ACCEPTED VERSION

Wang, Peng; Shen, Chunhua; Barnes, Nick; Zheng, Hong.

Fast and robust object detection using asymmetric totally-corrective boosting, IEEE Transaction on
Neural Networks, 2011; InPress.

Copyright 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

PERMISSIONS

http://www.ieee.org/publications standards/publications/rights/rights policies.html

Authors and/or their employers shall have the right to post the accepted version of IEEE-
copyrighted articles on their own personal servers or the servers of their institutions or
employers without permission from IEEE, provided that the posted version includes a
prominently displayed IEEE copyright notice (as shown in 8.1.9.B, above) and, when published,

a full citation to the original IEEE publication, including a link to the article abstract in IEEE
Xplore.

19" October 2011

http://hdl.handle.net/2440/66763

http://hdl.handle.net/2440/66763
http://www.ieee.org/publications_standards/publications/rights/rights_policies.html

14-10-2011

Fast and Robust Object Detection Using
Asymmetric Totally-corrective Boosting

Peng Wang, Chunhua Shen, Nick Barnes, and Hong Zheng

Abstract

Boosting based object detection has received significant
attention recently. In this work, we propose totally-corrective
asymmetric boosting algorithms for real-time object detection.
Our algorithms differ from Viola-Jones’ detection framework
in two folds. Firstly, our boosting algorithms explicitly opti-
mize asymmetric loss of objectives, while AdaBoost used by
Viola and Jones optimizes a symmetric loss. Secondly, by care-
fully deriving the Lagrange duals of the optimization problems,
we design more efficient boosting in that the coefficients of the
selected weak classifiers are updated in a totally-corrective
fashion, in contrast to the stage-wise optimization commonly
used by most boosting algorithms. Column generation is
employed to solve the proposed optimization problems. Unlike
conventional boosting, the proposed boosting algorithms are
able to de-select those irrelevant weak classifiers in the ensem-
ble while training a classification cascade. This results in im-
proved detection performance as well as fewer weak classifiers
in the learned strong classifier. Compared with AsymBoost
of Viola and Jones [1], our proposed asymmetric boosting
is non-heuristic and the training procedure is much simpler.
Experiments on face and pedestrian detection demonstrate that
our methods have superior detection performance than some
of the state-of-the-art object detectors.

Key Words—Object detection, asymmetric learning, Ad-
aBoost, totally-corrective boosting, column generation.

I. INTRODUCTION

EAL-TIME object detection has broad applications in
image analysis, computer vision and multimedia pro-
cessing [2]-[5]. Despite extensive effort spent on this topic,
it remains a challenging task. An object detector should be
able to efficiently locate targets, which are usually only a few,

P. Wang and H. Zheng are with Beihang University, Beijing, China, 100161.
P. Wang’s contribution was made when visiting NICTA, Canberra Research
Laboratory.

C. Shen is with The Australian Center for Visual Technologies, The Univer-
sity of Adelaide, SA 5005, Australia (e-mail: chunhua.shen@adelaide.edu.au).
Correspondence should be addressed to C. Shen.

N. Barnes is with NICTA, Canberra Research Laboratory, Canberra, ACT
2601, Australia.

Appearing in IEEE Transaction on Neural Networks. This reprint differs
from the original in pagination and typographic detail. ©IEEE.

from millions of sub-windows in a target image. It is a typical
highly-imbalanced learning problem. The strict requirement on
detection accuracy and speed makes it sub-optimal to directly
apply those methods designed for standard learning problems.

The boosting cascade classification framework originally
proposed by Viola and Jones [3] has made a great success
for real-time object detection and arisen much extended work.
There are three significant contributions in the Viola-Jones face
detector: Haar features, the cascade classifier and AdaBoost.
Haar features can be calculated extremely efficiently by using
the concept of integral images. The cascade classifier is
employed to partially address the imbalanced nature of the
training data and reduce the computation time in the test
phase. The target can be considered as a rare event among all
the possible sub-windows in an image. Therefore, there are
many more non-target examples than target examples. The
distribution of those negative non-target data is also much
more complicated than the positive data. A detector must
have a very high detection rate (e.g., 95%) and very low
false positive rate (e.g., 107°). It would be very difficult for
a single classifier to achieve this requirement. The cascade
structure is usually adopted, which consists of a sequence
of node classifiers (see Fig. 1). Only those instances passing
through the current node will be evaluated by the next one;
and only those instances passing through all the nodes are
classified as true detections. In practice, a majority of sub-
windows are rejected in the first several nodes, which leads
to a significant reduction of computation time. On the other
hand, the learning goal of each node is much easier than the
final learning goal. In each node, we want to train a classifier
with a very high detection rate (e.g., 99.5%) and a moderate
false positive rate (e.g., around 50%). AdaBoost is employed
for learning node classifiers in Viola-Jones’ method [3]. In
theory, any other boosting algorithms can be used here, for
example, [2], [6]-[8]. As weak classifiers are decision stumps,
which are trained on a single Haar feature out of millions of
possible Haar features, the process of training AdaBoost based
detectors is also a procedure of feature selection.

Although the cascade classifier partially addresses the asym-
metry of learning by splitting the detection process into mul-
tiple nodes, the learning goal for an individual node classifier
is still asymmetric. A drawback of AdaBoost in the context
of training a cascade classifier is that AdaBoost is designed
to minimize a symmetric loss. This makes it unable to build

an optimal cascade classifier, considering that the asymmetric
learning goal is not systematically taken into account.

Much subsequent work attempts to improve the performance
of object detectors by introducing asymmetric learning strate-
gies into boosting algorithms. Viola and Jones later proposed
asymmetric AdaBoost (AsymBoost) [1], which applies an
asymmetric multiplier parameter to one of the two classes.
However, this asymmetry could be absorbed immediately by
the first weak classifier because of AdaBoost’s greedy opti-
mization strategy. In practice, they have gradually applied the
n-th root of the multiplier at each iteration in order to keep
the asymmetric effect throughout the entire training process.
Here n is the number of weak classifiers. This heuristic cannot
guarantee the solution to be optimal and the number of weak
classifiers has to be specified before training. Therefore,
carefulness is needed in implementation. In contrast, as we will
show in this work, our proposed algorithms are non-heuristic
and the training procedure is much simpler.

AdaCost presented by Fan et al. [9] adds a cost adjustment
function on the weight updating strategy of AdaBoost. They
also pointed out that the weight updating rule should consider
the cost not only on the initial weights but also at each
iteration. Hou et al. [10] used varying asymmetric factors
for training different weak classifiers. However, because the
asymmetric factor changes during training, it remains unclear
what objective function is optimized. Li and Zhang [2] pro-
posed FloatBoost to reduce the redundancy of greedy search
by incorporating floating search into AdaBoost. In FloatBoost,
the poor weak classifiers are removed during the training.
Wu et al. [11] observed that feature selection and ensemble
classifier learning can be decoupled. They designed a linear
asymmetric classifier (LAC) to adjust the linear coefficients of
the selected weak classifiers.

On the other hand, research has also been devoted to opti-
mize the cascade structure. Luo [12] proposed post-processing
methods, which jointly adjust the thresholds of all nodes
within the cascade. Brubaker et al. [13] developed a principled
strategy to set the node thresholds and decide when to stop
training a node. Xiao et al. [14] improved the backtrack
technique in [2] and exploited the historical information of
preceding nodes into successive node learning. Bourdev and
Brandt [15] presented a new cascade structure, termed the
soft cascade. In the soft cascade, each weak classifier is a
node and the score of an instance is accumulated. Raykar
et al. [16] presented a method which jointly train all weak
classifiers in the cascade. Pham et al. [17] presented a method
that trains the asymmetric AdaBoost [1] classifiers under a new
cascade structure, the multi-exit cascade. Like the soft cascade
[15], boosting chain [14] and dynamic cascade [18], the multi-
exit cascade is a cascade structure which takes the historical
information into consideration. In a multi-exit cascade, the ¢-
th node “inherits” weak classifiers selected by the preceding
t — 1 nodes.

Most of the previous work is based on AdaBoost and

14-10-2011

achieves the asymmetric learning goal by heuristic weights
manipulations or post-processing techniques. It is not trivial
to assess how these heuristics affect the original loss function
of AdaBoost. In this work, we design new boosting algorithms
directly from asymmetric loss objectives. The optimization
process is implemented by column generation. Experiments
on toy data and real data show that our algorithms indeed
achieve the asymmetric learning goal without any heuristic
manipulation, and outperform previous methods. Part of this
work appeared in [19].

