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Appendix A

Preliminary Studies

R
ECOMMENDATIONS for extending the work in Chap-

ters 5–9 are provided in Section 10.3. In addition, four smaller

studies are summarised in Section 10.3. These smaller pieces

of work are in various stages of development; some are more developed

with preliminary results, whereas others are literature reviews only. This

Appendix describes the studies in greater detail.
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A.1 Preliminary Study 1: Pseudo-Phase Contrast

A.1 Preliminary Study 1: Pseudo-Phase Contrast

In order to encourage a rapid adoption of THz imaging in industry and medicine, it

is necessary to present THz data in ways that are useful and familiar to professionals

in these fields. Established image processing methods can be applied to THz data to

enhance its representation. Figure A.1(a) shows an example of a THz time domain

image captured by a conventional charge-coupled device (CCD) camera after optical

upconversion. This image of an insect on a leaf consists of N × P pixels, and is at

one time instance along a discretized time domain with M points. By stacking many

of these N × P arrays over time, a 3D time domain array as shown in Fig. A.1(b) is

generated.

The time domain response of one pixel can be extracted for analysis. In Fig. A.1(c), the

time response of three pixels from the leaf/insect specimen mentioned above is pre-

sented: one pixel is that of the insect, another of the vein of the leaf, and the last is of

free-space. When compared to the free-space plot (black line-dot plot), the THz profiles

after exiting the insect (red solid line plot) and leaf (blue dashed plot) are attenuated in

amplitude. Since the insect and leaf contain water, which strongly attenuates THz radi-

ation, this attenuation is expected. The THz profile for the insect is phase shifted more

than the leaf’s profile, implying that the insect is thicker than the leaf and/or has a

higher refractive index, therefore slowing down the propagating THz radiation. These

time profiles can be Fourier transformed to obtain the broadband frequency response.

A.1.1 Preliminary Results

Figure A.2(a) shows THz data after application of common image processing tech-

niques, such as edge detection, Laplacian filtering, and smoothing. Instead of separate

amplitude and phase plots, this enhanced image more closely resembles 3D images

generated using medical visualisation tools, thus allowing medical professionals to

analyse and compare results easily.

An open question is can we implement a new form of THz data representation in-

spired by established image enhancement techniques used in the scientific field, such

as Zernike’s optical phase contrast method? Zernike’s optical phase contrast method

is based on the effect of light passing through a phase79 object. When light passes

79An object that is not observable (transparent, invisible) because it does not provide contrast with

the background. It does, however, cause phase modulations in the irradiated light wave, whereby these
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(a) One slice of the 3D dataset with N × P pix-

els, containing spatial information

(b) 3D dataset contains both time and spatial

information

(c) Time response of 3 locations in the 3D dataset: insect, vein of leaf, and free-space (air)

Figure A.1: Extracting the time response from various pixels in the 3D dataset. (a–b) The 3D

dataset contains time and spatial information of the sample space under investigation.

Spatial information from one time slice is pseudo-coloured in various shades of green

to highlight the different objects in the sample space. Data courtesy of X.-C. Zhang at

RPI. (c) The time responses of 3 different pixels: insect, vein of leaf and free-space.

through free-space/air (surround path), the phase and amplitude information in the

light wave is unaltered. When light passes through a phase object (particle path), the

amplitude of the light wave is slightly attenuated due to energy loss. The light wave

also slows down due to the refractive index of the phase object; the amount of delay

introduced will also depend on the object’s thickness. The difference in phase between

the surround and particle paths is approximately a quarter of the wavelength of opti-

cal light. The human eye, however, can only sense amplitude and colour differences

when both the surround and particle paths are in phase. The eye however fails to sense

phase modulations are due to either the different refractive index of the object from air, the thickness of

the object, or both (Hecht 2002).
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A.1 Preliminary Study 1: Pseudo-Phase Contrast

the contrast between the surround and particle paths due to their being out of phase

by a quarter wavelength (Bennett et al. 1951). Phase objects therefore appear invisible

under a conventional light microscope. In optical phase contrast, the surround path is

manipulated to bring it back in phase with the particle path, resulting in the visibility

of the phase object due to constructive interference.

(a) After application of image processing techniques (b) Pseudo-phase contrast imaging

Figure A.2: Alternative representations of THz data. (a) Improvements made to THz image

after application of common image processing techniques. The third dimension, inten-

sity, is used to pseudo-colour this image. (b) With THz pseudo-phase contrast imaging.

The third dimension in this case is thickness.

Considering one pixel from the leaf/insect sample in this study, the path length of the

sample can be obtained indirectly by first calculating the relative time delay between

the peak of the sample’s (e.g. at position i) and the peak of a reference signal. Repeating

for the whole N × P matrix, the relative propagation times τi with respect to τref is given

by:

τi = |(time occurrence of peak i) − τref| , for i ε [1, · · · , N × P] , (A.1)

and the optical path length is then given by:

di = speed of light c × τi , for i ε [1, · · · , N × P] . (A.2)

The optical path lengths can now be converted to sample thickness. Figure A.2(b)

shows an image of the various sample thicknesses. There are strong contrasts between

the different parts of the leaf, and between the two halves of the insect. This is a novel

form of phase contrast because the various path lengths are translated into an image

with high contrast.
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The relative amplitude Ii tells us how absorptive the medium is to THz radiation. If Ii is

large, then large THz levels have been absorbed by the medium, hence low THz levels

are captured by the detector. If Ii is small, then the THz radiation propagates through

the medium without being absorbed. Therefore Ii can be used to set the opacity of a

pixel in Fig. A.2(b) such that Ii = Iref implies zero opacity (Iref is the free-space ampli-

tude where free-space is transparent) and Ii = max{Ii ε [1,...,N×P}} implies unity opacity

(opaque). The sample’s opacity is calculated using:

Ii = |Iref − (peak amplitude at pixel i)| , for i ε [1, · · · , N × P] . (A.3)

The low signal-to-noise ratio (SNR) however makes it difficult to pin-point a particular

pixel as the reference. To overcome this, peak detection was performed on every pixel

in the time domain, i.e. the peak of each M × 1 array was found. The peak detection

extracted from each pixel the time occurrence and value of the peak amplitude, thus

generating two N × P matrices. From each matrix, 15 neighbouring pixels that corre-

spond to the top left corner of Fig. A.1(a) were selected and used to average Iref and

propagation time τref.

In this investigation, it is assumed that the peaks of the leaf’s time profiles do not suffer

from changes in polarity, and that pulse broadening does not adversely affect the shape

of the profile. These assumptions are adopted because the leaf has a higher refractive

index than air, so the THz radiation have propagated through three media (air-leaf-

air) and the polarity of their time profiles are unaltered upon exiting the leaf. The leaf

used in this analysis is dry, thus it has minimal water content; strong water absorption

that causes deformation of the profile is not expected. Internal reflection is ignored.

The insect, being thicker and/or denser than the leaf, causes some pulse broadening

in the THz profile as seen by the solid line plot in Fig. A.1(c). The polarity of the

peak is expected to be inverted (a trough) because the THz radiation have propagated

through four media (air-insect-leaf-air). Referring to Fig. A.1(c), the trough at around

6 picoseconds seems to be the one of interest. This trough, however, occurs before

the peak of the free-space profile (solid-circle plot), which gives a false impression of

negative group velocity. The trough is therefore ignored in this initial analysis. The

positive peak (after the peak of the free-space profile) is chosen instead, and the insect

and the portion of leaf beneath it are treated as one object.

Note that Zernike’s original phase contrast method is based on interference between

two beam paths. By altering the path length of one path, the phase difference between
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the two paths is revealed proportionally as amplitude variations in the observed im-

age. This is akin to heterodyne detection. However, with functional THz imaging,

the full phase information is recovered and so interference effects are not exploited.

This method of rendering sample thickness on the z-axis, as shown in Fig. A.2(b), is

therefore dubbed ‘pseudo-phase contrast’.

A.1.2 Future Work

Future work could consider signal processing techniques that transform the full phase

information from THz imaging to produce the actual appearance of Zernike phase con-

trast images. Given that THz functional imaging recovers the full phase information,

this should be possible in principle.

A.2 Preliminary Study 2: Polymer Hole Arrays

An array of holes spaced periodically apart can function as a notch filter, allowing only

specific frequencies from a wideband electromagnetic signal to pass through. This idea

is not novel—-doors of microwave ovens are affixed with such filters to minimise leak-

age of microwave radiation. The shape of holes, size of holes, pitch of holes (distance

from the centres of adjacent holes), arrangement of holes (e.g. triangular lattice), type

of material, and thickness of the material all play a part in determining the notch fre-

quency/frequencies of the hole array.

In the submillimeter and THz frequency regions, metal structures containing arrays of

subwavelength holes have been observed to pass frequencies in the low THz frequency

range (Drysdale et al. 2003, Qu et al. 2004, Qu and Grischkowsky 2004, Miyamaru and

Hangyo 2004, Biber et al. 2004a, Biber et al. 2004b, Azad and Zhang 2005, Tanaka et al.

2005, Lo et al. 2005, Biber et al. 2006). Such structures, which are called metal hole arrays

(MHAs) or Frequency Selective Surfaces (FSSs), are usually made from a very thin

sheet of metal (e.g. aluminium with thickness between a few hundred nanometers to a

few hundred micrometers) mounted on a thicker substrate (e.g. silicon) for mechanical

support. Figure A.3 presents examples of MHAs.

The aim of several reported THz MHA studies has primarily been on characterising the

frequency resonant behaviours of these structures. Enhancement of THz transmission

was also proposed (Lo et al. 2005). However, a practical purpose for these filters has
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(a) MHA with slot-shaped holes, passband at

0.6 THz

(b) MHA with dogbone-shaped holes, pass-

band also at 0.6 THz

Figure A.3: Examples of metal hole arrays. (a–b) Photographs of metal hole array (MHAs) with

differently shaped holes, but with the same passband frequency. Close-up view of a

hole is shown on the right of each subfigure. After Biber et al. (2006).

not been explicitly identified. The small size of MHAs, together with their sensitivities

to the low THz frequency range, which is less affected by water absorption, raises the

question as to whether MHAs would be suitable for detecting minute quantities of

liquids. This proposal is encouraged by the work done in Yoshida et al. (2007), where

protein detection was demonstrated on a thin metallic mesh.

A.2.1 Preliminary Evaluation

The case study presented henceforth explores the ease of designing a MHA, and in-

vestigates if alternative materials can be used. Figure A.4 shows an HFSS model of

a MHA. Recalling that in Chapter 8, in order to model the array of cylinders along

the y-axis, a pair of master-slave boundaries are used in HFSS. In Fig. A.4, two master-

slave boundaries are used to create periodicity along two-dimensions, the x and y axes.

Outcomes from varying in the hole configurations are shown in Fig. A.5. Recalling Sec-

tion 8.7.2, the S11 plot describes backscattering in a two-port network, with port 1 being

the input and port 2 being the output. If S11 = 0 dB, then there is 100% backscattering,

i.e. stopband of a filter; if S11 < 0 dB, then there is forward transmission from port 1 to

port 2, i.e. passband of a filter.

Based on the size and material descriptions provided in existing literature, a plan was

made to manufacture a MHA similar to that shown in Fig. A.4, with a passband below

0.2 THz. This frequency range is desired because THz is more strongly attenuated by

liquid water at higher frequencies. The MHA manufacturing process would involved
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A.2 Preliminary Study 2: Polymer Hole Arrays

(a) Basic cell (b) First master-slave

boundaries

(c) Second master-

slave boundaries

(d) PML boundaries

Figure A.4: Modelling periodic hole arrays in HFSS. (a) Basic cell with the array highlighted.

(b) The first set of master-slave boundaries models periodicity along the x-axis. (c)

The second set of master-slave boundaries models periodicity along the y-axis. (d) The

PML boundaries reduce the problem space.

those utilised in the fabrication of printed circuit boards (PCBs). However, the thick-

ness of the metal (a few hundred micrometers to achieve a passband below 0.2 THz)

was considered too thick for current modern etching methods; an older etching ma-

chine is required. One such machine was found at the University of Cardiff in Wales,

UK, whereby the cost of the etching process was quoted at £500.

Although this cost is not prohibitively high, the question of finding alternative mate-

rials was raised. Additionally, being able to manufacture a FSS locally at a lower cost

would be most desirable so that an assortment of filters with different passbands are

available for use. One possible material was found after lengthy discussions with the

authors of Gallant et al. (2007b). Polydimethylsiloxane (PDMS, or silicone rubber) is

a flexible polymer, which can be manufactured following a recipe involving photore-

sists, solvents, and standard spin coating and ultraviolet curing techniques (Gallant et

al. 2007a). Figure A.6 shows an example of a PDMS hole array. The PDMS hole array

has been verbally reported80 by Gallant to be effective for detection of chemicals; the

80From an oral presentation at the Joint 32nd International Conference on Infrared and Millimeter

Waves, and the 15th International Conference in Terahertz Electronics (IRMMW-THz) in 2007.
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Figure A.5: Effect of modifying cell and hole dimensions. Annotated screen shot of S11 plots

from HFSS. The tunability of the structure is evident from the varying locations of the

passband as the cell and hole dimensions are altered. In the first instance, only the

cell’s y-dimension is altered from 2.5 mm to 2 mm in steps of 0.05 mm. Then the

hole’s y-dimension is altered from 1 mm to 1.5 mm in a single step of 0.5 mm, resulting

in the generation of a less defined passband.

array was measured with and without biotin, resulting in different transmitted THz

signals.

A.2.2 Future Work

If the PDMS’ optical properties are known, then various PDMS configurations can

be modelled using HFSS. The presence of a thin layer of sample on the PDMS array

(e.g. protein solution, biological fluid such as blood) may also be modelled with HFSS

as a thin second layer on the array structure. The optimal thickness, if any, of the pro-

tein sample on the array can also be explored. Furthermore, an optimal array passband

may also exist for a specific type of sample. The results from HFSS can then be verified

experimentally using a customised PDMS array.
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Figure A.6: PDMS hole array. This specific array has a strong passband at ≈ 0.8 THz, but it

also passes frequencies above 0.8 THz but at attenuated signal strengths, therefore

behaving like a non-ideal high pass filter. By changing the size of holes, pitch of holes,

and arrangement of holes, the filter characteristics of the array is expected to change.

Photograph courtesy of A.J. Gallant from Durham University, UK.

A.3 Preliminary Study 3: Etalon Removal

In Chapter 7, polystyrene culture dishes (BD Falcon 353001) are required in the man-

ufacturing process of gels. Since polystyrene is transparent to THz radiation, these

dishes are assumed to not interfere with the THz measurements of the gels. This

assumption is valid with regards to quantitative measurements of a sample’s opti-

cal properties. Referring to Fig. 7.8 of the extinction coefficients of gels measured in

dishes, the slope of the plots provide quantitative distinction between the three types

of samples (pH 2, 4 and 7). However, each plot has an oscillatory artefact caused by

Fabry-Pérot etalon effects (multiple reflections) inside the lids and bases of the dishes.

The absence of these oscillatory artefacts is clearly apparent in the plots of samples

measured without dishes, such as Fig. 7.12.

Fabry-Pérot etalon effects exist as either undesired embedded reflections within a

THz pulsed signal, or as reflections that appear shortly after the THz pulsed sig-

nal. Algorithms have been proposed to remove both types of reflections (Duvillaret

et al. 1996, Naftaly and Miles 2007a). In Duvillaret et al. (1996), removal of reflections

from a single layer are demonstrated; reflections from multiple layers are reported but

not demonstrated. In the study presented below, an algorithm for removing undesired

embedded reflections from multiple layers is demonstrated.
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The algorithm models embedded reflections from multiple layers as a train of weighted

delta functions in the time domain. The embedded reflections are either entirely re-

moved or significantly reduced when the measured THz signal is divided by the delta

train in the frequency domain. The algorithm is applied to measured data from mul-

tilayered samples with estimated a priori knowledge of the optical properties of the

layers.

A.3.1 Proposed Algorithm

Transmission and reflection pathways of a THz wave in a sample can be described by

the Fresnel equations (Hecht 2002). These pathways are provided in detail in (Dorney

et al. 2001). In this study, the angles of incidence and transmission of the THz signal

are assumed to be normal to the sample. In the time domain, the measured THz signal

E(t) is the sum of the primary signal Ep(t) and multiple weighted, delayed copies

(reflections) of the primary signal with time delay τx:

E(t) = a0 Ep(t) +

unwanted
︷ ︸︸ ︷

a1 Ep(t − τ1) + a2 Ep(t − τ2) + · · · , (A.4)

where τx = τx−1 +
2(thickness of layer x)(nlayer x)

speed of light in vacuum
,

and the normalised Fresnel coefficients, a0 = 1 and · · · < a2 < a1 < 1, are dependent

on the refractive indices nx of the layers under investigation. For example, the first four

normalised coefficients of a one-layered sample suspended in air are:

a0 = T12 =
2 nair

nair + nlayer 1

= 1 (normalised) ,

a1 =
R2

21 T12

T12

=

(
nlayer 1 − nair

nlayer 1 + nair

)2

,

a2 =
R4

21 T12

T12

, a3 =
R6

21 T12

T12

.

Recalling that the unwanted reflections cause oscillatory artefacts in the frequency do-

main, this technique matches the oscillation by first treating the primary signal as a

Dirac delta function at zero time, and the reflections as weighted, delayed Dirac delta

functions:

E(t) = a0 δ(t) +

unwanted
︷ ︸︸ ︷

a1 δ(t − τ1) + a2 δ(t − τ2) + · · · . (A.5)
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In the frequency domain, Equation (A.5) transforms to Equation (A.6), which now con-

tains a sum of exponential functions that match the oscillatory artefact:

E(ω) = 1 +

unwanted oscillation
︷ ︸︸ ︷

a1 e−i(ω−ω1)τ1 + a2 e−i(ω−ω1)τ2 + · · · , (A.6)

where ω is the angular frequency, and ω1 is a variable to allow minor adjustments

in frequency to best match Equation (A.6) with the oscillation. Here, ω1 is a fitting

parameter that selects the case with minimum deviation from the oscillation; it helps

account for slight inaccuracies in the measurement of thickness or optical properties.

Equation (A.6) can be extended to include multiple layers by adding more exponential

terms and recalculating the normalised Fresnel coefficients accordingly.

A.3.2 Preliminary Results

The algorithm is first applied to a scenario with two layers: α-lactose monohydrate

(BDH reagent grade, mixed with polyethylene powder) stored in a polystyrene cul-

ture dish (BD Falcon 353001). The α-lactose is measured in situ. The culture dish has a

1 mm thick base and is the reference signal in this scenario. To ensure that any oscil-

latory artefact in the frequency domain is solely due to embedded reflections, the time

domain signals are truncated before the arrival of secondary reflections that are gener-

ated by mirrors or lenses. The time domain signals are then padded with zeros. The

dashed line plots in Figs. A.7(a)–A.7(c) show the optical properties of α-lactose without

any correction. The inset plots clearly illustrate the oscillatory artefact, particularly at

the lower frequency range.

The oscillation is matched by calculating the variables in Equation (A.6) based on

the estimated optical and physical properties of α-lactose and polystyrene, and using

ω1 = 13∆ω (where ∆ω is the known frequency step in the frequency domain). This

value of ω1 is obtained by first running the algorithm with ω1 = 0 to check if Equa-

tion (A.6) requires a slight frequency shift to match the oscillation. If required, the best

ω1 value is then selected to align Equation (A.6) with the oscillation. By dividing the

original uncorrected sample frequency response by Equation (A.6), the oscillation in

the resulting sample frequency response is significantly smoothed. More importantly,

a recalculation of the optical properties of α-lactose shows that the spectral peaks are

preserved. This is visible by the solid line plots in both the inset and main plots of

Figs. A.7(a) and A.7(b).
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(a) Refractive index without (dashed line) and

with (solid line) correction using the algorithm

proposed in this Section

(b) Absorption coefficient without (dashed

line) and with (solid line) correction using the

algorithm proposed in this Section

(c) Absorption coefficient without (dashed line) and with (solid line) correction using Duvillaret’s algo-

rithm

Figure A.7: Performance comparison of algorithms for a multilayered test scenario. α-lactose

is mixed with polyethylene powder, and measured inside a polystyrene culture dish with

a 1 mm thick base (with no lid). (a) Refractive index without (dashed line) and with

(solid line) correction using the algorithm proposed in this Section. (b) Absorption

coefficient without (dashed line) and with (solid line) correction using the algorithm

proposed in this Section. (c) Absorption coefficient without (dashed line) and with

(solid line) correction using Duvillaret’s algorithm.

The same two-layered scenario as described above (α-lactose and polystyrene) is used

in a comparison of the performance of the algorithm in Duvillaret et al. (1996) and

the one proposed in this Section. It is evident from the solid line plot in Fig. A.7(c)
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that application of Duvillaret’s algorithm provides some smoothing but exacerbates

the oscillation at certain frequencies (e.g. 0.75–0.8 THz).

In order to compare the performance of the two algorithms for a single-layered case,

the next test scenario utilises a 1 mm thick polyethylene slab. Although both algo-

rithms allow multiple iterations, only one pass of each algorithm was required as no

significant improvements were observed from additional passes. The time domain sig-

nals were truncated and padded as described above. It is evident from the dashed line

plot in Fig. A.8 that the oscillation in this example is pronounced, and application of

either algorithm provides considerable smoothing. The extent of smoothing from this

algorithm is comparable to that of Duvillaret’s.

(a) Refractive index without correction (dashed line) and with correction (solid line) using Duvillaret’s

algorithm

(b) Refractive index without correction (dashed line) and with correction (solid line) using the algorithm

proposed in this Section

Figure A.8: Performance comparison of algorithms for a single layered test scenario. A 1 mm

thick polyethylene slab is used as the single layered sample. (a) Refractive index without

correction (dashed line) and with correction (solid line) using Duvillaret’s algorithm.

After Duvillaret et al. (1996). (b) Refractive index without correction (dashed line)

and with correction (solid line) using the algorithm proposed in this Section, where

ω1 = 4∆ω in Equation (A.6).
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A.3.3 Future Work

One shortcoming of the proposed algorithm is the use of the fitting parameter ω1. The

chosen value of ω1 in the algorithm is presently decided manually by trial and error. A

search algorithm can be introduced to optimise the chosen ω1. More fitting parameters

may also be needed to remove oscillations at the higher frequencies.

A.4 Preliminary Study 4: Inverse Problems

In Chapters 5–8, the THz optical properties of samples are determined from the THz

time domain measurements of electric field. Extracting the optical properties from

the time domain measurements requires the application of a series of transforms and

equations as described in Chapter 5; the THz optical properties cannot, at present, be

probed directly. The extraction of THz optical properties is considered an inverse prob-

lem because the measured parameters (electric field) differs from the desired quantities

(optical properties).

Many real-world problems can be considered inverse problems. For example, the use

of seismic waves to probe the earth’s crust, or the use of ground penetrating radar

to study vegetation. In an ideal measurement, the inverse problem is well-posed: a

unique solution (e.g. THz optical property) exists for any measurement (e.g. THz time

domain measurement), and the reverse mapping (the measurement produces a unique

solution) also exists. However, in non-ideal measurements, issues such as scattering

and dispersion can result in there being many possible solutions, making it impossible

to perform a unique reverse mapping. When this happens, the inverse problem is

considered ill-posed in the sense of Hadamard (Hadamard 1923). Formal mathematical

definitions of well-posed, ill-posed, and ill-conditioned inverse problems can be found

in literature (Vasin and Ageev 1995, Kirsch 1996, Bukhgeim 2000); the definition of

well-posedness is reproduced below from Kirsch (1996).

Definition for well-posedness: Let X and Y be normed spaces, K : X 7→ Y, where K

is a linear or non-linear mapping. The equation Kx = y is called well-posed if the

following holds:

1. Existence: For every y ∈ Y, ∃ (at least one) x ∈ X such that Kx = y.

2. Uniqueness: For every y ∈ Y, ∃ at most one x ∈ X with Kx = y.
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3. Stability: The solution x depends continuously on y.

If any one of the above three properties does not hold, then the problem is called ill-

posed.

In the context of THz spectroscopy, x is the sample’s property of interest that cannot

be measured directly (e.g. optical property), y is the time domain THz measurement,

K is the mapping from x to y. In practice, y is most likely corrupted by noise, such as

multipath reflections and scattering. This corruption may cause ill-posedness of the

inverse problem, resulting in the poor reconstruction of x denoted by x̂. To improve

the quality of x̂, a regularisation scheme, such as the Tikhonov regularisation scheme

(Tikhonov and Samarskii 1963), is required. Details of regularisation can be found in

Kirsch (1996).

