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Abstract

This study investigated the seroepidemiology of Hendra virus in a spectacled flying-fox (Pteropus conspicillatus) population
in northern Australia, near the location of an equine and associated human Hendra virus infection in late 2004. The pattern
of infection in the population was investigated using a serial cross-sectional serological study over a 25-month period, with
blood sampled from 521 individuals over six sampling sessions. Antibody titres to the virus were determined by virus
neutralisation test. In contrast to the expected episodic infection pattern, we observed that seroprevalence gradually
increased over the two years suggesting infection was endemic in the population over the study period. Our results
suggested age, pregnancy and lactation were significant risk factors for a detectable neutralizing antibody response.
Antibody titres were significantly higher in females than males, with the highest titres occurring in pregnant animals.
Temporal variation in antibody titres suggests that herd immunity to the virus may wax and wane on a seasonal basis. These
findings support an endemic infection pattern of henipaviruses in bat populations suggesting their infection dynamics may
differ significantly from the acute, self limiting episodic pattern observed with related viruses (e.g. measles virus, phocine
distemper virus, rinderpest virus) hence requiring a much smaller critical host population size to sustain the virus. These
findings help inform predictive modelling of henipavirus infection in bat populations, and indicate that the life cycle of the
reservoir species should be taken into account when developing risk management strategies for henipaviruses.
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Introduction

Hendra virus (HeV) and Nipah virus (NiV) are paramyxoviruses

of the genus Henipavirus with pteropid bats (i.e. flying-foxes; Pteropus

sp., Family Pteropodidae) being the primary wildlife reservoir [1].

Evidence of henipavirus infection has been found across the range of

pteropid bats from eastern Australia, southeast Asia, Bangladesh,

India and Madagascar [2]. Henipavirus infection has also been

found to be present in Eidolon helvum, a species of fruit bat (Family

Pteropodidae) that occurs throughout sub-Saharan Africa [3,4].

The potential to cross species boundaries from bats to domestic

animals and humans causing fatal infection appears to be a

consistent feature of henipaviruses wherever they have caused

disease (Australia and Asia). Given that over two billion people live

in the area where Pteropus or Eidolon bats are present, even sporadic

spillover to humans may result in a significant number of human

infections.

Henipaviruses have the potential to infect a wide range of

mammalian species, and Hendra virus has spread from flying-

foxes to horses in Australia on at least 20 reported separate

occasions (five involving horse-human transmission), most recently

in 2011 [5,6,7]. Seven humans have become infected with HeV

via contact with infected horses, resulting in four fatalities [5,8,9].

In peninsular Malaysia and Singapore during 1998 and 1999,

Nipah virus infected pigs and humans resulting in the death of

over 100 humans and the culling of over one million pigs [10].

Since that time, there have also been at least 10 outbreaks of NiV

disease in humans in Bangladesh and India, with the resultant

death of over 140 people. There is also clear evidence of human-

to-human transmission of NiV [11,12].

In spite of the major health concerns, the knowledge of the

epidemiology and ecology of these viruses is limited [1,13,14].

How the viruses are maintained in bat populations is not fully

understood, nor is how the viruses avoid extinction as their host

species become immune. In addition, whether these viruses are

predominantly horizontally or vertically transmitted is also

uncertain [12,15,16], with the apparent viral latency and

recrudescence in some human HeV and NiV infections suggesting
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that henipavirus infection dynamics may differ significantly from

the closely related morbilliviruses [17].

A previous study by Plowright et al. [14] on the infection

dynamics of HeV in the little red flying-fox, Pteropus scapulatus, in

the Northern Territory of Australia suggested that viral transmis-

sion may be predominantly horizontal, with pregnancy and

lactation suggested as risk factors for infection. However, Plo-

wright et al. [14] sampled multiple colonies over time, leaving the

possibility that sampling was not confined to a single population.

Here, we focus on the transmission of HeV in a single colony of

flying-foxes over a 25-month period that was approximately 10 km

from the location of a spillover of infection to a horse and human

in October 2004 [5,8]. We sampled the spectacled flying-fox,

Pteropus conspicillatus, a species which is restricted in distribution to

the Wet Tropics bioregion of north Queensland [18]. We present

data on the infection dynamics of HeV within this flying-fox

colony over the 25-month period. We investigated the association

of antibody response to the lifecycle stage of the host and the

hypothesis that HeV is maintained by episodic infection with

periodic virus outbreaks taking place.

