressive non-linearities known to influence the response of these 

neurons when shown experimenter defined stimuli don’t appear to be recruited by 

natural images (Chapter 4, Supplementary data). Once the receptive field of the 

neuron is taken into account response appears to increase supra-linearly with 

increases in image size (Chapter 4, Supplementary data, Figure S4.3).  



Neural Estimation of Image Velocity  

 245 

 

6.2.2 Response normalization  

Chapter 3 reveals evidence for an activity dependent response normalization strategy 

based on image driving strength (Figure 3.4 and 3.5). This acts by reducing the 

response to images that generate initially strong responses, whilst boosting the 

response to images that initially generated weak responses. Such a mechanism is 

ideally suited to provide powerful response normalization across vastly different 

natural images. Thus, this mechanism might be able to account for the apparent 

contrast independence in response to natural images. Our results in Chapter 3 suggest 

that these two effects have different time courses suggesting they may arise from 

different mechanisms.  

6.2.3 Local gain control  

Much recent work highlights several different components of dynamic adaptation in 

LPTCs (Harris, O'Carroll & Laughlin, 2000, Nordström & O'Carroll, 2009b). Some 

of these exert their influence globally on the neuron (MAE and AC component; see 

Introduction), although they may still be locally generated (Nordström & O'Carroll, 

2009b). Other components of adaptation, such as contrast gain reduction and output 

range reduction, are local in their effect and most likely arise from changes in local 

synaptic weights (Harris et al., 2000, Maddess & Laughlin, 1985, Nordström & 

O'Carroll, 2009b). In Chapter 5, to investigate the influence of local changes in 

response gain, we used a stimulus with limited size, to reduce the influence of spatial 

integration and thus, record responses that reflect the neurons local inputs.  
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The stimulus produces a transient response from local motion detectors and reveals a 

rapidly acting reduction of local gain that influences the response to subsequently 

viewed image features (Chapter 5). The gain reduction is contrast dependent, so is 

only recruited following the passage of a high contrast feature (Figure 5.4). Lower 

contrast features, on the other hand, have little obvious influence on subsequent 

response (Figure 5.3). Correlation-based models of motion detection matched to 

Eristalis tenax do not predict this stimulus history dependent modulation of gain, 

thus it is not merely an intrinsic property resulting from the nonlinear nature of 

Reichardt correlators. This observation is, however, consistent with the previously 

reported contrast gain reduction component of motion adaptation in these neurons. 

Interestingly, the transient nature of the stimulus reveals little evidence for any of the 

other components of motion adaptive (see Chapter 5 and Chapter 1.7.2; Harris et al., 

2000).   

Can local contrast gain reduction, like that describe in Chapter 5, account for the 

active normalization of HS neuron responses to natural images?  

The most obvious effect of the neurons time-averaged response to natural images is a 

continual decay in response through the time-course of stimulation (Figure 3.4). This 

likely reflects the combined effect of several of the adaptive components observed 

for stimulation with artificial images (Chapter 1.7.2; Harris et al., 2000, Maddess & 

Laughlin, 1985). Indeed, preliminary experiments using the same protocol as used by 

Harris et al (2000), show that natural images recruit each of the adaptive components 

shown for the grating experiments, albeit in amounts for different images (data not 

shown).  
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Local gain control is likely to be continually altering the response to subsequent 

features of the image. For example, a local motion unit that just viewed a high 

contrast image feature, such as a dark tree trunk, will have lower response gain to 

subsequently viewed image features; whereas, an area that has had little stimulation 

in the recent past is going to be more sensitive to changes in the stimulus. Such a 

mechanism could quite possibly account for much of the reduction in response 

variance for natural images. However, the local contrast gain reduction shown here, 

occurs on a very short time scale. In Chapter 3, even the strongest driving images do 

not show any evidence for a decrease in their time-averaged response within the first 

few hundred milliseconds of stimulus motion (see Figure 3.4A). Furthermore, some 

images showed continued increases in response over this time course (see Figure 

3.4B). Although, it is important to distinguish between response level and the 

underlying gain of the system, as we show that adaptation always reduces gain, even 

when response goes up (Figure S3.6)  

We show that the local gain reduction appears to be facilitated by simultaneous 

activation of neighbouring motion detectors. Interestingly, Schwartz and Simoncelli 

(2001) used a divisive normalization mechanism based on weighted local responses 

to predict the nonlinear response properties of both neurons in the primary visual 

cortex of monkeys and auditory nerve fibres of cats. Furthermore, they showed that a 

gain control mechanism mediated by local activity is ideally suited to take advantage 

of the predictability of natural signals (Schwartz & Simoncelli, 2001).  
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6.3 Why do insects use Reichardt correlator like 

computations for motion detection?  