Inverse scattering is the term used to refer to the study of inverse problems involving

scattering (Tijhuis 1987, Popović and Taflove 2004). Since scattering is one concern in

this Thesis, a proposed future direction is to utilise Tikhonov regularisation to solve in-

verse ill-posed THz scattering problems from biotissue, protein microstructures, strat-

ified layers, and rough surfaces (Ogilvy 1991). Inverse scattering from stratified layers

and rough surfaces would be of particular interest to the THz community research-

ing security applications of THz, such as detection of hidden explosives (Oliveira et

al. 2003, Oliveira et al. 2004), and land mines (Osiander et al. 2003, Bosq et al. 2005).

A.5 Appendix Summary

Four novel short case studies are presented to extend the novel work presented in

this Thesis. Preliminary results and reviews from these studies aim to improve the

extraction of information from THz measurements, and to improve the modelling of

THz propagation and scattering from biotissue.
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Nonlinearity in Materials

N
ONLINEAR materials were introduced in Chapter 3. This

Appendix provides a brief overview of the terms and con-

ventions used to describe nonlinearity. It also gives an

overview of THz-related crystals that have nonlinear properties. The de-

pendence of THz electro-optic (EO) generation on the geometries and ori-

entations of nonlinear crystals is highlighted.
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B.1 Susceptibility χ

This Section elaborates on the electric susceptibility χ introduced in Section 3.2.

When an electric field E is incident on a dielectric medium, a polarisation density vec-

tor P is emitted as shown in Fig. B.1. In a linear medium, the relationship between E

Figure B.1: Relationship between applied electric field

strength and emitted polarisation density. The

polarisation density vector P is emitted due to an ap-

plied electric field E. After Saleh and Teich (1991).

and P is as follows:

P = ε0χ
(1)E , (B.1)

where χ(1) is the unitless scalar electric susceptibility. If the constant ε0 is ignored, then

χ(1) is the transfer function describing the linear medium in Fig. B.1, and χ(1) can be

thought of as a parameter that describes the extent to which a medium produces a

polarised output in response to the incident electric field. If χ(1) = 0 in a linear medium,

then polarisation is not achievable. In Equation (3.1), E and P are expressed as Ẽ and P̃

that vary rapidly over time: P̃(t) = χ(1) Ẽ(t).

For a nonlinear medium, the transfer function describing the medium is also nonlinear.

As expressed in Equation (3.3), the relationship between Ẽ and P̃ is as follows:

P̃(t) = χ(1) Ẽ(t) + χ(2) Ẽ2(t) + χ(3) Ẽ3(t) + χ(4) Ẽ4(t) + · · · , [Equation (3.3)]

where the scalar quantities of Ẽ and P̃ are used in Equation (3.3) for simplicity (Yariv

1989, Boyd 2003).

B.1.1 Sample Values of χ(2)

Thus far, the electric susceptibilities χ(1), χ(2), and χ(3) have been defined as a scalar

property independent of geometry and frequency. By incorporating Cartesian compo-

nents of the incident electric field into the electric susceptibilities, the following electric

susceptibility tensors are obtained:

χ(1) → χ(1)

ij

χ(2) → χ(2)

ijk

χ(3) → χ(3)

ijkl ,
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where the indices i, j, k, and l refer to the Cartesian indices.

If frequency components are included in the electric susceptibility tensors, the equa-

tions relating the scalar components of P to E become:

P1

i (ωm) = ∑
j

χ(1)

ij (ωm) Ej(ωm) (B.2)

P2

i (ωm + ωn) = ∑
jk

∑
mn

χ(2)’

ijk (−ωm − ωn, ωm, ωn) Ej(ωm)Ek(ωn) (B.3)

P3

i (ωm + ωn + ωo) = ∑
jkl

∑
mno

χ(3)’

ijkl(−ωm − ωn − ωo, ωm, ωn, ωo) . . .

Ej(ωm)Ek(ωn)Ek(ωo) , (B.4)

where χ(2)’

ijk and χ(3)’

ijkl are the conjugates of χ(2)

ijk and χ(3)

ijkl respectively. The number of electric

susceptibility tensors χ(2)

ijk and χ(3)

ijkl increase significantly considering the different per-

mutations of the Cartesian indices, and the frequencies ωm , ωn , and ωo . The contracted

notation is one way to reduce the number of electric susceptibility tensors, whereby:

dijk =
1

2
χ(2)

ijk (B.5)

dijkl =
1

2
χ(2)

ijkl , (B.6)

provided the Kleinman symmetry condition is fulfilled as follows:

χ(2)

ijk(ω3 = ω1 + ω2) = χ(2)

jki(ω3 = ω1 + ω2) = χ(2)

kij(ω3 = ω1 + ω2) = χ(2)

ikj(ω3 = ω1 + ω2)

= χ(2)

jik(ω3 = ω1 + ω2) = χ(2)

kji(ω3 = ω1 + ω2) . (B.7)

Details of χ(1)

ij , χ(2)

ijk, χ(3)

ijkl, the contracted notation, and the Kleinman symmetry condition

are found in Boyd (2003) and Kaminow (1974). As described in Equation (3.5), χ(2) and

other even harmonics are of interest in optical rectification. Therefore, sample values

of χ(2) in contracted notation are listed in Table B.1.

B.2 Noncentrosymmetrical Crystals

This Section provides a summary of commonly used nonlinear, THz-related crystals

alluded to in Sections 3.2.1 and 3.10. As shown in Table B.2, a variety of semiconductor

crystals available for THz applications exceeds those of organic and inorganic ones. A

brief explanation of crystal structure and point group will be given in Section B.3.
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Material dil (×10−9cm/statvolt)

lithium niobate (LiNbO3) d22 = 7.4, d31 = 14, d33 = -98

gallium arsenide (GaAs) d36 = 406

beta barium borate (BBO) d11 = 4.6

quartz d11 = 0.96, d14 = 0.02

Table B.1: Examples of χ(2) of several THz-related crystals. Second order nonlinear optical

susceptibilities in contracted notation, where χ(2) = 2dil. Note that in the gaussian

system of units, 1 statvolt = 299.8 volts. If assuming P = dE2, then multiply dil by

4πε0/(3 × 104) to convert dil to MKS units of C/V2. After Boyd (2003).

Semiconductor Crystal Crystal Structure Point Group

zinc telluride (ZnTe) cubic (zincblende) 4̄3m

gallium arsenide (GaAs) cubic (zincblende) 4̄3m

gallium phosphide (GaP) cubic (zincblende) 4̄3m

indium antimonide (InSb) cubic (zincblende) 4̄3m

indium phosphide (InP) cubic (zincblende) 4̄3m

indium arsenide (InAs) cubic (zincblende) 4̄3m

cadmium telluride (CdTe) cubic (zincblende) 4̄3m

zinc cadmium telluride (ZnCdTe) cubic (zincblende) 4̄3m

gallium selenide (GaSe) hexagonal 6̄2m

silicon-on-sapphire (SOS) hexagonal –

Inorganic Crystal Crystal Structure Point Group

lithium niobate (LiNbO3) trigonal 3m

lithium tantalate (LiTaO3) trigonal 3m

beta barium borate (BBO) trigonal 3m

Organic Crystal Crystal Structure Point Group

4-N-methylstilbazolium tosylate (DAST) monoclinic m

Table B.2: Examples of nonlinear THz-related crystals. The dashed lines indicate that the

relevant information was not found from literature. After Dmitriev et al. (1999), Liu et

al. (2004), Schneider et al. (2006), Wilke and Sengupta (2008), and Ruiz et al. (2008).
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The popularity of a crystal for THz emission and detection usually depends on the

crystal’s figure-of-merit, its group velocity mismatch (GVM), and its phonon reso-

nances; a high figure-of-merit and low GVM is desired (Wu and Zhang 1996b). For

example, DAST has a figure-of-merit of 633 pm/V and a GVM of 1.22 ps/mm. By con-

trast, LiTaO3 has a figure-of-merit of 87.2 pm/V and a GVM of 14.1 ps/mm. Although

DAST has the best electro-optic properties among the crystals listed in Table B.2, it has

two phonon resonances between 0.1–3.1 THz (Schneider et al. 2006), therefore making

it less desirable as a THz emitter than other crystals listed above that have phonon res-

onances at higher THz frequencies. For example, ZnCdTe has a phonon resonance at

5.3 THz (Liu et al. 2002).

B.3 Introduction to Nonlinear Crystal Geometry

In Section 3.9, both electro-optic (EO) THz generation and detection are described as

being dependent on the physical orientation of the nonlinear crystal. This Section

briefly introduces the conventions used in crystallography to describe the geometries

and orientations of crystals. These conventions are then used in Section B.3.4 to briefly

highlight the dependence of THz EO generation on crystal type and orientation.

B.3.1 Miller Index

In crystallography, the Miller index is a notational system that describes planes in crys-

tals, and directions orthogonal to the surface of planes. The Miller index comprises of

set of coordinates (e.g. 110) enclosed between one of four types of brackets, e.g. (110),

{110}, [110], or <110>. The parentheses denote a specific plane, such as the 110 plane

shown in Fig. B.2; the curly braces denote a set of planes; the square brackets denote a

direction orthogonal to the plane as shown in shown in Fig. B.3; and the angled brack-

ets denote a set of symmetrically equivalent directions.

In Fig. B.3(a), the directions [100], [010], and [001] are illustrated. The respective reverse

directions [1̄00], [01̄0], and [001̄] are not illustrated for brevity. All six directions are

symmetrically equivalent, hence they can be categorised by one Miller index <100>.

In Fig. B.3(b), only 3 directions are illustrated in this figure although several others

exist. A collection of directions are symmetrically equivalent, and are categorised by

Miller index <110>. In Fig. B.3(c), Miller index <111> represents the symmetrically

equivalent directions as listed.
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Figure B.2: Miller indices for planes. Adapted from Wikipedia (2009).

Figure B.3: Miller indices for directions. Reverse directions are denoted by a negative sign in this

Figure (e.g. -1); in the Miller index notation, reverse directions are denoted by a bar

above the number (e.g. 1̄). Adapted from Brigham Young University (2009).

B.3.2 Bravais Lattice

The lattice of a crystal consists of a periodic array of atoms. The Bravais lattice is used

to describe how the atoms in a lattice are arranged. As illustrated in Fig. B.4, there

are 14 Bravais lattices. In the context of THz generation, zinc telluride (ZnTe) has a

cubic face-centred crystal structure. The 14 Bravais lattices can be further categorised

into 7 crystal systems as listed in Table B.3. The crystal system is used in the next

Subsection to define the point group of a crystal.
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Figure B.4: Schematic of the 14 Bravais lattices. After Pietrovito and Davies (2007).

Bravais Lattice Crystal System Bravais Lattice Crystal System

triclinic triclinic hexagonal hexagonal

simple monoclinic monoclinic simple tetragonal tetragonal

base-centred monoclinic body-centred tetragonal

simple orthorhombic orthorhombic simple cubic cubic

body-centred orthorhombic face-centred cubic

base-centred orthorhombic body-centred cubic

face-centred orthorhombic

rhombohedral trigonal – –

Table B.3: Bravais lattices. The 14 Bravais lattices can be categorised into 7 crystal systems.

After Kaminow (1974).

B.3.3 Point Groups

By knowing the crystal system of a crystal, the point group (or crystal class) can then

be defined in order to describe the symmetry of a crystal. There are 32 point groups

as listed in Table B.4 below. The symbols used to define the point groups follow the

Hermann-Mauguin convention. In this convention, the numbers 1,2,3,4,6 denote rota-

tional axes; 1̄,2̄,3̄,4̄,6̄ denote rotoinversion axes; the alphabet ‘i’ denotes inversion; and

the alphabet ‘m’ denotes mirror planes.
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Crystal Point Crystal Point Crystal Point

System Group System Group System Group

triclinic 1 – – – –

1̄

monoclinic m orthorhombic 2mm trigonal 3

2 222 3̄

2/m mmm 3m

– – 32

– – 3̄m

tetragonal 4 hexagonal 6 cubic 23

4̄ 6̄ m3

4/m 6/m 4̄3m

4mm 6̄m2 432

4̄2m 6mm m3m

422 622 –

4/mmm 6/mmm –

Table B.4: Point groups using the Hermann-Mauguin convention. The numbers 1,2,3,4,6

denote rotational axes; 1̄,2̄,3̄,4̄,6̄ denote rotoinversion axes; the alphabet ‘i’ denotes

inversion; and the alphabet ‘m’ denotes mirror planes. After Kaminow (1974).

B.3.4 Dependence of THz Generation on Crystal Properties

As summarised in Wilke and Sengupta (2008), electro-optic (EO) THz generation has

been reported from <100>, <110>, and <111> zincblende crystals that have cubic

Bravais lattice, and 4̄3m point group. The extent of THz generation varies between

the different symmetry directions of each type of crystal. Furthermore, the angles of

incidence and polarisation of the incident laser pulse, with respect to the surface of the

crystal, also influence the extent of EO rectification in the different types of crystal.

In <110> and <111> zincblende crystals, a three-fold rotational symmetry exists as

the crystal is rotated through 360◦. This means that there are three rotational angles

where the THz peaks are strongest. Two-fold and four-fold symmetry can exist de-

pending on the polarisation angle of the incident laser pulse (Zhang et al. 1992a).
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Main and Auxiliary
Equipment for Terahertz

Measurements

S
EVERAL THz-TDS systems are used to conduct experiments

reported in Chapters 5–8. This Appendix lists the equipment

used in the various THz-TDS systems. It also lists the auxiliary

laboratory equipment highlighted in Chapters 3 and 5.
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C.1 Components of THz-TDS Systems Used

Tables C.1–C.4 list the THz-related laboratory equipment used to conduct experiments

reported in this Thesis. Since the experiments are conducted in several locations glob-

ally, the Tables include references to the locations of the equipment, and the appropri-

ate Chapters in this Thesis.

C.2 Hank’s Buffer

In Section 5.3.1, Hank’s buffer is used to preserve the freshly excised biotissue samples.

Hank’s buffer is a salt solution that is balanced at around pH 7, and contains glucose.

Glucose is important for sustaining the freshly excised biotissue samples in Chapter 5.

Phenol red is often added into Hank’s buffer as a pH indicator. The type of Hank’s

buffer used in the experiment in Chapter 5 does not contain phenol red.

The main ingredients in Hank’s buffer are:

sodium chloride (NaCl) glucose

potassium chloride (KCl) magnesium sulfate (MgSO4)

sodium phosphate dibasic (Na2HPO4) calcium chloride (CaCl)

potassium phosphate monobasic (KH2PO4) sodium bicarbonate
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University of Adelaide (Picometrix)

Purpose Equipment Type Manufacturer Model

Femtosecond laser pulse generation Ultrafast laser Spectra Physics Mai Tai

THz generation Fibre-coupled Picometrix T-ray 2000

THz detection Fibre-coupled Picometrix T-ray 2000

Table C.1: List of equipment used at the University of Adelaide for experiments reported in

this Thesis. The experiments described in Chapters 6 and 7, and Appendix Sections A.1

and A.3 are conducted on this system. The Spectra Physics Mai Tai ultrafast laser has

a built-in pump laser.

University of Adelaide (PCA)

Purpose Equipment Type Manufacturer Model

Femtosecond laser Ultrafast laser Coherent Mira Seed

pulse generation

Pump laser for Green laser Coherent Verdi V6 DPSS

femtosecond laser

THz generation PCA Zomega PCA-GAAS-BT40

THz detection PCA Zomega PCA-GAAS-BT40

High voltage DC bias to PCA Zomega HVM-500

power supply

Delay stage Motorised translation Newport ILS250CC

stage

Motion controller for Universal motion Newport ESP300

delay stage controller

Optical modulation Chopper Thor Labs MC1000A

Phase sensitive Lock-in amplifier Stanford Research SR830

detection Systems

Table C.2: List of equipment used at the University of Adelaide for experiments reported

in this Thesis. The experiments described in Chapters 7 and 8 are conducted on this

system. The green pump laser is the diode-pumped solid state (DPSS) type.
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Rensselaer Polytechnic Institute (RPI)

Purpose Equipment Type Manufacturer Model

Femtosecond laser Ultrafast laser Coherent Mira 900

pulse generation

Pump laser for Green laser Coherent Verdi V18 DPSS

femtosecond laser

THz generation ZnTe Zomega 2 mm thick

THz detection ZnTe Zomega 1 mm thick

Delay stage Translation stage Newport 850G

and motor and stepper motor

Motion controller Universal motion Newport ESP300

for delay stage controller

Optical modulation Chopper Stanford Research SR540

Systems

Phase sensitive Lock-in amplifier Stanford Research SR830

detection Systems

Intensity detection Photodetectors Manufactured in-house –

Table C.3: List of equipment used at Rensselaer Polytechnic Institute (RPI) for experiments

reported in this Thesis. The experiments described in Chapter 5 are conducted on

this system. The green pump laser is the diode-pumped solid state (DPSS) type.
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University of Leeds

Purpose Equipment Type Manufacturer Model

Femtosecond laser Ultrafast laser Spectra Physics Tsunami

pulse generation

Pump laser for Green laser Spectra Physics Millenia Xs DPSS

femtosecond laser

THz generation GaAs PCA Manufactured in-house –

THz detection ZnTe – 2 mm thick

High voltage DC bias to PCA Kikusui PMC350

power supply

Delay stage Motorised translation stage Melles Griot NST

Motor on Stepper motor Melles Griot EAS

translation stage

Motion controller Stepper motor Melles Griot EAS

for delay stage controller

Phase sensitive Lock-in amplifier Perkin Elmer/Signal 7265

detection Recovery

Intensity detection Photodetectors New Focus Nirvana 2007

Table C.4: List of equipment used at the University of Leeds for experiments reported in

this Thesis. The experiments described in Chapter 8 are conducted on this system.

The green pump laser is the diode-pumped solid state (DPSS) type.
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Appendix D

Mathematical Derivation of
the Complex Refractive

Index

T
HE complex refractive index, containing the real and imagi-

nary components, were introduced in Chapter 5. This Appendix

presents the mathematical derivation of the complex refractive in-

dex in the context of polar molecules, which were defined in Section 4.2.
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D.1 Derivation of the Complex Refractive Index n̂(ω)

The formal derivation of Equation (5.11) in the context of polar molecules is given in

this Section. Explanations of the variables used in Equation (5.16) are also given. The

mathematics and explanations presented are extracted from Jackson (1975), Born and

Wolf (1999), and Hecht (2002).

D.1.1 Complex Refractive Index n̂(ω)

In Born and Wolf (1999), Maxwell’s equation for an electric field E in the form of the

three-dimensional wave equation is given by Equation (D.1) as follows:

∇2E =
µε

c2

∂2E

∂t2
+

4πµσ

c2

∂E

∂t
, (D.1)

where µ, ε and σ are the magnetic permeability, electric permittivity, and electric con-

ductivity of a non free-space medium respectively; c is the speed of light in vacuo.

The Fourier transforms of ∂
∂t and ∂2

∂t2 are iω and (iω)2 respectively, where ω is the an-

gular frequency. The Fourier transform of Equation (D.1) yields:

∇2E =
−µεω2

c2
E +

4πµσiω

c2
E

=

(−µεω2

c2
+

4πµσiω

c2

)

E , (D.2)

∇2E +

(
µεω2

c2
− 4πµσiω

c2

)

E = 0

where k̂2 =
µεω2

c2
− 4πµσiω

c2

=
µω2

c2

(

ε − i
4πσ

ω

)

. (D.3)

From Equation (D.3), the electric permittivity ε is now a complex number. Therefore, ε

is now expressed as:

ε̂ = ε − i
4πσ

ω
. (D.4)

Substituting Equation (D.4) into the equation of velocity v = 1/
√

µε results in:

v̂ =
1

√
µε̂

(D.5)

and n̂ =
c

v̂
=
√

µε̂ =
ck̂2

ω
. (D.6)

This means that the refractive index is now a complex number, which can be expressed

as shown in Equation (5.11): n̂(ω) = n(ω)− iκ(ω).
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D.1.2 Explanation of Variables Used in Equation (5.16)

Polar molecules were defined in Section 4.2 as being molecules that have a permanent

dipole moment81 P(t) due to an equal sharing of valence electrons. In the absence

of any electric field, thermal agitation keeps a polar molecule’s dipoles randomly ori-

ented. In the presence of a static electric field E, the polar molecule’s internal charge

distribution is distorted due to the generation of electric dipole moments. The resultant

dipole moment per unit volume is called the electric polarisation P, whereby:

(ε̂ − ε0)E = P , (D.7)

where ε0 is the permittivity of free-space in vacuo, and ε̂ is the permittivity of a non

free-space medium. P is in the same direction as E. This means that the dipoles align

themselves with the applied E so that the medium now has an orientation polarisation.

In the presence of a time varying (harmonic) electric field E(t), the polar molecules

undergo rapid rotations and align themselves with the E(t) field. If E(t) varies too

quickly (e.g. at high driving angular frequencies ω), then the polar molecules are un-

able to align themselves fast enough with the alternating E(t). This reduces the polar

molecules’ electric polarisation P. However, the electrons of a polar molecule, each

with charge qe and mass me, are small and have little inertia when compared to the

whole polar molecule. These electrons can follow the changing E(t), i.e. the electrons

can align themselves fast enough at different frequencies ω. Since the electrons are

bound to the nucleus of the atom, the electrons behave like forced oscillators as they

move in response to E(t), with each electron experiencing a force Fe = qeE(t).

In the presence of E(t), the relative displacement x(t) of the electrons with respect to

the atom’s nucleus is expressed as follows:

x(t) =
qe

me (ω2
0 − ω2)

E(t) , (D.8)

where ω0 is the resonant frequency of the oscillator, and ω is the frequency of E(t). The

dipole moment P(t) of N oscillators can therefore be expressed as:

P(t) = qe x(t) N =
Nq2

e E(t)

me (ω2
0 − ω2)

. (D.9)

Substituting Equation (D.9) into Equation (D.7) gives:

ε̂ = ε0 +
P(t)

E(t)
= ε0 +

q2
e N

me (ω2
0 − ω2)

. (D.10)

81A dipole moment is a vector quantity P that points from the negative to the positive charge, or from

the south to the north pole (magnetic dipole moment µ).
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Since n̂2(ω) = ε̂/ε0, then

n̂2(ω) = 1 +
q2

e N

ε0me

(
1

ω2
0 − ω2

)

. (D.11)

Referring to Equation (D.8), if ω > ω0, then (ω2
0 − ω2) < 0. This means that

x(t) ∝ −E(t), implying that the displacement is 180◦ out-of-phase to the excitation

E(t). If ω < ω0, then (ω2
0 − ω2) > 0. This means that x(t) ∝ E(t), implying that

the displacement is in-phase with the excitation E(t). To account for more than one

resonant frequency, Equation (D.11) is modified as follows:

n̂2(ω) = 1 +
q2

e N

ε0me
∑

k

(
fk

ω2
0k − ω2

)

, (D.12)

where fk are transitional probabilities (or oscillator strengths), such that ∑k fk = 1.

To account for damping in the oscillator model describing the electrons, a damping

factor proportional to the speed of the oscillators’ motion is included in Equation (D.12)

to give:

n̂2(ω) = 1 +
Nq2

e

ε0me
∑

k

fk

ω2
0k − ω2 + iγkω

, [Equation (5.16)]

where γk is the damping force experienced by an atom in a dense material due to the

induced field set up by neighbouring atoms.

D.2 Derivation of the Real Refractive Index n(ω)

The formal derivation of Equation (5.22) is given in this Section. The derivation utilises

the Fresnel equations, thus the Fresnel equations are defined first in the next Subsec-

tion. The derivation of Equation (5.22) then follows.

D.2.1 The Fresnel Equations

Assume an electric field with amplitude E0i travels in a medium with refractive index

ni. If the field is incident at angle θ onto a linear, isotropic and homogeneous medium

with refractive index nt, then the Fresnel equations describe the relationship between

E0i and the transmitted and reflected electric field amplitudes E0t and E0r respectively.

The Fresnel equations consist of the amplitude transmission coefficients T⊥ and T‖, and

the reflection coefficients R⊥ and R‖:

T⊥ =

(
E0t

E0i

)

⊥
=

2ni cos θi

ni cos θi + nt cos θt

= +
2 sin θt cos θi

sin(θi + θt)
(D.13)
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T‖ =

(
E0t

E0i

)

‖
=

2ni cos θi

ni cos θt + nt cos θi

= +
2 sin θt cos θi

sin(θi + θt) cos(θi − θt)
(D.14)

R⊥ =

(
E0r

E0i

)

⊥
=

ni cos θi − nt cos θt

ni cos θi + nt cos θt

= −sin(θi − θt)

sin(θi + θt)
(D.15)

R‖ =

(
E0r

E0i

)

‖
=

nt cos θi − ni cos θt

ni cos θt + nt cos θi

= +
tan(θi − θt)

tan(θi + θt)
, (D.16)

where ⊥ implies the incident electric field Ei is perpendicular to the plane of incidence

(in other words, the incident Ei is parallel to the tangent plane of the interface), while

‖ implies the incident electric field Ei is parallel to the plane of incidence.