In summary, the main contributions of this work are as
follows.

1) We explicitly optimize asymmetric losses in our pro-
posed algorithms. In the stage-wise asymmetric boosting
such as Viola and Jones’ AsymBoost [1], the first
weak classifier intends to absorb all the asymmetric
cost and the subsequent weak classifiers are learned
symmetrically. Heuristics are employed to prevent this
drawback. In contrast, there is no sub-optimum-pruned
heuristic strategy in our algorithms due to our convex
optimization formulation of boosting. The asymmetric
learning goal is introduced into both feature selection
and ensemble classifier learning. Both the example
weights and the linear classifier coefficients are learned
in an asymmetric way.

2) To our knowledge, for the first time, our proposed
approaches introduce asymmetric losses into totally-
corrective boosting algorithms. This is also the first time
that totally-corrective boosting algorithms are applied
for cascade classification and object detection tasks.
Improved results are achieved on face detection and
pedestrian detection.

3) We demonstrate that with the totally-corrective optimiza-
tion and the ¢;-norm regularization, the linear coeffi-
cients of some weak classifiers are automatically set to
zero by the algorithm such that fewer weak classifiers
are needed in the final strong/cascade classifier. We
present analysis on the theoretical condition and show
how useful the historical information is for the training
of successive nodes.

4) A fast version of our algorithms is also proposed. At
each iteration, multiple weak classifiers are produced
and added into the strong classifier. The fast algorithms
also present promising results on object detection tasks.

Before we present the main results, we introduce the nota-
tion that is used in this paper.

Suppose that there are M training examples x1, ®o, ...,
x s, and the first M are positive examples and the last M, are
negatives. A pool H consists of N available weak classifiers.
The matrix H € ZM*N consists of binary outputs of weak
classifiers in # over training examples, namely H;; = h;(x;).
H; denotes the ¢-th row of H, which consists of the binary
outputs of all weak classifiers on the ¢-th example. We are

P. WANG et al.: FAST AND ROBUST OBJECT DETECTION USING ASYMMETRIC TOTALLY-CORRECTIVE BOOSTING 3

h1' .. .th e th hN3 hN” hNT
\ / N\ / N\ / \ /
N\ \ \ /
N/ o/ e/ A4
True True»{(3) - - - - - 00 Truel
False False False False
¥ v

Rejections)

(a) Viola-Jones cascade structure

ho b, b R Ry hy

SS - —

N SNIIT-—-— / /
\ Yo T~/ T T ==t /
N/ / - / ==

/
@True

False False False

(Rejections)

(b) The multi-exit cascade structure

Fig. 1: A description of two cascade structures. In (a), the
t-th node of Viola-Jones cascade use weak classifiers from
index N;_1+1 to N¢; For the multi-exit cascade in (b), each
node shares weak classifiers with its anterior.

aiming to learn a linear ensemble classifier

Fu() = 50, wihy (),

where wi,ws,...,wy are the coefficients of the linear
ensemble classifier. In our boosting algorithms, we use
Ui, U, ..., upy to denote the weights of training exam-
ples. The edge of a weak classifier h; is defined as
Zgl u;y;hj(x;), which can be seen as the inverse of the
weighted error over training examples.

II. ASYMMETRIC LOSSES

In this section, we introduce two asymmetric losses, which
are motivated by AsymBoost [1] and cost-sensitive LogitBoost
[20], respectively.

We first introduce an asymmetric cost in the following form:

Cy if y=+1 and sgn[F(x)] = -1,
Cost=¢ Cy ify=—1andsgn[F(x)] =+1,
0 ify=sgn[F(a)].

Here « is the input data, y is the label and F'(x) is the learned
classifier. Viola and Jones [1] directly employ the product of
this cost and the exponential loss function as the asymmetric
loss:

1 1-—
Exy (#C’l + TyCQ) exp (— yF(:I:)) .

In a similar manner, we can also write an asymmetric loss
with respect to the logistic loss function as follows:
-y

1 1
Y0+ 2) logit (yF() |, (1)

Loss; = Ex y (T 5

where logit(z) = log(l + exp(—=x)) is the logistic loss
function.

Masnadi-Shirazi and Vasconcelos [20] proposed cost-
sensitive boosting algorithms which optimize different ver-
sions of cost-sensitive losses by means of gradient descent.
They proved that the optimal cost-sensitive predictor mini-
mizes the following expected loss:

1—y
2

ty
2

-Exy log(pe(z)) + log(1 — pe(z))|

where
pel(@) = exp(yF(z) + 1)
() =
exp(YF(x) + 1) + exp(=7F(z) —n)
with v = 701302 and n = %log g—f
When fixing v to 1, the expected loss can be reformulated
as

;@

Loss; = Exy [logit(yF(x) + 2yn)] . 3)

Next we show how to design totally-corrective boosting for
optimizing objective functions that are directly related with
the above asymmetric losses.

III. ASYMMETRIC TOTALLY-CORRECTIVE BOOSTING
ALGORITHMS

The concept of totally-corrective is firstly introduced by
Kivinen and Warmuth [21]. In stage-wise boosting like Ad-
aBoost, only the coefficient of the latest weak classifier is
updated at each iteration. We refer to this type of algorithms as
stage-wise boosting algorithms. In contrast, totally-corrective
algorithms update example weights with constraints that the
new weights should be orthogonal to mistake vectors of
all weak classifiers. In order to make the updating problem
feasible, the coefficients of all weak classifiers are updated at
each iteration.

Recently, Warmuth et al. [7] described a totally-corrective
algorithm from a different viewpoint. They state that AdaBoost
only constrains the edge of the last weak classifier when updat-
ing example weights, while in “totally-corrective” algorithms
the edges of all weak classifiers are constrained by a maximum
value 6:

M wiyihi(x) <6, j=1,2,...,N.)

To satisfy all the constraints, the linear coefficient of all weak
classifiers are updated as well. Warmuth et al. [7] did not
derive the totally-corrective boosting from the optimization
problems that a boosting algorithm actually optimizes. Instead,
their TotalBoost is obtained by only considering the dual
problems of boosting algorithms. Shen and Li [22], [23]

explicitly established the primal and dual relationship for a
few existing boosting algorithms. Based on the Lagrange dual
problems, column generation is then used to design totally-
corrective boosting algorithms. Their work can be seen as an
extension of the LPBoost [24] to more general convex loss
functions. To our knowledge, little work has been reported on
designing asymmetric totally-corrective boosting.

A. Asymmetric totally-corrective boosting

In this section, we construct asymmetric totally-corrective
boosting algorithms (termed AsymBoostrc here) from the
losses (1) and (3) discussed previously. Compared with the
methods for constructing boosting-like algorithms in [20], [25]
and [26], we use column generation to design our totally
corrective boosting algorithms, mainly inspired by [24] and
[22].

The constants C; and C5 are costs for misclassifying
positive and negative datum points, respectively. We assign the
asymmetric factor k = C/Cy and restrict v = (C1 + C2)/2
to 1, thus C; and Cj are fixed for a given k.

By putting the learning into ¢; regularization framework as
discussed in [22], the asymmetric learning problems of the
two AsymBoostpc algorithms can be expressed as:

M
manllloglt(zz) + 61Tw, st.w =0, z; =y; Hyw, (5)
=1

where I = [Cy /My, -+ ,Cy/Ma,---]", and

M
minZeilogit(zi + 2y;n) + 01"w,st.w =0, z =y Hw,
w

i=1
(6)

where e = [1/My,--- ,1/M>,---]". In both (5) and (6), z;
denotes the margin of the training example x;. Note that the
introduction of this auxiliary variable z is important to arrive
at the dual problems that we need, although the variable z
is not of interest. We refer to (5) as AsymBoostpc; and (6)
as AsymBoosttco. Note that here the optimization problems
are ¢1-norm regularized. It is possible to use other format of
regularization such as the fs-norm.

First, we introduce a fact that the Fenchel conjugate
[27] of the logistic loss function logit(z) is logit*(u) =
(—u)log(—u) + (1 + u)log(l + u), for 0 > u > —1; and
o0, otherwise.