Despite all the apparent flaws of Reichardt correlator based mechanisms of motion 

detection, many animals seem to have adopted similar computations for the detection 

of local image motion (Clifford & Ibbotson, 2002). Additional non-linear processes 

on the motion-processing pathway seem to be able to overcome some of the 

deficiencies associated with motion computation of this kind. Why would a visual 

system adopt a mechanism for motion detection that is inherently flawed and then 

attempt to ‘fix’ it by cascading additional nonlinear processes, rather than simply 

employing a more desirable mechanism in the beginning?  

Firstly, the Reichardt correlator relies on very simple mechanisms at its core, which 

are highly likely to already exist in one form or another in the early stages of visual 

processing on an evolutionary time scale. The Reichardt correlator relies on sampling 

two neighbouring points in space and combining them in a non-linear way 

(Reichardt, 1961, Reichardt, 1987). Any non-linear lateral interactions between 

neighbouring photoreceptors will be likely to generate some direction selectivity. If 

this proves advantageous for behaviour it is likely to be selected for in the further 

evolution of the visual system. Since lateral interactions between neighbouring 

receptors are so ubiquitous in visual systems (e.g. lateral inhibition) it is highly likely 

that correlator-like interactions will evolve.  

Secondly, although the Reichardt correlator has several flaws, discussed extensively 

throughout this thesis, there are some distinct advantages to computing motion in this 

way. For example, the correlation stage multiplies the inputs, thus producing a 

response that increases with the square of contrast. A down side is this results in 

correlator output being highly variable across different natural images. However, this 

same stage inherently means that the correlator’s response amplifies the more 

reliable features within the scene. This is clearly illustrated in Figure 5.7, where the 

local motion responses to the natural scenes are dominated by parts of the image that 

stand out to us as salient features or objects to us.  

This built-in ‘reliability filter’ for the higher contrasting signals explain why a 

statistical mechanics analysis of the theoretical mechanisms for motion detection 
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concluded that the Reichardt correlator was an optimal mechanism whenever signal 

noise was large (Potters & Bialek, 1994). This is a likely scenario for the apposition 

compound eye, as this eye design is a fundamentally poor scavenger of light, 

especially given the constraints of the eye (and thus head) size (Land, 1981).  

The gradient detector is a popular alternative for producing a reliable estimate of 

image velocity. However, in order to generate an accurate estimate of image velocity 

independent of many of the stimulus features that the Reichardt correlator is sensitive 

to, the gradient detector calculates motion by dividing the temporal luminance 

gradient taken from one receptor by the spatial luminance gradient measured across 

at least two different points in space. Consequently, if the spatial derivative is small, 

noise in the temporal derivate gets amplified and furthermore, if the spatial 

derivative is equal to zero, then the velocity is undefined (Limb & Murphy, 1975, 

Srinivasan, 1990). Subsequently, at low light levels the gradient detector has a poor 

signal to noise ration (Borst, 2007, Srinivasan, 1990). So, in this case the Reichardt 

correlator maybe a highly advantageous scheme for computing local motion.  