If the incident and transmitted fields are orthogonal to the plane of incidence, then

Equation (D.13) and Equation (D.14) simplify to:

T⊥ = T‖ = Ti→t =
E0t

E0i

=
2ni

ni + nt

(D.17)

Tt→i =
E0i

E0t

=
2nt

ni + nt

. (D.18)

D.2.2 Real Refractive Index n(ω)

Let Eref(z, t) be the one dimensional wave equation of an electric field propagating

along the z axis in a medium (called the reference medium) with complex refractive

index n̂r(ω). The complex one dimensional wave equation is expressed as:

Eref(z, t) = E e−i(ωt−kz) , (D.19)

where the wavenumber k is equal to:

k =
2π

λ
=

2πν

speed v in medium
=

ωn̂r(ω)

c
. (D.20)

Substituting Equation (D.20) into Equation (D.19) gives:

Eref(z, t) = E e−i[ωt−ωn̂r(ω)z
c ] = E e−iωt e

iωn̂r(ω)z
c = E e−iωt e

iω[nr(ω)+iκr(ω)]z
c

= E e−iωt e
iωnr(ω)z

c e
−ωκr(ω)z

c = E(t) e
iωnr(ω)z

c e
−ωκr(ω)z

c
︸ ︷︷ ︸

Eref(z,ω)

. (D.21)

If Eref(z, t) is incident on a sample (called the sample medium) with complex refrac-

tive index n̂s(ω) and thickness d, whereby the sample is surrounded by the reference

medium, then the transmitted electric field emerging from the sample can be expressed
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in terms of the Fresnel amplitude transmission coefficients T (either T‖ or T⊥) defined

in Equation (D.17) and Equation (D.18):

Esample(z, t) = Eref(z, t) Tref →sampleTsample →ref

=
[

E(t) e
iωns(ω)d

c e
−ωκs(ω)d

c

] 2n̂r(ω)

n̂r(ω) + n̂s(ω)

2n̂s(ω)

n̂r(ω) + n̂s(ω)
. (D.22)

If the reference medium is vacuum, then n̂r(ω) = 1 − i0, so Equation (D.22) simplifies

to:

Esample(z, t) = E(t) e
iωns(ω)d

c e
−ωκs(ω)d

c
4n̂s(ω)

[1 + n̂s(ω)]2

︸ ︷︷ ︸

Esample(z,ω)

. (D.23)

Dividing only the frequency dependent terms in Equations (D.23) and (D.21) for the

case when n̂r(ω) = 1 − i0 gives:

Esample(z, ω)

Eref(z, ω)
=

As eiφs(ω)

Ar eiφr(ω)
=

4n̂s(ω)

[1 + n̂s(ω)]2

e
iωns(ω)d

c e
−ωκs(ω)d

c

e
iωd

c

=
4n̂s(ω)

[1 + n̂s(ω)]2 e
iω[ns(ω)−1]d

c e
−ωκs(ω)d

c . (D.24)

If κs(ω) � ns(ω), then Equation (D.24) can be approximated by:

[
Esample(z, ω)

Eref(z, ω)
=

As eiφs(ω)

Ar eiφr(ω)

]

≡ 4ns(ω)

[1 + ns(ω)]2 e
−ωκs(ω)d

c

︸ ︷︷ ︸

magnitude

e
iω[ns(ω)−1]d

c
︸ ︷︷ ︸

phase

⇒ φs(ω) − φr(ω) =
ω[ns(ω) − 1]d

c

ns(ω) =
[φs(ω) − φr(ω)]c

ωd
+ 1 , [Equation (5.22)]

and
As

Ar

=
4ns(ω)

[1 + ns(ω)]2 e
−ωκ(ω)d

c

so κ(ω) = − c

ωd
ln

(
As [1 + ns(ω)]2

4Arns(ω)

)

(D.25)

α(ω) =
2ωκ(ω)

c
=

−2

d
ln

(
As [1 + ns(ω)]2

4Arns(ω)

)

. [Equation (5.21)]

If κs(ω) 6� ns(ω), then Equation (D.24) is solved iteratively (Duvillaret et al. 1996,

Duvillaret et al. 1999).
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Appendix E

Neuropsychological
Assessment of Alzheimer’s

Disease

A
SSESSMENT of dementia currently involves a battery of

physical and neuropsychological tests. Oral questionnaires

are often used to compare a patient’s psychological perfor-

mance against a benchmark. This Appendix reproduces one popular neu-

ropsychological test, the Modified Mini Mental State (3MS) Examination, to

highlight some of the difficulties in catering to all demographics. Examples

of dementia types are also provided.
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E.1 The Modified Mini Mental State (3MS) Examination

The Modified Mini Mental State (3MS) Examination introduced in Section 6.2.2 is re-

produced in Table E.1. More details of this examination, including a more comprehen-

sive explanation of the scoring system utilised, is given in Teng and Chui (1987).

As can be seen in the 3MS questionnaire, the questions may not cater to all demograph-

ics. A patient’s level of education, life experiences, proficiency in language, and state

of mind (e.g. nervousness on the day of test) may skew the results of the test, resulting

in inaccurate diagnosis. As a result, oral questionnaires are usually used in conjunc-

tion with other types of examinations (such as blood tests, MRI scans, and behavioural

observations) to more confidently identify the type of dementia.

E.2 Types of Dementia

The following list presents examples of dementias (Hannay et al. 2004).

Cortical Dementias

Alzheimer’s Disease (AD) Frontal lobe dementia

Dementia with Lewy Bodies (DLB) Other cortical atrophies

Subcortical Dementias

Parkinson’s disease/Parkinsonism (PD) Huntington’s disease (HD)

Progressive Supranuclear Palsy (PSP)

Vascular Disorders

Stroke Vascular dementia

Hypertension Multi-infarct dementia

Migraine

Other progressive disorders of the Central Nervous System where

neuropsychological effects may be prominent

Normal Pressure Hydrocephalus (NPH)

Multiple Sclerosis (MS)
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Appendix F

The Mathematics of
Scattering-Related

Theories

T
HIS Appendix presents the derivations of scattering-related

equations used in Chapters 7 and 8. Other scattering models high-

lighted in Section 8.3 are also discussed briefly. In addition, an

example of the use of one such model to study the impact of skin surface

roughness in the THz regime is presented.
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F.1 Introduction

F.1 Introduction

Mie and Rayleigh scattering models for cylinders were introduced in Sections 7.5.1

and 8.3, and then utilised in Sections 7.5.1 and 8.6 to validate experimental results.

Derivations of the equations utilised in Sections 7.5.1 and 8.6 are presented in the next

Section. The derivations begin with exploring spherical scatterers because the equa-

tions for cylindrical scatterers are based on them. The Appendix concludes with brief

discussions of the Rayleigh-Gans model, geometrical optics, and the Beckmann dis-

tribution function, where a THz application of the Beckmann distribution function is

given (Png et al. 2007). The bulk of mathematics presented in this Appendix follows

Bohren and Huffman (1983).

F.2 Spherical Scatterers

The Mie scattering model for a sphere is introduced in this Section as a precursor to

the Mie scattering model for a cylinder.

F.2.1 Plane Wave Equation in Cartesian Coordinates

In a linear, isotropic, homogeneous medium, a physically realisable time-harmonic

electromagnetic field (E, H) must satisfy the wave equation:

∂2E

∂x2
+

∂2E

∂y2
+

∂2E

∂z2
+ k2E = ∇2E + k2E = 0 , (F.1)

∂2H

∂x2
+

∂2H

∂y2
+

∂2H

∂z2
+ k2E = ∇2H + k2H = 0 , (F.2)

where k2 = ω2εµ, and (E, H) must be divergence free:

(i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
) · E = ∇ · E = 0 , (F.3)

(i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
) · H = ∇ · H = 0 . (F.4)

Note E and H are not independent because

∇× E = iωµH, ∇× H = −iωµE .
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F.2.2 Plane Wave Equation of a Sphere

In spherical coordinate, the scalar wave equation Equation (F.1) becomes:

1

r2

∂

∂r

(

r2 ∂ψ

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂ψ

∂θ

)

+
1

r2 sin θ

∂2ψ

∂φ2
+ k2ψ = 0 . (F.5)

The solution to ψ(r, θ, φ) in Equation (F.5) can be found using separable variables as

follows:

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) , (F.6)

where
∂2Φ(φ)

∂φ2
+ m2Φ(φ) = 0 ,

1

sin θ

∂

∂θ

(

sin θ
∂Θ(θ)

∂θ

)

+

[

s(s + 1) − m2

(sin θ)2

]

Θ(θ) = 0,

∂

∂r

(

r2 ∂R(r)

∂r

)

+ [k2r2 − s(s + 1)] R(r) = 0 .

The solutions of Φ(φ), Θ(θ), R(r), and ψ(r, θ, φ) are expressed in the following four

Subsections.

F.2.3 Solution of Φ(φ)

The solution of Φ(φ) in Equation (F.6) consists of even (e) and odd (o) terms as follows:

Φe (φ) = cos(mφ), Φo (φ) = sin(mφ) .

F.2.4 Solution of Θ(θ)

The solutions of Θ(θ) are the associated Legendre functions of the first kind Pm
s (cos θ)

of order m, and degree s = m, m + 1, · · · . These solutions are orthogonal.

F.2.5 Solution of R(r)

There are four possible linearly independent solutions of R(r). The first two are the

spherical Bessel functions:

js(kr) =

√
π

2kr
Js+ 1

2
(kr), (F.7)

Page 337



F.2 Spherical Scatterers

ys(kr) =

√
π

2kr
Ys+ 1

2
(kr) , (F.8)

where Js+ 1
2
(kr) and Ys+ 1

2
(kr) are the Bessel functions of the first and second kind respec-

tively.

Since any linear combination of jn(kr) and yn(kr) is also a solution to R(r), a simpler

way of expressing the solutions of R(r) can be written. This takes the form of the

spherical Bessel functions of the third kind (also known as spherical Hankel functions):

h(1)

s (kr) = js(kr) + iys(kr) (F.9)

h(2)

s (kr) = js(kr)− iys(kr) . (F.10)

Therefore, Equations (F.7–F.10) are all solutions of R(r).

F.2.6 Solution of ψ(r, θ, φ)

From the discussion in Sections F.2.3, F.2.4 and F.2.5, the solution of Equation (F.6) can

finally be expressed as:

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) , [Equation (F.6)]

ψems = R(r)Θ(θ)Φe (φ) = cos(mφ) Pm

s (cos θ) zs(kr) (F.11)

ψoms = R(r)Θ(θ)Φo (φ) = sin(mφ) Pm

s (cos θ) zs(kr) , (F.12)

where zs(kr) is any of the four solutions given by Equations (F.7–F.10) in Section F.2.5.

The e and o notations denote the even and odd terms as highlighted in Section F.2.3,

and the variables m and s are as defined in Section F.2.4.

F.2.7 Vector Spherical Harmonics

With knowledge of the solution of ψ(r, θ, φ) from Section F.2.6, it is now possible to

construct the vector spherical harmonics that are generated by Equations (F.11–F.12).

These vector spherical harmonics are the electromagnetic normal modes of the spherical

particle, and can be used to construct the electric and magnetic fields as follows:

E = Moms + i Nems

H = m (−Mems + i Noms) ,
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where

Mems = ∇× (rψems)

=
−m

sin θ
sin(mφ)Pm

s (cos θ)zs(kr)θ− cos(mφ)
dPm

s (cos θ)

dθ
zs(kr)φ, (F.13)

Moms = ∇× (rψoms)

=
m

sin θ
sin(mφ)Pm

s (cos θ)zs(kr)θ− sin(mφ)
dPm

s (cos θ)

dθ
zs(kr)φ, (F.14)

Nems =
∇× Mems

k

=
zs(kr)

kr
cos(mφ)s(s + 1)Pm

s (cos θ)r + cos(mφ)
dPm

s (cos θ)

dθ

1

kr

d [krzs(kr)]

d kr
θ

−m sin(mφ)
Pm

s (cos θ)

sin θ

1

kr

d [krzs(kr)]

d kr
φ, (F.15)

Noms =
∇× Moms

k

=
zs(kr)

kr
sin(mφ)s(s + 1)Pm

s (cos θ)r + sin(mφ)
dPm

s (cos θ)

dθ

1

kr

d [krzs(kr)]

d kr
θ

+m cos(mφ)
Pm

s (cos θ)

sin θ

1

kr

d [krzs(kr)]

d kr
φ. (F.16)

F.2.8 Equation of a Plane Wave in Vector Spherical Harmonics

The incident electric wave with amplitude E0 can be expressed in terms of the vector

spherical harmonics derived in Section F.2.7:

Einc = E0 eikr cos θ [sin(θ) cos(φ)r + cos(θ) cos(φ)θ− sin(φ)φ]

= E0

∞

∑
s=1

is 2s + 1

s(s + 1)
(M(1)

o1s − iN(1)

e1s) , (F.17)

where as defined in Equation (F.14), the term M(1)
o1s means that the associated Legendre

functions of the first kind have order m = 1, and degree s = m, m + 1, · · · . The super-

script (1) implies that zs(kr) = js(kr). As defined in Equation (F.15), the subscripts 1s

and superscript (1) in N(1)
e1s have the same meaning as in M(1)

o1s.

The incident magnetic wave can also be expressed in terms of the vector spherical

harmonics:

Hinc =
−k

ωµ
E0

∞

∑
s=1

is 2s + 1

s(s + 1)
(M(1)

e1s + iN(1)

o1s) . (F.18)
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F.3 Cylindrical Scatterers

The Mie scattering model for a cylinder, which was utilised in Sections 7.5.1 and 8.6, is

now derived in this Section.

F.3.1 Plane Wave Equation of a Cylinder

In Section F.2.2, the scalar wave equation in spherical polar coordinates r, φ, θ was pre-

sented in Equation (F.5) as:

1

r2

∂

∂r

(

r2 ∂ψ

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂ψ

∂θ

)

+
1

r2 sin θ

∂2ψ

∂φ2
+ k2ψ = 0 . [Equation (F.5)]

The scalar wave equation in cylindrical polar coordinates r, φ, z is expressed as:

1

r

∂

∂r

(

r
∂ψ

∂r

)

+
1

r2

∂2ψ

∂φ2
+

∂2ψ

∂z2
+ k2ψ = 0 . (F.19)

The solution to ψ(r, φ, z) in Equation (F.19) can be found using separable variables as

follows:

ψ(r, φ, z) = R(r)Φ(φ)Z(z) (F.20)

where Φ(φ) = eisφ, s = 0,±1, . . .

Z(z) = eihz ,

where the separation constant h depends on the polarisation of the incident field; R(r)

is now R
(

r
√

k2 − h2

)

, which is a solution to the Bessel equation below:

(F.21)

[

r
√

k2 − h2

] d

d
[

r
√

k2 − h2

]





[

r
√

k2 − h2

] d R
(

r
√

k2 − h2

)

d
[

r
√

k2 − h2

]



+ · · ·

([

r
√

k2 − h2

]2

− s2

)

= 0 . (F.22)

The two independent solutions of R
(

r
√

k2 − h2

)

are the Bessel functions of the first

and second kind Js(r
√

k2 − h2) and Ys(r
√

k2 − h2) of integral order s. Alternative solu-

tions of R
(

r
√

k2 − h2

)

are any linear combination of the above Bessel functions of the

first and second kind, e.g. the Hankel functions. Therefore, the solution to ψ(r, φ, z) in

Equation (F.19) can be expressed as:

ψ(r, φ, z) = R(r)Φ(φ)Z(z) Equation (F.20)
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= R
(

r
√

k2 − h2

)

eisφ eihz, s = 0,±1, . . . (F.23)

= ψs .

Note that Equation (F.23) has two possible solutions because R
(

r
√

k2 − h2

)

has two

independent solutions. This means that Equation (F.23) can be denoted as ψe
s and ψo

s ,

where the e and o notations denote the even and odd terms.

F.3.2 Vector Cylindrical Harmonics

As in Section F.2.7, it is possible to construct the vector cylindrical harmonics that are

generated by Equation (F.23). These vector cylindrical harmonics are the electromag-

netic normal modes of the cylinder and can be used to construct the electric and magnetic

fields as follows:

E = Ms + i Ns

H = m (−Ms + i Ns) s = 0,±1, . . . , (F.24)

where

Ms = ∇× (zψs)

=
√

k2 − h2

(

is
ψs

r
√

k2 − h2
r − ∂ ψs

∂ r
φ

)

=
√

k2 − h2

(

is
ψs

r
√

k2 − h2
r − ψ′

sφ

)

=
√

k2 − h2



is
R
(

r
√

k2 − h2

)

r
√

k2 − h2
r − R′

(

r
√

k2 − h2

)

φ



 ei(sφ+hz) (F.25)

Ns =
∇× Ms

k

=

√
k2 − h2

k

(

ih
∂ ψs

∂ r
r − hs

ψs

r
√

k2 − h2
φ +

√
k2 − h2 ψsz

)

=

√
k2 − h2

k



ih R′
(

r
√

k2 − h2

)

r − hs
R
(

r
√

k2 − h2

)

r
√

k2 − h2
φ + · · ·

√
k2 − h2 R

(

r
√

k2 − h2

)

z
)

ei(sφ+hz) . (F.26)

Note that z is a unit vector parallel to the cylinder’s axis, and R
(

r
√

k2 − h2

)

is either

Js(r
√

k2 − h2) or Ys(r
√

k2 − h2) or the Hankel function H(1)
s (r

√
k2 − h2).
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F.3.3 Case I: Incident E Parallel to xz Plane, H Perpendicular to xz

Plane

The incident electric wave with amplitude E0 can now be expressed in terms of the vec-

tor cylindrical harmonics derived in Section F.3.2. However, the expression depends

on the polarisation of the incident wave.

Let the propagation vector k of the incident wave plane be in the xz plane. The an-

gle between k and the z axis is θ. When angle θ = 90◦, the incoming plane wave is

perpendicular to the xz plane. Therefore k = − sin(θ)x − cos(θ)z.

The equation of the plane wave is Einc = E0,inc eik·x, where E0,inc is the amplitude of the

incident wave.

E0,inc has both parallel and perpendicular components: E0,inc = E0,inc,‖ e‖ + E0,inc,⊥ e⊥, where

e‖ = sin(θ) z − cos(θ)x is a vector parallel to the xz plane, and e⊥ = −y a vector

perpendicular to the xz plane.

Let us assume the electric field vector E0,inc is strictly parallel to xz plane, therefore the

incident electric field is:

Einc = E0,inc,‖ e‖ eik·x

= E0 (sin(θ) z − cos(θ) x) e−ik(r sin θ cos φ+z cos θ) . (F.27)

Only the z terms in Equations (F.26) and (F.27) can be compared, therefore the z term

in Equation (F.27) can be expanded to:

Einc = E0 sin θ e−ik(r sin θ cos φ+z cos θ)z

= E0 sin θ e−ikr sin θ cos φ e−ik cos θz z

= E0 sin θ
∞

∑
s=−∞

(−i)s Js(kr sin θ) eisφ eihz z , (F.28)

where h = −k cos θ, and the identity term is:

e−i[kr sin θ] cos φ =
∞

∑
s=−∞

(−i)s Js(kr sin θ) eisφ z .

The z term in Equation (F.26) can be expanded to:

√
k2 − h2

k

√
k2 − h2R(r) ei(sφ+hz)z =

k2 − h2

k
R(r) eisφ eihz z
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=
k2 − k2 cos2 θ

k
R(r) eisφ eihz z

= k(1 − cos2 θ)R(r) eisφ eihz z

= k sin2 θR(r) eisφ eihz z (F.29)

= k sin2 θ Js(kr sin θ) eisφ eihz z (F.30)

= N(1)

s , (F.31)

where R(r) in Equation (F.29) is set to Js(kr sin θ) of integral order s in Equation (F.30).

This is to allow direct substitution of Equation (F.30) into Equation (F.28). The super-

script (1) in N(1)
s implies that R(r) = Js(kr sin θ).

Comparing Equations (F.28) and (F.30), the incident electric field can now be expressed

in terms of the vector cylindrical harmonics:

Einc = E0 sin θ
∞

∑
s=−∞

(−i)s Js(kr sin θ) eisφ eihz z

=
∞

∑
s=−∞

E0 (−i)s N(1)
s

k sin θ
. (F.32)

Since Einc in Equation (F.32) is only dependent on Js(kr sin θ), then Hinc is also only

dependent on Js(kr sin θ). In addition, because Einc in Equation (F.32) contains the

N(1)
s term, then Hinc must contain the M(1)

s term as shown by the relationship in Equa-

tion (F.24). However M(1)
s must be scaled by i. Therefore, the incident magnetic wave

expressed in terms of the vector cylindrical harmonics is:

Hinc =
−ik

ωµ

∞

∑
s=−∞

E0 (−i)s M(1)
s

k sin θ
, (F.33)

where like Equation (F.31), the superscript (1) implies that R(r) in Equation (F.25) is the

Bessel function of the first kind Js(kr sin θ) of integral order s.

Internal Field in Vector Cylindrical Harmonics for Case I

The boundary conditions are:

• The tangential components of E and H are continuous at the surface of the cylin-

der, and

• h must be the same for all waves (i.e. incident, scattered and internal).
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Therefore, h in the case of the internal wave is also equal to −k cos θ, and R(r) in

Equation (F.26) is also the Bessel function of the first kind Js(r) of integral order s, but

differs from that in Equations (F.32) and (F.33) such that:

R(r) = Js(kr
√

m2 − cos2 θ) . (F.34)

Consequently,

Etx =
∞

∑
s=−∞

E0 (−i)s

k sin θ
[gs M(1)

s + fs N(1)

s ] , (F.35)

Htx =
−ik1

ωµ1

∞

∑
s=−∞

E0 (−i)s

k sin θ
[gs N(1)

s + fs M(1)

s ] , (F.36)

where µ1 is the permeability of the cylinder, and k1 is the wavenumber in the cylinder.

Like Equation (F.32), the superscript (1) implies that R(r) in Equation (F.25) is Js(r) of

integral order s.

Scattered Field in Vector Cylindrical Harmonics for Case I

For the scattered field,

Esca = −
∞

∑
s=−∞

E0 (−i)s

k sin θ
[bs, I N(3)

s + ias, I M(3)

s ] (F.37)

Hsca =
−ik

ωµ

∞

∑
s=−∞

E0 (−i)s

k sin θ
[bs, I M(3)

s + ias, I N(3)

s ] , (F.38)

where the superscript (3) implies that R(r) in Equation (F.26) is the Hankel function

H(1)
s = Js(·) + iYs(·). Therefore,

R(r) = H(1)

s (kr sin θ)eisφ e−ikz cos θ

= (Js(kr sin θ) + iYs(kr sin θ)) eisφ e−ikz cos θ . (F.39)

If µ = µ1, and letting ξ = kr sin θ, and η = kr
√

m2 − cos2 θ, then the scattering coeffi-

cients as, I and bs, I in Equations (F.37) and (F.38) are:

as, I =
Cs Vs − Bs Ds

Ws Vs + i D2
s

(F.40)

bs, I =
Ws Bs + i Ds Cs

Ws Vs + i D2
s

(F.41)

Bs = ξ [m2 ξ J ′s(η) Js(ξ) − η Js(η) J ′s(ξ)] (F.42)

Cs = s (cos θ) η Js(η) Js(ξ)

(
ξ2

η2
− 1

)

(F.43)
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Ds = s (cos θ) η Js(η) H(1)

s (ξ)

(
ξ2

η2
− 1

)

(F.44)

Vs = ξ [m2 ξ J ′s(η) H(1)

s (ξ) − η Js(η) H(1)′
s (ξ)] (F.45)

Ws = iξ (η Js(η) H(1)′
s (ξ) − ξ J ′s(η) H(1)

s (ξ)) , (F.46)

where

J ′s(η) =
1

2
[Js−1(η) − Js+1(η)]

H(1)′
s (ξ) =

1

2
[H(1)

s−1(ξ) − H(1)

s+1(ξ)]

a−s, I = −as, I

a0, I = 0

b−s, I = bs, I .

When θ = 90◦, as, I = 0 and

bs, I, 90◦ =
Js(mkr) J ′s(kr)− mJ ′s(mkr) Js(kr)

Js(mkr) H(1)′
s (kr)− mJ ′s(mkr) H(1)

s (kr)
. (F.47)

Large distances from cylinder for Case I (asymptotic scattered field)

If the observation distance from the cylinder is large (kr sin θ >> 1), then Equa-

tion (F.37) becomes:

Esca ≈ −E0 e−i π/4

√

2

πkr sin θ
eik(r sin θ−z cos θ) · · ·

∑
s

(−1)s eisφ [as, I φ + bs, I (cos θ r + sin θ z)] . (F.48)

The wavefronts of the scattered field map the shape of a cone. At any point on the

cone, the unit propagation direction vector s of the scattered wave (i.e. wave normal) is

s = sin θ r − cos θ z . (F.49)

Note that the Poynting vector has direction s.