Now let us derive the Lagrange dual [27] of AsymBoostrcs.
The Lagrangian of (5) can be written as

M
L(w, z,\,u) = Zlilogit(zi) +01Tw - A'w
v v i=1
primal dual
M
+ > uilzi — yiHiw). (7)
i=1

14-10-2011
The Lagrangian function is
g(A, u) = inf L(w, z, A\, u)
w,z
M
=— Z sup (— U2 — lilogit(zi)) (8)
i=1

lilogit*(fui/li)

+ igf (91T i - iulyle) w.

i=1

must be 0

So we can write the Lagrange dual problem as

M
max — Z [ul log(u;) + (I; — u;) log(l; — Uz)}

i=1

M
st Y wyiH; <017, 0 u<l.)
=1

Since the problem (5) is convex and the Slater’s conditions are
satisfied [27], the duality gap between the primal (5) and the
dual (9) is zero. Therefore, the solutions of (5) and (9) are the
same. Through the KKT condition, the gradient of Lagrangian
(7) over primal variable z and dual variable ¥4 must vanish at
the optimum. Therefore, we can easily obtain the relationship
between the optimal value of z and w:

ot = l; exp(—z])

P Tt exp(—2)) (10)

Similarly, we can also find the dual problem of
AsymBoostrc2, which can be expressed as:
M
max — Z [Ui log(u;) + (e; — u;)log(e; —u;) + 2uiym}
“ i=1
M
s.t.) uiyiH; <017, 0 u e, (11)
i=1
with
. eiexp(—z — 2ym) (12)

Ui +exp(—zF — 2yin)

From (9) and (11), we can find that, the first constraints of
both the problems are identical to the constraints of TotalBoost
[7], i.e. Equ. (4). In practice, the total number of weak
classifiers, NV, could be extremely large, so we may not be able
to solve the primal problems (5) and (6) directly. However,
equivalently, we can optimize the duals (9) and (11) iteratively
using column generation [24].

Column generation is a technique originally used for large-
scale linear programming problems. Demiriz et al. [24] used
this method to design boosting algorithms. Column generation
is based on the assumption that the solution is sparse, hence
only a subset of variables need to be considered. At each
iteration, one column—a variable in the primal or a constraint

P. WANG et al.: FAST AND ROBUST OBJECT DETECTION USING ASYMMETRIC TOTALLY-CORRECTIVE BOOSTING 5

in the dual—is added when solving the restricted problem. Till
one can not find any column violating the constraint in the
dual, the solution of the restricted problem is identical to the
optimal solution. From the viewpoint of boosting algorithms,
usually there are extremely large (even infinitely many) weak
classifiers available. However, only a small number of weak
classifiers are helpful for classification and should be selected
into the ensemble classifier. Therefore, in the proposed al-
gorithms, there are a huge number of primal variables (or
equivalently dual constraints). Here each primal variable or
dual constraint corresponds to one weak classifier. Based on
column generation, we can add one weak classifier into the
primal or the dual and solve the problem iteratively, until no
violated constraint can be found.

To speed up the convergence, we add the most violated
constraint in each round by finding a weak classifier satisfying:

M
B'(-) = argmax Z wiyih(x;).

h() =1
Solving this subproblem is the same as training a weak
classifier in AdaBoost or LPBoost, in which one tries to find
a weak classifier with the maximum edge (i.e., the minimum
weighted error). Then we solve the restricted dual problem
with one more constraint than the previous round, and update
the linear coefficients of weak classifiers (w) and the weights
of training examples (u). Clearly, adding one constraint into
the dual problem corresponds to adding one variable into the
primal problem. Since the primal problem and dual problem
are equivalent, we may either solve the restricted dual or the
restricted primal in practice. The algorithms of AsymBoostrc;

and AsymBoostrcs are summarized in Algorithm 1.

Note that, in the context of training a boosting based object
detector, in order to achieve the specific false negative rate
(FNR) or false positive rate (FPR), an offset b is needed to be
added into the final strong classifier: F'(x) = Z?Zl w;h;(x)—
b, which can be obtained by a simple line search. The new
weak classifier h'(-) corresponds to an extra variable to the
primal and an extra constraint to the dual. Thus, the minimal
value of the primal decreases with growing variables, and
the maximal value of the dual problem also decreases with
growing constraints. More formally, we want to show the
following theorem.

13)

Theorem 1. Algorithm I makes progress (decreases the objec-
tive value) at each iteration and hence in the limit it solves the
problem (5) or (6) globally to a desired accuracy.

Proof: We consider the case of (5). For the problem
(6), the proof follows the same discussion. Suppose that the
current solution is a finite subset of weak classifiers and their
corresponding linear weights are w = [wy,...,wy]| If we
add a weak classifier fz() that is not in the current subset, the
corresponding w is zero (which means that ﬁ() is useless),
then we can conclude that the current weak classifiers and w
are the optimal solution.

Consider that this optimality condition is violated. We want
to show that we can find a weak classifier fz() not being
in the current selected weak classifiers, such that w > 0
holds. Let us assume that h(-) is a weak classifier found
by solving the subproblem (13) and the convergence condi-
tion Zf\il u1y7ﬁ(x,) < 6 is not satisfied. In other words,
S wiyih(x;) > 0.

If after this weak classifier is added into the primal prob-
lem and the primal solution remains unchanged, i.e., the
corresponding w = 0. From the optimality condition A=
0 — Zfﬁl ugysh(x;) < 0, which contradicts the fact A > 0.

Therefore, after the weak classifier i(-) is added to the
primal problem, its corresponding w must have a positive
solution. It means that one more free variable is added into
the problem and re-solving the primal problem (5) will reduce
the objective value. Hence, a strict decrease in the objective is
obtained, and Algorithm 1 makes progress at each iteration.

On the other hand, as the optimization problems involved
are convex, there are no local optimal points. Hence, Algo-
rithm 1 is guaranteed to converge to the global optimum. M
The above analysis establishes the convergence of Algorithm
1 but it does not tell us anything about the convergence rate.

Next, we try to understand how AsymBoostpc introduces
the asymmetric learning into feature selection and ensemble
classifier learning. Decision stumps are the most commonly
used type of weak classifiers, and each stump only uses one
dimension of the features. So the process of training weak
classifiers (decision stumps) is also a procedure of selecting
relevant features. In our framework, the weak classifier with
the maximal edge (i.e., the minimal weighted error) is selected.
From (10) and (12), the weight of i-th example, namely wu;,
is affected by two factors: the asymmetric factor k& and the
current margin z;. If we set £k = 1, the weighting strategy
goes back to the symmetric boosting case. On the other hand,
the coefficients of the weak classifiers, w, are updated by
solving the restricted primal problem at each iteration. The
asymmetric factor k in the primal is absorbed by all the weak
classifiers currently learned. So both feature selection and
ensemble classifier learning consider the asymmetric factor k.

The number of variables in the primal problem is the
number of weak classifiers; while for the dual problem, it is
the number of training examples. In the cascade classifiers
for object detection, the number of weak classifiers is usually
much smaller than the number of training examples, so solving
the primal is much cheaper than solving the dual. Since the
primal problem has only simple box-bounding constraints,
we can employ L-BFGS-B [28] to solve it. L-BFGS-B is a
tool based on the quasi-Newton method for box-constrained
optimization. Instead of maintaining the Hessian matrix, L-
BFGS-B only needs the recent several updates of values and
gradients of the cost function to approximate the Hessian
matrix. Thus, L-BFGS-B requires less memory for running.
In column generation, we can use the results from previous

Algorithm 1 AsymBoostrc; and AsymBoostrcs.

Input: A training set with A labeled examples (M;
positives and M5 negatives); termination tolerant
€ > 0; regularization parameter ¢; asymmetric
factor k£; maximum number of weak classifiers
Niax-

1 Initialization: N = 0; w = 0; and u; = 1;/2 or ¢;/(1+
k7¥%),i=1--M.“

2 for iteration =1 : Ny« do

3 - Train a weak classifier maximizing the edge:
h'(:) = argmax, . Zf\il wiyih(x;).

4 - Check for the termination condition:
if iteration > 1 and Zf\il wiyh (x;) < 0 + ¢,
then break;

5 - Increment the number of weak classifiers N = N +
1.
- Add h/(-) to the restricted master problem;
- Solve the primal problem (5) or (6) (or the dual

| problem (9) or (11)) and update u and w.

Output:
The final strong classifier: F'(x) = Zjvzl wih;(x).

“q is initialized from Equ. (10) or (12) by setting z = 0.

iteration as the starting point of current problem (warm start),
which leads to further reduction in computation time.

The complementary slackness condition [27] suggests that
Ajw; = 0. So we can get the conditions of sparseness:

IEA=60—" wyH;;>0,thenw; =0. (14)

This means that, if the weak classifier h,;(-) is so “weak” that
its edge is less than 6 under the current distribution wu, its
contribution to the ensemble classifier is “zero”. From another
viewpoint, the ¢;-norm regularization term in the primal (5)
and (6), leads to a sparse result. The parameter 6 controls the
degree of the sparseness. The larger 6 is, the sparser the result
would be.

