January 23rd, 1936

Dear Professor Gaddum,

t is true that Bliss uses an approximately normal distribution to replace the exact binomial, except in the case of non-dying or non-surviving, but I doubt if a more exact approach is more nearly equivalent to taking weights based on the observed frequencies rather than on the expected frequencies.

a dead and b living, this set of observations contributes the factor pa(1-p) to the likelihood of any fitted line giving p as the probability of dying. If we differentiate this with respect to the expected normal deviate Y, where

we have

If now Y = (1 + $\int (x - \bar{x})$ where 1 and \int specify the fitted line, then the effective equations satisfied by the best fitting line; (5

$$z \left(\frac{a}{p} \frac{b}{1-p} \right) - B$$
 and $z (x - x) \left(\frac{a}{p} - \frac{b}{1-p} \right) - 0$