F.3.4 Case II: Incident E Perpendicular to xz Plane, H Parallel to xz

Plane

As described in Section F.3.3, the incident electric wave with amplitude E0 can be ex-

pressed in terms of the vector cylindrical harmonics derived in Section F.3.2. However,

the expression depends on the polarisation of the incident wave.
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Recall that in Section F.3.3, z was described as a unit vector parallel to the cylinder’s

axis. The propagation vector k of the incident wave plane is in the xz plane. θ is the

angle between k and the z axis. When angle θ = 90◦, the incoming plane wave is

perpendicular to the xz plane. Therefore, k = − sin(θ)x − cos(θ)z.

Like in Section F.3.3, the equation of the plane wave is Einc = E0,inc eik·x, where E0,inc is the

amplitude of the incident wave. E0,inc has both parallel and perpendicular components:

E0,inc = E0,inc,‖ e‖ + E0,inc,⊥ e⊥, where e‖ = sin(θ) z − cos(θ)x is a vector parallel to the xz

plane, and e⊥ = −y a vector perpendicular to the xz plane.

Let us assume the electric field vector E0,inc is strictly perpendicular to xz plane. Utilis-

ing the vector cylindrical harmonics derived in Section F.3.2:

Einc = −E0,inc,⊥ e⊥ eikẋ

= E0y e−ik(r sin θ cos φ+z cos θ)

= −i
∞

∑
s=−∞

E0 (−i)s

k sin θ
M(1)

s . (F.50)

Case II: Scattered Field in Vector Cylindrical Harmonics

For the scattered field,

Esca = −
∞

∑
s=−∞

E0 (−i)s

k sin θ
[as, II M(3)

s + bs, II N(3)

s ] , (F.51)

where as explained in Section F.3.3, the superscript (3) implies that R(r) in Equa-

tion (F.26) is the Hankel function H(1)
s = Js(·) + iYs(·).

If µ = µ1, and letting ξ = kr sin θ, and η = kr
√

m2 − cos2 θ, then the scattering coeffi-

cients as, II and bs, II in Equation (F.51) are

as, II = −As Vs − i Cs Ds

Ws Vs + i D2
s

(F.52)

bs, II = −i
Cs Ws + As Ds

Ws Vs + i D2
s

(F.53)

As = i ξ [ξ J ′s(η) Js(ξ) − η Js(η) J ′s(ξ)] , (F.54)

where Cs, Ds, Vs, Ws, and J ′s(·) are defined in Section F.3.3, and

a−s, II = as, II

b−s, II = −bs, II

b0, II = 0
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as, II = −bs, II .

When θ = 90◦, bs, II = 0, so

as, II, 90◦ =
m J ′s(kr) Js(mkr)− Js(kr) J ′s(mkr)

m Js(mkr) H(1)′
s (kr)− J ′s(mkr) H(1)′

s (kr)
. (F.55)

Large distances from cylinder for Case II (asymptotic scattered field)

If the observation distance from the cylinder is large (kr sin θ >> 1), then Equa-

tion (F.51) becomes:

Esca ≈ −E0 e−i π/4

√

2

πkr sin θ
eik(r sin θ−z cos θ) · · ·

∑
s

(−1)s eisφ [−as, II φ − bs, II (cos θ r + sin θ z)] . (F.56)

The wavefronts of the scattered filed are as described in Section F.3.3.

F.4 Scattering Matrix of a Cylinder

Recall that in Sections F.3.3 and F.3.4, the equation of the plane wave is Einc = E0,inc eik·x.

E0,inc can be resolved into its parallel and perpendicular components: E0,inc = E0,inc,‖ e‖ +

E0,inc,⊥ e⊥, where e‖ = sin(θ) z − cos(θ)x is a vector parallel to the xz plane, e⊥ = −y is

a vector perpendicular to the xz plane, and e⊥ × e‖ = k.

In Section F.3.3, E0,inc was assumed to be strictly parallel to the xz plane. In Section F.3.4,

E0,inc was assumed to be strictly perpendicular to the xz plane. If E0,inc has both the

parallel and perpendicular components, then the equation of a plane wave becomes:

Einc = (E0,inc,‖ e‖ + E0,inc,⊥ e⊥) eik·x .

The scattered field Esca can also be resolved similarly. Let s be the direction of scattering.

The perpendicular component of s is esca,⊥ = φ; the parallel component of s is esca,‖ =

cos(θ) r + sin(θ) z. esca,⊥ × esca,‖ = s.

Note that r = sin(φ) y + cos(φ) x, and φ = − sin(φ) x + cos(φ) y.

Now the equation of the scattered electric field can be resolved into its parallel and

perpendicular components:

Esca = Esca,‖ esca,‖ + Esca,⊥ esca,⊥

= Esca,‖ (cos θ r + sin θ z) + Esca,⊥ φ

= Esca,‖ (cos θ [sin(φ) y + cos(φ) x] + sin θ z) + Esca,⊥ (− sin(φ) x + cos(φ) y) .
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F.4.1 Relationship Between Amplitudes of Incident and Scattered

Fields for a Cylinder

The relationship between the amplitudes of the incident and scattered electromagnetic

waves is as follows:
[

E‖ sca

E⊥ sca

]

= e
i3π

4

√

2

πkr sin θ
eik(r sin θ−z cos θ)

[

T1 T4

T3 T2

]

︸ ︷︷ ︸

amplitude scattering matrix

[

E‖ inc

E⊥ inc

]

, (F.57)

where if φ is replaced with Θ = π − φ, then

T1 =
∞

∑
−∞

bs, I e−isΘ = b0, I + 2
∞

∑
s=1

bs, I cos (sΘ) (F.58)

T2 =
∞

∑
−∞

as, II e−isΘ = a0, II + 2
∞

∑
s=1

as, II cos (sΘ) (F.59)

T3 =
∞

∑
−∞

as, I e−isΘ = −2i
∞

∑
s=1

as, I sin (sΘ) (F.60)

T4 =
∞

∑
−∞

bs, II e−isΘ = −2i
∞

∑
s=1

bs, II sin (sΘ) = −T3 . (F.61)

The scattering coefficients a and b are given in Equations (F.40) and (F.41) and Equa-

tions (F.52) and (F.53).

Scattered Field in Forward or Backward Scattering Plane

If s lies in the forward scattering plane (Θ = 0◦), or if s lies in the backward scattering

plane (Θ = 180◦), then
[

E‖ sca

E⊥ sca

]

= e
i3π

4

√

2

πkr sin θ
eik(r sin θ−z cos θ)

[

T1 0

0 T2

] [

E‖ inc

E⊥ inc

]

. (F.62)

Incident Wave Normal to z Axis (θ = 90◦)

If the incident wave is normal to the z axis (i.e. θ = 90◦), then
[

E‖ sca

E⊥ sca

]

= e
i3π

4

√

2

πkr
eikr

[

T1 0

0 T2

] [

E‖ inc

E⊥ inc

]

, ∀Θ . (F.63)

The scattering coefficients from Equations (F.47) and (F.55) can be expressed more sim-

ply by utilising the logarithmic derivative Ds(·) below:

Ds(·) =
J ′s(·)
Js(·)

,
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where Ds−1(a) =
s − 1

a
− 1

s
a + Ds(a)

(F.64)

is the recurrence relation.

Therefore, Equations (F.47) and (F.55) become:

as, II, 90◦ =

[
Ds(mkr)

m + s
kr

]

Js(kr)− Js−1(kr)
[

Ds(mkr)
m + s

kr

]

H(1)
s (kr)− H(1)

s−1(kr)
[Equation (8.3)]

bs, I, 90◦ =

[
mDs(mkr) + s

kr

]
Js(kr)− Js−1(kr)

[
mDs(mkr) + s

kr

]
H(1)

s (kr)− H(1)

s−1(kr)
. [Equation (8.4)]

F.5 Efficiencies for a Cylinder

Let Winc be the net rate at which electromagnetic energy is incident on the surface of

a cylinder of length l, and radius r. The geometric cross sectional area of the cylinder

is that of a rectangle, with area 2rl. Let Wsca be the net rate at which electromagnetic

energy scatters from the surface of this cylinder. The scattering cross section Csca is

the imaginary cross sectional area on the cylinder that interacts with and scatters the

incident radiation. This imaginary cross sectional area can be larger or smaller than the

actual geometric cross sectional area of the cylinder.

When the cross section Csca (or Cext) is normalised by the geometric cross section, the

dimensionless term efficiency Qsca (or Qext) is generated.

F.5.1 Efficiencies of a Cylinder for Case I: Parallel Incident Electric

Field

For case I as described in Section F.3.3, the scattering efficiency of a cylinder is defined

as:

Qsca, I =
Wsca, I

2rl Iinc

=
2

kr

[

|b0, I|2 + 2
∞

∑
s=1

(
|as, I|2 + |bs, I|2

)

]

. (F.65)

Multiplying Equation (F.65) by 2rl gives the scattering cross section Csca, ‖ expressed in

Equation (8.1).

If Wabs is the net rate at which electromagnetic energy is absorbed in the cylinder, then

Wext = Wabs + Wsca. Therefore the extinction efficiency is defined as:

Qext, I =
Wext, I

2rl Iinc

=
2

kr
<
{

b0, I + 2
∞

∑
s=1

bs, I

}

=
2

kr
<{T1 (Θ = 0◦)} . (F.66)
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Note that efficiency is usually plotted against 1/λ, the reciprocal of wavelength.

F.5.2 Efficiencies of a Cylinder for Case II: Perpendicular Incident

Electric Field

For case II as described in Section F.3.4, the scattering efficiency of a cylinder is defined

as:

Qsca, II =
Wsca, II

2rl Iinc

=
2

kr

[

|a0, II|2 + 2
∞

∑
s=1

(
|as II|2 + |bs, II|2

)

]

. (F.67)

Multiplying Equation (F.65) by 2rl gives the scattering cross section Csca, ‖ expressed in

Equation (8.2).

The extinction efficiency is defined as:

Qext, II =
Wext, II

2rl Iinc

=
2

kr
<
{

a0, II + 2
∞

∑
s=1

as, II

}

=
2

kr
<{T2 (Θ = 0◦)} . (F.68)

F.5.3 Small Particle Limit

If kr and |m|kr are small, then the scattering coefficients in Equations (F.65) and (F.67)

can be approximated by:

b0(ω) ≈ −iπx2(m2 − 1)

4
[Equation (7.8)]

b1(ω) ≈ −iπx4(m2 − 1)

32
. [Equation (7.9)]

For case I, this approximation results in Equation (F.65) being simplified to:

Qsca, I(ω) =
2

x

[
|b0(ω)|2 + 2 |b1(ω)|2

]
. [Equation (7.7)]

F.6 Rayleigh-Gans Scattering

In Section F.4.1, the relationship between the amplitudes of the incident and scattered

fields for a cylinder is provided in Equation (F.57). If the scatterer has an irregular

geometric shape (e.g. neither cylindrical nor spherical), and is either homogeneous or

heterogeneous, then the Rayleigh-Gans theory can be used to approximate the rela-

tionship between the amplitudes of the incident and scattered fields as follows:
[

E‖ sca

E⊥ sca

]

= e
ik(r−z)
−ikr

[

T2 0

0 T1

] [

E‖ inc

E⊥ inc

]

, (F.69)
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where, in the homogeneous case:

T1 =
−ik3

2π
(m − 1) V f (θ, φ) (F.70)

T2 =
−ik3

2π
(m − 1) V f (θ, φ) cos(θ) (F.71)

f (θ, φ) =
1

V

∫

V
eiδ dV , (F.72)

and in the heterogeneous case:

T1 =
−ik3

2π ∑
j

(mj − 1) Vj f j(θ, φ) (F.73)

T2 =
−ik3

2π ∑
j

(mj − 1) Vj f j(θ, φ) cos(θ) (F.74)

f j(θ, φ) =
1

Vj

∫

Vj

eiδ dV , (F.75)

where mj is the relative refractive index of the jth region in a heterogeneous scatterer,

Vj is the volume of the jth region, f j(θ, φ) is the form factor, θ is the zenith angle, φ is

the azimuth angle, and δ is the dot product between the tangential surface vector, and

the difference between the surface normal and tangential surface vector along the axis

which the electric field is incident. More details of the Rayleigh-Gans theory are found

in Bohren and Huffman (1983).

F.7 Geometric Optics

In geometric optics, rays are used to trace the path of the incident, scattered, and trans-

mitted electric fields. The rays propagate through interfaces according to the Fresnel

equations and Snell’s law. To model an electromagnetic field, many rays may be used,

with each ray generating its own incident, reflected, and transmitted angles to be used

in the Fresnel equations and Snell’s law. Geometric optics is often used as an approx-

imation for exact solutions (e.g. Mie theory) due to its simplistic treatment of electro-

magnetic waves as a collection of rays.

As geometric optics is treated in detail in Hecht (2002), and scattering-related examples

given in Bohren and Huffman (1983), further discussion in this Appendix is unneces-

sary.
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F.8 Beckmann Distribution Function

Surface roughness is often modelled as an array of microfacets on an otherwise flat

surface. The slopes and spacings of these facets are defined as a distribution func-

tion (probability density function). One simple model is the Gaussian model where

roughness is altered via changes to the standard deviation of a Gaussian distribution

function. In accordance with literature, this standard deviation is called the distribu-

tion factor m; a small m implies smoothness, while large m indicates roughness. Each

microfacet has a unit surface normal N; the incoming radiation with respect to N is

unit vector L; the viewing direction with respect to N is unit vector V; the vector that

bisects L and V is H. The angle of incidence between N and H is α.

A similar but more thorough model is called the Beckmann distribution function

(Beckmann and Spizzichino 1963). Its simplified form is given in Equation (F.76). To

account for some facets that may be blocked from the incident radiation by other facets,

a geometric attenuation factor G as given in Equation (F.77) is incorporated.

D =
1

m2 cos4 α
e−(

tan α
m )

2

. (F.76)

G = min

(

1,
2(N · H)(N · V)

V · H
,

2(N · H)(N · L)

V · H

)

. (F.77)

One of the issues encountered in conducting the study presented in Chapter 5 was the

presence of rat hair on the skin samples. Although the skin surface was shaved prior

to excision, it is not possible to remove all hair follicles. This raises the question if

hair follicles interfere with the THz measurements through strong surface reflection.

Figure F.1 shows the extracted optical properties from 0.3–1 THz for lyophilised rat

ventral skin with and without removal of the hair through shaving. The plots of the

extinction coefficients deviate by no more than 0.01 at each frequency, thus are quite

similar. The plots of the refractive indices may initially appear very different but con-

sidering the small range of values in the ordinate (y-axis), their refractive indices are

not dissimilar. Therefore, the reduction in hair length through shaving appears to have

not altered the sample’s surface reflectivity. To verify this observation, a novel study

was conducted using the Beckmann distribution function to determine if hair causes

surface reflections. The results of the study are presented in the next Subsection.
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Figure F.1: Optical properties of rat ventral skin, with and without shaving. The solid and

dashed lines represent the extinction coefficients, while the lines with circle and cross

markers represent the refractive indices. Even with shaving, the surface of the rat skin

contains hair follicles.

F.8.1 Application of the Beckmann Distribution Function

The scene size used in this simulation is 128 × 128 pixels. The amount of specular

versus diffuse reflection can be altered using the factors s and d respectively, where

s + d = 1. The sample simulated in this study is ideal fresh skin (no moisture) with

optical properties consistent with those reported in (Fitzgerald et al. 2003). The Fres-

nel reflection coefficient F(θ, λ) of the sample can therefore be calculated, where λ is

the wavelength and θ is the angle of incidence between L and N. The skin sample is

assumed to be slightly convex in the direction of the incoming THz radiation in order

to mimic actual skin samples that are seldom flat. The solid angle Ω of the incident

THz radiation Ii(λ) is calculated over 2× 2 pixels. The reflected THz signal Ir(λ) in the

frequency domain is therefore equal to:

Ir(λ) = Ii(λ)(N · L)Ω

(
sF(θ, λ) D G

π(N · V)(N · L)
+

dF(θ = 0◦, λ)

π

)

. (F.78)

Figures F.2(a) and F.2(b) show the magnitude of Ir at 1.225 THz for smooth and rough

skin surfaces with the same diffuse and specular reflection factors d and s respectively.

The rough skin surface mimics the rat skin with hair, and the smooth surface mim-

ics a perfect hairless surface. The signal reflected from a rough surface is one order
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of magnitude less than for a smooth surface, implying that the rough surface reflects

less than the smooth surface. Since d and s are similar for both models, the reduction

in reflection from the rough surface cannot be attributed to stronger diffuse reflection

from the rough surface. The reduction is instead consistent with the notion of more

loss from repeated bounces off the facets. This observation is in agreement with Dik-

melik et al. (2006), where reflection mode THz spectroscopy of rough surfaces result

in attenuated detected signals. Therefore, the strong reflection from the smooth sur-

face may be beneficial to reflection mode THz spectroscopy, but disadvantageous for

transmission mode THz spectroscopy.

To further support the observations in Figs. F.2(a) and F.2(b), Fig. F.3 presents a com-

parison of the incident and reflected THz signal, where the reflected THz signal is

assumed to be reflected by 180◦. The magnitude of the reflected signal is more than

4 orders of magnitude weaker than the incident THz signal, again suggesting negli-

gible loss through surface reflection. Since the measured results shown in Fig. F.1 are

similar to the observations in Figs. F.2(b) and F.3, this implies that the unshaved surface

has similar roughness to the shaved surface, both being poor surface reflectors of THz

radiation. Based on the modelling using the Beckmann distribution function, and the

THz measurements, the conclusion is that the incomplete removal of hair from rat skin

samples does not contribute to surface reflections.
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(a) Smooth surface (Beckmann distribution factor m = 0.1), specular

reflection factor s = 0.1, and diffuse reflection factor d = 0.9
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(b) Rough surface (Beckmann distribution factor m = 1), specular reflection

factor s = 0.1, and diffuse reflection factor d = 0.9

Figure F.2: Magnitudes of the reflected THz signal at 1.225 THz. The y−axes of Figs. F.2(a)

and F.2(b) have arbitrary units (a.u.). (a) As shown by the dark red peak, the maximum

magnitude at 4.6 × 10−3 a.u. indicates maximum reflectivity from the smooth sample.

(b) The maximum magnitude for the rough sample is 4.06 × 10−4 a.u., which is one

order of magnitude less than for the smooth surface, implying that the rough surface

reflects less than the smooth surface.
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Figure F.3: Comparison between the incident THz signal and the simulated reflected signal

using the Beckmann distribution function. The measured incident THz signal is

more than 4 orders of magnitude stronger than the reflected THz signal simulated using

the Beckmann distribution function with distribution factor m = 1 (rough), indicating

that hair does not interfere with transmission mode THz measurements.
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Appendix G

General Solution of the
Helmholtz Equation

T
HIS Appendix presents the derivation of the general solution of

the Helmholtz equation as required in Chapter 9.
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G.1 General Solution of the Helmholtz Equation

This Appendix derives the general solution for the Helmholtz equation given in Equa-

tion (9.3) for the mth layer.

The differential form of Maxwell’s equation can be expressed as:

∇2E − µσ
∂E

∂t
− µε

∂2E

∂t2
= ∇(

ρ

ε
)

∇2B = µσ
∂B

∂t
+ µε

∂2B

∂t2

but µH = B

∴ µ∇2H = µ2σ
∂H

∂t
+ µ2ε

∂2H

∂t2

∇2H = µσ
∂H

∂t
+ µε

∂2H

∂t2
.

For an electromagnetic wave with electric field vector in the plane of incidence (xz

plane), the differential form of Maxwell’s equation can be written as:

[

∇2H(x, z, t) =
∂2H(x, z, t)

∂x2
+

∂2H(x, z, t)

∂z2

]

= µσ
∂H(x, z, t)

∂t
+ µε

∂2H(x, z, t)

∂t2
. (G.1)

In the frequency domain, where the angular frequency ω = 2πν and ν is the frequency

in units of Hertz, Equation (G.1) becomes:

∇2 H(x, z, ω) = iωµσH(x, z, ω)− ω2µεH(x, z, ω)

[∇2 − (iωµσ − ω2µε)] H(x, z, ω) = 0

[∇2 − γ2] H(x, z, ω) = 0
[

∂2H(x, z, ω)

∂x2
+

∂2H(x, z, ω)

∂z2
− γ2H(x, z, ω)

]

= 0 . (G.2)

Equation (G.2) is the Helmholtz equation, and the square of the propagation constant

γ is equal to:

γ2 = (iωµσ − ω2µε) = −k̂2 = −{k n̂}2 = −{k(n − iκ)}2 , (G.3)

and k̂ is the complex wavenumber, k = 2π/λ is the wavenumber, n̂ is the complex

refractive index with real and imaginary components n and κ respectively. For a mul-

tilayered surface, the square of the propagation constant of the mth layer is equal to:

γ2

m = iωµmσ − ω2µmεm . (G.4)
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To find the solution to the Helmholtz equation in Equation (G.2), separation of vari-

ables is used as follows:

H(x, z, ω) = F(x, ω)G(z, ω) ,

or more simply H(x, z) = F(x)G(z) (G.5)

since all terms are dependent on the angular frequency ω.

Differentiating Equation (G.5) gives:

∂H

∂x
=

∂F(x)

∂x
G(z) (G.6)

∂2H

∂x2
=

∂2F(x)

∂x2
G(z) (G.7)

∂2H

∂z2
=

∂2G(z)

∂z2
F(x) . (G.8)

Substitute Equations (G.7) and (G.8) into Equation (G.2) gives:

∂2F(x)

∂x2
G(z) +

∂2G(z)

∂z2
F(x) − γ2F(x)G(z) = 0

∂2F(x)

∂x2
G(z) = −∂2G(z)

∂z2
F(x) + γ2F(x)G(z) . (G.9)

Dividing both sides of Equation (G.9) by F(x)G(z) results in:

1

F(x)

∂2F(x)

∂x2
= − 1

G(z)

∂2G(z)

∂z2
+ γ2

=
1

G(z)

[

−∂2G(z)

∂z2
+ γ2G(z)

]

. (G.10)

Both sides of this explicit equation must be equal to a constant. For the solutions to

be unique, the constant must be a negative number. Let this negative constant be −β2.

The left side of Equation (G.10) becomes:

1

F(x)

∂2F(x)

∂x2
= −β2

∂2F(x)

∂x2
+ β2F(x) = 0 . (G.11)

The right side of Equation (G.10) becomes:

1

G(z)

[

−∂2G(z)

∂z2
+ γ2G(z)

]

= −β2
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∂2G(z)

∂z2
− γ2G(z) − β2G(z) = 0 . (G.12)

Equations (G.11) and (G.12) are now homogeneous ordinary differential equations

(ODEs) with constant coefficients,therefore their general solutions can now be easily

found. For F(x):

let F(x) = epx (G.13)

∴
∂2F(x)

∂x2
= p2epx , (G.14)

where p is the root of F(x).

Substituting Equations (G.13) and (G.14) into Equation (G.11) gives:

∂2F(x)

∂x2
+ β2F(x) = 0

p2epx + β2epx = 0

epx(p2 + β2) = 0 where the characteristic equation is p2 + β2

p2 = −β2

p = ±iβ

∴ F(x) = c1e
−iβx where c1 is a constant.

For G(z):

let G(z) = ehz (G.15)

∴
∂2G(z)

∂z2
= h2ehz , (G.16)

where h is the root of G(z).

Substituting Equations (G.15) and (G.16) into Equation (G.12) gives:

∂2G(z)

∂z2
− γ2G(z) − β2G(z) = 0

h2ehz − γ2ehz − β2ehz = 0

ehz(h2 − γ2 − β2) = 0 where the characteristic equation is h2 − γ2 − β2

h2 = γ2 + β2

h = ±
√

γ2 + β2

∴ G(z) = c2e
z
√

γ2+β2
+ c3e

−z
√

γ2+β2
where c2, c3 are constants.

Page 360



Appendix G General Solution of the Helmholtz Equation

Therefore, the general solution of Equation (G.5) is:

H(x, z) = F(x)G(z)

= c1e
−iβx
(

c2e
−z
√

γ2+β2
+ c2e

z
√

γ2+β2
)

(G.17)

= c1c2e
−z
√

γ2+β2−iβx + c1c2e
z
√

γ2+β2−iβx

= ae−z
√

γ2+β2−iβx + bez
√

γ2+β2−iβx . (G.18)

As function of frequency ω, Equation (G.18) becomes:

H(x, z, ω) = F(x, ω)G(z, ω)

= a(ω)e−z
√

γ2+β2−iβx + b(ω)ez
√

γ2+β2−iβx . (G.19)

However, recall that the square of the propagation constant γ2 varies with frequency

ω and layer depth m as highlighted in Equation (G.4). Therefore, at the mth layer:

Hm (x, z, ω) = am(ω)e−z
√

γ2
m+β2−iβx + bm(ω)ez

√
γ2

m+β2−iβx , (G.20)

where γ2
m is a function of frequency ω. Equation (G.20) is repeated as Equation (9.6) in

Chapter 9.
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Appendix H

Data Processing
Algorithms

T
HIS Appendix provides a summary of the MATLAB source code

used to generate results in Chapters 5–9 and Appendix A of this

Thesis. The names of the source code files, their functions, and the

related Chapters in this Thesis are listed. The full source code is available

in the enclosed CD-ROM. Where applicable, extracts of the full source code

are presented in this Appendix to highlight notable steps undertaken in

data processing.
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H.1 Data Processing Common to All Measured Datasets

As highlighted in Section 5.2, data processing of the measured THz signal is usually re-

quired before meaningful interpretation of the data can be conducted. In this Thesis, all

measured THz signals are first processed using a common set of data processing tech-

niques illustrated in Fig. H.1(a). This first set of processing fetches the raw data, strips

away any header information, performs truncation of the time domain data, averages

multiple sets of data if requested, and transforms the data from the time domain to the

frequency domain. The illustration includes the equations referred to in Section 5.2.3.

