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Abstract

Pulsed terahertz (THz, or T-ray) research has burgeoned since its inception in the mid
1980s when the first pulses of THz radiation were emitted via electro-optic sampling.
At the time, this discovery was a milestone for time domain spectroscopy because ex-
isting microwave and Fourier Transform Infrared (FTIR) spectrometers were not sen-
sitive in the 0.1-10 THz frequency range. However, it would take several years before
THz generation would become practical for spectroscopic use. In recent years, THz
research has progressed to such a great extent that THz generation and detection tech-
niques are now reliable and relatively low-cost, therefore THz has the potential to be
used in a vast array of real-world applications ranging from security reinforcement
(detection of weapons and explosives) to medical diagnosis (identifying melanomas).
Indeed many bodies of research work have successfully demonstrated the efficacy of
THz, although many challenges still exist before THz matures beyond the realm of

research into everyday life.

This Thesis focuses on the area of THz spectroscopy and modelling of biotissue, with
the aim of broadening the application of THz in medicine, particularly in the early
diagnosis of Alzheimer’s disease (AD). Since the nature of biotissue is complex, THz
measurements of biotissue are prone to variability. Therefore, this Thesis includes the

study of simpler biological analogues that mimic aspects of biotissue.

The work described in this Thesis makes five major novel contributions to THz re-
search of biotissue: (i) the exploration of hydration and storage issues in freshly excised
biotissue prior and during THz measurements; (ii) the use of snap-frozen biotissue in
THz measurements for the purpose of investigating the plausibility of utilising THz
sensing to distinguish between healthy and AD-afflicted human brain tissue; (iii) the
use of THz spectroscopy to non-destructively differentiate between soft protein mi-
crostructures containing features of one of the known fibrillar pathogens of AD; (iv)
the use of THz spectroscopy and full-wave electromagnetics simulation to study scat-
tering from fibrillar structures akin to fibrillar pathogens of AD; and (v) transmission
line modelling of THz propagation and reflection from stratified tissue layers in the

human head.

Page xxvii



Abstract

The first part of this Thesis provides a historical review of the development of THz
technology, with emphasis on the contributions of infrared (IR) and microwave re-
search towards the realisation of the various THz generation and detection techniques
available today. The various techniques are briefly reviewed prior to a thorough dis-
cussion of the types of THz generation and detection techniques used in this Thesis:
electro-optic and photoconductive. A review of relevant IR, microwave, and THz med-

ical research completes the first part of this Thesis.

In the second part of this Thesis, novel THz measurements of biotissue are presented
and their results discussed. Experiment protocols for the handling and storage of ex-
cised biotissue are highlighted to emphasise how storage and hydration can severely
alter THz measurements. Novel alternative sample preparation techniques, in the form
of lyophilisation and snap-freezing, are presented. Terahertz spectroscopic comparison
of healthy and AD-afflicted human tissue reveals promise for a future THz diagnostic
tool, but highlights the need to investigate simplified biotissue analogues, such as skin,

fat, and proteins. This need leads to the third part of this Thesis.

The third part of this Thesis involves THz spectroscopic study of one analogue of AD-
afflicted biotissue: synthetically manufactured microstructures that resemble the pro-
teins associated with AD. Terahertz differentiation of this microstructure from one with
a dissimilar shape is revealed, suggesting a new non-destructive application for THz
spectroscopy in biomedicine. The mechanism behind the differentiation is believed to
be that of scattering, thus the next part of this Thesis explores scattering from more

controlled test samples.

The penultimate part of this Thesis utilises a full-wave electromagnetics simulator to
explain THz scattering from custom-built fibrillar structures. The novel use of the sim-
ulator allows a more accurate means of studying THz scattering, resulting in better
agreement between measurement and simulation. The extra dimension of information
that mathematical simulation provides leads to the final part of this Thesis, where a
feasibility study is performed on the use of THz spectroscopy to study tissue layers in
the head, with the aim of determining whether current THz systems can be used for in

vivo diagnostic studies of tissue layers underneath the skin.

The contributions of this Thesis are important steps in advancing the use of THz in
medicine, paving the way for the next generation of experimental and mathematical
modelling studies of THz interaction with biotissue, in order to develop reliable THz

diagnostic tools of the future.
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Conventions

The following conventions are adopted in this Thesis:

1. Definitions. In this Thesis, the terahertz band is defined as being from 0.1-
10 THz (1 THz = 10" Hz).

2. Acronyms and mathematical symbols. Acronyms and mathematical symbols

used in this Thesis are defined on pp. xxxvii—xli, p. 28, and pp. 52-53.