B. The multi-exit cascade

Pham et al. [17] introduced a generalized cascade frame-
work, termed the multi-exit cascade (see Fig. 1(b)). The basic
motivation is that previous scores can be helpful for the current
node. In the multi-exit framework, the ¢-th node incorporates
the scores of all previous nodes. Fig. 1 demonstrates the differ-
ence between Viola-Jones standard cascade and the multi-exit
cascade structure.

The desirable property of the multi-exit cascade is that, each
node exploits the historical information. Consequently, given
the same number of weak classifiers, the multi-exit cascade
can utilize more information than the Viola-Jones standard
cascade. The soft cascade [15] and the dynamic cascade [18]
can be viewed as special cases of the multi-exit cascade.

14-10-2011

With a minor modification, we incorporate our asymmetric
totally-corrective boosting into the multi-exit cascade. The
formulation is expressed as follows:

Fla) = {+1 if Zj-v:fl wiihy(x) + 0, > 0,¥t € {1,---T};
—1 otherwise.
(15)
Here T is the number of nodes, and Ny, ..., Nt is the index
of weak classifiers on the exits. The same weak classifier could
have different coefficients with respect to different nodes.

IV. ON THE FAST TRAINING OF ASYMBOOST¢

In this section, we propose a fast training method, termed
AsymBoostpc-fast, which reduces the training time signifi-
cantly. In object detection, as features are usually obtained by
exhaustive search, the dimension is extremely high. To reduce
the training complexity, common practice is to apply the weak
learner on one or a small number of dimensions and then
select the weak classifier with the maximal edge (the minimal
weighted error) from a tractable number of candidates. In this
fashion, all the other sub-optimal candidates are discarded,
although they can still be useful.

Unlike stage-wise boosting, there is no restriction that only
one constraint (or weak classifier) can be added at each
iteration. Actually, we can add multiple violated constraints
at each iteration. For example, at each iteration, we can select
q > 1 weak classifiers from K best ones with maximal edges
(¢ < K). Notice that the first ¢ weak classifiers with maximal
edges should not be selected altogether because they usually
are highly correlated, especially in the context of training an
object detector. We want to find a few weak classifiers with
large edges and at the same time they are not very correlated
(image features that are not highly overlapped).

To achieve this goal, we adopt a simple criterion for choos-
ing a promising combination of weak classifiers. Using this
simple technique, we can significantly speed up the training
process. First, we introduce a pseudo-distribution p; over
training samples for the j-th weak classifier h;(-):

exp(yih;(x;))
1+ exp(yshj(x;))

Note that other strategies may be used to make a pseudo-
distribution. The output of h;(x;) can be binary or real
valued. Then we use the Jensen-Shannon divergence (JSD)
as a measure of the similarity of ¢ distributions:

JSD(p1,p2,---,pq) =H (me) - mH(p:), (7

where i, my,...,m; are the weights of distributions and
H(p) = —>,p(x;)logp(x;) is the Shannon entropy. We
simply set 711 = my = --- = m, = 1/¢ in our case because
we do not have any prior knowledge about the weight of
each pseudo-distribution. The Jensen-Shannon divergence can

pj(xi) o (16)

P. WANG et al.: FAST AND ROBUST OBJECT DETECTION USING ASYMMETRIC TOTALLY-CORRECTIVE BOOSTING 7

Algorithm 2 AsymBoostrci-fast and AsymBoostrcoe-fast.

Input: The number of weak classifiers to be add in each
round g; the candidates number K'; the maximum
number of weak classifiers N ax-

s Initialization: N = 0;

9 while N < Np.x do

10 - Train weak classifiers on all dimensions or dimen-
sion groups, based on the sample weights u; and
choose K candidates with large edges.

11 - Select the candidate with the largest edge from all
candidates.

12 - for iteration=1:¢— 1 do

13 Select a weak classifier from the remaining can-

didates, which maximizing JSD over all cur-
rently selected weak classifiers.

14 - Add the selected q weak classifiers to the restricted
master problem.
15 - Solve the primal problem (5) or (6) (or the dual

problem (9) or (11)) and update u; (z = 1--- M)
and w; (j=1---N).

16 - Increment the number of weak classifiers N = N+
L 4

Output:

The final strong classifier: F(z) = S

Jj=

L wihj(x).

be viewed as a symmetrized version of the Kullback-Leibler
divergence.

We summarize the fast training method AsymBoostrc-
fast in Algorithm 2. In each iteration, ¢ weak classifiers are
selected from K candidates, such that the Jensen-Shannon
divergence is maximized. This ensures the selected weak
classifiers are uncorrelated. Since the computation of JSD
is fast and only applied on the pre-selected K candi-
dates, the AsymBoostpc-fast is almost ¢ times faster than
AsymBoostrc.

In the following, we apply the proposed methods to the
problem of face detection and pedestrian detection.

V. EXPERIMENTS
A. Results on synthetic data

To demonstrate the behavior of our algorithms, we con-
struct a 2D data set, in which the positive data follow the
2D normal distribution (A(0,0.1I)), and the negative data
form a ring with uniformly distributed angles and normally
distributed radius (N (1.0, 0.2)). Here I is the identity matrix.
In total, 2000 examples are generated (1000 positives and
1000 negatives), 50% of data for training and the other
half for test. We compare AdaBoost, AsymBoostrc; and
AsymBoostrca on this data set. All the training processes
are stopped at 100 decision stumps. For AsymBoostpc; and
AsymBoostrce, we fix 6 to 0.01, and use a group of £’s

{1.2,14,1.6,1.8,2.0,2.2,2.4,2.6,2.8,3.0}. Fig. 2 shows the
results.

From Figs. 2(a) and (c¢), we can see that the larger k is, the
bigger the area for positive output becomes, which means that
the asymmetric LogitBoost tends to make a positive decision
for the region where positive and negative data are mixed
together. Another observation is that AsymBoostrc; and
AsymBoostrco have almost the same decision boundaries on
this data set with same &’s. Figs. 2(b) and (d) demonstrate the
trends of false rates with the growth of asymmetric factor (k).
The results of AdaBoost is considered as the baseline. For all
k’s, AsymBoostrc; and AsymBoostrco achieve lower false
negative rates and higher false positive rates than AdaBoost.
With the growth of k, AsymBoostrc; and AsymBoostrce
become more aggressive to reduce the false negative rate, with
the sacrifice of a higher false positive rate.

B. Fuace detection

We collect 9832 mirrored frontal face images and about
10115 large background images. 5000 face images and 7000
background images are used for training, and 4832 face images
and 3115 background images for validation. Five basic types
of Haar features are calculated on each 24 x 24 image, and
totally generate 162336 features. Decision stumps on those
162336 features construct the pool of weak classifiers.

Single-node detectors Single-node classifiers with Ad-
aBoost, AsymBoosttc; and AsymBoostrce are trained. The
parameters 6 and k are simply set to 0.001 and 7.0. 5000 faces
and 5000 non-faces are used for training, while 4832 faces
and 5000 non-faces are used for test. The training/validation
non-faces are randomly cropped from training/validation back-
ground images.

Fig. 3(a) shows curves of detection rate with the false
positive rate fixed at 0.25, while curves of false positive rates
with 0.995 detection rate are shown in Fig. 3(b). We set the
false positive rate fixed to 0.25 rather than the commonly
used 0.5 in order to slow down the increasing speed of
detection rates, otherwise detection rates would converge to
1.0 immediately.

The increasing/decreasing speed of detection rate/false pos-
itive rate is faster than reported in [2] and [14]. The reason
is possibly that we use 10000 examples for training and 9832
for testing, which are smaller than the data used in [2] and
[14] (18000 training examples and 15000 test examples). We
can see that under both situations, our algorithms convergent
faster than AdaBoost.

The benefits of our algorithms can be expressed in two-fold:

1) Given the same learning goal, our algorithms tend to use
a smaller number of weak classifiers. For example, from
Fig. 3 (2), if we want a classifier with a 0.995 detection
rate and a 0.2 false positive rate, AdaBoost needs at least
43 weak classifiers while AsymBoostrc; needs 32 and
AsymBoostrco needs only 22.

o AdaBoost
1r " o e AsymBoos+c12.C
X X% "1 1 veennn, ASymBoost 3.0
y e R V! tea
X % X
0.5r s s Y e X
X X Sk X %X
a X S x
x x X% X x
% %X g X
or RE XXX
x 7 S
) X& X ; X
X X
Xx R X X
-0.5r xx>§<xx><X xxxx&xx *
gx & X x
R x X e KT ot %&x
XX X x X% % XX
-1 % S s e R X
-1 -0.5 0 0.5 1
(a) AsymBoostrcy vs AdaBoost
AdaBoost
= = = AsymBoost ., 2.
AsymBoos} ., 3.