Nevertheless, Potters and Bialek (1994) argued that in order to maximize information 

transmission, a motion detecting system should use gradient-like schemes in high 

luminance conditions (i.e. high signal to noise conditions) to enable the accurate 

calculation of image velocity and switch to Reichardt correlator-like mechanisms in 

lower luminance conditions, where signal to noise ratios are low (Potters & Bialek, 

1994). Many insects (including Eristalis) are active in very bright light, where signal 

to noise ratios in photoreceptors are high, even given the constraints of eye design 

noted above (Lewen, Bialek & de Ruyter van Steveninck, 2001). It is unreasonable 

to expect the system to ‘switch’ from Reichardt correlator to a gradient detector as 

light level, or contrast, rises. The additional adaptive elements described in this thesis 

might be functioning equivalent to such a switch, make the system more gradient like 

in bright outdoor environments. This may partially reconcile the discrepancy 

between Lewen et al’s outdoor experiments and those of Haag et al. (2004), which 

showed that the system remained temporal frequency tuned even at high luminance 

(Haag, Denk & Borst, 2004).  
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6.4 Velocity estimation in the insect visual system  

The optomotor response of insects is well predicted by Reichardt correlator-like 

computations (Buchner, 1984, Poggio & Reichardt, 1976, Virsik & Reichardt, 1976). 

Both the optomotor response and motion detection schemes of this kind generate 

locally variable responses that don’t explicitly signal image velocity, but are rather 

sensitive to additional image parameters, such as contrast and spatial frequency 

(Borst & Egelhaaf, 1989, Borst & Haag, 2002, Clifford & Ibbotson, 2002, 

Srinivasan, Poteser & Kral, 1999). However, in free flight, flying insects seem to be 

able to engage in exquisitely controlled aerobatic feats that require the estimation of 

apparent retinal velocity (Baird, Srinivasan, Zhang & Cowling, 2005, Collett & 

Land, 1975, Collett & Land, 1978, Srinivasan, Zhang, Lehrer & Collett, 1996). This 

has led to the proposal that the mechanisms subserving velocity estimation must be 

different from those underlying the optomotor response (Srinivasan et al., 1999). 

The HS neurons receive inputs from arrays of local motion sensitive elements with 

Reichardt correlator-like response properties and been shown to be both necessary 

and sufficient for optomotor responses (Blondeau & Heisenberg, 1982, Geiger & 

Nässel, 1981, Hausen & Egelhaaf, 1989, Hausen & Wehrhahn, 1983, Hausen & 

Wehrhahn, 1990, Heisenberg, Wonneberger & Wolf, 1978, Srinivasan & Dvorak, 

1980). However, when presented with natural images, the HS neurons produce 

robust estimates of image velocity across vastly different scenes (Straw, Rainsford & 

O'Carroll, 2008; see also Chapter 3, Figure 3.1). Natural images have highly variable 

contrasts, thus this observation is in stark contradiction to their response properties to 

experimenter-defined stimuli. We have shown that power normalization mechanisms 

tuned to the statistics of natural images (Chapters 3-5) enable the HS neurons to 

globally overcome their inherent sensitivity to image contrast when shown natural 

scenes (Chapter 2, Figure 2.1).  

6.4.1 The HS neurons as velocity estimators  

Could the HS neurons be playing a role in estimating forward flight speed? 

Reconstructions of free-flight trajectories have shown that although the HS neurons 

generate large responses during saccadic periods of flight, they also produce reliable 

responses in the inter-saccadic periods when the animal is experiencing almost pure 
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translation (Karmeier, van Hateren, Kern & Egelhaaf, 2006, Kern, van Hateren & 

Egelhaaf, 2006, Kern, van Hateren, Michaelis, Lindemann & Egelhaaf, 2005). 

Forward translation produces optic flow fields with maximum velocity perpendicular 

to the direction of heading (Chapter 1, Figure 1.1A and 1.1B). The receptive fields of 

the HSE, in blowflies, and the HSNE, in the hoverfly, spread laterally into the same 

regions of the visual field that would be maximally stimulated by forward translation 

(Hausen, 1982, Nordström, Barnett, Moyer de Miguel, Brinkworth & O'Carroll, 

2008). As these neurons have responses that provide reliable estimates of velocity for 

natural images, they may play an important role in the estimation of apparent retinal 

image velocity.  

Translation causes nearer objects to have faster retinal velocities than objects that are 

father away. Consequently, the HS neurons would encode for faster velocities if 

objects in the surround were closer to the animal and thus, lead to an over estimation 

of forward flight speed. Bees show similar behavioural characteristics, slowing their 

flight speed down when passing through narrow corridors by balancing apparent 

retinal velocities (Srinivasan et al., 1996).  