Results

A total of 521 Pteropus conspicillatus were sampled over the six

sampling sessions with an overall seroprevalence to Hendra virus

of 56% (95% C.I. 51–60).

Seroprevalence
The logistic regression model that included age, sampling

session, sex, reproductive status and weight best fitted variance in

seroprevalence, thus these variables were analysed in more depth

(DAICc = 0.00; vi = 0.57; all other models DAICc.2 and vi,0.2;

Appendix 1 in supplementary information). Models that included

two- and/or three-way interactions had DAICc.5, thus were not

investigated further. Weight and forearm length predictor

variables were highly correlated (r2 = 0.72), but the model that

included forearm length and not weight had limited support

(Table S1).

Temporal variation. Seroprevalence steadily increased over

the six sampling sessions from 44.7% in January 2005 to 69.4% in

February 2007 (Figure 1; Table S2).

Figure 1. Observed (A) and expected (B, C) patterns of HeV seroprevalence through time. Panel (A) shows observed temporal variation in
Pteropus conspicillatus seroprevalence (% 695 CI) over the period of study. Panel (B) schematically represents a theoretical seroprevalence pattern of
endemic or persistent infection transmission dynamics (dotted lines represent 95% CIs). Panel (C) schematically represents a theoretical
seroprevalence pattern of an acute, self limiting pathogen; a pattern of seroprevalence that could be seen in a population with episodic infection.
doi:10.1371/journal.pone.0028816.g001
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Variation with sex and reproductive status. Sero-

prevalence of female bats did not differ significantly from male

bats (female: 58.7%; male: 53.7%; log binomial regression

p = 0.25; Table 1). However, pregnant females had a signi-

ficantly higher seroprevalence than both males and all other

female bats (pregnant females: 70.3%; all other bats: 54.6%), and

were 1.3 times more likely to have antibodies to HeV than the rest

of the bats sampled (95% CI: 1.03–1.61; log binomial regression

p,0.05). Bats sampled in early lactation had a significantly higher

seroprevalence than male and all other female bats (early lactation:

75.0%; all other bats: 54.9%). Hence, those in early lactation were

1.4 times more likely to have HeV antibodies than the others

sampled (95% CI: 1.05–1.78; log binomial regression p,0.05).

When seroprevalence was compared among the reproductive

categories of adult females, pregnant bats and those in early

lactation had a significantly higher seroprevalence than non-

reproductive adult females (pregnant: 26/37, 70.3%; non-

reproductive adult females: 19/39, 48.7%; Fisher’s exact test

p,0.05; early lactation: 15/20, 75.0%; Fisher’s exact test p,0.05).

The seroprevalence of those in late lactation was not significantly

higher than non-reproductive females (late lactation: 20/32,

62.5%; non-reproductive adult females: 19/39, 48.7%; Fisher’s

exact test p = 0.178).

Variation with age. Seroprevalence was highest in bats of

the adult category (60.3%), followed by juveniles (58.3%), while

sub-adults had significantly lower seroprevalence (39.8%) than

both adults (logistic regression p,0.001) and juveniles (logistic

regression p,0.05; Figure 2; Table S3).
Variation with bodyweight and forearm length. Sero-

prevalence did not show statistically significant variation with

bodyweight and forearm length although a non-significant linear

trend was observed between seroprevalence and bodyweight

(Table S4).

Antibody titre levels
Hendra virus antibody titre levels were determined by serial

dilution of the sera in the virus neutralisation test. Significant

differences in titre levels were found according to sampling session

(Kruskal-Wallis test p,0.0001), bodyweight (Kruskal-Wallis test

p,0.0001), pregnancy status (Wilcoxon test p,0.001) and sex

(Wilcoxon test p,0.01; Table S5). Age, forearm length and

lactation status were not significant risk factors for antibody titre

level (Kruskal-Wallis and Wilcoxon tests p.0.05).

Antibody levels varied greatly across the sampling sessions with

animals sampled in January 2005 having a median titre of 15

(mean rank 25.7) followed by consistent increases to a peak median

titre of 80 (mean rank 205.6) in September 2006, followed by a

drop to 30 (mean rank 58.8) in February 2007, the final sampling

session.

Individuals of greatest bodyweight (.850 g) had the lowest

antibody titres with a median of 20 (mean rank of 113.3). Females

had significantly higher antibody titres than males (median titres

40 and 20; mean ranks 161.2 and 134.2, respectively) with the

highest titres observed for pregnant females (median titre 80; mean

rank 197.2). Those in any stage of lactation did not show a

significantly higher antibody titre than the rest of the bats sampled.

