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represent batch average readout plus and minus 1 S.D respectively. 
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Figure 6.13. A plot shows the ratio of measured fast neutron dose equivalents (mSv) 

from CR-39 etch-track detector to corrected readouts (μC) of 6LiF:Mg,Cu,P TLDs due 

to fast neutron exposure as a function of distance (cm) from the isocentre. 
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Figure 7.1. (Left) The anthropomorphic Rando phantom consisting of 35 section 

slices. The phantom sections are individually numbered and all sections are 

assembled in the clamping device. (Right) A section of the Rando phantom. The area 

of the lower density material (darker color enclosed by the green line) simulates the 

natural human lung tissue is displayed. The grid holes with white Mix D plugs are 

also shown. The rib cage bones made of true human skeleton can also be seen in this 

phantom section (yellow circle). 

222 

Figure 7.2. A picture shows the a TLD plug made from a piece of the tissue 

equivalent wax and a pair of 6LiF:Mg,Cu,P and 7LiF:Mg,Cu,P TLD rods. A permanent 

ink marking pen is used to mark the number of the TLD plug. 
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Figure 7.3. The TLD-loaded Rando phantom is placed on the treatment couch of the 

Varian iX linear accelerator. The laser beams were used to set up the phantom on the 

couch using the coordinates marked on the phantom for pelvic irradiation. 

224 

Figure 7.4. Predicted risk (%) of radiation-induced second malignancy as a function 

of fractionated radiation dose. 

227 

Figure 7.5. Average peripheral photon dose equivalent per 1 Gy isocentre dose in 

the Rando phantom measured at different distances from the isocentre. The dose is a 

result of exposure to external (out-of-field) leakage as well as internal scattered 

radiations (18 MV X-ray beam from Varian iX linear accelerator). 
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Figure 7.6. Average peripheral neutron dose equivalent (mSv) per 1 Gy isocentre 

dose in the Rando phantom as a function of distance (cm) from the isocentre (18 MV 

X-ray beam from Varian iX linear accelerator). 
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Abstract 

The probabilities of developing radiation-induced normal tissue complications and 

second primary cancers were evaluated using dose-volume histograms as well as 

dose measurements covering a range of radiotherapy techniques including External 

Beam Radiotherapy (EBRT) and Brachytherapy (BT) for prostate cancer.  

There are two major parts in this thesis. In the first part, the Dose-Volume Histograms 

(DVHs) of the Organs-At-Risk (OARs) such as rectum, bladder, urethra, and femoral 

heads were retrieved from the radiation treatment plans of 4-field standard 

fractionated (2 Gy/fraction) Three-Dimensional Conformal Radiotherapy (3D-CRT) to 

total dose of 64 Gy, 4-field hypofractionated (2.75 Gy/fraction) 3D-CRT to total dose 

of 55 Gy, 5-field 3D-CRT to total dose of 70 Gy, 4-field 3D-CRT to total dose of 70 and 

74 Gy, Low-Dose-Rate Brachytherapy (LDR-BT) with I-125, High-Dose-Rate 

Brachytherapy (HDR-BT) with Ir-192,  and combined-modality treatment (3D-CRT & 

HDR-BT) techniques. The DVHs of these normal organs/tissues were converted to 

Biologically Effective Dose based DVHs ( ffBE DVHs ) and Equivalent Dose based DVHs 

( eqD VHs ) respectively in order to account for differences in radiation treatment 

modality and fractionation schedule. For assessment of the Normal Tissue 

Complication Probability (NTCP), the Lyman and Relative Seriality NTCP models were 

applied to the differential eqD VHs  of the OARs. For the assessment of risk of radiation-

induced Second Primary Cancer (SPC), the Competitive Risk model was used. In total, 

223 DVHs from 101 patients were analysed in this thesis. 
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In the second part, a radiation dosimetry technique was developed and used in 

measuring the doses delivered to distant organs/tissues (e.g. lungs and thyroid) as a 

result of prostate irradiation. In this case, simulation of prostate cancer radiotherapy 

was performed with the anthropomorphic Rando phantom using 4-field 3D-CRT 

technique to the total dose of 80 Gy with the 18 MV X-ray beam from Varian iX linear 

accelerator (linac). Radiation doses at different locations in the Rando phantom 

resulting from scattered and leakage photon and neutron radiations were measured 

using enriched 6Li and 7Li LiF:Mg,Cu,P glass-rod thermoluminescence dosimeters 

(TLDs). 