However, vast amounts of the behavioural evidence for apparent velocity estimation 

have arisen from freely flying animal experiments using experimenter-defined 

stimuli, such as gratings (Baird et al., 2005, Srinivasan, Lehrer, Kirchner & Zhang, 

1991, Srinivasan et al., 1996). These experiments show that bees use apparent 

velocity to control their flight independent of spatial frequency or stimulus contrast 

(Baird et al., 2005, Srinivasan et al., 1991, Srinivasan et al., 1996). Yet, the HS 

neurons produce ambiguous estimates of image velocity for experimenter-defined 

stimuli (Borst & Egelhaaf, 1989, Borst & Haag, 2002, Buchner, 1984, Clifford & 

Ibbotson, 2002), which makes it difficult to reconcile their response properties with 

the behavioural evidence for velocity estimation.  



6. Discussion  

 252 

6.4.2 Behavioural evidence for velocity estimation 

In the honeybee behavioural experiments, the bees fly though a narrow corridor. The 

bees use the patterns on the sidewalls of the corridor, to control their flight speed and 

centre their trajectory in the corridor. By altering pattern spatial wavelength, contrast, 

velocity, as well as grating orientation Srinivasan and colleagues have provided 

conclusive evidence for velocity estimation. More recent experiments have also 

shown that the same holds true even if the patterns are shown on the floor, i.e. in the 

ventral visual field as opposed to the lateral visual field (Barron & Srinivasan, 2006).  

There are some key difference between the behavioural paradigm and the 

experiments performed on the LPTCs or the optomotor response though. Firstly, 

although the walls lateral to the bees heading are flat, she is still in a three 

dimensional environment. This means that as the bee flies forwards, from the 

sidewalls alone she experiences a range of temporal and spatial frequencies across 

the retina. This is because laterally the grating is closer than more frontal regions of 

the eye that view the corridor walls obliquely. Therefore, in this paradigm the whole 

visual system is simultaneously experiencing a range of spatial and temporal 

frequencies accompanied with a range of retinal speeds. This range of spatio-

temporal frequencies experienced during forward flight in combination with extra 

visual cues arising from objects that might reside outside of the tunnel (i.e. the vedeo 

camera recording the flights from above), might provide the animal with enough 

additional visual information to extract velocity cues from the scene despite relying 

on ambiguous local motion information.  

Nevertheless, the hypothesis is that bees balance the amount of optic flow in their 

left and right hemispheres to regulate flight speed and centre their flight trajectory 

within the tunnel. This is exemplified when the corridor becomes narrow at a point. 

As the corridor narrows the walls become closer to the bee who is flying down the 

centre, this generates fast apparent retinal velocities and the bee subsequently slows 

himself down, holding the apparent velocity of the corridor walls constant on the 

retina. Recent experiments however, have shown evidence that the behavioural 

context may influence whether bees attempt to match speed. Serres et al. (2008) 

showed that when entering a wider tunnel (95 cm) bees tended to follow either one 

wall or the other when they entered the tunnel on the same side as the feeder. 
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Furthermore, removing a section of wall completely from the opposite visual 

hemisphere did not affect the bees wall following behaviour (Serres, Masson, Ruffier 

& Franceschini, 2008). If the bees were balancing optic flow in either hemisphere 

this would cause them to veer away from the wall where the retinal velocities are 

highest. This suggests an alternate optic flow control system whereby the bee doesn’t 

need to rely on optic flow from both hemispheres.  

6.4.3 Small-field motion detection  

While the additional mechanisms, such as dynamic adaptation, may allow LPTCs to 

generate responses that are robust in a global sense. As we have shown here, the 

local variance in response predicted by the correlator mechanism is only mitigated by 

averaging in either space or time. Furthermore, residual pattern dependence doesn’t 

matter in tasks that integrate responses over time, e.g. path integration by and 

honeybees using optic flow. However, this presents a fundamental problem for other 

visual tasks where more local estimates of image speed are important. Small target 

motion analysis si one such task.  