Discussion

Previous studies have suggested that henipaviruses are main-

tained in flying-fox populations through episodic infection in a

metapopulation structure, and do not persist endemically within a

single population [14,19] (See Figure 1, panel C). Our findings do

not support this hypothesis, but support an alternative pattern of

endemic infection in the population. This endemic infection

dynamic is consistent with a study on viral excretion of NiV in

Pteropus lylei in Thailand, where seasonal excretion of virus was

observed to occur from the same small colonies each year [12].

Our findings on HeV antibody titre levels show a peak in

September 2006 (median titre = 80; mean rank = 205.6) when all

adult female bats sampled were at a late stage of pregnancy. This is

plausibly consistent with a ‘‘boosted’’ immune response subse-

quent to the previous sampling session (March 2006: median

titre = 40; mean rank = 73.96). The following sampling session

showed a decrease in titre level (February 2007: median titre = 30;

mean rank = 58.8), but an increase in seroprevalence from 62.1%

in September 2006 to 69.4%. This finding is consistent with a

period of increased viral transmission during late pregnancy that

had resolved by the time the majority of females were lactating, as

evidenced by the consequent increased seroprevalence. Indeed

Pourrut et al., [20] have suggested that altered immune function in

late pregnancy may cause a transient surge in viral replication of

filoviruses in African fruit bats.

Our finding that late pregnancy and lactation were risk factors

for HeV seropositivity are concordant with results presented by

Plowright et al. [14] on P. scapulatus. Furthermore, the reproductive

cycle in other bat species has been linked to seropositivity and viral

activity of filoviruses, coronaviruses, lyssaviruses and astroviruses

[20,21,22]. Our study identified the highest seroprevalence in the

first few weeks of lactation, indicated by a seroprevalence of 75.0%

Table 1. Effect of reproductive status on Pteropus conspicillatus HeV seroprevalence.

Sex or reproductive status nseropositive/nsampled Seroprevalence (%) Relative risk
Lower
95%CI

Upper
95%CI P-value

(1) Female 121/206 58.74 1.095 0.939 1.277 0.248

Male 169/315 53.65 1

(2) Pregnant 26/37 70.27 1.288 1.029 1.613 0.027

All not pregnant 264/484 54.55 1

(3) All lactating 34/51 66.67 1.224 0.991 1.511 0.060

All not lactating 256/470 54.47 1

(4) Early lactation 15/20 75.00 1.366 1.048 1.781 0.021

All not early lactation 275/501 54.89 1

Relative risk of the four group comparisons uses (1) female, (2) pregnant, (3) all lactating and (4) early lactation as the reference group to all sampled bats. P-values for
log binomial regression shown.
doi:10.1371/journal.pone.0028816.t001
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in females carrying pups (Figure 2). Our study also supports the

conclusions of Field (unpublished data) and Plowright et al. [14]

that maternal transfer of HeV antibodies to juveniles likely occurs,

evidenced by the higher seroprevalence of juveniles (58.3%) than

sub-adults (39.9%), and a correspondingly higher seroprevalence

of adults (60.3%). These findings are consistent with horizontal

transmission of the virus, however the observed seroprevalence

pattern does not preclude the occurrence of vertical transmission.

Vertical transmission may contribute to viral persistence in bat

populations, and there is evidence that vertical transmission of

HeV occurs from experimental infection studies of flying-foxes and

guinea pigs [15] and from natural infection in wild flying-foxes

(Field unpublished data) [16]. Numerous viruses can be transmit-

ted both horizontally and vertically (e.g. transplacentally),

including human polyoma virus, bovine viral diarrhoea virus,

feline leukaemia virus and parvoviruses (porcine, canine and feline)

[17].