The second set of data processing, as illustrated in Fig. H.1(b), allows the user to ex-

tract the optical (dielectric) properties of the sample under investigation. The extracted

optical properties can then be written to separate files for future analysis.

(a) First set of data processing deals mainly

with the time domain THz measurement

(b) Second set of data processing deals with ex-

tracting the optical (dielectric) properties

Figure H.1: Flow chart of common data processing techniques used in this Thesis. (a) The

first part of the data processing involves fetching the raw THz measurement files that

are recorded in the time domain in either .txt or .dat format. The built-in MATLAB Fast

Fourier Transform function fft is used to transform the data from the time domain to

the frequency domain. (b) The second part of the data processing involves extracting

the optical (dielectric) properties, and writing them to separate files if requested.
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Name of File (*.m) Function Related

Chapter(s)

freqanalysis30Oct09 Main program Chapters 4–8

origfilesPE User chooses file related to polyethylene Chapter 4

origfilesrattissue User chooses file related to rat tissue Chapter 5

origflesbrain User chooses file related to snap-frozen brain Chapter 6

tissue

origfilesbelg User chooses file related to protein gels/solutions Chapter 7

origfilesfibres User chooses file related to fibreglass array Chapter 8

getaccessfile Fetch storage path of chosen file, and stored

information about sample (e.g. thickness) Chapters 4–8

findrefaverage Average reference files if this option chosen Chapters 4–8

setplotcolours Set plotting colours Chapters 4–8

getdatafromfile Fetch data for analysis Chapters 4–8

findaverage2 Average sample files if this option chosen Chapters 4–8

plottimewaveforms Plot time domain waveforms without error bars Chapters 4–8

plottimewaveformsErrorbars Plot time domain waveforms with error bars Chapters 4–8

plotfreqwaveforms Plot frequency domain waveforms Chapters 4–8

plotabsorbancecoeffwaveforms Plot absorption (extinction) coefficient waveforms Chapters 4–8

findrefractiveindex Plot absorption (extinction) coefficient waveforms Chapters 4–8

getfilestatus4 Write optical (dielectric) properties to file Chapters 4–8

Table H.1: MATLAB source code files for performing common data processing. Apart from

the main program file called freqanalysis30Oct09.m, all files listed in this Table are

functions called by the main program.

H.1.1 List of Source Code Files

Table H.1 lists the name of files containing MATLAB source code that performs the

operations illustrated in Fig. H.1.

By calling the last function listed in Table H.1, getfilestatus4.m, the optical (dielectric)

properties are written to separate files. To open and plot these files individually or as

a batch, the file called plotfromseparatefilesopprop9.m is used.
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Name of File (*.m) Function

scattercyl Main program

getanyfile Opens any type of file

callsscattercylcs Adjusts radius array, then calls scattercscyl.m

scattercylcs Finds Csca, Cext, Qsca, and Qext

findscattercylab Calculates the a and b scattering coefficients for a cylinder

findbessel Calculates the Bessel functions of the first and second kinds

scattercylTscatmat Calculates the scattering T-matrix for a cylinder

findscattercylT12 Calculates either T1 or T2 in the scattering matrix for a cylinder

findscattercylT34 Calculates either T3 or T4 in the scattering matrix for a cylinder

MieWn Uses algorithm by Wiscombe (1980) to deal with NaNs (not-a-number)

in Matlab (author: Ville Bergholm)

Table H.2: MATLAB source code files for modelling scattering. The main program scattercyl.m

calls the functions listed from row 2 onwards in this Table.

H.2 Algorithms for Modelling Scattering

Table H.2 lists the name of files containing MATLAB source code that models scatter-

ing from cylinders (fibrils). These source code files implement the equations in Sec-

tions 7.5.1 and 8.3.2. Extracts of source code obtained online82 have been included

where applicable to enhance built-in tests for errors. The author, Ville Bergholm,

has been acknowledged where appropriate in the source code files. The source code

MieWn.m by Ville Bergholm is used verbatim as it implements the algorithm by Wis-

combe (1980) for dealing with NaNs (not-a-number) generated by MATLAB.

H.2.1 Source Code

Source code for three functions for modelling scattering are provided in this Subsec-

tion. For brevity, the source code presented here have been edited in length to remove

plotting commands. Plotting commands are included in the source code in the CD-

ROM.

82From Mie Matlab at <http://diogenes.iwt.uni-bremen.de/vt/laser/wriedt/

Mie_Type_Codes/body_mie_type_codes.html> (last accessed: 2009-01-24). Author of source code:

Ville Bergholm. The ‘Mie Matlab’ link is not available when last checked on 2010-05-27.
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Function: scattercylcs.m

% s c a t t e r c s c y l .m

%

% This program f i n d s the s c a t t e r i n g c r o s s s e c t i o n Csa , the e x t i n c t i o n c r o s s s e c t i o n Cext ,

% the s c a t t e r i n g e f f i c i e n c y Qsca , and the e x t i n c t i o n e f f i c i e n c y Qext .

%

% Version i n f o : Checked a g a i n s t V i l l e Bergholm ' s 2001 , 2002 algorithm MieCS .m

%

% Author : Gre te l M. Png

% Last edi ted : 07 Jan 2010

funct ion [ Cext , Csca , Qext , Qsca , x , a , b , a0 , b0 , s m a l l l i m i t ] = . . .

s c a t t e r c s c y l ( r , L , k , m, norder , e f i e l d , Eincangle , varyparamtype , n0 , t rueradius , s )

i f nargin < 11

% p a r t i c l e s u r f a c e conduct iv i ty parameter

s = 0 ;

end

nu = 0 . 5 ; % order of f i r s t b e s s e l func t ion

i f Eincangle == 90

Eincanglerad = pi /2;

Eincanglecase = 1 ;

e l s e

Eincanglerad = Eincangle * pi /180;

Eincanglecase = 2 ;

end % End i f t e s t ( Eincangle == 90)

r = r . ' ;

t r uer a d i us = t r uer a d i us . ' ;

k = k . ' ; % k = 2* pi *n medium/lambda

morig = m;

m = m. ' ; % m = n sample/n medium ;

x = k . * t r uer a d i us ;

nmax = norder ;

xnew = x . ' ; % x = k * t r uer a d i us = n medium * 2 * pi * t r uer a d i us/lambda ;

i f (max( x ) < 0 . 4 ) && (max( abs (m) . * x ) < 0 . 4 )

s m a l l l i m i t = 1 ;

disp ( ' Small−p a r t i c l e l i m i t reached ' ) ;

e l s e

s m a l l l i m i t = 0 ;

end % End i f t e s t

i f s m a l l l i m i t == 1

switch e f i e l d

case ' para '

b0 = (− i * pi * ( xnew . ˆ 2 ) . * ( morig . ˆ 2 − 1 ) ) / 4 ;
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b = (− i * pi * ( xnew . ˆ 4 ) . * ( morig . ˆ 2 − 1 ) ) / 3 2 ;

a0 = zeros ( s i z e ( b0 ) ) ;

a = zeros ( s i z e ( b ) ) ;

case ' perp '

a0 = (− i * pi * ( xnew . ˆ 4 ) . * ( morig . ˆ 2 − 1 ) ) / 3 2 ;

a = (− i * pi * ( xnew . ˆ 2 ) . * ( morig . ˆ 2 − 1 ) ) . / ( 4 * ( morig . ˆ 2 + 1 ) ) ;

b0 = zeros ( s i z e ( a0 ) ) ;

b = zeros ( s i z e ( a ) ) ;

otherwise

end % End switch t e s t ( e f i e l d )

e l s e

[ a , b , a0 , b0 ] = f i n d s c a t t e r c y l a b (nmax , x , m, e f i e l d , Eincangle , n0 , nu , s ) ;

% From V i l l e Bergholm : Check f o r NaNs . I f yes , r e p l a c e with zeros

while 1 %i n f i n i t e loop

t e s t = f ind ( any ( any ( isnan ( [ a ; b ] ) , 3 ) , 1 ) ) ; % i n d i c e s of f a u l t y x ' s

i f isempty ( t e s t )

break ; % break out of the while loop

end

disp ( 'NaN found . Replacing with zeros ' ) ;

a ( : , t e s t , : ) = 0 ;

b ( : , t e s t , : ) = 0 ; % remove the NaNs

nmax2 = MieWn( x ( t e s t ) ) ; % take a new ( smal ler ) nmax

i f nmax2 > nmax

e r r o r ( ' This should never happen ' ) ;

end % end i f t e s t ( nmax2 > nmax)

[A, B , A0 , B0 ] = f i n d s c a t t e r c y l a b ( nmax2 , x ( t e s t ) , m( t e s t ) , e f i e l d , Eincangle , s ) ;

a ( 1 : nmax2 , t e s t , : ) = A;

b ( 1 : nmax2 , t e s t , : ) = B ;

end % End while loop

end % End i f t e s t ( s m a l l l i m i t == 1)

switch varyparamtype

case ' frequency '

geoxsect ion = 2* t r uer a d i us *L ; % geometric cross−s e c t i o n of a c y l i n d e r = r e c t a n g l e

switch e f i e l d

case ' para ' % E f i e l d p a r a l l e l to xz plane

i f s m a l l l i m i t == 1

Qext = ( 2 . / xnew ) . * r e a l ( 2 * b + b0 ) ;

Qsca = ( 2 . / xnew ) . * ( 2 * ( ( abs ( a ) . ˆ 2 ) + ( abs ( b ) . ˆ 2 ) ) + ( abs ( b0 ) ) . ˆ 2 ) ;

e l s e

Qext = ( 2 . / xnew ) . * r e a l ( 2 *sum( b ) + b0 ) ;

Qsca = ( 2 . / xnew ) . * ( 2 * sum ( ( abs ( a ) . ˆ 2 ) + ( abs ( b ) . ˆ 2 ) ) + ( abs ( b0 ) ) . ˆ 2 ) ;

end % End i f t e s t ( s m a l l l i m i t == 1)

case ' perp ' % E f i e l d perpendicular to xz plane

i f s m a l l l i m i t == 1

Qext = ( 2 . / xnew ) . * r e a l ( 2 * a + a0 ) ;

Qsca = ( 2 . / xnew ) . * ( 2 * ( ( abs ( a ) . ˆ 2 ) + ( abs ( b ) . ˆ 2 ) ) + ( abs ( a0 ) ) . ˆ 2 ) ;

e l s e

Qext = ( 2 . / xnew ) . * r e a l ( 2 *sum( a ) + a0 ) ;

Qsca = ( 2 . / xnew ) . * ( 2 * sum ( ( abs ( a ) . ˆ 2 ) + ( abs ( b ) . ˆ 2 ) ) + ( abs ( a0 ) ) . ˆ 2 ) ;
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end % End i f t e s t ( s m a l l l i m i t == 1)

otherwise

disp ( 'Unknown E p o l a r i z a t i o n ' ) ;

Qext1 = ( 2 . / xnew ) . * r e a l ( 2 *sum( b ) + b0 ) ;

Qsca1 = ( 2 . / xnew ) . * ( 2 * sum ( ( abs ( a ) . ˆ 2 ) + ( abs ( b ) . ˆ 2 ) ) + ( abs ( b0 ) ) . ˆ 2 ) ;

Qext2 = ( 2 . / xnew ) . * r e a l ( 2 *sum( a ) + a0 ) ;

Qsca2 = ( 2 . / xnew ) . * ( 2 * sum ( ( abs ( a ) . ˆ 2 ) + ( abs ( b ) . ˆ 2 ) ) + ( abs ( a0 ) ) . ˆ 2 ) ;

Qext = 0 . 5 . * ( Qext1 + Qext2 ) ;

Qsca = 0 . 5 . * ( Qsca1 + Qsca2 ) ;

end % End switch t e s t ( e f i e l d )

case ' radius '

trueradiusnew = t r uer a di us . ' ;

geoxsect ion = 2* trueradiusnew *L ; % geometric cross−s e c t i o n of a c y l i n d e r = r e c t a n g l e

switch e f i e l d

case ' para ' % E f i e l d p a r a l l e l to xz plane

Qext = ( 2 . / xnew ) . * r e a l ( 2 *sum( b ) + b0 ) ;

Qsca = ( 2 . / xnew ) . * ( 2 * sum ( ( abs ( a ) . ˆ 2 ) + ( abs ( b ) . ˆ 2 ) ) + ( abs ( b0 ) ) . ˆ 2 ) ;

case ' perp ' % E f i e l d perpendicular to xz plane

Qext = ( 2 . / xnew ) . * r e a l ( 2 *sum( a ) + a0 ) ;

Qsca = ( 2 . / xnew ) . * ( 2 * sum ( ( abs ( a ) . ˆ 2 ) + ( abs ( b ) . ˆ 2 ) ) + ( abs ( a0 ) ) . ˆ 2 ) ;

otherwise

disp ( 'Unknown E p o l a r i z a t i o n ' ) ;

Qext1 = ( 2 . / xnew ) . * r e a l ( 2 *sum( b ) + b0 ) ;

Qsca1 = ( 2 . / xnew ) . * ( 2 * sum ( ( abs ( a ) . ˆ 2 ) + ( abs ( b ) . ˆ 2 ) ) + ( abs ( b0 ) ) . ˆ 2 ) ;

Qext2 = ( 2 . / xnew ) . * r e a l ( 2 *sum( a ) + a0 ) ;

Qsca2 = ( 2 . / xnew ) . * ( 2 * sum ( ( abs ( a ) . ˆ 2 ) + ( abs ( b ) . ˆ 2 ) ) + ( abs ( a0 ) ) . ˆ 2 ) ;

Qext = 0 . 5 . * ( Qext1 + Qext2 ) ;

Qsca = 0 . 5 . * ( Qsca1 + Qsca2 ) ;

end % End switch t e s t ( e f i e l d )

otherwise

disp ( ' P lease choose varyparamtype again . ' ) ;

end % End switch t e s t ( varyparamtype )

Cext = geoxsect ion . * Qext ;

Csca = geoxsect ion . * Qsca ;

Function: findscattercylab.m

% f i n d s c a t t e r c y l a b .m

%

% This program c a l c u l a t e s the a and b s c a t t e r i n g c o e f f i c i e n t s f o r a c y l i n d e r .

%

% Author : Gre te l M. Png

% Last edi ted : 25 Nov 2009

funct ion [ a , b , a0 , b0 ] = f i n d s c a t t e r c y l a b (nmax , x , m, e f i e l d , Eincangle , n0 , nu , s )

i f nargin < 8

s = 0 ; % d e f a u l t : no s u r f a c e conductance

end
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i f Eincangle == 90

Eincanglerad = pi /2;

Eincanglecase = 1 ;

e l s e

Eincanglerad = Eincangle * pi /180;

Eincanglecase = 2 ;

end % End i f t e s t ( Eincangle == 90)

% open up m and x i n t o row v e c t o r s

m = m( : ) . ' ; % m = n sample/n medium ;

x = ( x ( : ) . ' ) . / n0 ; % x = n medium* k . * r = n medium * 2 * pi * r/lambda

mx = m. * x ; % mx = n sample * k . * r

switch Eincanglecase

case 1 % Eincangle == 90

[ J , Y] = f i n d b e s s e l (nmax , x , nu ) ;

H = J + i *Y ;

[ J m , temp ] = f i n d b e s s e l (nmax ,mx, nu ) ;

c l e a r temp ;

J0 = b e s s e l j ( nu , x ) ;

Y0 = besse ly ( nu , x ) ;

H0 = J0 + i *Y0 ;

J0 m = b e s s e l j ( nu ,mx ) ;

Y0 m = besse ly ( nu ,mx ) ;

DJ0 = −J ( 1 , : ) ;

DY0 = −Y ( 1 , : ) ;

DJ0 m = −m. * J m ( 1 , : ) ;

DH0 = DJ0 + i *DY0 ;

% temp v e c t o r s f o r c a l c u l a t i n g d e r i v a t i v e s

TJ = [ s i n ( x ) ; J ( 1 : ( nmax− 1 ) , : ) ] ; % J 0 = s i n ( x )

TJ m = [ s i n (mx) ; J m ( 1 : ( nmax− 1 ) , : ) ] ;

TY = [−cos ( x ) ; Y ( 1 : ( nmax− 1 ) , : ) ] ; % H 0 = −cos ( x )

% temp matr ices to f a c i l i t a t e computation of d e r i v a t i v e s

N = ( ( 1 : nmax ) . ' ) * ones ( 1 , length ( x ) ) ;

Nm = ( ( 1 : nmax ) . ' ) * ones ( 1 , length (mx ) ) ;

i f length (mx) > 1

mx2 = ones (nmax , 1 ) *mx;

i f length ( x ) > 1

x2 = ones (nmax , 1 ) * x ;

e l s e

x2 = x ;

end % End i f t e s t ( length ( x ) > 1)

e l s e

mx2 = mx;

x2 = x ;

end % End i f t e s t ( length (mx) > 1)
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orginalm = m;

c l e a r m;

i f length ( orginalm ) == 1

m = temp * ones (nmax , length ( x ) ) ;

e l s e

m = repmat ( orginalm , nmax , 1 ) ;

end % End i f t e s t ( length ( orginalm ) == 1)

c l e a r temp ;

% d e r i v a t i v e s are c a l c u l a t e d using recurs ion formulae

DJ = TJ−N. * J ./ x2 ;

DJ m = TJ m−Nm. * J m . / ( mx2 ) ; %

DY = TY−N. * Y./ x2 ;

DH = DJ + i * DY;

switch e f i e l d

case ' para ' % E f i e l d p a r a l l e l to xz plane

i f length (m) == 1

b = ( J m . * DJ − m*DJ m . * J ) . / ( J m . *DH − m*DJ m . *H) ;

b0 = ( J0 m . * DJ0 − orginalm * DJ0 m . * J0 ) . / ( J0 m . *DH0 − orginalm * DJ0 m . * H0 ) ;

e l s e

b = ( J m . * DJ − m. * DJ m . * J ) . / ( J m . *DH − m. * DJ m . *H) ;

b0 = ( J0 m . * DJ0 − orginalm . * DJ0 m . * J0 ) . / ( J0 m . *DH0 − orginalm . * DJ0 m . * H0 ) ;

end % End i f t e s t ( length (m) == 1)

a = zeros (nmax , length ( x ) ) ;

a0 = zeros ( 1 , length ( x ) ) ;

case ' perp ' % E f i e l d perpendicular to xz plane

i f length (m) == 1

a = (m* DJ . * J m − J . * DJ m ) . / (m* J m . *DH − DJ m . *H) ;

a0 = ( orginalm * DJ0 . * J0 m − J0 . * DJ0 m ) . / ( orginalm * J0 m . *DH0 − DJ0 m . * H0 ) ;

e l s e

a = (m. * DJ . * J m − J . * DJ m ) . / (m. * J m . *DH − DJ m . *H) ;

a0 = ( orginalm . * DJ0 . * J0 m − J0 . * DJ0 m ) . / ( orginalm . * J0 m . *DH0 − DJ0 m . * H0 ) ;

end % End i f t e s t ( length (m) == 1)

b = zeros (nmax , length ( x ) ) ;

b0 = zeros ( 1 , length ( x ) ) ;

otherwise

disp ( 'Unknown E p o l a r i z a t i o n ' ) ;

end % End switch t e s t ( e f i e l d )

case 2 % Eincangle < 90

i f length (m) == 1

m = m* ones ( 1 , length ( x ) ) ;

end % End i f t e s t ( length (m) == 1)

m2 = m. ˆ 2 ;

x i = x . * s i n ( Eincanglerad ) ;

e ta = x . * s q r t (m2−(cos ( Eincanglerad ) ) . ˆ 2 ) ;

[ J x i , Y xi ] = f i n d b e s s e l (nmax , xi , nu ) ;

H xi = J x i + i * Y xi ;

% psi m = RB1 (nmax , mx);% s i z e = [nmax , length (mx) ]
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[ J e t a , temp ] = f i n d b e s s e l (nmax , eta , nu ) ;

c l e a r temp ;

% temp v e c t o r s f o r c a l c u l a t i n g d e r i v a t i v e s

T J x i = [ s i n ( x ) ; J x i ( 1 : ( nmax− 1 ) , : ) ] ; % J 0 = s i n ( x )

T J e t a = [ s i n (mx) ; J e t a ( 1 : ( nmax− 1 ) , : ) ] ; %longer

TY xi = [−cos ( x ) ; Y xi ( 1 : ( nmax− 1 ) , : ) ] ; % H 0 = −cos ( x )

% temp matr ices to f a c i l i t a t e computation of d e r i v a t i v e s

N = ( ( 1 : nmax ) . ' ) * ones ( 1 , length ( x ) ) ;

Nm = ( ( 1 : nmax ) . ' ) * ones ( 1 , length (mx ) ) ;

i f length (mx) > 1

mx2 = ones (nmax , 1 ) *mx;

i f length ( x ) > 1

x2 = ones (nmax , 1 ) * x ;

e l s e

x2 = x ;

end

e l s e

mx2 = mx;

x2 = x ;

end

% d e r i v a t i v e s are c a l c u l a t e d using recurs ion formulae

DJ x i = T J x i−N. * J x i ./ x2 ; % DJ x i

DJ eta = TJ e ta−Nm. * J e t a . / ( mx2 ) ; % DJ eta

DY xi = TY xi−N. * Y xi ./ x2 ; % DY xi

DH xi = DJ x i + i * DY xi ; % DH xi

n = repmat ( [ 1 : 1 : nmax ] . ' , 1 , length ( x ) ) ;

temp = m2; c l e a r m2;

m2 = repmat ( temp , nmax , 1 ) ; c l e a r temp ;

temp = x i ; c l e a r x i ;

x i = repmat ( temp , nmax , 1 ) ; c l e a r temp ;

temp = eta ; c l e a r e ta ;

e ta = repmat ( temp , nmax , 1 ) ; c l e a r temp ;

Cn = cos ( Eincanglerad ) * n . * e ta . * J e t a . * J x i . * ( ( x i ./ e ta ) . ˆ 2 − 1 ) ;

Dn = cos ( Eincanglerad ) * n . * e ta . * J e t a . * H xi . * ( ( x i ./ e ta ) . ˆ 2 − 1 ) ;

Vn = x i . * ( m2 . * x i . * DJ eta . * H xi − e ta . * J e t a . * DH xi ) ;

Wn = i * x i . * ( e ta . * J e t a . * DH xi − x i . * DJ eta . * H xi ) ;

switch e f i e l d

case ' para ' % E f i e l d p a r a l l e l to xz plane

Bn = x i . * ( m2 . * x i . * DJ eta . * J x i − e ta . * J e t a . * DJ x i ) ;

a = (Cn . * Vn − Bn . * Dn) . / (Wn. * Vn + i * (Dn . ˆ 2 ) ) ;

b = (Wn. * Bn + i *Dn . * Cn) . / (Wn. * Vn + i * (Dn . ˆ 2 ) ) ;

case ' perp ' % E f i e l d perpendicular to xz plane

An = i * x i . * ( x i . * DJ eta . * J x i − e ta . * J e t a . * DJ x i ) ;

a = −(An . * Vn − i *Cn . * Dn) . / (Wn. * Vn + i * (Dn . ˆ 2 ) ) ;

b = − i * ( Cn . *Wn + An . * Dn) . / (Wn. * Vn + i * (Dn . ˆ 2 ) ) ;

otherwise

disp ( 'Unknown E p o l a r i z a t i o n ' ) ;
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end % End switch t e s t ( e f i e l d )

otherwise % Eincangle > 90

disp ( 'E f i e l d i n c i d e n t a t an angle exceeding 90 degrees ' ) ;

end % End switch ( Eincanglecase )

Function: scattercylTscatmat.m

% s c a t t e r c y l T s c a t m a t .m

%

% This program c a l c u l a t e s the s c a t t e r i n g T−matrix f o r a c y l i n d e r .