There is substantive evidence suggesting that insects are able to accurately estimate 

the velocity of small objects. For example both hoverflies and dragonflies have been 

shown to be able to compute interception courses for moving targets (Collett & 

Land, 1978, Olberg, Seaman, Coats & Henry, 2007, Olberg, Worthington, Fox, 

Bessette & Loosemore, 2005, Olberg, Worthington & Venator, 2000). Several neural 

classes have been identified that are likely to subserve this small-field target 

detection and tracking system (Nordström & O'Carroll, 2009a). Recent investigation 

has suggested that these neurons receive inputs from Reichardt correlator-like 

elements and thus they are inherently poor encoders of image velocity (Geurten, 

Nordstrom, Sprayberry, Bolzon & O'Carroll, 2007). This line of research is still in its 

infancy and as yet it is unclear whether similar adaptive mechanisms as described for 

the HS neurons might influence target selective responses.  
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6.4.4 Multiple speed tuning channels  

An alternate explanation for the robust velocity analysis in behaviour is that animals 

may not be limited to a single motion detector as the basis for their analysis. In 

principle, it is not necessary to explicitly compute image velocity on the first 

iteration, as implemented in both the families of Reichardt correlators and gradient 

detectors. Rather, velocity sensitivity can be built-up by combining the responses of 

‘lower-order’ neurons with different spatio-temporal receptive fields. In area MT of 

the primate visual system (Dubner & Zeki, 1971, Maunsell & Newsome, 1987) there 

is evidence for a large percentage of speed-tuned neurons (Perrone & Thiele, 2001), 

which are believed to be derived from non-speed neurons with different spatio-

temporal tuning in the primary visual cortex (Perrone & Thiele, 2002).  

In the insect, there is some evidence in wide-field motion detectors for fast and slow 

motion processing channels, which could be combined at higher order stages of 

processing (Douglass & Strausfeld, 2007, Horridge & Marcelja, 1992, O'Carroll, 

2001). Furthermore, there is also some evidence for velocity tuned neurons that show 

little dependence on spatial wavelength (Ibbotson, 2001, Olberg, 1981). However, 

although these studies show some independence of neural response on spatial 

frequency, none of them test the influence of other image parameters, such as 

contrast, for which the behavioural experiments of Srinivasan and colleagues have 

revealed insensitivity to (Baird et al., 2005). Nevertheless, it is possible that such a 

mechanism could account for the behavioural evidence for velocity estimation. 

However, this hypothesis is at odds with the optomotor experiments carried out in 

flies, suggesting that their behavioural response closely matches that of the 

physiological recordings from LPTCs or, for that matter, predictions of the simple 

correlator models (Buchner, 1984). 
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6.5 Limitations of the current study  

6.5.1 Naturalistic conditions  

Many animals are known to tightly control their behaviour as to control the visual 

motion they experience (Schilstra & Van Hateren, 1999, Van Hateren & Schilstra, 

1999). For example, flies are known to go to incredible lengths to separate rotatory 

and translatory optic flow whilst flying freely (Kern et al., 2005, Schilstra & Van 

Hateren, 1999, Van Hateren & Schilstra, 1999). Saccadic movements act to 

compress rotational components of optic flow into brief periods of time (Schilstra & 

Van Hateren, 1999, Van Hateren & Schilstra, 1999). In between saccades the visual 

system stabilizes its gaze and therefore, enhances its sensitivity to detecting relevant 

information resulting from translation (Kern et al., 2006, Kern et al., 2005, Schilstra 

& Van Hateren, 1999, Van Hateren & Schilstra, 1999).  

Either way, animals carefully control their behaviour and thus, their visual input. 

Several resent studies in the reconstructing image motion in flies has revealed the 

importance of taking into consideration their flight mode and also gaze direction in 

the spatial temporal structure of the scene generated (Karmeier et al., 2006, Kern, 

Petereit & Egelhaaf, 2001, Kern et al., 2006, Kern et al., 2005, Schilstra & Van 

Hateren, 1999, van Hateren, Kern, Schwerdtfeger & Egelhaaf, 2005, Van Hateren & 

Schilstra, 1999). This has profound repercussions for the response properties of 

motion sensitive neurons such as the LPTCs  (Kern et al., 2006, Kern et al., 2005).  