For females to be classified as adult in our study they must have

shown signs of prior lactation (i.e. enlarged nipples; figure 2), and

hence a previous pregnancy and lactation. Our finding that HeV

seroprevalence in early lactation was significantly higher than

adult females that were not pregnant or lactating (early lactation;

75.5%; not pregnant or lactating: 48.7%; p-value = 0.047) is

evidence for a decline in HeV seroprevalence in females in the life

stage following lactation. Such a decline suggests that detectable

immunity to HeV is not long lived in P. conspicillatus, and the

pattern seen may reflect seasonal variation in response to repeated

exposure. This variation is contrary to the assumption that HeV

induces long-lived detectable immunity in P. conspicillatus and P.

poliocephalus (e.g. [14]), and suggests that the transmission dynamics

of henipaviruses may be different to those of the closely related

morbilliviruses. Indeed, the mechanism of survival of henipa-

viruses at the population level appears more likely to be one of

endemic infection, perhaps similar to that found in bovine viral

diarrhoea virus, classical swine fever or some herpes viruses

utilising persistent infection, or vertical transmission, as found in

arenaviruses or retroviruses [17]. These patterns of infection

require much smaller critical host population sizes, in contrast to

viruses that demonstrate an acute self-limiting episodic infection

pattern determined by: a build-up of susceptibles, introduction of

virus, and environmental conditions that promote spread (e.g.

measles, Newcastle disease virus or canine distemper virus; [17];

See Figure 1, panel B).

A previous serial cross-sectional study by Plowright et al. [14]

over a 16-month period on little red flying-foxes, P. scapulatus,

sought to determine the factors that drive HeV spillover. Their

study suggested that age, sex, body size, pregnancy, lactation,

season and mating behaviour were possible risk factors for HeV

infection, and that horizontal transmission was the major mode of

transmission between individuals. They also reported a rapid

seroprevalence decline between two successive sampling sessions.

However, given their sampling at multiple locations, the expansive

geographic distribution and highly nomadic nature of P. scapulatus

[23], it is plausible that they were not sampling the same

population over time. In contrast, the species in our study, P.

conspicillatus, is not a nomadic species and has a restricted

distribution to the Wet Tropics of northeast Queensland [18].

Furthermore, our study was conducted within 10 km of a location

where an HeV outbreak occurred in October 2004 [5], and we

collected samples from a single colony of P. conspicillatus on six

separate occasions over a 25-month period. Consequently, we are

confident that we followed the infection dynamics of a single

population of P. conspicillatus over the study period. Nonetheless,

interpretation of results from studies in wild animal populations

should be made with care. Capture of bats by mist-netting

provides a statistically non-random sample of the population, and

the practicalities of sampling from a roost site of many thousands

of individuals also precludes following individuals over time. To

counter these issues, we sought to investigate potential bias and

confounding effects where possible. Future studies on henipavirus

infection dynamics in wild bats may benefit from: permanent

marking of individuals to identify possible repeated capture and

sampling of some animals; improved diagnostic capabilities to

increase the probability of detection of viral shedding; and

improved telemetry methods to enhance the understanding of

movement of individuals between roost locations.

Our findings do not support the episodic infection hypothesis

for HeV persistence in our study population. Rather we suggest

Figure 2. Pteropus conspicillatus HeV seroprevalence (% ±95 CI) across age categories. The observed seroprevalence pattern of a higher
seroprevalence of juveniles (58.3%) than sub-adults (39.9%), and a correspondingly higher seroprevalence in adults (60.3%) suggests predominantly
horizontal transmission of virus and that maternal transfer of HeV antibodies to juveniles likely occurs.
doi:10.1371/journal.pone.0028816.g002

Endemic Hendra Virus Infection in Flying-Foxes

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e28816



that endemic infection of P. conspicillatus occurs, perhaps with

periodic pulses of viral transmission associated with late pregnancy

and early lactation. The consistent increase in seroprevalence over

the duration of our study, together with increasing titres over the

first five sessions followed by a drop in titre in the last session, also

suggest the presence of inter-annual factors may be affecting viral

transmission. An increase in viral transmission associated with

pregnancy in flying-foxes is plausibly concordant with the

temporal pattern of some HeV incidents in horses in Australia

[5], and of NiV outbreaks in humans in Bangladesh and India

[12]. This pattern suggests that the risk of henipavirus transmission

from flying-foxes to domestic animals and/or humans is higher

during the gestation period of flying-foxes. Thus, it is plausible that

spillover risk may be uniformly spatially distributed wherever

pregnant flying-foxes are present. The observed spatial clustering

of henipavirus incidents may be confounded by: surveillance

intensity (passive surveillance is the only method used, with

heightened awareness of disease likely in areas where previous

incidents have occurred); variation in flying-fox population density

(there is evidence of increasing movement of flying-foxes in eastern

Australia into urban and rural areas [24]); variation in horse

density and husbandry practices; and as yet unidentified

predisposing ecological or environmental factors (e.g. climate).