Results indicated that with hypofractionated 3D-CRT (20 fractions of 2.75-Gy fraction 

and 5 times/week to total dose of 55 Gy) NTCP of rectum, bladder and urethra were 

less than those for standard fractionated 3D-CRT using 4-field technique (32 fractions 

of 2-Gy fraction and 5 times/week to total dose of 64 Gy) and dose-escalated 3D-CRT. 

Rectal and bladder NTCPs (5.2% and 6.6% respectively) following the dose-escalated 

4-field 3D-CRT (2 Gy per fraction to total dose of 74 Gy) were the highest amongst the 

analysed treatment techniques. The average NTCP for rectum and urethra were 0.6% 

and 24.7% for LDR-BT and 0.5% and 11.2% for HDR-BT. Although brachytherapy 

techniques resulted in delivering larger equivalent doses to normal tissues, the 

corresponding NTCPs were lower than those of external beam techniques except in 

the case of urethra due to much smaller volumes irradiated to higher doses. Amongst 

normal tissues analysed, femoral heads were found to have the lowest probability of 

complications as most of their volume was irradiated to lower equivalent doses 

compared to other tissues. 
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The average estimated radiation-induced SPC risk was no greater than 0.6% for all 

treatment plans corresponding to various treatment techniques but was lower for 

either LDR or HDR brachytherapy alone compared with any EBRT technique. For LDR 

and HDR brachytherapy alone, the risk of SPC for rectum was approximately 2.0 x 10-

4 % and 8.3 x 10-5 % respectively compared with 0.2% for EBRT using 5-field 3D-CRT 

to total dose 74 Gy. Treatment plans which deliver equivalent doses of around 3 – 5 

Gy to normal tissues were associated with higher risks of development of cancers. 

Results from TLDs measurements in the Rando phantom indicated that photon doses 

were highest close to the irradiation volume and the photon dose equivalent ratio 

(dose equivalent per unit of target dose) decreases proportionally with the distance 

from the isocentre (e.g. 6.5 mSv/Gy for small intestine to 0.2 mSv/Gy for thyroid). In 

contrast, the dose equivalent ratio of neutrons in the Rando phantom was observed to 

be constant at approximately 5.7 mSv/Gy for up to 50 centimeters from the edge of 

the treatment field (from pancreas to oesophagus). 

The total dose equivalent (photon and neutron) for each organ/tissue approximated 

for the 4-field standard fractionated 3D-CRT technique to total dose of 80 Gy using 18 

MV X-ray beam from Varian iX linac ranged between 323.0 mSv (for thyroid) and 

1203.7 mSv (for colon). Based on the competitive risk model and on the assumptions 

that the dose equivalents were uniformly distributed in the volumes of these 

organs/tissues, the estimated risks of SPC range from 1.5% (in thyroid) up to 4.5% 

(in colon). 

Different radiation treatment techniques for prostate cancer are associated with 

different probabilities of developing radiation-induced normal tissue complications 

and second primary cancers. In the case of brachytherapy for prostate cancer, due to 
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its specific dose-volume characteristics in addition to not having the leakage or 

neutron radiation associated with external beam radiotherapy, this treatment 

modality is associated with a reduced risk of NTCP and SPC compared with EBRT 

techniques for both organs situated close to and organs situated at a distance from 

the treatment field.  

In this current work, the radiation dosimetry technique based on the 6LiF:Mg,Cu,P 

and 7LiF:Mg,Cu,P glass-rod TLDs was developed to determine the radiation doses 

received by organs/tissues positioned away from the irradiation field due to 

scattered and leakage photons and neutrons. This radiation measurement technique 

enables the evaluation of the prostate radiation treatment plan to include the 

assessment of organs/tissues of interest in both high and low dose regions. 

It was demonstrated in this thesis that the relative seriality (NTCP) and the 

competitive risk (SPC) are useful models which can be used for the purpose of 

relative comparison and evaluation of prostate radiation treatment plans even 

though they may need to be further verified and fine tuned against clinical data. 
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