%

% Author : Gre te l M. Png

% Last edi ted : 07 January 2009

funct ion [ T1 , T2 , T3 , T4 ] = s c a t t e r c y l T s c a t m a t (nmax , azimuth , acoef f , acoef f0 , . . .

bcoef f , bcoef f0 , e f i e l d , zenangle , f l ipaz imuth )

T1 = f i n d s c a t t e r c y l T 1 2 (nmax , azimuth , bcoef f , bcoef f0 , f l ipaz imuth ) ;

T2 = f i n d s c a t t e r c y l T 1 2 (nmax , azimuth , acoef f , acoef f0 , f l ipaz imuth ) ;

T3 = MieT34 (nmax , azimuth , acoef f , f l ipaz imuth ) ;

T4 = MieT34 (nmax , azimuth , bcoef f , f l ipaz imuth ) ;

H.3 Data Processing for Modelling Stratified Layers

The MATLAB program impulsefunctionlayers.m implements the equations introduced

in Section 9.3. The source code of impulsefunctionlayers.m is as follows.

% i m p u l s e f u n c t i o n l a y e r s .m

%

% Mater ia l : Quartz , Skin , Adipose , Bone , Dura ; Conditions : Dry Skin ;

% L i t e r a t u r e : gabriel 1996c pmb , f i t z g e r a l d 2 0 0 3 j b p

%

% This programme simulates the transmiss ion of THz i n t o 1 l a y e r of skin . P r o p e r t i e s of

% skin ( r e l a t i v e p e r m i t t i v i t y , conduct iv i ty ) are taken from i n t e r p o l a t e d data based on

% 2 authors−−−1 microwave and 1 THz

%

% Author : Gre te l M. Png

% Last edi ted : 12 October 2005

c l o s e a l l , c l e a r a l l ;

% Constants

e p s i l o n 0 = 8 .8542 e−12; % p e r m i t t i v i t y of a i r

mu 0 = 4e−7*pi ; % permeabi l i ty of a i r

sigma 0 = 0 ; % conduct iv i ty of a i r

c = 3e8 ; % Speed of l i g h t

lambda = 1 ; % dummy v a r i a b l e f o r model
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p l o t l i n e t h i c k n e s s = 1 . 5 ; % Line t h i c k n e s s (1 point = 1/72”) , d e f a u l t = 0 . 5

p l o t f o n t s i z e = 1 6 ; % Font s i z e of axes , (1 point = 1/72”) , d e f a u l t = 1 0 ;

t e x t f o n t s i z e = 1 4 ; % Font s i z e of t ex t , (1 point = 1/72”) , d e f a u l t = 1 0 ;

f i l e P a t h = 'C:\ GPngTRayFiles\GPngModelMatlabFiles\Brad\powderData\ ' ;

getdataPath = 'C:\ GPngTRayFiles\GPngModelMatlabFiles\MatlabScr ipts\E x t r a p o l a t i o n\ ' ;

savePath = 'C:\ GPngTRayFiles\GPngModelMatlabFiles\Figures\UsingBradData\EPSFigs\ ' ;

% E l e c t r i c a l P r o p e r t i e s of M−layered Model

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Layer 0

nquartz = 2 . 1 ; % r e f r a c t i v e index of quartz

hquartz = 0 . 0 0 2 ; % Thickness of quartz p l a t e

% Layer 1

mu 1 = 1 ; % R e l a t i v e permeabi l i ty of l a y e r 1 ( a i r )

%e p s i l o n 1 = 1 ; % R e l a t i v e p e r m i t t i v i t y of l a y e r 1 ( a i r )

%sigma 1 = 1e−3; % conduct iv i ty of l a y e r 1 ( a i r )

% Layer 2

mu 2 = 1 ; % R e l a t i v e permeabi l i ty of l a y e r 2 ( adipose t i s s u e )

sigma 2 = 0 . 9 ; % conduct iv i ty of l a y e r 2 ( adipose t i s s u e )

e p s i l o n 2 = 20− i * 5 ; % R e l a t i v e p e r m i t t i v i t y of l a y e r 2 ( adipose t i s s u e )

p s i l o n 2 = 2 0 ; % R e l a t i v e p e r m i t t i v i t y of l a y e r 2 ( adipose t i s s u e )

% Layer 3

mu 3 = 1 ; % R e l a t i v e permeabi l i ty of l a y e r 3 ( c o r t i c a l bone )

sigma 3 = 0 . 1 ; % conduct iv i ty of l a y e r 3 ( c o r t i c a l bone )

e p s i l o n 3 = 1 . 5 − i * 3 ; % R e l a t i v e p e r m i t t i v i t y of l a y e r 3 ( c o r t i c a l bone )

%e p s i l o n 3 = 1 . 5 ; % R e l a t i v e p e r m i t t i v i t y of l a y e r 3 ( c o r t i c a l bone )

% Layer 4

mu 4 = 1 ; % R e l a t i v e permeabi l i ty of l a y e r 4 ( dura )

sigma 4 = 0 . 4 8 ; % conduct iv i ty of l a y e r 4 ( dura )

e p s i l o n 4 = 6 − i * 6 ; % R e l a t i v e p e r m i t t i v i t y of l a y e r 4 ( dura )

%e p s i l o n 4 = 6 ; % R e l a t i v e p e r m i t t i v i t y of l a y e r 4 ( dura )

% Layer 5

mu 5 = 1 ; % R e l a t i v e permeabi l i ty of l a y e r 5 ( CSF )

sigma 5 = 0 . 7 6 5 ; % conduct iv i ty of l a y e r 5 ( CSF )

e p s i l o n 5 = 9 . 3 − i * 1 3 . 8 ; % R e l a t i v e p e r m i t t i v i t y of l a y e r 5 ( CSF )

%e p s i l o n 5 = 9 . 3 ; % R e l a t i v e p e r m i t t i v i t y of l a y e r 5 ( CSF )

% Layer 6

mu 6 = 1 ; % R e l a t i v e permeabi l i ty of l a y e r 6 ( grey )

sigma 6 = 0 . 5 3 3 ; % conduct iv i ty of l a y e r 6 ( grey )

e p s i l o n 6 = 7 . 7 5 − i * 9 . 6 ; % R e l a t i v e p e r m i t t i v i t y of l a y e r 6 ( grey )

%e p s i l o n 6 = 7 . 7 5 ; % R e l a t i v e p e r m i t t i v i t y of l a y e r 6 ( grey )

% Layer 7

mu 7 = 1 ; % R e l a t i v e permeabi l i ty of l a y e r 7 ( white )

sigma 7 = 0 . 4 ; % conduct iv i ty of l a y e r 7 ( white )

e p s i l o n 7 = 6 ; % R e l a t i v e p e r m i t t i v i t y of l a y e r 7 ( white )
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% Thickness of M−layered Model

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Values f o r p i c s in paper

h1 = 100e−6; % t h i c k n e s s of l a y e r 1 in meters

h2 = 0 . 0 0 1 ; % t h i c k n e s s of l a y e r 2 in meters

h3 = 0 . 0 1 ; % t h i c k n e s s of l a y e r 3 in meters

h4 = 250e−6; % t h i c k n e s s of l a y e r 4 in meters

h5 = 200e−6; % t h i c k n e s s of l a y e r 5 in meters

h6 = 0 . 0 0 2 ; % t h i c k n e s s of l a y e r 6 in meters

h7 = 0 . 1 ; % t h i c k n e s s of l a y e r 7 in meters

num layers = 7 ; % Pick number of l a y e r s to observe

e x t e n s i o n f a c t o r = 1 . 5 ;

% Open data f i l e conta in ing p e r m i t t i v i t y values

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f i d = fopen ( s t r c a t ( getdataPath , ' s k i n e p s i l o n . t x t ' ) , ' r ' ) ;

d a t a e x t r a c t = fread ( f id , ' double ' ) ;

f c l o s e ( f i d ) ;

num types data = d a t a e x t r a c t ( 1 ) ; % Types of data s tored

% F i r s t batch = f r e q u e n c i e s

% Second batch = \ eps i lon ˆ\prime

% Third batch = \ eps i lon ˆ{\prime\prime}

% Fourth batch = \sigma

e n d f i r s t b a t c h = (max( s i z e ( d a t a e x t r a c t ))−1)/ num types data + 1 ;

end second batch = 2 * (max( s i z e ( d a t a e x t r a c t ))−1)/ num types data + 1 ;

e nd t h i r d b a t ch = 3 * (max( s i z e ( d a t a e x t r a c t ))−1)/ num types data + 1 ;

max epsilonprime1 = max( d a t a e x t r a c t ( e n d f i r s t b a t c h +1: end second batch ) ) ;

%max epsilonprime2 = max( r e a l ( e p s i l o n 2 ) ) ;

% switches to determine which part of the s c r i p t i s executed :

[mFree2mm, nX , nY , nTime , nAngle , dX , dY , dTime , dAngle ] = . . .

openLIACTFile ( s t r c a t ( f i l e P a t h , ' THzFreeSpace2mm1529 ' ) ) ;

% C a l cu l a t e the maximum amount of time required to observe p l o t s

maxtime1 = ( 2 * h1 /( c/ s q r t ( r e a l ( max epsilonprime1 ) ) ) / 1 e−12);

maxtime = maxtime1 ;

s p r i n t f ( ' Layer 1 : %3.3 f ' , maxtime )

i f num layers ≥ 2

maxtime2 = ( 2 * h2 /( c/ s q r t ( r e a l ( e p s i l o n 2 ) ) ) / 1 e−12);

maxtime = maxtime + maxtime2 ;

s p r i n t f ( ' Layers 1 and 2 : %3.3 f ' , maxtime )

end

i f num layers ≥ 3

maxtime3 = ( 2 * h3 /( c/ s q r t ( r e a l ( e p s i l o n 3 ) ) ) / 1 e−12);

maxtime = maxtime + maxtime3 ;

s p r i n t f ( ' Layers 1 to 3 : %3.3 f ' , maxtime )

end

i f num layers ≥ 4

maxtime4 = ( 2 * h4 /( c/ s q r t ( r e a l ( e p s i l o n 4 ) ) ) / 1 e−12);
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maxtime = maxtime + maxtime4 ;

s p r i n t f ( ' Layers 1 to 4 : %3.3 f ' , maxtime )

end

i f num layers ≥ 5

maxtime5 = ( 2 * h5 /( c/ s q r t ( r e a l ( e p s i l o n 5 ) ) ) / 1 e−12);

maxtime = maxtime + maxtime5 ;

s p r i n t f ( ' Layers 1 to 5 : %3.3 f ' , maxtime )

end

i f num layers ≥ 6

maxtime6 = ( 2 * h6 /( c/ s q r t ( r e a l ( e p s i l o n 6 ) ) ) / 1 e−12);

maxtime = maxtime + maxtime6 ;

s p r i n t f ( ' Layers 1 to 6 : %3.3 f ' , maxtime )

end

i f num layers ≥ 7

maxtime7 = ( 2 * h7 /( c/ s q r t ( r e a l ( e p s i l o n 7 ) ) ) / 1 e−12);

maxtime = maxtime + maxtime7 ;

s p r i n t f ( ' Layers 1 to 7 : %3.3 f ' , maxtime )

end

maxtime = maxtime * e x t e n s i o n f a c t o r ;

%maxtime/ e x t e n s i o n f a c t o r

numIntervals = c e i l ( maxtime/dTime ) ;

i f numIntervals ≤ nTime

numIntervals = nTime +150;

end

timerangeFree = dTime * [ 0 : 1 : numIntervals −1]; % In picoseconds

% Delay due to quartz c r y s t a l

delay quartz = hquartz * nquartz *1 e12/c ; % In picoseconds

d e l a y q u a r t z u n i t s = c e i l ( de lay quartz/dTime ) ;

%c l e a r mFree2mm ;

mFree2mmtemp = zeros ( 1 , numIntervals ) ;

mFree2mmnoquartz = zeros ( 1 , numIntervals ) ;

choosecol = 2 5 ;

mFree2mmnoquartz ( 1 : 1 0 ) = mFree2mm( 7 7 : 8 6 , choosecol ) ; % Impulse funct ion

% Choose type of input s i g n a l ( T−ray or impulse funct ion )

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
inputchoice = 2 ;

i f inputchoice == 1

% Choice 1 : T−ray

mFree2mmtemp ( 1 : nTime ) = reshape (mFree2mm ( : , choosecol ) , 1 , nTime ) ;

e l s e i f inputchoice == 2

% Choice 2 : Gaussian funct ion

i f d e l a y q u a r t z u n i t s 6= 0

% F l i p impulse funct ion to simulate phase change a f t e r passing through

% quartz c r y s t a l

mFree2mmtemp( d e l a y q u a r t z u n i t s +2: d e l a y q u a r t z u n i t s +10) = −1e6 *mFree2mm( 7 8 : 8 6 , choosecol ) ;

e l s e

mFree2mmtemp( d e l a y q u a r t z u n i t s +25: d e l a y q u a r t z u n i t s +33) = 1e6 *mFree2mm( 7 8 : 8 6 , choosecol ) ;

end

e l s e i f inputchoice == 3

% Choice 3 : Cosine
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fmax = 2/10e−12;

de layuni t s = 8 0 0 ;

f o r cosinecount = delayuni t s : 1 : nTime+delayuni t s

mFree2mmtemp( cosinecount ) = cos ( 2 * pi * t imerangeFree ( cosinecount ) * 1 e−12*fmax ) ;

end

e l s e

% Choice 4 : Impulse (2 u n i t s wide )

mFree2mmtemp ( 2 ) = 1 ;

end

c l e a r mFree2mm ;

mFree2mm = mFree2mmtemp ;

c l e a r mFree2mmtemp ;

f igure , stem ( timerangeFree , mFree2mm ) ;

% Frequency Domain

% −−−−−−−−−−−−−−−−−
f f t s i z e = numIntervals ;

h a l f f f t s i z e = c e i l ( f f t s i z e / 2 ) ;

X = f f t (mFree2mm, f f t s i z e ) ;

f r e q = [ 0 : ( f f t s i z e −1)]/(dTime * ( f f t s i z e −1 ) ) ; % Frequencies of i n t e r e s t (THz)

f r e q s t e p e p s i l o n = ( d a t a e x t r a c t (3)− d a t a e x t r a c t ( 2 ) ) * 1 e3 ; % GHz

f r e q s t e p c u r r e n t = ( f r e q ( 2 ) − f r e q ( 1 ) ) * 1 e3 ;

i f f r e q s t e p e p s i l o n 6= f r e q s t e p c u r r e n t

i f f r e q s t e p e p s i l o n < f r e q s t e p c u r r e n t

f req mult = f l o o r ( f r e q s t e p c u r r e n t / f r e q s t e p e p s i l o n ) ;

newfreqcount = 1 ;

f o r freqcount = 1 : f req mult : e n d f i r s t b a t c h −1

e p s i l o n 1 ( newfreqcount ) = . . .

d a t a e x t r a c t ( e n d f i r s t b a t c h + freqcount ) − . . .

( i * d a t a e x t r a c t ( end second batch + freqcount ) ) ;

sigma 1 ( newfreqcount ) = d a t a e x t r a c t ( end t h i r d b a t ch + freqcount ) / 1 0 0 ;

newfreqcount = newfreqcount + 1 ;

end

e p s i l o n 1 ( newfreqcount : f f t s i z e ) = e p s i l o n 1 ( newfreqcount −1);

sigma 1 ( newfreqcount : f f t s i z e ) = sigma 1 ( newfreqcount −1);

e l s e

f req mult = f l o o r ( f r e q s t e p e p s i l o n / f r e q s t e p c u r r e n t ) ;

newfreqcount = 1 ;

f o r freqcount = 1 : 1 : e n d f i r s t b a t c h −2

epsi lon 1prime ( newfreqcount ) = d a t a e x t r a c t ( e n d f i r s t b a t c h +freqcount ) ;

epsi lon 1primeprime ( newfreqcount ) = d a t a e x t r a c t ( end second batch+freqcount ) ;

sigma 1 ( newfreqcount ) = d a t a e x t r a c t ( end t h i r d b a t ch+freqcount ) / 1 0 0 ;

newfreqcount = newfreqcount + freq mult ;

epsi lon 1prime ( newfreqcount−f req mult +1: newfreqcount ) = . . .

( d a t a e x t r a c t ( e n d f i r s t b a t c h +freqcount ) + . . .

d a t a e x t r a c t ( e n d f i r s t b a t c h +freqcount + 1 ) ) / 2 ;

epsi lon 1primeprime ( newfreqcount−f req mult +1: newfreqcount ) = . . .

( d a t a e x t r a c t ( end second batch+freqcount ) + . . .
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d a t a e x t r a c t ( end second batch+freqcount + 1 ) ) / 2 ;

sigma 1 ( newfreqcount−f req mult +1: newfreqcount ) = . . .

( d a t a e x t r a c t ( end t h i r d b a t ch+freqcount ) + . . .

d a t a e x t r a c t ( end t h i r d b a t ch+freqcount + 1 ) ) / 2 0 0 ;

newfreqcount = newfreqcount + 1 ;

end

e p s i l o n 1 ( 1 : newfreqcount−1) = epsi lon 1prime − i * epsi lon 1primeprime ;

c l e a r epsi lon 1prime ; c l e a r epsi lon 1primeprime ;

e p s i l o n 1 ( newfreqcount : f f t s i z e ) = e p s i l o n 1 ( newfreqcount −1);

sigma 1 ( newfreqcount : f f t s i z e ) = sigma 1 ( newfreqcount −1);

end

end

% James Wait ( 1 9 9 6 )

% −−−−−−−−−−−−−−−−−−
f o r f reqloop = 1 : 1 : f f t s i z e

u1 ( f reqloop ) = s q r t ( lambda ˆ2 + ( i * sigma 1 ( freqloop ) * mu 1*mu 0*2 e12 * pi * f r e q ( f reqloop ) ) . . .

− e p s i l o n 1 ( f reqloop ) * e p s i l o n 0 *mu 1*mu 0 * ( ( 2 e12 * pi * f r e q ( f reqloop ) ) ˆ 2 ) ) ;

i f num layers ≥ 2

u2 ( freqloop ) = s q r t ( lambda ˆ2 + i * sigma 2 *mu 2*mu 0*2 e12 * pi * f r e q ( f reqloop ) . . .

− e p s i l o n 2 * e p s i l o n 0 *mu 2*mu 0 * ( ( 2 e12 * pi * f r e q ( f reqloop ) ) ˆ 2 ) ) ;

end

i f num layers ≥ 3

u3 ( freqloop ) = s q r t ( lambda ˆ2 + i * sigma 3 *mu 3*mu 0*2 e12 * pi * f r e q ( f reqloop ) . . .

− e p s i l o n 3 * e p s i l o n 0 *mu 3*mu 0 * ( ( 2 e12 * pi * f r e q ( f reqloop ) ) ˆ 2 ) ) ;

end

i f num layers ≥ 4

u4 ( freqloop ) = s q r t ( lambda ˆ2 + i * sigma 4 *mu 4*mu 0*2 e12 * pi * f r e q ( f reqloop ) . . .

− e p s i l o n 4 * e p s i l o n 0 *mu 4*mu 0 * ( ( 2 e12 * pi * f r e q ( f reqloop ) ) ˆ 2 ) ) ;

end

i f num layers ≥ 5

u5 ( freqloop ) = s q r t ( lambda ˆ2 + i * sigma 5 *mu 5*mu 0*2 e12 * pi * f r e q ( f reqloop ) . . .

− e p s i l o n 5 * e p s i l o n 0 *mu 5*mu 0 * ( ( 2 e12 * pi * f r e q ( f reqloop ) ) ˆ 2 ) ) ;

end

i f num layers ≥ 6

u6 ( freqloop ) = s q r t ( lambda ˆ2 + i * sigma 6 *mu 6*mu 0*2 e12 * pi * f r e q ( f reqloop ) . . .

− e p s i l o n 6 * e p s i l o n 0 *mu 6*mu 0 * ( ( 2 e12 * pi * f r e q ( f reqloop ) ) ˆ 2 ) ) ;

end

i f num layers ≥ 7

u7 ( freqloop ) = s q r t ( lambda ˆ2 + i * sigma 7 *mu 7*mu 0*2 e12 * pi * f r e q ( f reqloop ) . . .

− e p s i l o n 7 * e p s i l o n 0 *mu 7*mu 0 * ( ( 2 e12 * pi * f r e q ( f reqloop ) ) ˆ 2 ) ) ;

end

K0 ( freqloop ) = ( s q r t ( lambda ˆ2 + i * sigma 0 *mu 0*2 e12 * pi * f r e q ( f reqloop ) . . .

− e p s i l o n 0 *mu 0 * ( ( 2 e12 * pi * f r e q ( f reqloop ) ) ˆ 2 ) ) ) / . . .

( sigma 0 + i *2 e12 * pi * f r e q ( f reqloop ) * e p s i l o n 0 ) ;

i f K0 ( f reqloop ) == I n f

K0 ( freqloop ) = ( s q r t ( lambda ˆ2 + i * sigma 0 *mu 0*2 e12 * pi * ( f r e q ( f reqloop ) + 0 . 0 0 1 ) . . .

− e p s i l o n 0 *mu 0 * ( ( 2 e12 * pi * ( f r e q ( f reqloop ) + 0 . 0 0 1 ) ) ˆ 2 ) ) ) / . . .

( sigma 0 + i *2 e12 * pi * ( f r e q ( f reqloop ) + 0 . 0 0 1 ) * e p s i l o n 0 ) ;

end

K1 ( freqloop ) = ( s q r t ( lambda ˆ2 + i * sigma 1 ( freqloop ) * mu 1*mu 0*2 e12 * pi * f r e q ( f reqloop ) . . .

− e p s i l o n 1 ( f reqloop ) * e p s i l o n 0 *mu 1*mu 0 * ( ( 2 e12 * pi * f r e q ( f reqloop ) ) ˆ 2 ) ) ) / . . .

( sigma 1 ( freqloop ) + i *2 e12 * pi * f r e q ( f reqloop ) * e p s i l o n 1 ( f reqloop ) * e p s i l o n 0 ) ;
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i f K1( f reqloop ) == I n f

K1( freqloop ) = ( s q r t ( lambda ˆ2 + i * sigma 1 ( freqloop ) * mu 1*mu 0*2 e12 * pi * . . .

( f r e q ( f reqloop )+0.001) − e p s i l o n 1 ( f reqloop ) * e p s i l o n 0 *mu 1*mu 0 * . . .

( ( 2 e12 * pi * ( f r e q ( f reqloop ) + 0 . 0 0 1 ) ) ˆ 2 ) ) ) / ( sigma 1 ( freqloop ) + . . .

i *2 e12 * pi * ( f r e q ( f reqloop ) + 0 . 0 0 1 ) * e p s i l o n 1 ( f reqloop ) * e p s i l o n 0 ) ;

end

i f num layers ≥ 2

K2 ( freqloop ) = ( s q r t ( lambda ˆ2 + i * sigma 2 *mu 2*mu 0*2 e12 * pi * f r e q ( f reqloop ) . . .

− e p s i l o n 2 * e p s i l o n 0 *mu 2*mu 0 * ( ( 2 e12 * pi * f r e q ( f reqloop ) ) ˆ 2 ) ) ) / . . .

( sigma 2 + i *2 e12 * pi * f r e q ( f reqloop ) * e p s i l o n 2 * e p s i l o n 0 ) ;

i f K2 ( f reqloop ) == I n f

K2 ( freqloop ) = ( s q r t ( lambda ˆ2 + i * sigma 2 *mu 2*mu 0*2 e12 * pi * . . .

( f r e q ( f reqloop )+0.001) − e p s i l o n 2 * e p s i l o n 0 *mu 2*mu 0 * . . .

( ( 2 e12 * pi * ( f r e q ( f reqloop ) + 0 . 0 0 1 ) ) ˆ 2 ) ) ) / ( sigma 2 + . . .

i *2 e12 * pi * ( f r e q ( f reqloop ) + 0 . 0 0 1 ) * e p s i l o n 2 * e p s i l o n 0 ) ;

end

end

i f num layers ≥ 3

K3 ( freqloop ) = ( s q r t ( lambda ˆ2 + i * sigma 3 *mu 3*mu 0*2 e12 * pi * f r e q ( f reqloop ) . . .

− e p s i l o n 3 * e p s i l o n 0 *mu 3*mu 0 * ( ( 2 e12 * pi * f r e q ( f reqloop ) ) ˆ 2 ) ) ) / . . .

( sigma 3 + i *2 e12 * pi * f r e q ( f reqloop ) * e p s i l o n 3 * e p s i l o n 0 ) ;

i f K3 ( f reqloop ) == I n f

K3 ( freqloop ) = ( s q r t ( lambda ˆ2 + i * sigma 3 *mu 3*mu 0*2 e12 * pi * . . .

( f r e q ( f reqloop )+0.001) − e p s i l o n 3 * e p s i l o n 0 *mu 3*mu 0 * . . .