(c) AsymBoosttc2 vs AdaBoost

Test Errors

Test Errors

14-10-2011

FRwith AmeooQ.rc1
g— FNRwith AsymBoost, .|
& FPRwith AsymBoost, .,
—x= FRwith AdaBoost

~B-- FNR with AdaBoost
-0~ FPRwith AdaBoost

0.18]

0.16]

0.14

o
N

o
-

0.08]

0.067

0.04

0.02'
12

(b) False rates for AsymBoostTc1

0.2

FRwith As,rmBooQ.rcz

g— FNRwith AsymBoost, .,

& FPRwith Asychn:s_rCZ
—»= FRwith AdaBoost

~B-- FNR with AdaBoost
-0~ FPRwith AdaBoost

0.18]

0.14]

o
=

o
B

0.08]

0.06F

0.04-

. . . 1 | 1 . 1)
O'01.2 24

2 22
Asymmetric Factors (k)

(d) False rates for AsymBoostTc2

Fig. 2: Results on the synthetic data for AsymBoostrci and AsymBoostrca, with a group of asymmetric factor k’s. As the baseline,
the results for AdaBoost are also shown in these figures. (a) and (c¢) demonstrate decision boundaries learned by AsymBoostrci
and AsymBoostrc2, with £ is 2.0 or 3.0. The x’s and [I’s stand for training negatives and training positives respectively. ()
and (d) demonstrate false rates (FR), false positive rates (FPR) and false negative rates (FNR) on test set with a group of k’s
(1.2,1.4,1.6,1.8,2.0,2.2,2.4,2.6,2.8 or 3.0), and the corresponding rates for AdaBoost is shown as dashed lines.

2) Using the same number of weak classifiers, our al-
gorithms achieve a higher detection rate or a lower
false positive rate. For example, from Fig. 3 (2),
using 30 weak classifiers, both AsymBoostrc; and
AsymBoosttca achieve higher detection rates (0.9965
and 0.9975) than AdaBoost (0.9945).

Complete detectors Secondly, we train complete face
detectors with AdaBoost of Viola-Jones [3], AsymBoost
(asymmetric AdaBoost) of Viola-Jones [1], and the proposed
AsymBoostrc; and AsymBoostrcs. All detectors are trained
using the same training set. We use two types of cascade
framework for the detector training: the traditional cascade
of Viola and Jones [3] and the multi-exit cascade presented

in [17]. The latter utilizes decision information of previous
nodes when judging instances in the current node. For a
fair comparison, all detectors use 24 nodes and 3332 weak
classifiers. For each node, 5000 faces and 5000 non-faces are
used for training, and 4832 faces and 5000 non-faces are used
for validation. All non-faces are cropped from background
images that do not contain any face. The asymmetric factor
k for AsymBoost, AsymBoostpc; and AsymBoostrco are
selected from {1.2, 1.5,2.0,3.0,4.0,5.0,6.0}. The regular-
ization factor 6 for AsymBoostrc; and AsymBoostrcy are
chosen from {5—10, 61—0, %, %, %, ﬁ, 2(1)—0, 4(1)—0, %, Tloo)
It takes about four hours to train a AsymBoosttc face detector
on a machine with 8 Intel Xeon E5520 processors and 32GB

P. WANG et al.: FAST AND ROBUST OBJECT DETECTION USING ASYMMETRIC TOTALLY-CORRECTIVE BOOSTING 9

0.999

0.997

0.995

o
©
©
]

Detection Rates
o
©
©
=3

o
©
@
©

—*— AdaBoost
Ameooer ol

AsymBot:vslTCl

0.985 i i i i i i N N]

10 20 30 40 50 60 70 80 90 100
#Weak Classifiers

0987}

(a) DR with fixed FPR

0.5
—»— AdaBoost
0.45 — AWmBmS{Tm
AsymBoo:
04 e

o

w

a
T

o
w
T

False Positive Rates
o R
N ol

o

[

o
T

o
[

o
&

o

| |
50 60 70 80 920 100
#Weak Classifiers

5
8
8
S

(b) FPR with fixed DR

Fig. 3: Testing curves of single-node classifiers for AdaBoost, AsymBoostrc: and AsymBoostrcs. All the classifiers use the same
training and test data sets. (a) shows curves of detection rates (DR) with false positive rates (FPR) fixed to 0.25, (b) shows curves
of FPR with DR fixed to 0.995. FPR or DR are evaluated at every 10 weak classifiers.

memory. Comparing with AdaBoost, only around 0.5 hour
extra time is spent on solving the primal problem at each
iteration. We can say that, in the context of face detection,
the training time of AsymBoostpc is nearly the same as
AdaBoost.

ROC curves on the CMU/MIT data set are shown in Fig. 4.
For testing, the scale ratio is set to 1.25 and the scanning step-
size is 1 pixel. A heuristic method to merge multiple detection
windows is employed for post-processing, same as in [3]. The
detected windows are grouped together if they are overlapped,
and the merged window border is the mean of all windows in
one group. Groups with more than three windows are reported
as final detections.

Those images in the CMU/MIT data set containing am-
biguous faces are removed and 120 images are retained.
From the figure, we can see that, AsymBoost outperforms
AdaBoost in both Viola-Jones cascade and the multi-exit
cascade, which coincides with what was reported in [1].
Our algorithms have even better performance than all the
other methods in all points and the improvements are more
significant when the false positives are less than 100, which is
the most important ROC region in practice. Fig. 5 shows the
comparison results of our method and other state-of-the-arts
(FloatBoost [2], cost-sensitive AdaBoost [20], BoostingChain
[14], nested cascade [29]) on the CMU/MIT data set. These
ROC curves are directly obtained from their original papers.
Note that the experimental setups are not exactly the same,
so the comparison is not very fair. For example, the nested
cascade has used real-valued histograms based weak classifiers
instead of the simplest discrete decision stumps, which may

0.98-

0.961

0.94-

0.92-

§ o9 A
s Ko
£ osgt ¥
£ i
e '
1
0.86- 1 - AsymBoos . (this work)
L
=DF FloatBoost (Li & Zhang 2004)
0.84r ! =~ -= Cost-sensitive AdaBoost (Masnadi-Shirazi & Vasconcelos 2011)
Q BoostingChain (Xiao et al. 2003)
0.82- A NestedCascade (Huang et al. 2004)
0.8 | | | | | |
0 50 100 150 200 250 300

Number of false positives

Fig. 5: Comparison of our algorithms with some state-of-
the-art methods. See text for details.

also contribute to the performance improvement.

The results shows that ours is the best in the low false
positive rate part (< 30 false positives). In terms of the
overall performance, only the nested cascade is better than
ours. However, the weak classifiers they used are much more
powerful (confidence-rated weak classifiers) and we use the
simplest discrete decision stumps. Fig. 6 shows some detected
faces from the CMU/MIT data set.

As mentioned in the previous section, our algorithms pro-
duce sparse results to some extent. Some linear coefficients are
zero when the corresponding weak classifiers satisfy the con-

0.95-
0.94-
0.93-
L
€ 0.2
c
2
S
Q
@ 0.91-
[a}
0.9 o AsymBoos%Cl (multi-exit cascad|
= AsymBoos{.c2 (multi-exit cascade)
0.89- Ada (Viola-Jones cascade)
—— Ada (multi-exit cascade)

i I I I I I i
0 20 40 60 80 100 120 140 160 180 200
Number of false positives

(a) AsymBoostTc vs AdaBoost

14-10-2011

0.95¢
0.94-
0.93-
2
€092
c
8
S
Q
@ 0.91-
o
0.9+ o AsymBoosrrCl(multi—exit cascade)
= AsymBoosJrcz (multi-exit cascade)
0.89r Asym (Viola-Jones cascade)
—%— Asym (multi-exit cascade)
i i i

3 i | | | | | i
“0 20 40 60 80 100 120 140 160 180 200
Number of false positives

(b) AsymBoostTc vs AsymBoost

Fig. 4: Performance of cascades evaluated by ROC curves on the MIT+CMU data set. AdaBoost is referred to “Ada”, and AsymBoost
of [1] is referred as to “Asym”. “Viola-Jones cascade” means the traditional cascade used in [3] .

