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Abstract

Terahertz time-domain spectroscopy (THz-TDS) is a technique capable of measuring
optical constants of materials with T-ray frequencies, bounded between 0.1 and 10 THz.
Owing to the infancy of the technology, much work has to be carried out to improve
its utility and reliability. Engineering aspects become vital to support its operation that
relies on physical phenomena. This thesis, in the arena of engineering, encompasses a
variety of original THz-TDS projects, which aim for (Part I) signal enhancement and

classification, (Part II) system evaluation and optimisation, and (Part III) T-ray optics:

Part I is relevant to enhancement and classification of T-ray signals via digital sig-
nal processing. In one project, information underlying T-ray signals is enhanced
through numerical removal of unwanted artefacts that are introduced by the re-
sponse of water vapour during the measurement. In another project, machine
learning is recruited in classification of visually indistinguishable T-ray signals

probing materials of the same general class.

Part II focuses on THz-TDS systems with a particular interest in the measurement
precision. An ISO standard for the evaluation of measurement uncertainty is
adopted for assessing the uncertainty in THz-TDS measurements. The result is
an analytical uncertainty model, which allows an improvement in the measure-
ment precision through optimisation of a model parameter in the subsequent

work.

Part III involves design, fabrication, and characterisation of THz-TDS hardware com-
ponents, i.e., antireflection windows and multilayer interference filters. The de-
signs are based upon conventional optical interference theory. Despite that, re-
quired materials and fabrication processes are completely different from those
used in optics due to the distinctive operating wavelengths, which dictate mate-

rial responses and structural dimensions.

In addition to these parts of the original contributions, the thesis offers an introductory

background to THz-TDS, in the areas of hardware, applications, and data processing.
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