( ( 2 e12 * pi * ( f r e q ( f reqloop ) + 0 . 0 0 1 ) ) ˆ 2 ) ) ) / ( sigma 3 + . . .

i *2 e12 * pi * ( f r e q ( f reqloop ) + 0 . 0 0 1 ) * e p s i l o n 3 * e p s i l o n 0 ) ;

end

end

i f num layers ≥ 4

K4 ( freqloop ) = ( s q r t ( lambda ˆ2 + i * sigma 4 *mu 4*mu 0*2 e12 * pi * f r e q ( f reqloop ) . . .

− e p s i l o n 4 * e p s i l o n 0 *mu 4*mu 0 * ( ( 2 e12 * pi * f r e q ( f reqloop ) ) ˆ 2 ) ) ) / . . .

( sigma 4 + i *2 e12 * pi * f r e q ( f reqloop ) * e p s i l o n 4 * e p s i l o n 0 ) ;

i f K4 ( f reqloop ) == I n f

K4 ( freqloop ) = ( s q r t ( lambda ˆ2 + i * sigma 4 *mu 4*mu 0*2 e12 * pi * . . .

( f r e q ( f reqloop )+0.001) − e p s i l o n 4 * e p s i l o n 0 *mu 4*mu 0 * . . .

( ( 2 e12 * pi * ( f r e q ( f reqloop ) + 0 . 0 0 1 ) ) ˆ 2 ) ) ) / ( sigma 4 + . . .

i *2 e12 * pi * ( f r e q ( f reqloop ) + 0 . 0 0 1 ) * e p s i l o n 4 * e p s i l o n 0 ) ;

end

end

i f num layers ≥ 5

K5 ( freqloop ) = ( s q r t ( lambda ˆ2 + i * sigma 5 *mu 5*mu 0*2 e12 * pi * f r e q ( f reqloop ) . . .

− e p s i l o n 5 * e p s i l o n 0 *mu 5*mu 0 * ( ( 2 e12 * pi * f r e q ( f reqloop ) ) ˆ 2 ) ) ) / . . .

( sigma 5 + i *2 e12 * pi * f r e q ( f reqloop ) * e p s i l o n 5 * e p s i l o n 0 ) ;

i f K5 ( f reqloop ) == I n f

K5 ( freqloop ) = ( s q r t ( lambda ˆ2 + i * sigma 5 *mu 5*mu 0*2 e12 * pi * . . .

( f r e q ( f reqloop )+0.001) − e p s i l o n 5 * e p s i l o n 0 *mu 5*mu 0 * . . .

( ( 2 e12 * pi * ( f r e q ( f reqloop ) + 0 . 0 0 1 ) ) ˆ 2 ) ) ) / ( sigma 5 + . . .

i *2 e12 * pi * ( f r e q ( f reqloop ) + 0 . 0 0 1 ) * e p s i l o n 5 * e p s i l o n 0 ) ;

end

end

i f num layers ≥ 6

K6 ( freqloop ) = ( s q r t ( lambda ˆ2 + i * sigma 6 *mu 6*mu 0*2 e12 * pi * f r e q ( f reqloop ) . . .

− e p s i l o n 6 * e p s i l o n 0 *mu 6*mu 0 * ( ( 2 e12 * pi * f r e q ( f reqloop ) ) ˆ 2 ) ) ) / . . .
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( sigma 6 + i *2 e12 * pi * f r e q ( f reqloop ) * e p s i l o n 6 * e p s i l o n 0 ) ;

i f K6 ( f reqloop ) == I n f

K6 ( freqloop ) = ( s q r t ( lambda ˆ2 + i * sigma 6 *mu 6*mu 0*2 e12 * pi * . . .

( f r e q ( f reqloop )+0.001) − e p s i l o n 6 * e p s i l o n 0 *mu 6*mu 0 * . . .

( ( 2 e12 * pi * ( f r e q ( f reqloop ) + 0 . 0 0 1 ) ) ˆ 2 ) ) ) / ( sigma 6 + . . .

i *2 e12 * pi * ( f r e q ( f reqloop ) + 0 . 0 0 1 ) * e p s i l o n 6 * e p s i l o n 0 ) ;

end

end

i f num layers ≥ 7

K7 ( freqloop ) = ( s q r t ( lambda ˆ2 + i * sigma 7 *mu 7*mu 0*2 e12 * pi * f r e q ( f reqloop ) . . .

− e p s i l o n 7 * e p s i l o n 0 *mu 7*mu 0 * ( ( 2 e12 * pi * f r e q ( f reqloop ) ) ˆ 2 ) ) ) / . . .

( sigma 7 + i *2 e12 * pi * f r e q ( f reqloop ) * e p s i l o n 7 * e p s i l o n 0 ) ;

i f K7 ( f reqloop ) == I n f

K7 ( freqloop ) = ( s q r t ( lambda ˆ2 + i * sigma 7 *mu 7*mu 0*2 e12 * pi * . . .

( f r e q ( f reqloop )+0.001) − e p s i l o n 7 * e p s i l o n 0 *mu 7*mu 0 * . . .

( ( 2 e12 * pi * ( f r e q ( f reqloop ) + 0 . 0 0 1 ) ) ˆ 2 ) ) ) / ( sigma 7 + . . .

i *2 e12 * pi * ( f r e q ( f reqloop ) + 0 . 0 0 1 ) * e p s i l o n 7 * e p s i l o n 0 ) ;

end

end

end

i f num layers == 7

Z8 = K0 ;

Z7 = K7 . * ( Z8 + (K7 . * tanh ( u7 * h7 ) ) ) . / ( K7 + ( Z8 . * tanh ( u7 * h7 ) ) ) ;

Z6 = K6 . * ( Z7 + (K6 . * tanh ( u6 * h6 ) ) ) . / ( K6 + ( Z7 . * tanh ( u6 * h6 ) ) ) ;

Z5 = K5 . * ( Z6 + (K5 . * tanh ( u5 * h5 ) ) ) . / ( K5 + ( Z6 . * tanh ( u5 * h5 ) ) ) ;

Z4 = K4 . * ( Z5 + (K4 . * tanh ( u4 * h4 ) ) ) . / ( K4 + ( Z5 . * tanh ( u4 * h4 ) ) ) ;

Z3 = K3 . * ( Z4 + (K3 . * tanh ( u3 * h3 ) ) ) . / ( K3 + ( Z4 . * tanh ( u3 * h3 ) ) ) ;

Z2 = K2 . * ( Z3 + (K2 . * tanh ( u2 * h2 ) ) ) . / ( K2 + ( Z3 . * tanh ( u2 * h2 ) ) ) ;

e l s e i f num layers == 6

Z7 = K0 ;

Z6 = K6 . * ( Z7 + (K6 . * tanh ( u6 * h6 ) ) ) . / ( K6 + ( Z7 . * tanh ( u6 * h6 ) ) ) ;

Z5 = K5 . * ( Z6 + (K5 . * tanh ( u5 * h5 ) ) ) . / ( K5 + ( Z6 . * tanh ( u5 * h5 ) ) ) ;

Z4 = K4 . * ( Z5 + (K4 . * tanh ( u4 * h4 ) ) ) . / ( K4 + ( Z5 . * tanh ( u4 * h4 ) ) ) ;

Z3 = K3 . * ( Z4 + (K3 . * tanh ( u3 * h3 ) ) ) . / ( K3 + ( Z4 . * tanh ( u3 * h3 ) ) ) ;

Z2 = K2 . * ( Z3 + (K2 . * tanh ( u2 * h2 ) ) ) . / ( K2 + ( Z3 . * tanh ( u2 * h2 ) ) ) ;

e l s e i f num layers == 5

Z6 = K0 ;

Z5 = K5 . * ( Z6 + (K5 . * tanh ( u5 * h5 ) ) ) . / ( K5 + ( Z6 . * tanh ( u5 * h5 ) ) ) ;

Z4 = K4 . * ( Z5 + (K4 . * tanh ( u4 * h4 ) ) ) . / ( K4 + ( Z5 . * tanh ( u4 * h4 ) ) ) ;

Z3 = K3 . * ( Z4 + (K3 . * tanh ( u3 * h3 ) ) ) . / ( K3 + ( Z4 . * tanh ( u3 * h3 ) ) ) ;

Z2 = K2 . * ( Z3 + (K2 . * tanh ( u2 * h2 ) ) ) . / ( K2 + ( Z3 . * tanh ( u2 * h2 ) ) ) ;

e l s e i f num layers == 4

Z5 = K0 ;

Z4 = K4 . * ( Z5 + (K4 . * tanh ( u4 * h4 ) ) ) . / ( K4 + ( Z5 . * tanh ( u4 * h4 ) ) ) ;

Z3 = K3 . * ( Z4 + (K3 . * tanh ( u3 * h3 ) ) ) . / ( K3 + ( Z4 . * tanh ( u3 * h3 ) ) ) ;

Z2 = K2 . * ( Z3 + (K2 . * tanh ( u2 * h2 ) ) ) . / ( K2 + ( Z3 . * tanh ( u2 * h2 ) ) ) ;

e l s e i f num layers == 3

Z4 = K0 ;

Z3 = K3 . * ( Z4 + (K3 . * tanh ( u3 * h3 ) ) ) . / ( K3 + ( Z4 . * tanh ( u3 * h3 ) ) ) ;

Z2 = K2 . * ( Z3 + (K2 . * tanh ( u2 * h2 ) ) ) . / ( K2 + ( Z3 . * tanh ( u2 * h2 ) ) ) ;

e l s e i f num layers == 2

Z3 = K0 ;
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Name of File (*.m) Function

skin extrapolation Interpolates between microwave and THz skin data

adipose extrapolation Interpolates between microwave and THz adipose tissue data

bone extrapolation Interpolates between microwave and THz bone data

dura extrapolation Extrapolates microwave dura mater data into the THz range

csf extrapolation Extrapolates microwave cerebrospinal fluid (CSF) data into

the THz range

grey extrapolation Extrapolates microwave grey matter data into the THz range

white extrapolation Extrapolates microwave white matter data into the THz range

Table H.3: MATLAB source code files for interpolating and extrapolating. Interpolating is

required for data where either the frequency interval between data points is large, or

a gap exists between microwave and THz data. Extrapolation is required when only

microwave data exists, and extrapolation is used to extend the data into the THz range

using the 4-term Cole-Cole model.

Z2 = K2 . * ( Z3 + (K2 . * tanh ( u2 * h2 ) ) ) . / ( K2 + ( Z3 . * tanh ( u2 * h2 ) ) ) ;

e l s e i f num layers == 1

Z2 = K0 ;

end

Z1 = K1 . * ( Z2 + (K1 . * tanh ( u1 * h1 ) ) ) . / ( K1 + ( Z2 . * tanh ( u1 * h1 ) ) ) ;

H = (K0 − Z1 ) . / ( K0 + Z1 ) ;

Hnew = repmat ( reshape (H, f f t s i z e , 1 ) , 1 , 5 1 ) ;

Y = H. * X ;

Ynew = reshape (Y , numIntervals , 1 ) ;

% Reconstruct the time s i g n a l via IFFT

yrecon = i f f t (Y , numIntervals ) ;

c l e a r Y ;

H.4 Algorithms for Optical (Dielectric) Properties

Table H.3 lists the MATLAB source code files used to implement the interpolation and

extrapolation detailed in Section 9.4.

H.4.1 Source Code

One example of a MATLAB implementation of extrapolation between microwave and

THz skin data is presented in skin extrapolation.m as follows.
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% s k i n e x t r a p o l a t i o n .m

%

% Mater ia l : Skin ; Conditions : Dry skin ; L i t e r a t u r e : gabriel 1996c pmb , f i t z g e r a l d 2 0 0 3 j b p

%

% This programme p l o t s the r e l a t i v e and complex p e r m i t t i v i t i e s of skin using data from

% 2 authors−−−1 microwave and 1 THz . P l o t s are generated to compare i f ex t r a po l t a ed

% microwave r e s u l t s are comparable to measured THz r e s u l t s .

%

% Author : Gre te l M. Png

% Last edi ted : 12 October 2005

c l o s e a l l , c l e a r a l l ;

savePath = 'C:\ GPngTRayFiles\GPngModelMatlabFiles\Figures\EPSpics\E x t r a p o l a t i o n\Skin\ ' ;

dataSavePath = 'C:\ GPngTRayFiles\GPngModelMatlabFiles\MatlabScr ipts\E x t r a p o l a t i o n\ ' ;

pr intOpts = '−deps2c ' ;

printOn = 0 ; % P r i n t to EPS f i l e = 1 , Don ' t p r i n t = 0 ;

% Constants

e p s i l o n 0 = 8 .8542 e−12; % P e r m i t t i v i t y of f r e e s p a c e

c = 3e8 ; % Speed of l i g h t

p l o t l i n e t h i c k n e s s = 1 . 5 ; % Line t h i c k n e s s (1 point = 1/72”) , d e f a u l t = 0 . 5

p l o t f o n t s i z e = 1 2 ; % Font s i z e of axes , (1 point = 1/72”) , d e f a u l t = 1 0 ;

t e x t f o n t s i z e = 1 2 ; % Font s i z e of t ex t , (1 point = 1/72”) , d e f a u l t = 1 0 ;

% Values from gabriel 1996c pmb

e p s i l o n i n f g a b r i e l = 4 . 0 ; % High frequency l i m i t of p e r m i t t i v i t y

∆ e p s i l o n 1 g a b r i e l = 3 2 . 0 ; % Low frequency l i m i t of p e r m i t t i v i t y

t a u 1 g a b r i e l = 7 . 2 3 e−12; % Relaxat ion Time

%f R 1 g a b r i e l = 1/(2* pi * t a u 1 g a b r i e l ) ; % Relaxat ion Frequency

a l p h a 1 g a b r i e l = 0 ; % D i s t r i b u t i o n parameter

∆ e p s i l o n 2 g a b r i e l = 1 1 0 0 ; % Low frequency l i m i t of p e r m i t t i v i t y

t a u 2 g a b r i e l = 3 2 .4 8 e−9; % Relaxat ion Time

%f R 2 g a b r i e l = 1/(2* pi * t a u 2 g a b r i e l ) ; % Relaxat ion Frequency

a l p h a 2 g a b r i e l = 0 . 2 0 ; % D i s t r i b u t i o n parameter

∆ e p s i l o n 3 g a b r i e l = 0 ; % Low frequency l i m i t of p e r m i t t i v i t y

∆ e p s i l o n 4 g a b r i e l = 0 ; % Low frequency l i m i t of p e r m i t t i v i t y

s i g m a i g a b r i e l = 0 . 0 0 0 2 ; % I o n i c conduct iv i ty

count = 0 ;

f o r f = 0 : 5 : 1 0 0 % Frequency in GHz

count = count + 1 ;

frequency ( count ) = f *1 e−3; % Convert to t e r a h e r t z

% gabriel 1996c pmb : Cole−Cole

e p s i l o n h a t g a b r i e l ( count ) = e p s i l o n i n f g a b r i e l + ( ∆ e p s i l o n 1 g a b r i e l / . . .

(1+ ( ( i * 2 * pi * f *1 e9 * t a u 1 g a b r i e l )ˆ(1 − a l p h a 1 g a b r i e l ) ) ) ) + ( ∆ e p s i l o n 2 g a b r i e l / . . .

(1+ ( ( i * 2 * pi * f *1 e9 * t a u 2 g a b r i e l )ˆ(1 − a l p h a 2 g a b r i e l ) ) ) ) + . . .

( s i g m a i g a b r i e l /( i * 2 * pi * f *1 e9 * e p s i l o n 0 ) ) ;

i f e p s i l o n h a t g a b r i e l ( count ) == I n f

e p s i l o n h a t g a b r i e l ( count ) = e p s i l o n i n f g a b r i e l + ( ∆ e p s i l o n 1 g a b r i e l / . . .

(1+ ( ( i * 2 * pi * ( f +1)*1 e9 * t a u 1 g a b r i e l )ˆ(1 − a l p h a 1 g a b r i e l ) ) ) ) + ( ∆ e p s i l o n 2 g a b r i e l / . . .

(1+ ( ( i * 2 * pi * ( f +1)*1 e9 * t a u 2 g a b r i e l )ˆ(1 − a l p h a 2 g a b r i e l ) ) ) ) + . . .

( s i g m a i g a b r i e l /( i * 2 * pi * ( f +1)*1 e9 * e p s i l o n 0 ) ) ;
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end

s igma gabr ie l ( count ) = −imag ( e p s i l o n h a t g a b r i e l ( count ) ) * e p s i l o n 0 * 2 * pi * f *1 e9 ; % Conductivity

n h a t g a b r i e l ( count ) = s q r t ( e p s i l o n h a t g a b r i e l ( count ) ) ; % R e f r a c t i v e Index

a l p h a g a b r i e l ( count ) = −imag ( n h a t g a b r i e l ( count ) ) * 4 * pi * frequency ( count ) * . . .

1 e12 /( c * 1 0 0 ) ; % Absorption C o e f f i c i e n t

end

count2 = 0 ;

f o r f = 1 0 5 : 5 : 1 5 0 0 % Frequency in GHz

count2 = count2 + 1 ;

frequency2 ( count2 ) = f *1 e−3; % Convert to t e r a h e r t z

% gabriel 1996c pmb : Cole−Cole

e p s i l o n h a t g a b r i e l 2 ( count2 ) = e p s i l o n i n f g a b r i e l + ( ∆ e p s i l o n 1 g a b r i e l / . . .

(1+ ( ( i * 2 * pi * f *1 e9 * t a u 1 g a b r i e l )ˆ(1 − a l p h a 1 g a b r i e l ) ) ) ) + . . .

( ∆ e p s i l o n 2 g a b r i e l /(1+ ( ( i * 2 * pi * f *1 e9 * t a u 2 g a b r i e l )ˆ(1 − a l p h a 2 g a b r i e l ) ) ) ) + . . .

( s i g m a i g a b r i e l /( i * 2 * pi * f *1 e9 * e p s i l o n 0 ) ) ;

s igma gabr ie l2 ( count2 ) = −imag ( e p s i l o n h a t g a b r i e l 2 ( count2 ) ) * . . .

e p s i l o n 0 * 2 * pi * f *1 e9 ; % Conductivity ( Eq 3 . 1 6 von Hippel )

n h a t g a b r i e l 2 ( count2 ) = s q r t ( e p s i l o n h a t g a b r i e l 2 ( count2 ) ) ; % R e f r a c t i v e Index

a l p h a g a b r i e l 2 ( count2 ) = −imag ( n h a t g a b r i e l 2 ( count2 ) ) * 4 * pi * frequency2 ( count2 ) * . . .

1 e12 /( c * 1 0 0 ) ; % Absorption C o e f f i c i e n t

end

% f i t z g e r a l d 2 0 0 3 j b p

% −−−−−−−−−−−−−−−−−−−
% Broadband pulsed t e r a h e r t z imaging system

% Figure 1a : order of columns i s

% Frequency (THz ) ; \alpha (cmˆ{−1})

s k i n v a l s f i t z g e r a l d = [ 0 . 5 0 . 5 5 0 . 6 0 . 6 5 0 . 7 0 . 7 5 0 . 8 0 . 8 5 0 . 9 0 . 9 5 1 1 . 0 5 1 . 1 1 . 1 5 . . .

1 . 2 1 . 2 5 1 . 3 1 . 3 5 1 . 4 1 . 4 5 1 . 5 ; 70 70 70 73 73 75 80 85 90 95 . . .

100 105 110 115 120 1 2 2 .5 125 130 130 130 1 3 0 ] ;

n r e a l f i t z g e r a l d = 1 . 6 9 ;

s i g m a l i t e r a t u r e f i t z g e r a l d = 0 . 3 9 ;

count3 = 0 ;

c o u n t t o 9 = 0 ;

s p e c f r e q c o u n t = 0 ;

f o r f = 5 0 0 : 5 : 1 5 0 0 % Frequency in GHz

count3 = count3 + 1 ;

f r e q u e n c y f i t z g e r a l d ( count3 ) = f *1 e−3; % Convert to t e r a h e r t z

i f rem ( f , 5 0 ) == 0

s p e c f r e q c o u n t = s p e c f r e q c o u n t + 1 ;

a l p h a f i t z g e r a l d ( count3 ) = s k i n v a l s f i t z g e r a l d ( 2 , s p e c f r e q c o u n t ) ;

k a p p a f i t z g e r a l d ( count3 ) = a l p h a f i t z g e r a l d ( count3 ) * c *100/(4* pi * f *1 e9 ) ;

n f i t z g e r a l d ( count3 ) = n r e a l f i t z g e r a l d ;

s i g m a f i t z g e r a l d ( count3 ) = s i g m a l i t e r a t u r e f i t z g e r a l d * 1 0 0 ; % S/cm

e l s e

c o u n t t o 9 = c o u n t t o 9 + 1 ;

i f c o u n t t o 9 == 9

% I n t e r p o l a t e data a t 5 GHz i n t e r v a l s

a l p h a f i t z g e r a l d ( count3 −8: count3 ) = . . .

i n t e r p 1 ( [ s k i n v a l s f i t z g e r a l d ( 1 , s p e c f r e q c o u n t ) . . .

s k i n v a l s f i t z g e r a l d ( 1 , s p e c f r e q c o u n t + 1 ) ] , . . .
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[ s k i n v a l s f i t z g e r a l d ( 2 , s p e c f r e q c o u n t ) . . .

s k i n v a l s f i t z g e r a l d ( 2 , s p e c f r e q c o u n t + 1 ) ] , . . .

[ f r e q u e n c y f i t z g e r a l d ( count3 − 8 ) : 0 . 0 0 5 : f r e q u e n c y f i t z g e r a l d ( count3 ) ] , ' s p l i n e ' ) ;

s i g m a f i t z g e r a l d ( count3 −8: count3 ) = s i g m a l i t e r a t u r e f i t z g e r a l d * 1 0 0 ; % S/cm

n f i t z g e r a l d ( count3 −8: count3 ) = n r e a l f i t z g e r a l d ;

k a p p a f i t z g e r a l d ( count3 −8: count3 ) = a l p h a f i t z g e r a l d ( count3 −8: count3 ) * c * 1 0 0 . / . . .