Fig. 6: Detected faces in the MIT+CMU data set by
AsymBoostrc.

dition (14). In the multi-exit cascade, the sparse phenomenon
becomes more clear. Since correctly classified negative data
are discarded after each node is trained, the training data
for each node are different. The “closer” nodes share more
common training examples, while the nodes “far away” from
each other have distinct training data. The greater the distance
between two nodes, the more uncorrelated they become.
Therefore, the weak classifiers in the early nodes may not
be very helpful in the last node, thus tending to be assigned
zero coefficients. We call those weak classifiers with non-

zero coefficients “effective” weak classifiers. Table I shows
the ratios of “effective” weak classifiers contributed by one
node to a specific successive node. To save space, only the
first 15 nodes are demonstrated. We can see that, the ratio
decreases with the growth of the node index, which means that
the farther the preceding node is from the current node, the less
useful it is for the current node. For example, the first node has
almost no contribution after the eighth node. Table II shows
the number of effective weak classifiers used by our algorithm
and the traditional stage-wise boosting. All weak classifiers
in stage-wise boosting have non-zero coefficients, while our
totally-corrective algorithm uses much fewer effective weak
classifiers.

To compare real-time speed in the test phase, we obtain
a sequence of 320 x 240 pixels face images. Each image
is scanned with 2 pixels stride and 1.2 scale ratio. Totally
13,477,226 sub-windows are scanned in 289 images. All the
programs are written in C++ and tested on one Intel Xeon
E5520 2.27GHz processor. From Table III, we find that the
speed of our algorithms and AdaBoost is similar, while ours
has better performance.

TABLE III: Real-time performance of face detectors. There
are the same number of nodes and weak classifiers in both the
multi-exit cascade and the Viola-Jones cascade. This figure
shows windows per second (win ps), seconds per image (sec
pi) and features per window (fea pw), on average over all

images.
win ps sec pi fea pw
AsymBoosttci+ multi-exit cascade | 641467 | 0.0715 48.55
AsymBoostTca+ multi-exit cascade | 647321 | 0.0720 49.09
AdaBoost + Viola-Jones cascade 652650 | 0.0727 | 55.36

P. WANG et al.: FAST AND ROBUST OBJECT DETECTION USING ASYMMETRIC TOTALLY-CORRECTIVE BOOSTING

TABLE I: This table shows the sparseness of weak classifier coefficients, for the face detector trained with AsymBoostrciand the
multi-exit cascade. The ratio of weak classifiers selected at the i-th node (column) appearing with non-zero coefficients in the j-th
node (row). The ratios decrease along with the growth of the node index in each column.

Node Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1.00

2 1.00 | 1.00

3 1.00 | 1.00 | 1.00

4 0.86 | 1.00 | 0.97 | 1.00

5 0.43 | 0.93 | 0.97 | 0.97 | 1.00

6 0.71 | 0.93 | 0.90 | 1.00 | 0.96 | 1.00

7 0.43 | 0.87 | 0.87 | 0.97 | 0.92 | 0.92 | 1.00

8 0.29 | 040 | 0.70 | 0.73 | 0.74 | 0.88 | 0.74 | 1.00

9 0.00 | 0.27 | 0.50 | 0.60 | 0.76 | 0.72 | 0.66 | 0.67 | 1.00

10 0.14 | 0.27 | 0.43 | 0.60 | 0.62 | 0.70 | 0.62 | 0.66 | 0.60 | 1.00

11 0.00 | 0.20 | 0.33 | 0.50 | 0.52 | 0.54 | 0.60 | 0.59 | 0.56 | 0.48 | 1.00

12 0.14 | 0.20 | 0.40 | 0.40 | 0.56 | 0.50 | 0.54 | 0.61 | 0.55 | 0.46 | 0.36 | 1.00

13 0.00 | 0.13 | 0.33 | 0.37 | 0.36 | 0.54 | 0.40 | 0.47 | 0.47 | 0.46 | 0.43 | 0.25 | 1.00

14 0.00 | 0.07 | 0.17 | 0.40 | 0.28 | 0.50 | 0.42 | 0.49 | 0.50 | 0.53 | 0.45 | 0.43 | 0.35 | 1.00

15 0.00 | 0.13 | 0.20 | 0.27 | 0.36 | 0.38 | 0.46 | 0.41 | 0.52 | 0.42 | 0.49 | 0.44 | 0.34 | 0.27 | 1.00

TABLE II: Comparison of the numbers of the effective weak classifiers for the stage-wise boosting (SWB) and the totally-corrective
boosting (TCB). We take AdaBoost and AsymBoostTci as representative types of SWB and TCB, both of which are trained in the

multi-exit cascade for face detection.

Node Index | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
SWB 7| 22| 52 | 82 | 132 | 182 | 232 | 332 | 452 | 592 | 752 | 932 | 1132 | 1332 | 1532 | 1732 | 1932 | 2132
TCB 7| 22| 52| 80 | 125 | 174 | 213 | 269 | 331 | 441 | 464 | 538 570 681 717 744 742 879

C. Pedestrian detection

The INRIA pedestrian dataset is used here for evaluating our
algorithms and others. This data set has pre-defined training set
and test set. The training set contains 1208 cropped pedestrian
sub-windows and 1200 large non-pedestrian images. The size
of sub-windows is 64 x 128 pixels, and a 16 pixels pad on
each side is added to preserve border information. To make the
maximum use of the training data, we also use the mirrored
pedestrian sub-windows, thus totally 2416 training pedestrians
obtained. The test set is made up of 288 images holding 588
annotated pedestrians inside and 453 non-pedestrian images.

Histogram of oriented gradient (HOG) features are applied
to pedestrian detection by Dalal and Triggs [30]. They use
HOG with linear support vector machines (SVMs) to train
a pedestrian detector. Zhu et al. [31] use AdaBoost and the
cascade framework for pedestrians. Similar to the work in [31],
we exhaustively scan blocks with different sizes, scales and
ratios in the sub-window. Five types of width/height ratios are
adopted: 1:1,1:2,2:1,1:3 and 3 : 1. The scales are from
12 x 12 to 64 x 128, and the block stride is 4 pixels. Thus,
totally 7735 blocks are obtained for a 64 x 128 pixels sub-
window. In order to save training time, only 10% blocks are
uniformly sampled in each round for training weak classifiers.
There are 2 x 2 cells within each block. For each cell, a 9-
bin histogram of gradients are summarized with respect to
orientations. Then the concatenated 36-D feature vector is ¢;
normalized in each block. To accelerate the computational
speed, we have used integral gradient images for calculating
HOG features. In this way, 9 integral images are generated

corresponding to histogram bins. For sequel operations, only
9x9 memory accesses are needed for compute the 36-D vector
for each block.

Besides our algorithms, AdaBoost and AsymBoost are
evaluated in the experiments with the same criterion. We also
compare our algorithms with HOG with linear SVM [30]
and pyramid HOG (PHOG) with intersection kernel SVM
(IKSVM) [32]'. ROC curves on the test set of INRIA data
are shown in Fig. 7.

In [31], linear SVM are used as weak classifiers. Never-
theless, linear SVM does not have a closed-form solution
and usually a quadratic problem is solved for each weak
classifier, which is time-consuming. Moreover, there is a model
parameter C' to be determined commonly via cross-validation,
which is not feasible here. Alternatively, we use weighted LDA
as weak classifiers, which has a closed-form solution and is
easy to solve.

Same as in face detection, we prescribe the number of nodes
(21) and weak classifiers (612) for all methods. The first three
nodes have 4 weak classifiers, and the maximum number is
restricted to 60.