3. Mathematical units. The International System of Units (SI) is used throughout

this Thesis for units and prefixes.

4. Spelling. British English spelling is adopted as default, as defined by the online
Oxford English Dictionary (Oxford English Dictionary 2010). American English
spelling, where used (e.g. units of length, such as ‘meter” and ‘submillimeter’;
and the technical term “program’), is as defined by the online Merriam-Webster

Dictionary (Merriam-Webster Dictionary 2010).

5. Typesetting. This Thesis is typeset using the IATEX2e software. Gnu Emacs was

used as the word processing interface to I£TEX2e.

6. In-text citation and bibliography referencing. Harvard style is used for refer-

encing and citation in this Thesis.

7. Data processing and generation of plots. Data processing of THz measurements
was performed using the MATLAB software, versions 7.5.0 (release R2007b)
and 7.6.0 (release R2008a). Manufacturer: the MathWorks Inc. (MathWorks,
Inc. 2010). In Chapter 8, the High Frequency Structure Simulator (HFSS, versions
10.1 and 11) software is used in addition to MATLAB. Manufacturer of HFSS:
Ansoft (Ansoft 2010).

8. Colours in schematic diagrams. In schematic diagrams, THz radiation is de-
picted in green for convenience, although THz radiation is invisible to the human

eye. Laser light is depicted in red.
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Conventions

9. Generation of schematic diagrams. Inkscape (version 0.46) and the Gimp (ver-
sion 2.6.4) were primarily used to create schematics in this Thesis. Adobe Illus-

trator (version 13.0.0) was used when necessary.

10. URLs. The Universal Resource Locators (URLs) of websites used for finding in-
formation in this Thesis are provided in the Bibliography Chapter. Access dates

are given with each URL to indicate currency.
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Nomenclature

Common acronyms used in this Thesis

2D two dimensional

3D three dimensional

B-lg B-lactoglobulin

AC alternating current

AD Alzheimer’s disease

ApB amyloid-p

CT computed tomography

CW continuous wave

DC direct current

DNA deoxyribonucleic acid

EO electro-optic

FDTD Finite Difference Time Domain
FEL free electron laser

FEM Finite Element Method

FFT tast Fourier transform

FIR far-infrared

FTIR Fourier Transform Infrared
FTS Fourier Transform Spectroscopy
FWHM full width at half maximum
GaAs gallium arsenide

GHz gigahertz

HFSS High Frequency Structure Simulator
IR infrared

LIA lock-in amplifier

MRI magnetic resonance imaging
NMR Nuclear Magnetic Resonance
OR optical rectification

PC photoconductive

PCA photoconductive antenna
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Common mathematical symbols and constants

QCL quantum cascade laser

RF radio frequency

RNA ribonucleic acid

RPI Rensselaer Polytechnic Institute
SEM scanning electron micrograph/microscope
SNR signal-to-noise ratio

TDS time domain spectroscopy

TE transverse electric

TEM transverse electric and magnetic
™ transverse magnetic

THz terahertz (1 THz = 10'* Hz)
T-ray, T-rays terahertz (0.1-10 THz)

ZnTe zinc telluride

Common mathematical symbols and constants

c speed of light in vacuo

t continuous time

v frequency

w  angular frequency = 27tv
A wavelength

k wavenumber =27t/ A

k complex wavenumber

~.

symbol for complex number

€ electrical permittivity

€y electrical permittivity in vacuo

é complex electrical permittivity = €' — ie”

€ R{complex electrical permittivity} = R{é}
J{complex electrical permittivity} = I{é}
i magnetic permeability

1o  magnetic permeability in vacuo

complex refractive index = n — ix

R{complex refractive index} = R{7}

2 I D

S{complex refractive index} = {7}
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Common mathematical symbols and constants

conductivity

absorption coefficient or extinction coefficient
material thickness

phase in the frequency domain

Fresnel transmission coefficient

o= S N Rq

Fresnel reflection coefficient

x

even
odd

net rate at which electromagnetic energy crosses a surface
wave equation symbol

scalar electric field

electric field vector

scalar polarisation

electric polarisation vector

Cartesian or cylindrical x-axis

Cartesian or cylindrical y-axis

me'—qwmm-‘sgo

Cartesian or cylindrical z-axis
radius of cylinder

azimuth

zenith

length of cylinder

Cross section

NoO— %9 =

1)
o
5]

scattering cross section

efficiency

0 ©

scattering efficiency

Si1 S-parameter (reflection)

95
~

S-parameter (transmission)
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