The stimulus paradigms used herein, although collected from natural scenes 

frequented by flies, aren’t moving dynamically in a way that is likely to reflect 

natural flight behaviour of these flies. However, an important role for the HS neurons 

might be to stabilize image slip and thus facilitate intersaccadic flight periods where 

the animal only experiences translation. In fact, a neuron with a frontally localized 

receptive field, like HSN, might be ideally suited for this job, because its receptive 

field would be positioned at the pole of expansion for forward translation and thus, 

would experience little optic-flow. However, it would remain sensitive to subtle yaw 

rotations or lateral sideslip that might result from wind or imperfections in flight 

control. If this is the role of the HSN neuron then the stimulus we use might well 
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reflect the kind of image slip the neuron is adapted to encode. This is indeed what we 

show in Chapter 2.  

The other major limitation of our stimulus is its absolute luminance of our display, 

which has a mean luminance of ~90 Cdm-2, several orders of magnitude lower than 

the outdoor environment. When luminance increases over a naturalistic range, 

LPTCs signal increased information about the motion trajectory (Lewen et al., 2001).  

6.6 Future directions  

Despite a wealth of knowledge surrounding their response properties, well beyond 

the basic level, there a few clues to the precise mechanisms underlying accurate 

velocity estimation. Rather than identifying these mechanisms, this thesis reveals 

additional processes to those already well characterized, which are likely to be 

contributors.  

What mechanisms drive the apparent normalization strategy (Chapter 3) observed for 

natural image processing? Adaptation is an interesting potential candidate. 

Preliminary experiments (data not shown) suggest that different natural scenes 

recruit different amounts of adaptation. This may well account for part of the 

response normalization. Adaptation allows neurons to rescale their response range 

and maximize information transmission. Recent studies have shown that the non-

linearities associated with adaptation are not just a consequence of the biophysical 

processes underlying the neurons signal transmission, but rather have an important 

functional role in the encoding of natural statistics (Schwartz & Simoncelli, 2001).  

The increase in response observed over initial response period is still completely 

unaccounted for (Chapter 3, Figure 3.4). What are the mechanisms underlying an 

increase in response? We show that when an independent adapting stimulus is used 

that this is not the result of a rapidly recruited increase in the gain of the system, but 

rather seems to be matched to the specific image in question (see Chapter 3, Figure 

3.S6). These mechanisms are almost certainly related to the ‘latency’ mechanisms 

described by Warzecha and Egelhaaf who also stopped short of identifying a 

mechanism (Warzecha & Egelhaaf, 2000). Further dissection of the adaptive 
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components and their recruitment in more naturalistic condition will certainly lead to 

a greater understanding of motion adaptations role in response normalization.  

An important consequence of adaptation being a dominant element in response 

normalization (Schwartz & Simoncelli, 2001), is that it acts to keep the neurons in 

the more linear part of their response range. This kind of effect has beneficial 

consequences for reconciling some of our data. For example, Chapters 4 and 5 

present data, whereby a model with no compressive elements, fits the relative 

magnitude of response features to certain images or image features (see Figure 4.3-

4.5; Figure 5.1). Yet, from one situation to the next the model incorrectly estimates 

the absolute magnitude by an enormous degree. In Chapter 4, for the natural images 

this is a >40-fold discrepancy and in Chapter 5 this is more like 100-fold (see 

Chapter 4, Figure 4.5; and Chapter 5, Figure 5.1). Powerful adaptive mechanisms 

acting to rescale neural response without any compressive effects like that describe 

to account for adaptation in the V1 and the auditory cortex by Schwartz and 

Simoncelli (2001), would provide an ideal mechanism to account these observations 

in our data. Are these linked to additional lack of predictability of spatial integration 

of the HSN neuron (Chapter 4) to natural images?  

Modern genetic tools allow for an advanced approach to understanding key missing 

links in the motion processing pathway. This thesis looks at the brains processing of 

visual motion from a ‘black-box’ point of view. However, there remain many 

questions surrounding the neural substrates of the observed phenomenon. Up until 

recently these elements have been relatively unacsessable dure to the small size, but 

new genetic toolkits available in Drosophila are already providing critical 

information about the elements on the motion processing pathway flies and their role 

in generating response to motion (for example see Rister, Pauls, Schnell, Ting, Lee, 

Sinakevitch, Morante, Strausfeld, Ito & Heisenberg, 2007).  
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