The training set consists of 2416 positives and 2416 neg-
atives. The positive examples are kept the same in the entire
training process. The negative examples for the first node
are obtained by randomly sampling from those 1200 non-
pedestrian images in the INRIA dataset. For the latter nodes,
true rejections for the current detector are removed and the

The trained models and codes for HOG with linear SVM and PHOG
with intersection kernel SVM are obtained from http://www.cs.berkeley.edu/
~smaji/projects/ped-detector/

0.88
0.84-
0.8
[0
<
= 0.76
Qo
5
2 0.72
a
0.68- _e_AsymBoosjrC1 (multi—exit cascadg)
_E,_AsymBoosh:2 (multi-exit cascade)
0.64 ——Ada (Viola-Jones cascade)
i —v—Ada (multi-exit cascade)
0. 0 0.5 1 15 2 25 3
False positives per image
(a) AsymBoosttc vs AdaBoost
0.88
0.84-
0.8
[J)
©
c 0.76
o
©
% 0.72
a) _e_AsymBoosrrC 1 (multi—exit cascade)
0.68- _aAsymBoost , (multi-exit cascade)
064 _Q_AsymBoosh:l—fast (multi-exit cascade)
_V_AsymBoos{_Cz—fast (multi-exit cascade)
0. 0 0.5 1 1.5 2 25 3

False positives per image

(c) AsymBoostTc vs AsymBoostpc-fast

14-10-2011

0.88
0.84-
0.8~
Q
8
c 0.76
k)
5
2 0.72
[a]
0.68- _e_AsymBoosIrCl (multi-exit cascadg)
_E,_AsymBoosIrCz (multi-exit cascade)
0.64- ——Asym (Viola—Jones cascade)
06 —v—Asym (multi-exit cascade)

0 0.5 1 15 2 25 3
False positives per image

(b) AsymBoostTc vs AsymBoost

0.88
0.84-
0.8
(&)
©
c 0.76
i)
5
£ 0.72
a
0.68- _e_AsymBoos{_Cl (multi-exit cascadg)
_E,_AsymBoosIrcz (multi-exit cascade)
0.64- ——HOG + IkSVM (Dalal-Triggs)
——PHOG + ikSVM (Maji et al)
0'60 02 04 06 038 1 12 14

False positives per image

(d) AsymBoostpc vs SVM

Fig. 7: ROCs curves for INRIA dataset. “Ada” denotes AdaBoost, and “Asym” denotes AsymBoost [3]. “Viola-Jones cascade” means
the traditional cascade used in [1]. “LSVM?” is linear SVM, while “IKSVM?” is intersection kernel SVM [32].

vacancies are filled with false positives randomly scanned
from the non-pedestrian images (i.e., bootstrapping). For the
purpose of validation, 500 extra false positives are collected
by bootstrapping.

The asymmetric parameter k is selected from the same range
in face detection. On the other hand, the regularization factor
0 is selected from {%5, %, %, %, %, %, %}.

Our algorithms perform better than AdaBoost, AsymBoost,
HOG with linear SVM, and achieve similar performance with
PHOG with IKSVM. We also test the AsymBoostpc;-fast
and AsymBoostpco-fast, 4 weak classifiers are added in each
iteration. From Fig. 7(c), we find that the performance of

AsymBoostrc-fast are slightly worse than AsymBoostrc, but
they are still better than AdaBoost, AsymBoost and HOG with
linear SVM. The scale ratio for input images is 1.0905 and the
sub-window stride is 8 x 8 pixels. In the same manner with
[32], we utilize mean shift to merge multiple sub-windows
for the same object. Since the 64 x 128 sub-windows keep 16
pixels of margin on four sides, we shrink those sub-windows
to 32 x 96 pixels before merging them. It takes about 5 hours
to train a complete detector on the same machine mentioned in
the face detection section. To determine a detected sub-window
is true positive or not, we adopt the criterion in PASCAL VOC

P. WANG et al.: FAST AND ROBUST OBJECT DETECTION USING ASYMMETRIC TOTALLY-CORRECTIVE BOOSTING 13

Challenge [33] as follows:

o area{By N By} - 05,
area{By U By}
which means that if the overlap between detected sub-window
By and the ground truth By, exceeds 50%, we will consider it
is a true positive. The multiple detections on the same object is
treated as false positive. Fig. 8 shows some detection examples
in INRIA data set.

(18)

Fig. 8: Detected pedestrians in the INRIA data set by
AsymBoostrci.

Table IV and Table V show the effective number of weak
classifiers in each node of AsymBoostrc; pedestrian detector.
Similar phenomenon is demonstrated, like face detector. One
interesting result is that last several nodes share very few
effective weak classifiers with preceding nodes. For example,
the 15-th node does not “inherit” any effective weak classifiers
from the first to the 14-th nodes. In this fashion, the multi-
exit cascade does not bring improvements, as all the historical
information is useless.

We use a surveillance video for testing the real-time perfor-
mance?, containing 295 frames of 384 x 288 pixels images.
The images are scanned with 8 x 8 stride and 1.0905 scale
ratio, totally incurring 1413050 sub-windows. AsymBoostrc1,
AsymBoostrco and AdaBoost are implemented by C++, while
the code for PHOG with IKSVM is written using Matlab

2The pedestrian video is obtained from http://homepages.inf.ed.ac.uk/rbf/
CAVIAR/

and C. All the programs are tested on a single Intel Xeon
E5520 2.27GHz processor. Table VI shows the speeds of
AsymBoosttci, AsymBoostrcs, AdaBoost, and PHOG with
IKSVM. Our algorithms runs as fast as AdaBoost, and is
around 10 times faster than PHOG with IKSVM. From the
number of evaluated features, we can obtain the same conclu-
sion.

TABLE VI: Real-time performance of pedestrian detectors.
The same numbers of weak classifiers and nodes are used in
both the multi-exit cascade and the Viola-Jones cascade. The
average number of windows per second (win ps), seconds
per image (sec pi) and features per window (fea pw) are
demonstrated. Note that, for boosting methods, one block is
divided into 2 x 2 cells.

win ps | sec pi fea pw
AsymBoostTci + multi-exit cascade | 22479 | 0.213 | 14.9 blocks
AsymBoostTca + multi-exit cascade 22358 0.214 | 15.6 blocks
AdaBoost + Viola-Jones cascade 21341 0.224 | 17.7 blocks
PHOG + intersection kernel SVM 2275.7 2.10 252 cells

VI. CONCLUSION AND DISCUSSION

We have proposed asymmetric totally-corrective boosting
algorithms for object detection. Our algorithms directly opti-
mize asymmetric loss functions using the column generation
technique. The algorithms are guaranteed to converge to the
global optimum of the empirical risk. Our algorithms update
training example weights in a totally-corrective fashion, and
the coefficients of all weak classifiers are updated at each
iteration. With the ¢; norm regularization, the linear coef-
ficients are sparse in the context of cascade classifiers. By
learning multiple classifiers in a single iteration, we establish a
fast training version of proposed methods, which significantly
reduces the training time.

Experiments have demonstrated that both our algorithms
achieve better results for face/pedestrian detection than Ad-
aBoost and Viola-Jones’ AsymBoost. One observation is that
we do not see remarkable differences in performance between
AsymBoosttc; and AsymBoostrcs in our experiments. For
the face detection task, AdaBoost already achieves a very
promising result, so the improvements of our method are not
that significant, as expected. For pedestrian detection, our al-
gorithms considerably outperform AdaBoost, AsymBoost and
the linear SVM with HOG features, and achieve comparable
performance with PHOG with the intersection kernel SVM,
which is considered one of the state-of-the-art pedestrian
detectors. However, our methods run about 10 times faster
than PHOG with the intersection kernel SVM.

We find that solely using the multi-exit cascade with Ad-
aBoost achieves better results in the early nodes and worse
results in the late nodes. The explanation might be that, for
the late nodes close to the end, the negative training examples
differ from those in the early nodes. Since AdaBoost is stage-
wise, only the last weak classifier’s weight is updated. So

14-10-2011

TABLE IV: The sparseness situation for the pedestrian detector trained with AsymBoostrciand the multi-exit cascade. The ratio of
weak classifiers selected at the ¢-th node (column) appearing with non-zero coefficients in the j-th node (row). For the last several
rows, the non-zero coefficients ratios of previous nodes are zero, which means that the historical information is useless for the latter

nodes.
Node Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1.00
2 1.00 | 1.00
3 1.00 | 1.00 | 1.00
4 1.00 | 1.00 | 1.00 | 1.00
5 1.00 | 1.00 | 1.00 | 1.00 | 1.00
6 1.00 | 1.00 | 1.00 | 0.88 | 0.75 | 1.00
7 0.50 | 0.75 | 1.00 | 0.75 | 1.00 | 0.63 | 1.00
8 0.25 0.75 1.00 | 0.88 0.75 1.00 0.50 1.00
9 0.50 | 0.50 | 0.75 | 0.38 | 0.75 | 0.88 | 0.75 | 0.00 | 1.00
10 0.25 | 0.50 | 0.50 | 0.63 | 0.50 | 0.38 | 0.33 | 0.42 | 0.00 | 1.00
11 0.00 | 0.25 0.25 0.25 0.25 0.25 0.33 | 0.33 0.08 | 0.15 1.00
12 0.25 | 0.00 | 0.00 | 0.50 | 0.25 | 0.13 | 0.42 | 0.17 | 0.08 | 0.05 | 0.10 | 1.00
13 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 1.00
14 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 1.00
15 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00

TABLE V: For pedestrian detection, the numbers of the
totally-corrective boosting (TCB).