A scenario of persistent henipavirus infection with viral latency

and recrudescence in flying-foxes has been proposed by Field

(unpublished data) and Sohayati et al., [25]. Viral latency and

recrudescence has also been shown to occur in a human HeV case

[26], and at least 12 human NiV cases [27]. This infection

dynamic could lead to the endemic infection pattern seen in our

study. However, it is plausible that different social structures of

host populations (e.g. panmixia, metapopulation, seasonal aggre-

gation) may favour different mechanisms of maintaining infection

at the population level (e.g. predominantly horizontal transmis-

sion, predominantly vertical transmission, seasonal explosive

outbreaks, repeated viral excretion by persistently infected

individuals). Consequently, population structures and mechanisms

of maintenance of infection may reflect the biology of the host

species and level of ecological disruption, rather than only the

biology of the virus. As such, it is likely that different host

populations may have varying levels of risk of infection spillover to

domestic animals and/or humans.

Conclusions and perspectives
An improved understanding of the infection dynamics of

henipaviruses in bat populations should facilitate the development

of effective risk management strategies for disease spillover from

bats to domestic animals and/or humans. Here we show that HeV

infection in a population of Pteropus conspicillatus is likely to be

endemic rather than episodic, as previously proposed for HeV in

flying-foxes. We also present evidence for seasonal viral activity

suggesting that immunity to the virus may wax and wane on a

seasonal basis. These findings should inform disease risk

management and approaches for modelling henipavirus infection

in bat populations. If the ongoing threat that these viruses pose to

public health is to be mitigated, further work is required to clarify

the principal mode(s) of transmission of henipaviruses in bats, and

to comprehensively determine how these viruses persist in their

reservoir hosts.

Materials and Methods

Study site
All study animals were captured and sampled at the Gordonvale

roost site (145u46.749E, 17u4.869S). This site is in a 4.5 hectare

mixed woodland and forest remnant, surrounded by sugarcane

plantations and suburban housing. It has been permanently

occupied by Pteropus conspicillatus for at least ten years, usually

containing 40,000 to 60,000 individuals, constituting approxi-

mately 20% of the Australian population of this threatened species

[18,28]. This is the closest known flying-fox colony to the property

where the HeV spillover event occurred in October 2004 [5]. The

Australian population of P. conspicillatus is geographically isolated

from other populations of this species in northern Papua New

Guinea and the Moluccan islands of Indonesia [29].

Flying-fox capture and sampling
Flying-foxes were caught in mist nets, anaesthetised with

isoflurane (Isoflurane, Laser Animal Health Pty Limited) and

oxygen via an anaesthetic machine using the protocol of Johnson et

al. [30] for sampling. Data collected were sex, bodyweight,

forearm length, approximate age and reproductive status accord-

ing to descriptions detailed in Table S6. Animals were marked

with coloured acrylic lacquer on their hind claws to prevent

resampling within the same session, and were then released at the

site of capture after recovery from anaesthesia.

Age classification of sampled bats was performed as described

by Hall and Richards ([23]; Figure 3; Table S6). Bats being carried

by their mother were classified as juvenile (estimated age 0 to 3

months old; Figure 3, A). Free flying bats that lacked signs of

sexual maturity (e.g. small or non-descended testes in males; lack

of enlarged nipples in females) were classified as sub-adults

(estimated age 3 months to 2 years; Figure 3, B, C). Bats that

showed signs of sexual maturity (e.g. large and descended testes in

males; visibly enlarged nipples indicating a previous pregnancy

and suckling of young in females) but did not show signs of severe

wear on all molar teeth were classified as adults (estimated age 2 to

8 years; Figure 3, D, E, F). Bats that showed signs of severe molar

wear on all molar teeth, including at least two molars worn to the

level of the gingiva, were classified as aged (estimated age 8 years

and older; Figure 3, G).

Female bats were further classified according to their reproduc-

tive status (Table S6). If a foetus could be palpated while

anaesthetised bats were classified as pregnant (this is likely to

represent females in the last trimester of pregnancy; [31]). Bats from

which milk could be expressed from their teats and were captured

carrying a young were classified as early lactating. Bats from which

milk could be expressed from their teats, but were not carrying

young, were classified as late lactating (P. conspicillatus carry their

young continuously for the first month after birth, after which time

the young are left in a crèche while the females forage for the

remainder of lactation [20]). Bats that were not classified into any of

the previous three categories, which would include females in early-

mid pregnancy, were classified as non-reproductive.