( 4 * pi * [ f r e q u e n c y f i t z g e r a l d ( count3 −8)*1 e3 : 5 : f r e q u e n c y f i t z g e r a l d ( count3 ) * 1 e3 ] * 1 e9 ) ;

c o u n t t o 9 = 0 ;

e l s e

a l p h a f i t z g e r a l d ( count3 ) = NaN;

n f i t z g e r a l d ( count3 ) = NaN;

s i g m a f i t z g e r a l d ( count3 ) = NaN;

k a p p a f i t z g e r a l d ( count3 ) = NaN;

end

end

end

e p s i l o n h a t f i t z g e r a l d = ( n f i t z g e r a l d − i * k a p p a f i t z g e r a l d ) . ˆ 2 ;

% F i l l in the empty f r e q u e n c i e s

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f r e q u e n c y f i l l i n = [1 0 5*1 e−3:5*1 e−3:495*1 e−3]; % in THz

a l p h a f i l l i n = NaN* ones ( 1 , ( ( 4 9 5 −1 0 5 ) / 5 ) + 1 ) ;

% To combine F i tzgera ld ' s \alpha values with Gabriel ' s \alpha values

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f r e q u e n c y t o t a l = [ frequency f r e q u e n c y f i l l i n f r e q u e n c y f i t z g e r a l d ] ;

a l p h a g a b r i e l e x t = [ a l p h a g a b r i e l a l p h a f i l l i n NaN* ones ( 1 , count3 ) ] ;

a l p h a f i t z g e r a l d e x t = [NaN* ones ( 1 , count ) a l p h a f i l l i n a l p h a f i t z g e r a l d ] ;

% To combine F i tzgera ld ' s \sigma values with Gabriel ' s \sigma values

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s i g m a g a b r i e l e x t = [ s igma gabr ie l a l p h a f i l l i n NaN* ones ( 1 , count3 ) ] ;

s i g m a f i t z g e r a l d e x t = [NaN* ones ( 1 , count ) a l p h a f i l l i n s i g m a f i t z g e r a l d ] ;

% To combine F i tzgera ld ' s and Gabriel ' s p e r m i t t i v i t y values

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
e p s i l o n p r i m e g a b r i e l e x t = [ r e a l ( e p s i l o n h a t g a b r i e l ) a l p h a f i l l i n NaN* ones ( 1 , count3 ) ] ;

e p s i l o n p r i m e p r i m e g a b r i e l e x t = [−imag ( e p s i l o n h a t g a b r i e l ) a l p h a f i l l i n NaN* ones ( 1 , count3 ) ] ;

e p s i l o n p r i m e f i t z g e r a l d e x t = [NaN* ones ( 1 , count ) a l p h a f i l l i n r e a l ( e p s i l o n h a t f i t z g e r a l d ) ] ;

e p s i l o n p r i m e p r i m e f i t z g e r a l d e x t = [NaN* ones ( 1 , count ) a l p h a f i l l i n −imag ( e p s i l o n h a t f i t z g e r a l d ) ] ;

% I n t e r p o l a t e p e r m i t t i v i t i e s in the region between 0 . 1 and 0 . 5 THz

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ypoints = [5 4 . 5 4 3 . 2 2 . 9 ] ;

ypoints imag = [ 5 . 7 4 . 5 3 . 3 1 . 8 1 . 3 ] ;

xpoints = [ 0 . 1 2 0 . 1 5 0 . 2 0 . 3 0 . 4 ] ;

eps i lonpr ime ext = r e a l ( e p s i l o n h a t g a b r i e l ) ;

epsi lonprimeprime ext = −imag ( e p s i l o n h a t g a b r i e l ) ;

f o r i n t e r c o u n t = 1 : 1 : length ( ypoints )+1

i f i n t e r c o u n t == 1

ycurrent = [ r e a l ( e p s i l o n h a t g a b r i e l ( count ) ) ypoints ( 1 ) ] ;

ycurrent imag = [−imag ( e p s i l o n h a t g a b r i e l ( count ) ) ypoints imag ( 1 ) ] ;

xcurrent = [ 0 . 1 xpoints ( 1 ) ] ;
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xsteps = [ 0 . 1 0 5 : 0 . 0 0 5 : xpoints ( 1 ) −0 . 0 0 5 ] ;

ynew = i n t e r p 1 ( xcurrent , ycurrent , xsteps , ' s p l i n e ' ) ;

ynew imag = i n t e r p 1 ( xcurrent , ycurrent imag , xsteps , ' s p l i n e ' ) ;

e l s e i f i n t e r c o u n t == length ( ypoints )+1

ycurrent = [ ypoints ( in tercount −1) r e a l ( e p s i l o n h a t f i t z g e r a l d ( 1 ) ) ] ;

ycurrent imag = [ ypoints imag ( intercount −1) −imag ( e p s i l o n h a t f i t z g e r a l d ( 1 ) ) ] ;

xcurrent = [ xpoints ( in tercount −1) 0 . 5 ] ;

xs teps = [ xpoints ( in tercount − 1 ) + 0 . 0 0 5 : 0 . 0 0 5 : 0 . 4 9 5 ] ;

ynew = i n t e r p 1 ( xcurrent , ycurrent , xsteps , ' s p l i n e ' ) ;

ynew imag = i n t e r p 1 ( xcurrent , ycurrent imag , xsteps , ' s p l i n e ' ) ;

e l s e

ycurrent = [ ypoints ( in tercount −1) ypoints ( i n t e r c o u n t ) ] ;

ycurrent imag = [ ypoints imag ( intercount −1) ypoints imag ( i n t e r c o u n t ) ] ;

xcurrent = [ xpoints ( in tercount −1) xpoints ( i n t e r c o u n t ) ] ;

xs teps = [ xpoints ( in tercount −1 ) + 0 . 0 0 5 : 0 . 0 0 5 : xpoints ( i n t e r c o u n t ) −0 . 0 0 5 ] ;

ynew = i n t e r p 1 ( xcurrent , ycurrent , xsteps , ' cubic ' ) ;

ynew imag = i n t e r p 1 ( xcurrent , ycurrent imag , xsteps , ' cubic ' ) ;

end

i f i n t e r c o u n t == length ( ypoints )+1

eps i lonpr ime ext = c a t ( 2 , epsi lonprime ext , ynew , r e a l ( e p s i l o n h a t f i t z g e r a l d ) ) ;

epsi lonprimeprime ext = c a t ( 2 , epsi lonprimeprime ext , ynew imag , . . .

−imag ( e p s i l o n h a t f i t z g e r a l d ) ) ;

e l s e

eps i lonpr ime ext = c a t ( 2 , epsi lonprime ext , ynew , ypoints ( i n t e r c o u n t ) ) ;

epsi lonprimeprime ext = c a t ( 2 , epsi lonprimeprime ext , ynew imag , ypoints imag ( i n t e r c o u n t ) ) ;

end

c l e a r ycurrent ; c l e a r ycurrent imag ; c l e a r xcurrent ; c l e a r xs teps ;

c l e a r ynew ; c l e a r ynew imag ;

end

% I n t e r p o l a t e conduct iv i ty in the region between 0 . 1 and 0 . 5 THz

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s i g m a i n t e r p o l a t e = i n t e r p 1 ( [ 0 . 1 0 . 5 ] , [ s igma gabr ie l ( 2 1 ) s i g m a l i t e r a t u r e f i t z g e r a l d * 1 0 0 ] , . . .

[ 0 . 1 0 5 : 0 . 0 0 5 : 0 . 4 9 5 ] , ' s p l i n e ' ) ;

s igma ext = [ s igma gabr ie l s i g m a i n t e r p o l a t e s i g m a f i t z g e r a l d ] ;

H.5 Algorithms for Plotting HFSS Field Overlay Patterns

Table H.4 lists the MATLAB source code files used to extract the HFSS field overlay

patterns presented in Section 8.9.1.

H.6 Algorithm for Pseudo-Phase Contrast

The MATLAB program pc viaTimeDelay6.m implements the pseudo-contrast method

introduced in Appendix Section A.1. The source code of pc viaTimeDelay6.m is as

follows.
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Name of File (*.m) Function

writetoptsfile Writes user defined x, y and z spatial points to a .pts file

openhfssfile9 Opens a HFSS field plot file (in .reg format) and displays it

fetchregfilesize Returns the x, y and z size of a .reg file

Table H.4: MATLAB source code files for writing to and reading from HFSS. The .pts file

generated by writetoptsfile.m is read by HFSS during the writing process. A .reg file

containing the field overlay pattern is then created by HFSS. To display the field overlay

pattern in MATLAB, the size of the .reg file needs to be fetched.

% pc viaTimeDelay6 .m

%

% This program performs phase c o n t r a s t by displaying the time delay of each

% p i x e l .

%

% Author : Gre te l M. Png

% Last edi ted : 24 Jan 2005

c l e a r a l l , c l o s e a l l ;

% The data in the f i l e f l y . raw has the fol lowing p r o p e r t i e s

XDIM = 3 0 0 ;

YDIM = 1 0 0 ;

ZDIM = 9 9 ;

timeResn = 4e−14; % Time r e s o l u t i o n in seconds = 0 . 0 4 ps

f i d = fopen ( 'C:\ GPngTRayFiles\GPngLeafFiles\ f l y . raw ' , ' r ' , ' i eee−l e ' ) ;

i f ( f i d == −1)

f p r i n t f ( 'ERROR: pc viaTimeDelay could not open f i l e : %s !\n ' , fileNameDat ) ;

re turn ;

end

mDat = fread ( f id ,XDIM*YDIM*ZDIM, ' f l o a t ' ) ;

f c l o s e ( f i d ) ;

% Change the shape of the long stream of data

m3 = reshape (mDat , [ XDIM,YDIM,ZDIM ] ) ;

m3 ( : , : , 1 ) = ( m3 ( : , : , 2 ) ) ;

m3 ( : , : , 9 ) = ( m3( : , : , 8 ) +m3 ( : , : , 1 0 ) ) / 2 ; % c o r r e c t those l i n e s

m3( : , : , 3 6 ) = (m3( : , : , 3 5 ) +m3 ( : , : , 3 7 ) ) / 2 ;

m3( : , : , 4 0 ) = (m3( : , : , 3 9 ) +m3 ( : , : , 4 1 ) ) / 2 ;

m3( : , : , 6 5 ) = (m3( : , : , 6 4 ) +m3 ( : , : , 6 6 ) ) / 2 ;

m3( : , : , 9 6 ) = (m3( : , : , 9 5 ) +m3 ( : , : , 9 7 ) ) / 2 ;

% FIND THE PEAKS OF EACH PIXEL IN TIME (PEAK OF EACH COLUMN)

%peakabsvals = max( abs (m3 ) ) ;

peakabsvals = max(m3 ) ; % Find only p o s i t i v e peaks

peakpos = zeros ( 1 ,YDIM, ZDIM ) ;
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f o r colcount = 1 : 1 :YDIM

f o r depthcount = 1 : 1 :ZDIM

%temp = f ind ( abs (m3 ( : , colcount , depthcount ) ) == peakabsvals ( 1 , colcount , depthcount ) ) ;

temp = f ind (m3 ( : , colcount , depthcount ) == peakabsvals ( 1 , colcount , depthcount ) ) ;

[ temprows tempcols ] = s i z e ( temp ) ;

peakpos ( 1 , colcount , depthcount ) = temp ( temprows , 1 ) ;

peakvals ( 1 , colcount , depthcount ) = m3( peakpos ( 1 , colcount , depthcount ) , colcount , depthcount ) ;

end

end

c l e a r tempcols , c l e a r temprows ;

timerange = [ 0 : 0 . 0 4 : XDIM* 0 . 0 4 −0 . 0 4 ] ;

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% ABSORPTION INDEX

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% INTENSITY IMAGE

peakImage = reshape ( peakvals , YDIM,ZDIM ) ; % YDIM rows , ZDIM columns

% EXTRACT PEAK POSITION OF REFERENCE PIXEL (FREESPACE DATA)

r e f p i x I n t e n s i t y = (sum( peakvals ( 1 , 1 : 5 ,ZDIM) ) + sum( peakvals ( 1 , 1 : 5 ,ZDIM−1)) + . . .

sum( peakvals ( 1 , 1 : 5 ,ZDIM−2) ) )/15 ; % Top r i g h t

% ENHANCE INTENSITY IMAGE

% −−−−−−−−−−−−−−−−−−−−−−−−
% Remove holder

peakImage ( 8 7 :YDIM , : ) = r e f p i x I n t e n s i t y ; % Set the p i x e l s t h a t show the holder

% I n v e r t i n t e n s i t y so t h a t l e a f and i n s e c t are enhanced

peakImage = r e f p i x I n t e n s i t y − peakImage ; % Accentuate the l e a f and i n s e c t

% Denoising ( F i r s t pass ) : Remove s c a t t e r e d noise p i x e l s via 8−neighbourhood

noisemask = [1 1 1 ; 1 1 1 ; 1 1 1 ] ;

borderImage = zeros (YDIM+2 , ZDIM+ 2 ) ;

borderImage ( 2 :YDIM+1 , 2 :ZDIM+1) = peakImage ;

denoisedImage = zeros (YDIM, ZDIM ) ;

f o r rowmask = 1 : 1 :YDIM

f o r colmask = 1 : 1 :ZDIM

noisematr ix = borderImage ( rowmask : rowmask+2 , colmask : colmask + 2 ) . * noisemask ;

zerocount = 0 ;

f o r matrixloop = 1 : 1 : 9

i f matrixloop 6= 5

i f ( noisematr ix ( matrixloop ) == 0)

zerocount = zerocount + 1 ;

end

end

end

i f zerocount ≥ 7

denoisedImage ( rowmask , colmask ) = 0 ;

e l s e

denoisedImage ( rowmask , colmask ) = peakImage ( rowmask , colmask ) ;
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end

end

end

% Denoising ( Second pass ) : Remove s c a t t e r e d noise p i x e l s via weighted mask

r e f e r e n c e t o l e r e n c e = sum(sum( denoisedImage ( 1 : 5 , 1 : 5 ) , 1 ) , 2 ) / 2 5 ;

noisemask = [1 1 1 ; 1 1 1 ; 1 1 1 ] ;

borderImage = zeros (YDIM+2 , ZDIM+ 2 ) ;

borderImage ( 2 :YDIM+1 , 2 :ZDIM+1) = denoisedImage ;

denoisedImage2 = zeros (YDIM, ZDIM ) ;

f o r rowmask = 1 : 1 :YDIM

f o r colmask = 1 : 1 :ZDIM

noisematr ix = borderImage ( rowmask : rowmask+2 , colmask : colmask + 2 ) . * noisemask ;

avnoisematr ix = (sum(sum( noisematrix , 1 ) , 2 ) ) / sum(sum( noisemask , 1 ) , 2 ) ;

i f abs ( avnoisematr ix − r e f e r e n c e t o l e r e n c e ) ≤ 0 . 1 5 % Noise p i x e l

denoisedImage2 ( rowmask , colmask ) = 0 ;

e l s e

denoisedImage2 ( rowmask , colmask ) = denoisedImage ( rowmask , colmask ) ;

end

end

end

% Edge d e t e c t i o n

laplacianmask = [−1 −1 −1;−1 8 −1;−1 −1 −1];

borderImage = zeros (YDIM+2 , ZDIM+ 2 ) ;

borderImage ( 2 :YDIM+1 , 2 :ZDIM+1) = denoisedImage2 ;

edgeImage = zeros (YDIM, ZDIM ) ;

f o r rowmask = 1 : 1 :YDIM

f o r colmask = 1 : 1 :ZDIM

edgematrix = borderImage ( rowmask : rowmask+2 , colmask : colmask + 2 ) . * laplacianmask ;

sumedgematrix = sum(sum( edgematrix , 1 ) , 2 ) − edgematrix ( 2 , 2 ) ;

%edgeImage ( rowmask , colmask ) = sumedgematrix ;

i f sumedgematrix < edgematrix ( 2 , 2 )

edgeImage ( rowmask , colmask ) = denoisedImage2 ( rowmask , colmask ) ;

e l s e

edgeImage ( rowmask , colmask ) = 0 ;

end

end

end

% Combine denoised and edge detected images

denoisedImage3 = peakImage . * double ( edgeImage & denoisedImage2 ) ;

% Last pass : 8−neighbourhood again

noisemask = [1 1 1 ; 1 1 1 ; 1 1 1 ] ;

borderImage = zeros (YDIM+2 , ZDIM+ 2 ) ;

borderImage ( 2 :YDIM+1 , 2 :ZDIM+1) = denoisedImage3 ;

f inal Image = zeros (YDIM, ZDIM ) ;

f o r rowmask = 1 : 1 :YDIM

f o r colmask = 1 : 1 :ZDIM

noisematr ix = borderImage ( rowmask : rowmask+2 , colmask : colmask + 2 ) . * noisemask ;

zerocount = 0 ;
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f o r matrixloop = 1 : 1 : 9

i f matrixloop 6= 5

i f ( noisematr ix ( matrixloop ) == 0)

zerocount = zerocount + 1 ;

end

end

end

i f zerocount ≥ 3

f inal Image ( rowmask , colmask ) = 0 ;

e l s e

f inal Image ( rowmask , colmask ) = denoisedImage3 ( rowmask , colmask ) ;

end

end

end

negpos = f ind ( f inal Image < 0 ) ;

[ neg rows negtemp ] = s i z e ( negpos ) ;

f o r negcount = 1 : 1 : neg rows

f inal Image ( negpos ( negcount ) ) = 0 ;

end

c l e a r neg rows , c l e a r negtemp ;

% Make a matrix t h a t captures the o u t l i n e of f inal Image

cleanmask = ones (YDIM,ZDIM) & final Image ;

% OPACITY

% −−−−−−−−
maxAbsorption = max(max( f inal Image ) ) ;

newalphamap = final Image/maxAbsorption ;

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% REFRACTIVE INDEX

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
posImage = reshape ( peakpos , YDIM,ZDIM ) ; % YDIM rows , ZDIM columns

temp2 = posImage ;

% EXTRACT PEAK POSITION OF REFERENCE PIXEL (FREESPACE DATA)

%%r e f p i x = peakpos ( 1 , 1 ,ZDIM ) ; % Top r i g h t

%%r e f p i x = peakpos ( 1 , 1 , 1 ) ; % Top l e f t

%%r e f p i x = peakpos ( 1 ,YDIM,ZDIM ) ; % Bottom r i g h t

%%r e f p i x = peakpos ( 1 ,YDIM, 1 ) ; % Bottom l e f t

re fpos = round ( ( sum( peakpos ( 1 , 1 : 5 ,ZDIM) ) + sum( peakpos ( 1 , 1 : 5 ,ZDIM−1)) + . . .

sum( peakpos ( 1 , 1 : 5 ,ZDIM−2 ) ) ) / 1 5 ) ; % Top r i g h t

% Remove holder

posImage ( 8 7 :YDIM , : ) = refpos ; % Set the p i x e l s t h a t show the holder

% Check t h a t there i s no superluminance

badpos = f ind ( posImage < re fpos ) ;

[numbad tempval ] = s i z e ( badpos ) ;

f o r badcount = 1 : 1 : numbad

i f ( abs ( posImage ( badpos ( badcount ) ) − re fpos ) ≤ 2) % Air p i x e l ?

posImage ( badpos ( badcount ) ) = refpos ;
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end

end

c l e a r badpos , c l e a r numbad , c l e a r tempval ;

% Remove a i r p i x e l s

badpos = f ind ( abs ( posImage − re fpos ) ≤ 1 ) ;

[numbad tempval ] = s i z e ( badpos ) ;

f o r badcount = 1 : 1 : numbad

i f ( abs ( peakImage ( badpos ( badcount ))− r e f p i x I n t e n s i t y ) < 0 . 6 )

posImage ( badpos ( badcount ) ) = refpos ;

end

end

% FIND DELAY FROM REFERENCE PIXEL

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
delayImage = posImage − re fpos ;

f inaldelayImage = cleanmask . * delayImage ;

% THICKNESS

% −−−−−−−−−−
% Get t h i c k n e s s based on :

% r e l a t i v e t h i c k n e s s = d i s t a n c e = speed of l i g h t x r e l a t i v e time delay

thicknessImage = (3 e8 * timeResn * f inaldelayImage )/1 e−3; % In mil imeters

%normthicknessImage = thicknessImage/max(max( thicknessImage ) ) ;

normthicknessImage = thicknessImage ;

f igure , s u r f a c e ( normthicknessImage , ' FaceAlpha ' , ' f l a t ' , ' AlphaDataMapping ' , ' s ca led ' , . . .

' AlphaData ' , newalphamap , ' EdgeColor ' , ' none ' ) ;

colormap ( [ 0 . 8 1 0 . 3 ; 0 . 6 0 . 3 0 . 1 ] ) ;

view(−168 , 6 0 ) ; % Figure a

whitebg ( [ 0 . 3 0 . 3 0 . 3 ] ) ;

x l a b e l ( ' z−a x i s ' , ' FontSize ' , 1 5 , ' Color ' , ' b lack ' ) ;

y l a b e l ( ' y−a x i s ' , ' FontSize ' , 1 5 , ' Color ' , ' b lack ' ) ;

z l a b e l ( ' Opt ica l path length (mm) ' , ' FontSize ' , 1 5 , ' Color ' , ' b lack ' ) , gr id o f f ;
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AXER-H, GRÄSSEL-D, STEINHAUER-M, STÖHR-P, JOHN-A, COENEN-V, JANSEN-R AND VON

KEYSERLINGK-D (2002). Microwave dielectric measurements and tissue characteristics of the hu-

man brain: potential in localizing intracranial tissues, Physics in Medicine and Biology, 47(10),

pp. 1793–1803. 19

AZAD-A AND ZHANG-W (2005). Resonant terahertz transmission in subwavelength metallic hole ar-

rays of sub-skin-depth thickness, Optics Letters, 30(21), pp. 2945–2947. A.2

BACSKAI-B, HICKEY-G, SKOCH-J, KAJDASZ-S, WANG-Y, HUANG-G.-F, MATHIS-C, KLUNK-W AND

HYMAN-B (2003). Four-dimensional multiphoton imaging of brain entry, amyloid binding, and

clearance of an amyloid-β ligand in transgenic mice, Proceedings of the National Academy of Sci-

ences of the United States of America, 100(21), pp. 12462–12467. 6.2.2

BAKER-C, TRIBE-W, COLE-B AND KEMP-M (2004). Developments in people-screening using terahertz

technology, Proc. SPIE Optics and Photonics for Counterterrorism and Crime Fighting, 5616, Eds:

T. Donaldson and C. Lewis, 2004-10-27, London, UK, pp. 61–68. 1.4.2, 1.5

BAKER-C, TRIBE-W, LO-T, COLE-B, CHANDLER-S AND KEMP-M (2005). People screening using tera-

hertz technology, Proc. SPIE Terahertz for Military and Security Applications III, 5790, Eds: R. Hwu

and D. Woolard, 28–29 March 2005, Orlando, FL, USA, pp. 1–10. 1.3.2, 1.8

Page 394

http://www.synchrotron.vic.gov.au/content.asp?Document_ID=5235


Bibliography

BAKOPOULOS-P, KARANASIOU-I, PLEROS-N, ZAKYNTHINOS-P, UZUNOGLU-N AND

AVRAMOPOULOS-H (2009). A tunable continuous wave (CW) and short-pulse optical source

for THz brain imaging applications, Measurement Science & Technology, 20(10), article num-

ber 104001. 10.3.2

BAKOPOULOS-P, KARANASIOU-I, ZAKYNTHINOS-P, PLEROS-N, AVRAMOPOULOS-H AND

UZUNOGLU-N (2008). Towards brain imaging using THz technology, Proc. IEEE Interna-

tional Workshop on Imaging Systems and Techniques, Ed: G. Giakos, 10–11 September 2008,

Chania, Crete, Greece, pp. 7–10. 10.3.2

BALAKRISHNAN-J, FISCHER-B AND ABBOTT-D (2009). Fixed dual-thickness terahertz liquid spec-

troscopy using a spinning sample technique, IEEE Photonics Journal, 1(2), pp. 88–98. 4.5.2

BALANIS-C (1989). Advanced Engineering Electromagnetics, John Wiley & Sons, New York, NY, USA.

71, 8.6.5, 8.7.2

BAMBERY-K, WOOD-B, QUINN-M AND MCNAUGHTON-D (2004). Fourier transform infrared imaging

and unsupervised hierarchical clustering applied to cervical biopsies, Australian Journal of Chem-

istry, 57(12), pp. 1139–1143. 4.3.2

BANDYOPADHYAY-A, SENGUPTA-A, BARAT-R, GARY-D, FEDERICI-J, CHEN-M AND TANNER-D (2007).

Effects of scattering on THz spectra of granular solids, International Journal of Infrared and Mil-

limeter Waves, 28(11), pp. 969–978. 8.1, 8.6.5

BANWELL-C (1966). Fundamental of Molecular Spectroscopy, McGraw-Hill Publishing Company Lim-

ited, Maidenhead, Berkshire, England. 4.2, 4.3
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RØNNE-C, THRANE-L, ÅSTRAND-P.-O, WALLQVIST-A, MIKKELSEN-K AND KEIDING-S (1997). Inves-

tigation of the temperature dependency of dielectric relaxation in liquid water by thz reflection

spectroscopy and molecular dynamics simulation, Journal of Chemical Physics, 107(14), pp. 5319–

5330. 4.5.1

ROSENBLUM-W (2002). Structure and location of amyloid beta peptide chains and arrays in Alzheimer’s

disease: new findings require reevaluation of the amyloid hypothesis and of tests of the hypothesis,

Neurobiology of Aging, 23(2), pp. 225–230. 7.8

ROWE-C, ACKERMAN-U, BROWNE-W, MULLIGAN-R, PIKE-K, O’KEEFE-G, TOCHON-DANGUY-

H, CHAN-G, BERLANGIERI-S, JONES-G, DICKINSON-ROWE-K, KUNG-H, ZHANG-W, KUNG-

M, SKOVRONSKY-D, DYRKS-T, HALL-G, KRAUSE-S, FRIEBE-M, LEHMAN-L, LINDEMANN-S,

DINKELBORG-L, MASTERS-C AND VILLEMAGNE-V (2008). Imaging of amyloid β in Alzheimer’s

disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism, Lancet Neurology, 7(2),

pp. 129–135. 6.2.2

Page 430



Bibliography

ROWE-C, NG-S, ACKERMANN-U, GONG-S, PIKE-K, SAVAGE-G, COWIE-T, DICKINSON-K, MARUFF-

P, DARBY-D, SMITH-C, WOODWARD-M, MERORY-J, TOCHON-DANGUY-H, O’KEEFE-G, KLUNK-

W, MATHIS-C, PRICE-J, MASTERS-C AND VILLEMAGNE-V (2007). Imaging β-amyloid burden in

aging and dementia, Neurology, 68(20), pp. 1718–1725. 6.2.2

ROYAL ADELAIDE HOSPITAL (2008). PET, Department of Nuclear Medicine, PET & Bone Densitometry,

Adelaide, Australia, <http://www.rah.sa.gov.au/nucmed/images/brochures/PET_brochure.

pdf>, (Accessed: 2009-06-08). 6.2.2

RUBENS-H AND NICHOLS-E (1897a). Certain optical and electro-magnetic properties of heat waves of

great wave-length I., Physical Review, 5(2), pp. 98–112. 1.3.1

RUBENS-H AND NICHOLS-E (1897b). Certain properties of heat waves of great wave-length II., Physical

Review, 5(3), pp. 152–169. 1.3.1
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SCARFÍ-M, ROMANÓ-M, PIETRO-R. D, ZENI-O, DORIA-A, GALLERANO-G, GIOVENALE-E, MESSINA-

G, LAI-A, CAMPURRA-G, CONIGLIO-D AND D’ARIENZO-M (2003). THz exposure of whole blood

for the study of biological effects on human lymphocytes, Journal of Biological Physics, 29(2-3),

pp. 171–177. 2.7.2, 4.5.2
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