effective weak classifiers for the stage-wise boosting (SWB) and the

Node Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
SWB 4 | 8112 | 20 | 28 | 36 | 48 | 60 | 72 | 92 | 112 | 132 | 172 | 212 | 252 | 312 | 372 | 432
TCB 4 | 8| 12 | 20 | 28 | 33 | 40 | 47 | 44 | 46 40 39 41 41 41 61 63 63
all the previous weak classifiers are inherited, no matter if a [7] M. Warmuth, J. Liao, and G. Ritsch, “Totally corrective boosting
weak classifier is helpful or not. On the contrary, our totally- ;1g0rlthlgsttﬂ;at mhaﬁglllgstge ;l)gréglnf’ 1111018;0?01851‘/1 Int. Conf. Mach.
’ . . earn., Pittsburgh, s s > PP- - :
fzorrectl.ve algorithms u'pdate all weights 'at ead‘l‘ ropnd' ThOSS [8] V. Gomez-Verdejo, J. Arenas-Garcia, and A. R. Figueiras-Vidal, “A
ineffective weak classifiers are automatically “switched off dynamically adjusted mixed emphasis method for building boosting
by Setting the corresponding Weights to zeros. ensembles,” IEEE Trans. Neural Netw., vol. 19, no. 1, pp. 3-17, 2008.
The framework for constructing totally-corrective boosting ~ [91 W. Fan, S. Stolfo, J. Zhang, and P. Chan, "Adacost: Misclassification
1 ith . 1 id h . cost-sensitive boosting,” in Proc. ACM Int. Conf. Mach. Learn., Bled,
algorithms is genera g SO we can. consider other asymmetric Slovenia, 1999, pp. 97-105.
losses (e.g., asymmetric exponential loss) to form new asym- [10] X. Hou, C. Liu, and T. Tan, “Learning boosted asymmetric classifiers
metric boosting algorithms. We leave this as a future research for object detection,” in Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,
topic New York City, USA, 2006, pp. 330-338.
" . [11] J. Wu, S. C. Brubaker, M. D. Mullin, and J. M. Rehg, “Fast asymmetric
Motivated by the aqalysm.of s.parsenes.s, we ﬁnd. that the learning for cascade face detection,” IEEE Trans. Pattern Anal. Mach.
very early nodes contribute little information for training the Intell., vol. 30, no. 3, pp. 369-382, 2008.
later nodes. Based on this, we can exclude some useless nodes ~ [12] H. Luo, “Optimization design of cascaded classifiers,” in Proc. [EEE
when the node index grows, which will simplify the multi-exit fg 5"f~ Comp. Vis. Pait. Recogn., San Diego, CA, USA, 2005, pp. 480~
structure and decrease the testing time. [13] S.C. Brubaker, M. D. Mullin, and J. M. Rehg, “Towards optimal training
of cascaded detectors,” in Proc. Eur. Conf. Comp. Vis., Graz, Austria,
[14] R. Xiao, L. Zhu, and H. Zhang, “Boosting chain learning for object
[1] P. Viola and M. Jones, “Fast and robust classification using asymmetric detection,” in Proc. IEEE Int. Conf. Comp. Vis., Nice, France, 2003, pp.
AdaBoost and a detector cascade,” in Proc. Adv. Neural Inf. Process. 709-715.
2] gyﬂz-a \If‘i*ﬂzggvgrs ghacng C‘?lglliiiiaig(s)tl’lgfllniljgl 1:;11(13 lsi;tistical face de [15] L. Bourdev and J. Brandt, “Robust object detgction via socft cascsadze(,; ’Oin
s . > * - Proc. IEEE Conf. C . Vis. Patt. R . Diego, CA, US, 5,
tection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. ro¢ » onf. Comp. Vis. Pa ecogi., San DIcgo
1112-1123, 2004 pp- 236-243.
[3] P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J. Comp. (e v. C.'Raykar, B. Krishnapuram, and S. Yu, De?,l gmng efficient cascaded
Vis., vol. 57, no. 2, pp. 137154, 2004 classifiers: Tradeoff between accuracy and cost,” in Proc. ACM Int. Conf.
[4] 1. .I’Jan ‘W.’ X]’J ’Y. ‘Wu an d’ v Gong “Human tracking using Knowledge Discovery & Data Mining, Washington, DC, USA, 2010, pp.
convolutional neural networks,” IEEE Trans. Neural Netw., 2010. 853-860. B . . L
[Online]. Available: http://dx.doi.org/10.1109/TNN.2010.2066286 [17] M.-T. Pham, V.-D. D. Hoang, and TJ. Cham, “Detection with multi-exit
[5] D. Culibrk, O. Marques, D. Socek, H. Kalva, and B. Furht, “Neural net- asymmetric boosting,” in Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,
work approach to background modeling for video object segmentation,” Anchf)rage, Alaska, USA, 2008. '
IEEE Trans. Neural Netw., vol. 18, no. 6, pp. 16141627, 2007. [18] R. Xiao, H. Zhu, H. Sun, and X. Tang, “Dynamic cascades for face
[6] S. Chen, H. He, and E. A. Garcia, “RAMOBoost: Ranked minority detection,” in Proc. IEEE Int. Conf. Comp. Vis., Rio de Janeiro, Brazil,
oversampling in boosting,” IEEE Trans. Neural Netw., 2010. [Online]. 2007.
Available: http://dx.doi.org/10.1109/TNN.2010.2066988 [19] P. Wang, C. Shen, N. Barnes, and H. Zheng, “Asymmetric totally-

P. WANG et al.: FAST AND ROBUST OBJECT DETECTION USING ASYMMETRIC TOTALLY-CORRECTIVE BOOSTING

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

corrective boosting for real-time object detection,” in Proc. Asian Conf.
Comp. Vis., 2010, Lecture Notes in Computer Science, Springer.

H. Masnadi-Shirazi and N. Vasconcelos, “Cost-sensitive boosting,” IEEE
Trans. Pattern Anal. Mach. Intell., 2010.

J. Kivinen and M. K. Warmuth, “Boosting as entropy projection,” in
Proc. ACM Annual Conf. Comp. Learn. Theory, Santa Cruz, CA, USA,
1999, pp. 134-144.

C. Shen and H. Li, “On the dual formulation of boosting algorithms,”
IEEE Trans. Pattern Anal. Mach. Intell., 2010. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.47

——, “Boosting through optimization of margin distributions,” IEEE
Trans. Neural Netw., vol. 21, no. 4, pp. 659-666, 2010.

A. Demiriz, K. Bennett, and J. Shawe-Taylor, “Linear programming
boosting via column generation,” Mach. Learn., vol. 46, no. 1-3, pp.
225-254, 2002.

J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:
a statistical view of boosting,” Ann. Statist., vol. 28, no. 2, pp. 337407,
2000.

G. Ritsch, S. Mika, B. Scholkopf, and K.-R. Miiller, “Constructing
boosting algorithms from SVMs: An application to one-class classifi-
cation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 9, pp.
1184-1199, 2002.

S. Boyd and L. Vandenberghe, Convex Optimization. =~ Cambridge
University Press, 2004.

C. Zhu, R. H. Byrd, and J. Nocedal, “L-BFGS-B: Algorithm 778:
L-BFGS-B, FORTRAN routines for large scale bound constrained
optimization,” ACM Trans. Mathematical Software, vol. 23, no. 4, pp.
550-560, 1997.

C. Huang, H. Ai, B. Wu, and S. Lao, “Boosting nested cascade detector
for multi-view face detection,” in Proc. IEEE Int. Conf. Patt. Recogn.,
2004, pp. 415-418.

N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. IEEE Conf. Comp. Vis. Patt. Recogn., vol. 1, San
Diego, CA, 2005, pp. 886-893.

Q. Zhu, S. Avidan, M.-C. Yeh, and K.-T. Cheng, “Fast human detection
using a cascade of histograms of oriented gradients,” in Proc. IEEE
Conf. Comp. Vis. Patt. Recogn., vol. 2, New York City, USA, 2006, pp.
1491-1498.

S. Maji, A. Berg, and J. Malik, “Classification using intersection kernel
support vector machines is efficient,” in Proc. IEEE Conf. Comp. Vis.
Patt. Recogn., Anchorage, Alaska, USA, 2008, pp. 1-8.

M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The PASCAL visual object classes challenge 2010
(VOC2010) results.” [Online]. Available: http://www.pascal-network.
org/challenges/VOC/voc2010/workshop/

	Accepted - IEEE.pdf
	fast and robust object detection.pdf