Blood samples were collected by venepuncture of the propata-

gial vein with a 23 or 25 gauge needle and 1 mL or 3 mL syringe

depending on the animal size. Blood was allowed to clot in 2 mL

tubes for 24 hours before centrifugation and separation of serum

and storage at 4uC.

Serological tests
Antibody titres to Hendra virus were determined by virus

neutralisation test (VNT) according to [32] at the Australian

Animal Health Laboratory (Geelong, Victoria); the World

Organisation for Animal Health (OIE) reference laboratory for

Hendra and Nipah virus diseases. The tests were carried out under

biosafety level 4 conditions as Hendra virus is a dangerous human

pathogen with a high case fatality rate and for which there is no

vaccine or effective treatment [33]. A serum sample was

Endemic Hendra Virus Infection in Flying-Foxes

PLoS ONE | www.plosone.org 5 December 2011 | Volume 6 | Issue 12 | e28816



considered positive if it neutralised 100 TCID50 of HeV at a

dilution of 1:10 or greater in the VNT, since bat sera at lower

dilutions have produced a high rate of toxic or non-specific

reactions on neutralisation tests.

Data analysis
To investigate the association of potential risk factors with

serostatus, data were analysed by multivariate logistic regression.

We used Akaike’s Information Criterion corrected for small sample

sizes (AICc) for model selection [34]. Models were ranked according

to the difference between the best-fitting model and the AICc value

of model i (DAICc). The strength of evidence for alternative models

was measured by AICc weights (vi). For the potential risk factors

identified by multivariate logistic regression to be important in

explaining variation in serostatus, we performed log binomial

regression analyses to further analyse their associations with

serostatus. The relative risk of being seropositive was determined

for these predictor variables. Due to the smaller sample sizes,

Fisher’s exact test was used to investigate the hypothesised effect of

reproductive status on serostatus in adult females, where serostatus

of non-reproductive adult females was compared with those

categorised as either pregnant, early lactation or late lactation.

As titre levels were not assumed to conform to an a priori

distribution, two measures appropriate for comparing titre data

among groups where serial dilution of sera produce logarithmic

dilutions were used. These measures were the median titres with

an interquartile range, to indicate statistical dispersion, and the

mean rank titres, which indicates the mean rank value for the titres

of animals within a particular category when all animals are

ranked according to titre level. Subsequently, non-parametric

models were fitted to the data. For risk factors with two levels, a

simple Wilcoxon test was performed. For risk factors with three or

more levels, a Kruskal-Wallis test was performed.
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parameters in model (K), Akaike’s information criterion corrected

for small sample sizes (AICc), difference between model i and the

model with the smallest AICc (DAICc), AICc weights (vi) and

evidence ratios (vi/vj). Only models with DAICc,5 are shown.
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Table S2 Pteropus conspicillatus HeV seroprevalence for six

sampling sessions over a 25-month period. Relative risk is

calculated against the first sampling session using log binomial

regression analysis.

(DOC)

Table S3 Effect of age on Pteropus conspicillatus HeV seropreva-

lence. Relative risk is calculated against the sub-adult category,

using log binomial regression analysis.

(DOC)

Table S4 Univariate log binomial regression analysis for HeV

seroprevalence and flying-fox body size (forearm length) and

bodyweight. Relative risk compared to categories: forearm length

175 mm or more and bodyweight 850 g or more respectively.

(DOC)

Table S5 Hendra virus antibody titre levels in P. conspicillatus

according to sampling session, age, forearm length, bodyweight,

sex and reproductive status. Only bats returning a positive test

result for HeV antibodies are included in the analysis.

(DOCX)

Table S6 Description of variables and categories used in this

study.

(DOC)

Figure 3. Features for classification of age categories of Pteropus conspicillatus used in this study. Age classification features (highlighted
by a red circle in B, C, D, E) for both sexes. Key features include: juvenile bats (A) carried by their mother (estimated age 0 to 3 months old); sub-adult
bats (B, C) were free flying that lacked signs of sexual maturity, including the lack of enlarged nipples for females (B) or small or non-descended testes
for males (C; estimated age 3 months to 2 years); adults bats (D, E, F) showed signs of sexual maturity, including visibly enlarged nipples indicating a
previous pregnancy and suckling of young in females (D) or large and descended testes in males (E), and but did not show signs of severe wear on all
molar teeth (F; estimated age 2 to 8 years); aged bats (G) showed signs of severe molar wear on all molar teeth, including at least two molars worn to
the level of the gingiva (estimated age 8 years and older).
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